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Abstract

The CLEARSY Safety Platform (CSSP) was designed to ease the development

of safety critical systems and to reduce the overall costs (development, deploy-

ment, and certification) under the pressure of the worldwide market. A smart

combination of hardware features (double processor) and formal method (B

method and code generators) was used to produce a SIL4-ready platform where

safety principles are built-in and cannot be altered by the developer. Summariz-

ing a 5-year return of experience in the effective application in the railways, this

article explains how this approach is a game-changer and tries to anticipate the

future of this platform for safety critical systems. In particular, the education of

future engineers and the seamless integration in existing engineering processes

with the support of Domain Specific Languages are key topics for a successful

deployment in other domains. DSL like Robosim to program mobile robots and

relay circuits to design railway signalling systems are connected to the platform.

Keywords: formal methods, safety critical, software development, railway

1. Introduction

In several industrial standards (EN50128 for SIL3/SIL4, IEC61508 SIL3/SIL4,

ISO 26262 for ASIL4), formal methods are highly recommended when develop-

ing safety critical software for the highest safety levels, for the specification, the
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development and/or the verification phases. However formal methods are highly

recommended just like many other non-formal (combination of) techniques, as

these recommendations are setup collectively and represent the industrial best

practices. Convinced that formal methods could help to obtain better products

[11][12][19][14], more easily certifiable, a generic, safe execution platform has

been researched for years, combining safety electronics and defect-free proven

software1. The CLEARSY Safety Platform was initially an in-house develop-

ment project before being funded by the R&D collaborative project LCHIP

(Low Cost High Integrity Platform) to obtain a generic version of the platform

(i.e. not only aimed at railway systems). LCHIP [13] is aimed at allowing any

engineer to develop a function by using its usual domain specific language (DSL)

and to obtain this function running safely on a hardware platform. With an

automatic development process2, the B formal method will remain “behind the

curtain” in order to avoid expert transactions over several languages (domain

specific language, B language, interactive proof). As the safety demonstration

does not require any specific feature for the input B model, it could be hand-

written or the by-product of a translation process. Several DSLs are being

connected (or planned to be) based on an Open API (Bxml).

This paper demonstrates how redundant hardware and formal method can

be combined to obtain a platform able to execute a safety critical application,

while the developer only has to focus on the functional aspect. Hence software

development may be delegated to non-expert engineers and testing is limited to

validation, unit and integration testing being replaced by mathematical proof.

The main contribution is cost reduction for application development, certifi-

cation and deployment, as the execution platform is an order of magnitude

1The software model is proved to be defect-free - complying with its formal specification
and without programming errors. The code generators and the compilers are not defect-free.
They are not required to be defect-free as the defects are detected with divergent behaviour
during execution.

2The programs developed with the CLEARSY Safety Platform are considerably simpler
than metro automatic pilot, with few properties, simpler algorithms and hence with an ex-
pected excellent automatic proof ratio. The integration of third party provers/solvers is also
expected to improve automatic proof.
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cheaper than existing off-the-shelf solutions. It would also enable the embed-

ding of new safety-related devices that were not previously considered because

of their expensiveness.

This paper is structured in six parts. Section 2 introduces the Terminology.

Section 3 provides the rationale for designing the CLEARSY Safety Platform.

Section 4 briefly introduces the B method. Section 5 introduces the architecture

and safety principles of the CLEARSY Safety Platform showing how the com-

bination of the B formal method and electronic diversity ensures a high safety

level, and demonstrating how the process is automated and how high profile

engineers are not required anymore to complete the software development. Sec-

tion 6 details the on-going connection with Domain Specific Languages in order

to ease the CLEARSY Safety Platform adoption by non-formalists. More ab-

stract, section 7 shows how an Event-B model of a system could be used to

derive a CLEARSY Safety Platform program, allowing to increase the level of

confidence on the software specification.

2. Terminology

This section contains specific definitions, concepts, and abbreviations used

throughout this paper.

Atelier B is an Integrated development environment (IDE) supporting the

B method and the B language for software development, and Event-B for system-

level analysis. Atelier CSSP is Atelier B extended with redundant code generator

toolchain, bootloader, and a new project type (CSSP project).

B0 is a subset of the B language that must be used at implementation

level. It contains deterministic substitutions and concrete types. B0 definition

depends on the target hardware associated to a code generator.

Bxml is an XML interface to B models, supported by Atelier B.

CRC put for cyclic redundancy check[20], is an error-detecting code com-

monly used in digital networks and storage devices to detect accidental changes

to raw data.
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Diversity refers to a method for improving the reliability of a message

signal by using two or more communication channels. In our case, two diverse

code generators producing different binaries from a single model allow to detect

compilation errors during execution by comparing their behaviour.

Fault tolerance is the property that enables a system to continue operating

properly in the event of the failure of some of its components. In our case, any

electronic part including the processors.

HEX is a file format[21] that conveys binary information in ASCII text

form. It is commonly used for programming microcontrollers, EPROMs, and

other types of programmable logic devices.

PLC put for programmable logic controller[23], is an industrial digital com-

puter which has been ruggedized and adapted for the control of any activity

that requires high reliability control and ease of programming and process fault

diagnosis.

Ladder logic is a programming language[22] that represents a program by

a graphical diagram based on the circuit diagrams of relay logic hardware.

Safety refers to the control of recognized hazards in order to achieve an

acceptable level of risk.

Safety belt refers to the safety properties that are part of the modelling.

This modelling results have to be proved against these properties.

Safety computer usually refers to a computer controlling a system where

the emission of an erroneous output could injure or kill people. Safety techniques

(error detection, redundancy, etc.) have to be used to lower the probability

of occurrence of such a failure remains below an acceptable level defined by

standards.

SIL put for Safety Integrity Level[24], is a relative level of risk-reduction

provided by a safety function. Its range is usually between 0 and 4, SIL4 being

the most dependable and used for situations where people could die.

Reliability is the ability of a system to perform its required functions under

stated conditions for a specified time.

Output states (memory vs physical) A controller computes new values
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for its outputs every cycle. These values (stored in memory) are used to change

(with signal conversion components) the physical state of the outputs. Identity

between values in memory and outputs physical state are checked regularly

(with a monitor checking the signal conversion) to assess if the controller is

still able to control. Depending on how the outputs are implemented (relays,

transistors), changing state may take more or less time and identity check has

to be delayed accordingly.

3. Rationale

Developing a safety computer[5] from scratch is not something you easily

decide because of the effort required to obtain such a device (several millions

of Euros have been spent to develop the current CLEARSY Safety Platform).

Two kinds of devices are currently available on the market for safety criti-

cal applications: PLCs (Siemens3, HIMA4, etc.) and SIL3/SIL4-ready boards

(MEN5, SC36 etc.). PLCs provide a strict, certified environment from which

it is impossible to escape, requiring systems to be designed and programmed

in specific ways. On the contrary, SIL3/SIL4-ready boards offer more freedom,

come with hardware features not incompatible with the standards but where the

safety principles have to be fully programmed by the developer in C or similar

language.

Our first safety system development [15] was aimed at controlling platform

screen doors with a Siemens S7 PLC. The PLC was programmed with Lad-

der Logic[7], one of the five programming languages mentioned by the railway

standards. This PLC comes with a SIL3 certificate requiring that Ladder Logic

programs must be entered by using their own internal editor. At that time, the

program specification was initially written in B (and somehow loosely coupled

with a preliminary system level modelling in Event-B), then implemented in

3https://new.siemens.com/global/en/products/automation/systems/industrial/plc.html
4https://www.hima.com/en/industries-solutions/overview-of-all-hima-solutions
5https://www.duagon.com/products/computing/safe-computing-systems
6https://sc3automation.com/
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B0. The B0 program was proved to comply with its specification, then trans-

lated into Ladder Logic. The resulting Ladder Logic program was manually

typed in the Siemens S7 PLC. As the B0-to-ladder translator was not formally

developed / verified, peer reviews took place to check the conformance of the

code in the PLC with the B0 program (the code generated was very close to

the B0). Because of these human activities, the development process was quite

heavy and the use of formal modelling and proof was mostly nullified by these

systematic reviews (many iterations were necessary to fine tune the software).

Later, unfortunately (or fortunately if we consider what happened in reaction),

one of our competitors managed to literally copy our system (hardware and

software) and to sell it at a lower price. We then decided to develop our own

solution based on the combination of redundant hardware and proven software

developed with B. Producing our own hardware would reduce by an order of

magnitude its cost compared to PLCs and SILx-ready boards while using Ate-

lier B would allow more freedom and more control on the software development.

The decision to go for B was easily taken as it is highly recommended by the

industry standard for SIL4 software development. B is also the central formal

technology we have been using during more than 20 years for most of safety

critical software development. Finally the CLEARSY Safety Platform is aimed

at easing the certification process, as the safety principles, embedded in the

electronics design and the B software, are out of reach of the developer who

cannot alter them.

Finally, the CSSP is a game changer as it proposes an alternative to the

two existing safety PLCs / safety-ready boards (we are not considering in-house

PLCs developed by train manufacturers which are not commercially available):

• black-box PLCs with a SIL3-SIL4 stamp but also a very constrained devel-

opment framework and the inability to adapt to specific requirements (sig-

nal processing on the input signal for example). The safety demonstration

heavily relies on the PLC safety certificate and the bounded development

environment.
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• safety-ready boards, providing a kit of features that the developer needs

to connect and activate cautiously, in time and in order, together with

the application specific code. The safety demonstration has to be fully

designed by the developer.

The third way proposed by the CSSP offers the freedom to tailor the applica-

tion (input/output signal processing, variable cycle time, asymmetric computing

among the two processors, etc.) and to ease the safety demonstration, if the

application complies with safety hypotheses coming with the certification kit.

These hypotheses, named ”safety application conditions”, not described in this

paper, have been identified during previous certification processes and are suf-

ficient to complete the safety demonstration. Having the application B project

fully proved is one of them.

4. Introduction to the B Method

B[1] is a method for specifying, designing, and coding software systems. It

covers central aspects of the software life cycle (Fig. 1): the writing of the

technical specification, the design by successive refinement steps and model

decomposition (layered architecture), and the source code generation.

Figure 1: A typical B development cycle, from requirements to code.

B is also a modelling language that is used for both specification, refinement

(Fig. 2), and implementation (Fig. 3). It relies on substitution calculus, first

order logic and set theory. All modelling activities are covered by mathematical

proof that finally ensures that the software system is correct.
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B is structured with modules and refinements. A module is used to break

down a large software into smaller parts. A module has a specification (called a

machine) where are formalized both a static and a dynamic description of the

requirements. It defines a mathematical model of the subsystem concerned:

• an abstract description of its state space and possible initial states,

• an abstract description of operations to query or modify the state.

This model establishes the external interface for that module: every imple-

mentation will conform to this specification. Conformance is assured by proof

during the formal development process. A module specification is refined. It

is re-expressed with more information: adding some requirements, refining ab-

stract notions with more concrete notions, getting to implementable code level.

Data refinement consists in introducing new variables to represent the state

variables for the refined component, with their linking invariant. Algorithmic

refinement consists in transforming the operations for the refined component.

A refinement may also be refined. The final refinement of a refinement column

Figure 2: Structure of MACHINE and REFINEMENT components.

is called the implementation, it contains only B0-compliant models. In a com-

ponent (machine, refinement, or implementation), sets, constants, and variables

define the state space while the invariants define the static properties for its

state variables. The initialisation phase (for the state variables) and the opera-
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Figure 3: Structure of IMPLEMENTATION component.

tions (for querying or modifying the state) define the way variables are modified.

From these, proof obligations are computed such as: the static properties are

consistent, they are established by the initialisation, and they are preserved by

all the operations. Atelier B contains a model editor merging model and proof

(Fig. 4) by displaying the number of proof obligations associated to any line of

a B model, its current proof status (fully proved or not) and the body of the

related proof obligations.

Figure 4: Atelier B model editor showing proof status.

Finally a B project is a set of linked B modules. Each module is formed of

components: an abstract machine (its specification), possibly some refinements
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and an implementation. The principal dependencies links between modules

are IMPORTS links (forming a modular decomposition tree) and SEES links

(read only transversal visibility). Sub-projects may be grouped into libraries. A

software developed in B may integrate or may be integrated with traditionally

developed code.

5. Architecture and Safety Principles

This section contains a description of the platform architecture and its pro-

gramming model, as well as a summary of the safety principles. The safety case

contains all the details leading to complete demonstration (SIL4) but are not

disclosed here (the safety case is around 120 pages). The CSSP has already

been certified 3 times.

5.1. Introduction

The CLEARSY Safety Platform is a generic PLC able to perform command

and control over inputs and outputs. For safety critical applications, the PLC

has to be able to determine whether it is fully functional or not. In case of

failure, the PLC should move to restrictive mode where all the outputs are

deactivated. The stronger the risk of harming people in case of failure, the

higher the Safety Integrity Level. For SIL3 and SIL4, the computations have

to be performed by a minimum of two processors and checked with a voting

system. The verification listed below in Table 1 is used to detect PLC failures

and to trigger a move to restrictive mode.

5.2. Architecture

The CLEARSY Safety Platform is made of two parts: an IDE to develop

the software and an electronic board to execute this software.

The overall architecture (Fig. 5) is common to all instances of the CLEARSY

Safety Platform (starter kits SK0 and SK1). The differences lie in the number of

digital (binary) IOs: 5 for SK0, 28 for SK1. Future instances of the CLEARSY

Safety Platform will feature analog IOs and networking services (messaging)

through a maintenance processor i.e. a non safety-related processor in charge
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Figure 5: The CLEARSY Safety Platform starter kit SK0 board

of spying the microcontrollers bus and to emit traces of execution to the out-

side. From a safety point of view, the current architecture is valid for any kind

of mono-core processor. The decision of using PIC32 microcontrollers (able

to deliver around 50 DMIPS) was made based on our knowledge and experi-

ence of this processor. Implementing the CLEARSY Safety Platform on other

hardware (STM32 for example) would “only” require to modify the existing

electronic board and software tools, without much impact on the safety demon-

stration. Note that the PIC32 microcontrollers used by the hardware platform

are commercial products. From the standards, their reliability is considered as

10−5/h.

The full process is described in Fig. 6 where rounded boxes are tools and

rectangles are files; µC1 and µC2 are PIC32 microcontrollers.

The CLEARSY Safety Platform development cycle strictly follows the B

method which can be summarized as:

• specification model is written first from the natural language requirements

(Function), then comes the implementation model, both using the same

language (B). The implementable B model could be automatically refined

with Atelier B BART tool, but it requires to have a fully deterministic

model.
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Figure 6: Full path from function description to safe execution

• models are proved to be coherent and to be correct refinements. The proof

is automatic if the complexity of the model is not too high for the Atelier

B theorem prover. Frequent interactive demonstrations can be turned in

proof tactics to be applied automatically,

• source code or binary is generated from implementation model:

– Binary 1 (HEX file) is directly compiled from the implementation B

model. The compiler has been developed in-house for supporting this

technology.

– Binary 2 (HEX file as well) is generated in two steps. First, Imple-

mentation models are translated to C, using the Atelier B C code

generator. Then the C code is compiled with gcc.

• The two binaries are linked to a top-level sequencer and a safety library,

both software developed in B by the CSSP IDE development team once

for all, to constitute the final software.

• This software is then loaded on the flash memory of the two microcon-

trollers (bootload mode).

• When the board enters the execution mode or is reset, the content of

the flash memory is copied in RAM for both microcontrollers which start

executing it.
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• For each microcontroller, the top-level sequencer enters a never-ending

loop and

– calls in sequence Binary 1 then Binary 2 for one iteration

– calls the safety library in charge of performing verification.

– If the verification fails, the board enters panic mode, deactivates its

outputs and enters an infinite loop doing nothing.

5.3. Programming

The process starts with the specification of the function to develop commonly

expressed with natural language. The developer has to provide a B model of it

(specification and implementation) matching the following pattern:

• The function to program is a loop, where the following steps are performed

repeatedly in sequence:

– the inputs are read. Inputs are the same for µC1 and µC2, unless

inputs are captured at different times, in which case the different

values would cause the platform to enter panic mode.;

– some computation is performed in relation with the inputs/outputs

status, local variables and the time elapsed since the last reset;

– the outputs are set.

• The steps related to inputs and outputs are fixed and cannot be modified.

• Only the computation may be modified to obtain the desired behaviour.

The Atelier CSSP creates a skeleton of a B project. Fig. 7 shows the be-

havioural part of the project. The top level module is made of two components:

user component (the specification) and user component i (the implementation).

This implementation imports 4 modules: user ctx, inputs, logic, and outputs.

user ctx contains only constants and sets defined by the developer; inputs and

outputs contain variables and operations for accessing the inputs (read access)

and outputs (write access). logic contains the control & command logic of the
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board. user ctx and logic are the only two modules to modify. Other modules

could be required by logic and have to be imported by logic i. Programming

the board consists of:

• describing, in the component logic, the behaviour of the board;

• declaring and using constants, defined in the component user ctx ;

• reusing operations defined in the component inputs and in the safety li-

brary.

Figure 7: A typical CLEARSY Safety Platform project. The divergence test var is exposed
as it is required by the code generation toolchain but has no impact on the modelling.

The B language supported by the CLEARSY Safety Platform differs from

the one described in [1], among which (Fig. 8):

• safety variables are all unsigned integers, coded either on 8, 16, or 32 bits.

• digital inputs and outputs are unsigned integers coded on 8 bits (uint8 t).

Their values are either IO OFF or IO ON.

• testing conditions are restricted to one term only. Multiple conditions

have to be in nested IF.

• local variables have to be typed with a ”becomes such as” substitution.
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• arithmetic operators able to produce overflow (+, -, *) are replaced by

non-overflowing operators using modulo calculation to produce a result in

the range of the variable receiving the result.

Figure 8: One implementation of the operation user logic

All the operations defined in the components inputs and outputs have to

remain unchanged, as well as the accessing functions get * defined in the com-

ponent logic. Although the implementable B model, or implementation, is usu-

ally developed manually, it may also be automatically generated with the B

Automatic Refinement Tool. The B models are proved (mostly automatically

as the level of abstraction of typical command & control applications is low)

to be coherent and to contain no programming error. From the implementable

model, two binaries are generated:

• Binary1, obtained via a dedicated compiler (developed by CLEARSY)

transforming a B model into a HEX file,

• Binary2, produced with the Atelier B C code generator, then compiled

with the GCC compiler into another HEX file.

Each binary represents the same function but is supposed to be made of different

sequences of instructions because of the diversity of the tool chains. Then the

two binaries Binary1 and Binary2 are linked with:
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• a sequencer, in charge of 1) reading inputs, 2) executing once Binary1 then

Binary2, 3) setting the outputs;

• a safety library, in charge of performing safety verification. In case verifi-

cation fails, the board enters panic mode, meaning the outputs are deac-

tivated (no power is provided to the Normally Open (NO) outputs, so the

output electric circuits are open), the board status LED starts flashing,

and the board enters an infinite loop doing nothing. A hard reset (power

off or reset button) is the only possibility to interrupt this panic mode.

The final program is thus made of Binary1, Binary2, the sequencer and the

safety library. The memory mappings of Binary1 and Binary2 are separate.

This program is then uploaded on the two micro-controllers µC1 and µC2.

5.4. Safety Principles

For the safety case, the feared event is the wrong powering of one of the

outputs i.e. this output has to be OFF (the relay should not be powered)

but it is currently ON (the relay is powered). The power is provided by both

microcontrollers, so if one of the two is reset, it would not power the relay and

the board is in a restrictive safe state. The safety principles are distributed

on the board and on the safety library. The safety case demonstrates that the

verification performed during development and execution are sufficient to ensure

the target safety integrity level.

The bootloader, on the electronic board, checks the integrity of the program

(CRC, separate memory spaces). Then both microcontrollers start to execute

the program. During execution, the following verifications are conducted. If

any of these verification fails, the board enters the panic mode:

• internal verification (performed within a single microcontroller):

– every cycle, Binary1 and Binary2 data memory spaces (variables) are

compared within each microcontroller;
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– regularly, Binary1 and Binary2 program memory spaces are com-

pared. This verification is performed “in the background” over thou-

sands / millions cycles - to keep a reasonable cycle time.;

– regularly, the identity between memory outputs states and physical

output states is checked to detect if the board is unable to command

the outputs.

• external verification (performed between both microcontrollers):

– regularly (every 50ms at the latest), data memory spaces (variables)

are compared between µC1 and µC2.

Figure 9: Tools and files involved in the generation of the software

The whole process is fully supported by dedicated tools. None of the tools

part of the toolchain are proved to be correct. In Fig. 9, the tools and generated

text and binary files are made explicit for both the application (the process is

conducted every time an application is developed) and the safety belt (developed
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once for all by the IDE development team 7). All the tools come from Atelier

B, except:

• the B to HEX compiler, initially developed to control platform screen

doors for metro lines in Brazil. This tool proceeds in two steps: a trans-

lation from B to ASM MIPS, then from ASM MIPS to HEX. In order

to ease debugging as ASM MIPS to HEX is a straightforward line-to-line

translation.

• the C-to-HEX gcc compiler.

• the linker that combines the two HEX files with the safety sequencer and

libraries.

• the bootloader.

Some of the tools have been “certified by usage” since 1998 [4], but the newest

tools of this toolchain have no history to rely on for certification. It is not a

problem for railway standards as the whole product is certified (with its envi-

ronment, the development and verification process, and other elements). Hence

it is not required to have every tool certified. Instead the main feature used

for the safety demonstration is the detection of a misbehaviour among the four

instances of the function and the two microcontrollers. This way, similar bugs

that could affect two independent tools at the same time and with the same

effects are simply neglected: the standards incorporate the assumption that two

tools developed with independent teams using different technologies could not

show exactly the same buggy behaviour8. So a bug will always be detected by

7Note that from the abstract formal model, one part of the software is developed in B
with a concrete formal model, while the other part is developed manually. It happens when
using B provides no added-value (for example low-level IO). A component modelled in B and
implemented manually is called a basic machine.

8Common cause failures may happen with shared conditions (same compiler, same library,
same programming language, same design, same team, etc.) and break the diversity principle.
If the absence of common cause failures is established during the safety analysis then the
probability of occurrence of the same failure on the two paths at the same time is considered
to be lower than the probability of disappearance of the atmosphere - hence neglected in the
safety case.
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comparing the behaviour of the two tools.

Table 1: Verification performed during development and execution

Stage # Failure CSSP verification

specification 1 Typing error Typechecker tool detects typing error

specification 2 Specified behaviour incompatible Unprovable proof obligation indicates
with invariant properties specification mistake

implementation 3 Typing error Typechecker tool detects typing error

implementation 4 Implemented behaviour incompatible Unprovable proof obligation indicates
with invariant properties implementation mistake

implementation 5 Implemented behaviour incompatible Unprovable proof obligation indicate
with specified behaviour implementation mistake

implementation 6 Overflow capable arithmetic operators Detected by the B-to-HEX compiler
used instead of dedicated ones

implementation 7 IF clause with more than one condition Detected by the B-to-HEX compiler
(B0 language restriction)

implementation 8 LOCAL variables not typed before use Detected by the B-to-HEX compiler
(B0 language restriction)

code generation 9 Syntax errors in the C generated code Detected by the MICROCHIP compiler

code generation 10 Incorrect naming in the C Detected by the linker
generated code

code generation 11 Incorrect memory map Memory overlap detected by the
bootloader

compilation 12 Wrong binary code generated Detected during execution by the safety
library by comparing binary1 and
binary2 variables in memory
with CRC on the same µC

uploading 13 Incorrect transfer between host Detected by bootloader during upload (CRC)
and electronic board and during execution over several cycles

execution 14 RAM error (variables) Detected by comparing binary1

and binary2 variables in memory
with CRC on the same µC

execution 15 RAM error (program) Detected by comparing binary1

and binary2 program in memory
with CRC with the other µC

execution 16 Failure of one µC Detected by handshake between µC1

and µC2 at least every 50 ms

execution 17 Outputs not command-able Detected by checking physical state
and command issued by the software

The safety is built on top of several principles:

• a B formal model of the function to develop, proved to be coherent, to

correctly implement its specification, and to be programming error-free

i.e. no division by zero, no overflow, no access to a table outside of its

range;
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• four instances of the same function running on two micro-controllers (two

per micro-controller with different binaries obtained from diverse tool-

chains) and the detection of any divergent behaviour among the four in-

stances;

• the deferred cross-verification of the programs on-board the two micro-

controllers;

• outputs require both µC1 and µC2 to be live and running as one provides

energy and the other one the command;

• physical output states are regularly verified to comply with the software

output states, to check the ability of the board to command its outputs;

• input signals are continuous (0 or 5V) and are made dynamic (addition of

a frequency signal) in order not to consider short-circuit current as high

level (permissive) logic.

The verification performed by the CLEARSY Safety Platform, either during

development or execution stages, is summarized in Table 1.

The safety critical electronic board needs some vital elements to comply with

the highest SIL requirements, such as:

• ensuring galvanic isolation between the two half-boards, to avoid that one

side of the board wrongly provides energy to the other side’s outputs

• activate safety outputs with a sinusoidal signal instead of a continuous

signal, to ignore fault current. The micro-controller needs to be alive to

generate the sinusoidal signal. An electrical transformer connected to the

output line will generate power only if powered by alternative current.

These features, that are not implemented on the starter kits, are only needed for

real-life safety critical systems and do not prevent developers, whether students,

researchers or engineers, to get educated with the CLEARSY Safety Platform

and to develop prototypes.
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6. Engineering through DSLs

The CLEARSY Safety Platform is a software plant where a B model is auto-

matically proved and transformed into a binary program that executes safely on

dedicated hardware. The connection between Domain Specific Languages and

the CLEARSY Safety Platform, through a translation from DSL to B, would

entitle engineers to make profit of the CLEARSY Safety Platform safety features

and to quite easily obtain a safety function issued from the used usual modelling

language. Two experiments are being conducted: one with relay schemes for the

French railways to replace wired-logic devices by programmed ones, the other

with RoboSim to address the robotics domain. With these two case-studies, the

objective is not to directly obtain a safety critical design but to demonstrate

that the translation from these two formalisms to B (as supported by the CSSP)

is doable and enables a path from one DSL model to a safe execution. In both

cases, the properties expressed in the B specification are almost minimal as they

are expected to have been verified at the DSL level.

6.1. Relay Circuits

Relay circuits are electrical circuits that have been first considered for trans-

lation and support by the CSSP.

6.1.1. Technical and Industrial Context

Despite the existence of digital systems, it is still common to use relay-based

systems. Indeed, in the railway signaling domain, the interlocking systems re-

sponsible for allowing or denying trains movement are still nowadays imple-

mented by electrical circuits containing relays. These electrical circuits receive,

use and transmit information through the use of electromagnetic switching ele-

ments. These elements are composed of electromagnet (coils) and contacts. The

natural state of the contact (dictated by gravity) is modified by the state of the

coil. When the coils are activated, the state of the contacts is modified thus

powering or disabling other coils. Such combinations are a mean to implement

logic functions.
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Such electrical systems are designed by drawing electrical circuits, namely,

relay circuits (we refer the interested reader to e.g. [18]). An example of such

a specification is presented in Fig. 10. It is a circuit for controlling the state

of a color light signal installed sideways of the tracks. This design has been

provided to us by SNCF Réseau (owner and main manager of the French railway

network).

Figure 10: Example of a relay circuit.

These relay circuits are mainly composed of :

• Electrical sources (positive and negative):

• Inputs, which are a special case of electrical sources that can be either

activated or disabled.

• Outputs, which are just electrical sources but that have effect outside of

the system and thus are monitored.

• Mono-stable relays, which are composed of a single electromagnet; they

are active when an electric current goes through them, inactive otherwise.
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In the example, the relays are depicted from left to right: CM, CFR,

RPCS, CRR, CA, RPA, BS, EX1 and EX2. They are pictured with a

rectangular shape containing a chevron.

• Contacts, which have two states: open or closed. A closed contact lets the

current flow through whereas an open contact prevents it. Contacts are

associated to a relay. There are two types of contacts:

– a normally opened contact requires its relay to be active to close;

– a normally closed contact requires its relay to be active to open.

In the example, the contacts are aligned vertically with their associated

relay and are visually connected with a dashed line. For instance, there

are two contacts associated with the relay BS. The visual position of the

contact indicates whether it is normally opened (drawn below the wire)

or normally closed (drawn above the wire). For example, the top-most

contact associated to BS is normally opened while the bottom-most is

normally closed.

Notice also that, in this drawing, relay CRR is active since its normally-

opened contacts are closed and, conversely, its normally-closed contacts

are open. All the other relays are inactive.

Note that other components exist, such as light control block (BKF), timers,

bi-stable relays and timed relays.

6.1.2. Translating Relay Circuits Design to B Components

To re-use the design of relay circuits to implement a safe digital circuit, we

developed a prototype allowing to translate relay circuits to B components. This

prototype is composed of the following two steps:

1. Enter the circuit structure using a simple interface based on highlighting.

2. Translate automatically the entered circuit to B.

These steps are detailed in the following. Also, since each such step may contain

errors, and since this system is critical (a wrong output may induce the train
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driver to enter a track section allocated to another train), it is necessary to

verify their output. We also present how these steps may be verified.

Highlighting. First the user uses a graphical user interface that allows to high-

light the circuit piece-wise. The principle is that the user must highlight every

single linear wire (ending either in inputs, outputs, electrical sources or junc-

tions), and click sequentially on every element on the wire. Every time the user

clicks on an element, the interface queries the nature and the identity of the

component. This process allows to convert the graphical scheme to a simple

tabular format.

Highlighting provides the user with a visual clue of which part of the circuit

have already been entered. Once the user has completed entering all the relevant

parts of the circuit, the first step is finished.

A visual representation of the result of highlighting the scheme of Fig. 10 is

given in Fig. 11. Parts of the circuit that have not been entered are greyed out.

In the final setup, these parts will not be executed by the CLEARSY Safety

Platform, and they shall be implemented by other physical components.

Translation to B. Once the relevant part of the circuit has been entered by

highlighting, tables are filled with all the information required to perform the

translation into B components that are compatible with the CLEARSY Safety

Platform. The principles of the translation are the following.

The inputs of the CLEARSY safety platform are the inputs of the relay

circuit, i.e., electrical sources identified as inputs by the user. Likewise, the

output of the CLEARSY safety platform are the outputs of the relay circuit.

The variables encode the states of the relays (either active or inactive). For

each relay, there is a corresponding bi-valuated variable. The computation done

during a cycle of the Clearsy safety platform consists of computing the new

state of the relays according to the state of the inputs and the previous states

of the relays. This computation is done by evaluating whether each strand is

closed or open: a strand is open if and only if it contains at least one open

contact. The algorithm processes each strand from a positive electrical source
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Figure 11: Highlighting of the scheme of Fig. 10. Highlighted wires appear in yellow, entered
circuit elements appear in green (when energized in default state) and red (otherwise) squares

to a negative electrical source, exploring each possibility when encountering a

junction. When a positive and a negative source can be connected with a closed

strand, then the state of each relay on the strand is set to active. Since these

new relay states may change the states of the contacts, the strands processing

must be reevaluated. So this process is performed until a fixed-point is reached

(no relay changed value between two consecutive processing cycles).

Note that, if a fixed-point is not reached, the firmware in the CLEARSY

Safety Platform guarantees that the system falls back to a fail-safe state. In

the current version of the translator, no check is performed to verify whether

this situation might happen. We assume that the design of the relay scheme

prevents the oscillation of the electrical circuit and thus ensures the existence

of a fixed-point.

Note as well that the transient states of the electrical circuit and of the

Clearsy safety platform (before the fixed-point is reached) may be different.

The only guarantee is that the fixed-point reached is the same as in the relay
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circuit.

6.1.3. Verification

Verification of the Highlighting. The highlighting process, being done by hand,

is error-prone. We thus developed a tool to compare the result of the highlighting

with the original scheme. In addition to the information needed to translate the

scheme into B we also save the coordinates of the components. This allows us

to re-draw a scheme from the elements highlighted and selected by the users.

It is thus easy to compare (by superposition, for example) the two objects to

verify that no components or connections have been omitted.

Verification of the translation. Two kinds of verification may be performed for

the generated B code: a structural verification and a behavioral verification. A

structure based verification is easily achievable since the generated code has a

structure that follows precisely that of the intermediate, ad hoc, formats used.

It would thus be easy, but cumbersome, to compare the two. We envision a tool

that would implement a reverse translation from the generated B code back to

the strand representation.

Another approach is to verify the behavior of the generated B code against

the expected properties of the system. For relay-based schemes, the properties

express the expected values of the output after the circuit has stabilized. These

properties can then be encoded in the generated B as ASSERT instructions.

This results in proof obligations generated in the B environment. Since we

are dealing here with finite systems, the proof can be done by exhaustive model

checking using ProB. As an example, for a circuit commanding a light, one could

require that (even in case of bulb default) the output signal is less permissive

than the commanded signal. For instance, the output commanding the green

light should not be set if either the orange or the red light are commanded.

Conversely, if the orange light is commanded, the output setting the red signal

may be set, e.g., if the orange bulb is broken.

Following this approach, we have verified that the code generated for example

in Fig. 10 satisfies a number of expected properties provided together with the
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scheme, expressed in natural language and translated manually to first-order

logic.

Model checking was conducted in a few seconds with ProB on this simple

industrial design. It is noteworthy that, through such model checking-based

verification, we have obtain a counter-example that showed a property was

not held (this was expected by the provider of the example). It also helped us

identify an early mistake in the translation process (that we have now corrected).

This approach is effective up to midsize designs (as shown by the example

in Section 7) but we have not yet applied it to large circuits. However, since

the translation targets a subset of the B expression language where types are

essentially Booleans, alternative automatic formal verification such as SAT are

also applicable and would certainly be able to address larger circuits.

6.1.4. Concluding Remarks

The work presented shows the feasibility to replace heavy and physically

large electrical relay circuits (they need to be fit in a cabinet sideways of the

track) by smaller and cheaper digital devices. This approach benefits from

the guarantees offered by the application of formal methods (B method, model

checking) and from a generic fail-safe device (the CLEARSY Safety Platform).

6.2. RoboSim for Robotics

RoboSim [6] is a diagrammatic language to model simulations of robotic

systems by state machines combined to define concurrent and distributed de-

signs that use specified services of a platform. Its visual representation is akin

to notations currently used by practitioners and much more friendly than any

programming language. RoboSim main distinction is that its models can be

verified against a UML-like design of a controller defined in RoboChart [16].

This is possible because both notations have been given a unified semantics us-

ing CSP [17], a process algebra for refinement with well established tools like

FDR3 [9]. Hence, by automatically translating their models into CSP and check-

ing for refinement using FDR3, it is possible to automatically check correctness

of simulation models regarding their design.
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CSP itself has been given a UTP (Unifying Theories of Programming) [10]

theory. This allows the encoding of the CSP semantics in the UTP making it

possible to obtain support for theorem proving using the powerful prover Is-

abelle/HOL [8]. In this context, with RoboSim, Cavalcanti et al. fully bridge

the gap between the state-machine modelling and simulation paradigms. Never-

theless, RoboSim is intended to be an intermediate notation to describe verified

simulations that can be automatically translated into code for use with stan-

dard robotic simulators. In this section, we present a step towards achieving

this using the CLEARSY Safety Platform.

In Fig. 12 we present an illustrative example originally presented in [6] of a

RoboSim model of a robot that can move around, detect obstacles, and stop.

The module SimCFootBot is composed of the robotic platform FootBot and

the SimMovement controller that has a reference to a single simulation machine

SimSMovement. It is important to notice that the module specifies the cycle

period by including a (simple) predicate stating cycle == 1. The same happens

with the the controller SimMovement and the machine SimSMovement.

The interfaces can group variables, operations, and events. In Fig. 12, the

interface MovementI has the operations move(lv, av) and stop(), provided by

the robotic platform, and required by the controller. The operation move(lv, av)

can be used to move the robot with linear speed lv and angular speed av. The

instruction to the robot to stop is given using the operation stop. The interface

ObstacleI has just the event obstacle, which is used in the platform, in the

controller, and in the state machine. The event obstacle, an abstraction of a

sensor that detects obstacles, occurs when the robot gets close to any object in its

environment. The robotic platform FootBot defines the interface of the system

with its environment via the operations of the provided interface MovementI

and the user interface ObstacleI. Assynchronously, the occurrence of the event

obstacle is sent to the single controller of our example SimMovement. The

behaviour of a controller is defined by one or more state machines, specifying

threads of execution. In our case, the behaviour of SimMovement is defined just

by the machine SimSMovement. It is important to notice that two different
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Figure 12: RoboSim: obstacle detection
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symbols denote an event: the lighting is used when declaring an event, whereas

the square is used to indicate event passing information.

State machines are similar to those in UML, except that they have a well-

defined action language, and time primitives. The state machine SimSMovement

has three local constants PI, lv, and av, and clock MBC. The event obstacle

declared in the interface ObstacleI is an input, and the operations move and

stop declared in the interface MovementI are outputs.

A RoboSim model specifies a cyclic mechanism; a special marker event exec

defines points where behaviour evolution must stop until the next cycle. In each

cycle, inputs are read from registers, processed, outputs are written to registers,

and then time elapses in a period of quiescence until the next cycle. During

processing, the simulation machine takes control of execution until progress

requires the (next) occurrence of exec.

The visible behaviour is the reading and writing of registers, which is char-

acterised by the inputs and outputs. Their values capture interactions corre-

sponding to platform events, access to platform variables, and calls to platform

operations. For instance, the event obstacle is captured in our example as a

register with a boolean value indicating whether an obstacle has been detected

or not. The boolean variable $obstacle corresponding to this input is used in

guards, not triggers, of transitions. In RoboSim, the only trigger used is exec.

The overall behaviour of SimSMovement is as follows. The first cycle starts

with the transition from the initial junction to the SMoving state, in which it

is recorded that move must be called, as indicated by move(lv, 0). The $ indi-

cates that the operation is not called immediately. Afterwards, it changes to the

DMoving state, where it waits for the next cycle, because there are no transi-

tions from DMoving not triggered by exec. In the next cycle, SimSMovement

checks whether an obstacle has been perceived. If not, it remains in DMoving.

Otherwise, it moves to STurning, when it resets the MBC clock (denoted by

the command #MBC), records that stop and then move must be called, besides

moving to DTurning, all in one cycle. In the subsequent cycle, if the amount

of time since MBC has been reset is less than PI/av, it remains in DTurning;
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it returns to SMoving otherwise.

6.2.1. Translation Overview

The translation from RoboSim to the CLEARSY Safety Platform, on which

we are currently working, must consider the fact that we have two different

notions of cycles. On one hand, we have the cycle of the board itself (CLEARSY

Safety Platform cycle), which is able to execute around 50 million instructions

per second. In each CLEARSY Safety Platform cycle, the board reads the inputs

from the input pins and stores their values in reserved input variables, executes

the behaviour defined in an special B operation called user logic and writes

the values stored in reserved output variables to the output pins. On the other

hand, we have the cycle of the simulation model (Model Cycle), which executes

one cycle of its state machine possibly reading values from the reserved input

variables and writing values to the reserved outputs variables. Conceptually,

the time unit of the simulation does not need to be defined. Nevertheless, for

execution purposes, we have to provide a definition for that. Our translation

defined a constant cycle unit, which must be valuated before loading the project

into the board. For the sake of our example, we assigned 100ms to the cycle

unit.

A summary of the control flow of B implementation resulting from the trans-

lation of RoboSim models is presented in Fig. 13. Initially, the CLEARSY Safety

Platform reads all inputs from the pins and stores their values in reserved input

variables. Next, we have to check if this is the first time that the user logic is

being executed. This is because RoboSim models do not wait one model cycle

to provide its first outputs, which must be given immediately if the simulation

model says so. For example, in Fig. 12, the model determines that, initially,

the controller must invoke the operation move(lv, 0) before waiting for the next

cycle (exec). For this reason, in the control flow presented in Fig. 13, if the

user logic is being executed for the first time, we proceed to the execution

of one cycle of the controller state machine. Nevertheless, for reasons we will

present later in this section, every such execution must be preceded by a reset of
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Figure 13: A Summary of the resulting B implementation control flow

all outputs. Finally, we start a timer that counts the model cycle time and the

CLEARSY Safety Platform writes to all output pins using the values stored in

reserved output variables that might have had their values changed in the execu-

tion of state machine cycle. However, if we are not executing the user logic for

the first time, we proceed to the execution of one cycle of the state machine only

if the model cycle timer has reached the cycle duration. Again, we precede this

execution with the outputs being reset and, afterwards, the CLEARSY Safety

Platform writes to all output pins using the values stored in reserved output

variables. Finally, if the cycle duration has not been reached, the CLEARSY

Safety Platform simply writes to all output pins using the values stored in re-

served output variables. In fact, the vast majority of the board cycles are empty

cycles in the sense that they ignore the inputs being read and do not change

any written output.

Another important aspect is that a fine tuning of the model cycle unit is

essential to make inputs noticeable by the controller and to make outputs no-
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(a) Context Specification (b) Context Implementation

Figure 14: Specification and Implementation of the Simulation Model Constants. The pragma
CONSTANTS indicates a context machine impacting the safety and to be checked by the code
generation toolchain.

ticeable to the robotic platform. For example, a long model cycle degrades

the time between readings of the obstacle sensor and a short model cycle can

make it impossible for the car engine to react to the command. Further fine

tuning is also necessary in the definition of the values of each of the model con-

stants, namely lv, av, and pi. All constants are specified in a separate context B

machine that specifies the properties of these constants. The values of the con-

stants are defined in an implementation B component that refines this context;

hence, the B method ensures that the values assigned to all constants satisfy

their properties declared in the specification. Fig. 14 presents both components

of our example.

In Fig. 15 we present the B implementation of the user logic. In this B

implementation, first time is a state variable that is initially TRUE. Further-

more, reset outputs and state machine are operations, which set all output

variables to IO OFF and executes one cycle of the state machine, respec-

tively. Inputs and outputs are not coded with Boolean as a single memory

perturbation is able to change one valid state to another. Hence two values

have been defined, IO OFF and IO ON, both defined on 8 bits such as it is

very unlikely that a memory corruption leads to the other valid state. If one

output is assigned a value that is different from {IO OFF, IO ON} then the
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Figure 15: B Implementation of the user logic

CLEARSY Safety Platform enters panic mode. In order to reset the cycle

timer (lines 259 and 272), stored in the state variable cycle timer, we use the

operation get ms tick, which gives us the current time in miliseconds. To check

whether the timer has reached the model cycle duration, we compare the value

of the cycle duration (cycle duration) with the time elapsed in the current cy-

cle (time elapsed). The former is the result of multiplying (mul uint32) the

constant SimSMovement cycle def , which is specified in Fig. 14 and corre-

sponds to the cycle duration of the SimSMovement state machine defined in

Fig. 12, with the cycle unit defined in the fine tuning of the implementation in

Fig. 14, which is 100ms. The latter can be obtained using the operation since,

which receives the value with which the cycle timer has been initialised in the

last time it has been reset and returns the difference between this value and the

current time, once again using the operation get ms tick. Finally, the opera-

tion state machine, implements the execution of the controller state machine.

In our example, we have a single controller state machine. Nevertheless, Ro-

boSim models can have many state machines with different cycle duration each.

Our approach naturally deals with this possibility by using different constants

for each state machine cycle duration.
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6.2.2. Translating the Controller State Machine

In general, a translation of state machines into B is not challenging. Nev-

ertheless, unless marked with the special marker event exec, RoboSim state

transitions are timeless. This important characteristic would not be respected

if we simply translate RoboSim models using a straightforward translation be-

cause it imposes a wait of at least one model cycle between state transitions.

Our solution is to normalise the states with respect to the model cycles.

The state machine resulting from this normalisation has one initial state and

one state for each model cycle, which corresponds to the end of transitions

marked with the special marker event exec. All operation calls of that cycle are

composed sequentially and executed in that cycle. For instance, in Fig. 16 we

present the result of normalising the state machine of Fig. 12.

In the normalized state machine we only have three states:

• INIT : corresponds to the end of the transition leaving the initial junction.

In Fig. 16 represented with the circle;

• EXEC 1: corresponds to the end of the transition leaving the state

DMoving;

• EXEC 2: corresponds to the end of the transition leaving the state

DTurning.

These states are specified as members of an enumerated set, STATE, which is

declared in the context machine presented in Fig. 14.

Now, the translation of the normalized state machine is relatively trivial.

Initially, the code invokes operation move(lv, 0) and enters state EXEC1. In

the remaining execution, the resulting code always waits one model cycle before

leaving the current state. The main differences of the normalized state machine

of our example with that presented in Fig. 12 are:

1. operation calls placed in states, like $move(lv, 0) originally in state SMoving,

are now in the state transitions, and
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Figure 16: normalized State Machine

2. the transition from EXEC1 to EXEC2, in which the commands #MBC; $stop(),

originally in the transition fromDMoving to STurning, and $move(0, av),

originally in the entry of state STurning, are sequentially composed in a

single transition.

In Fig. 17 we present part of the B implementation of the state machine of

our example. All source files can be found at http://bit.ly/2JtkxuQ, where

you can find the complete Atelier-B project of our running example and an

Arduino program that emulates the behaviour of the robotic platform9. The

smstate is a state variable that is initialised with INIT . Hence, the first time

this operation is invoked, this machine invokes the operation move(lv, 0) and

updates the smstate variable to EXEC1. The control returns to the opera-

tion user logic, which only invokes the state machine after it reaches the cycle

duration. Now, this operation uses the CLEARSY Safety Platform operation

get i ObstacleI obstacle to get the value of the reserved input variable, obstacle.

As a standard, we prefix the name of all inputs like obstacle with an i and the

name of its interface. For example, i ObstacleI obstacle corresponds to the the

9After creating the CLEARSY Safety Platform project, the only files we have edited are
RoboSim ctx, RoboSim ctx i, logic and logic i (the main file, in which all operations men-
tioned in this paper can be found)

36

http://bit.ly/2JtkxuQ


Figure 17: B Implementation of the State Machine

input signal obstacle of the interface ObstacleI. If the value retrieved is IO ON ,

the clock MBC, implemented as a state variable, is reset (line 223), the oper-

ations stop and move(0, av) are invoked in this order (lines 224 and 225) and

the state machine remains in the current state, EXEC 1.

6.2.3. Translating Operation Calls

As previously presented, the operation calls of RoboSim models are directly

translated to the invocation of operations of the B implementation. In order

to follow the RoboSim semantics presented in [6], we need to consider, for each

operation of a RoboSim model, a boolean output value and the operation output

values. The former indicates that the operation has been invoked in the current

cycle.

An important restriction is the number of input and output pins available

in the CLEARSY Safety Platform. In its current version, SK1, the board pro-

vides 20 inputs and 8 outputs. During the project creation, we configure the

CLEARSY Safety Platform board by mapping each pin to the corresponding

input/output. Fig. 18 presents the mapping we have implemented in our ex-

ample. The first input pin is used to receive the only input, obstacle. Our

translation uses one output pin for each output operation to indicate that it has

been invoked: the output 1 indicates that move has been invoked and output 8
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Figure 18: CLEARSY Safety Platform Inputs and Outputs

indicates that stop has been invoked. Similarly to the inputs, our standard pre-

fixes the name of all outputs like move with an o and the name of its interface.

For example, o MovementI move corresponds to the invocation of the output

operation move from the interface MovementI. Finally, we are left with six out-

put pins which are used to output the values of lv (pins 2, 3 and 4) and av (pins

5, 6 and 7). For output arguments, we use the name of the argument and the

index of the bit as suffixes. For example, o MovementI move lv 0 corresponds

to the least significant bit of the argument lv of the operation move.

The limitation on the number and type of outputs imposes a property of the

constants used in the model. Both, lv and av, can only receive natural values

ranging from 0 to 7. This platform restriction is included in the PROPERTIES

clause of the context machine presented in Fig. 14, in which we include the

predicate av : 0..7 & lv : 0..7. As for all other constants, the B method ensures

that the values assigned to these constants in the B implementation satisfy these

properties.

By way of illustration, in Fig. 19, we present the implementation of the

operations stop and move. The former implements a parameterless model oper-

ation; hence, it simply indicates that the operation has been invoked by assingn-

ing IO ON to the reserved output variable that corresponds to the operation

stop, o MovementI stop (line 150). The latter, however, implements a model
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Figure 19: Operations move and stop

operation with arguments. For this reason, besides indicating that the opera-

tion has been invoked (line 155) it also assigns the values of the arguments lv

and av to the corresponding output pins (lines 156 to 161). A local operation

nat 3 bits to bin 3 bits is used to convert the natural number ranging from 0 to

7 into a binary number and assigns each of its bits to the right corresponding

pin.

The translation from RoboSim to the CLEARSY Safety Platform has proved

to be an interesting subject and application of CLEARSY Safety Platform for

robotic platforms. We are currently working on more elaborated and complex

simulation models that will validate our current translation strategy and raise

the need for more complex solutions. For instance, some of the models that are

in our translation plans have more than 8 outputs (SK1 board). Nevertheless,

it is possible to connect different boards in sequence in a way that some of the

outputs of one board are inputs to a different board. An investigation on how

the model behaviour can spread among different boards is in our near future

research agenda. A crucial result that will allow the application of our approach

in industry is the automation of our translation strategy. This implementation

is also in our research agenda and will define the level of user interaction in

the translation process. For example, most of the simulation models like our

example model, as expected of simulation models, do not define constant values

and cycle unit. This, however, is essential to execute the resulting program in

the CLEARSY Safety Platform and needs to be given at some point by the user
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to the translator.

Finally, as for RoboChart and RoboSim, we intend to provide a CSP seman-

tics to our B implementations. By doing so, it will be possible to automatically

check correctness of our B implementations regarding their simulation models

by checking for refinement using FDR3. Furthermore, this also allows the en-

coding of the CSP semantics in the UTP making it possible to obtain support

for theorem proving using the powerful prover Isabelle/HOL [8].

7. Applications from a System-Level Formal Analysis

This section presents how the design of a CSSP-based product may be con-

ducted in a process that originates in the formal analysis of a system design

and proceeds with a model-based design realized through decomposition and

refinement.

Figure 20: The formal analysis process

The inputs of this process are:

• a system design;

• one or several safety properties that must be ensured by the system;

• domain knowledge;

• identification of the elements of the system that should be implemented

in a CSSP-based board;
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The formal analysis is based on the first three inputs. Once the formal

analysis has been conducted, the last input is used to derive a specification for

the CSSP-based component that will be part of the system.

The output of the analysis is a formal model that contains not only the

system design logic, but also the required safety properties and all the hypothe-

ses that are necessary to ensure that the system meets the properties. These

hypotheses synthesize the domain elements that are necessary to establish the

demonstration that the design complies to the safety requirements. These hy-

potheses must be validated by domain experts. In the case of a fail-safe design,

part of the domain knowledge is the possible failure modes of the devices used

to implement the system design.

The formal analysis process is pictured in Fig. 20. The process initiates

with the construction of a model that encodes the system design, the required

safety properties (and possibly the failures). The model is first animated to

ensure that it matches the expected behavior. The feedback from this animation

might be to include some domain knowledge into the model. A typical domain-

oriented constraint would be that a fail-safe sensor does not miss any event

that it is supposed to detect. Formal verification is also applied, either through

systematic exploration (model checking) or reasoning (proof).

Figure 21: From a System-Level Compliance Model to a CSSP-Based Solution.

Once the system compliance model has been constructed, the next step

is to produce the specification of the system component to be implemented

with a CLEARSY Safety Platform board (see Fig. 21). This step is performed

using both Event-B [2] and the B method. This step takes as input the system

compliance model produced by formal analysis, and the boundaries of the sub-

system that shall be implemented as a CSSP-based product. These inputs

guide the decomposition of the compliance model into a structured model of
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the system. In this model, all the logic that is to be executed by the CSSP-

based subsystem is factored into a B machine. This decomposition is conducted

using the Event-B modeling language, extended to allow component structuring

constructions.

In the realm of the B method, the machine thus obtained is the specification

of the function to be executed by the CLEARSY Safety Platform. It is the

starting point of the refinement based design approach of the B method, which

we use to obtain an implementation capable of being compiled and uploaded to

a CLEARSY Safety Platform board (see fig 9).

We have applied this approach for an interlocking system for the railways: a

temporary wrong-way interlocking (see Fig. 22). This is a system that is used to

manage a track that is temporarily shared between two lines, when a portion of

one line is to be temporarily closed. It is composed of two temporary stations,

A and C, located at each end of the shared track portion, as well as several

sideways equipment, fixed and temporary. The safety property is the absence of

Figure 22: Provisional Wrong-Way Installation

front collision on the track. The given system design was a relay-based solution

for both stations A and C (presented in [3]). We applied the approach described

in this section to build a B module implementing most elements composing

station A and derived an implementation compatible for a CSSP-based solution.

In practice this would allow to safely replace the expensive, heavy cabinet of

interconnected relays, that has to be installed sideways the track nowadays, with

a much smaller and lighter fail-save electronic device based on the CLEARSY

Safety Platform.

42



8. Conclusion and Perspectives

Exploitation. The CLEARSY Safety Platform, combined with improved proof

performance and connection with Domain Specific Languages, pave the way to

easier development of SIL4 functions (including both hardware and software).

The platform safety being out of reach of the software developer, the automa-

tion of the redundant binary code generation process and the certificates already

obtained for products embedding CLEARSY Safety Platform building blocks,

would enable the repetition of similar performances without requiring highly

qualified engineers. The CLEARSY Safety Platform building blocks have been

used in successive projects where these building blocks have been modified /

improved to fulfill diverse requirements. Even if complete cost reduction figures

are not yet available, our findings are that software development and certifi-

cation are reduced by at least 30% as the safety principles do not need to be

designed/programmed and as a significant part of the safety case comes from

the certification kit (a set of documents explaining how the CLEARSY Safety

Platform safety was designed, implemented, tested, and verified, and how the

CLEARSY Safety Platform has to be integrated into target hardware - the so-

called exported constraints). Moreover, the hardware platform is generic enough

to host a large number of complexity-bounded industry applications, with a spe-

cial focus on the robotics and autonomous vehicles/systems domains. Intelligent

road infrastructure also seems of interest, as it appears that fully autonomous

cars would require additional support from their environment to deliver a really

safe mobility service. This aspect is going to be developed in the coming years.

Dissemination. The CSSP IDE is based on Atelier B 4.5.3, providing a simpli-

fied process-oriented GUI. It also contains the toolchain to generate the binary,

and a bootloader to upload the binary produced on the CSSP board. A first

starter kit, SK0, containing the IDE and the execution platform, was released

by the end of 201710, presented and experimented at the occasion of several

10https://www.clearsy.com/en/our-tools/clearsy-safety-platform/
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hands-on sessions organized at university sites in Europe, North and South

America. Audience was diverse, ranging from automation to embedded sys-

tems, mechatronics, computer science and formal methods. Results obtained

are very encouraging:

• Teaching formal methods is eased as students are able to see their model

running in and interacting with the physical world. It was the occasion to

demonstrate how formal methods could be used with embedded systems

and IoT. Fruitful discussions took place about how to specify / guarantee

performances, what can or cannot be proved with such systems, etc.

• Less theoretic profiles (computer science, mechatronics, automation) may

be introduced/educated to more abstract aspects of computation. clock

and combinatorial exercises were a starting point for specification enrich-

ment and the discovery of the formal proof. Of course, the pedagogical

objective in term of formalization was lower than with more formal pro-

files, but the students managed to understand the absence of programming

error and the non-deterministic substitutions for simple modelling.

• The platform has demonstrated a certain robustness during all these ma-

nipulations and has been enriched with the feedback collected so far. Sev-

eral electronics / software errors were detected during the preparation of

course when designing exercises, others during these exercises:

– USB interface is used to program the board and to power it. The

second release of the board embeds LEDs to show inputs and outputs

status. Many computers do not provide enough current to power all

the LEDs, leading to erratic behaviour. The workaround is to power

the board with a power supply instead of the USB cable.

– Time synchronization algorithm between microcontrollers was erro-

neous. It was not detected during short programming sessions but

after leaving boards running during (quite long) coffee breaks.
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• The IDE GUI was improved with the automation of the code generation

process and the display of a carousel showing graphically the progress of

the generation. The configuration of the board was also simplified, by

displaying the position of the switches on the board and by filling the

configuration file with default inputs and outputs names.

• CLEARSY Safety Platform is yet used to teach in Master 2 in universities

and engineering schools. Electronic documentation11 is used to structure

the courses and is updated every 2 months. With three inputs and two

outputs, the starter kit SK0 is for discovering the technology; another

version of the board is planned for 2020 able to handle more I/O (up to

64).

Future. The CLEARSY Safety Platform is a software plant able to generate

automatically software for safety critical applications and guarantee its safe

execution (outputs are deactivated in case of misbehaviour). This way, it is not

required that the developer knows (and masters) all the technical details of the

design.

Figure 23: The complete picture including connection with DSLs and system-level proven
models. The connection with Grafcet, ongoing, is required to connect with PLCs

Moreover, the connection of the CLEARSY Safety Platform with domain

11Available at https://www.clearsy.com/en/our-tools/clearsy-safety-platform/download-
clearsy-safety-platform/
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specific languages, expected to fully hide the formalities, does not perturb the

developer in his design activities. The possibility to derive CLEARSY Safety

Platform software specification from a proven system-level specification im-

proves the level of confidence of the final system. Finally the CLEARSY Safety

Platform building blocks have been embedded and certified in a number of rail-

way projects in Brazil, Sweden and US, with diverse certification bodies. The

CLEARSY Safety Platform is expected to lower the cost of certified safety sys-

tems in a number of industrial domains, to contribute to increase citizens safety

in our always-more-automated world, and also to convert students and engineers

to formal methods due to its ease of implementation.

Limits of the approach. The CLEARSY Safety Platform is an innovation com-

bining a number of existing results, many of them issued from previous com-

pleted software and electronic projects at CLEARSY. The core of the CLEARSY

Safety Platform (software toolchain, core hardware) is certifiable as two notify

bodies issued three certificates for railway systems last two years. All the tech-

nical justifications are in the 120 pages of the (not public) safety demonstration.

The CLEARSY Safety Platform seems competitive up to now as several con-

tracts based on it have been won. However our best experts were involved in its

development and first applications. The next systems based on it and developed

by ”more regular practitioners” will constitute the real test for its acceptance.

Similarly the genericity of the platform will be assessed - implemented safety

features and design degrees of freedom were designed to adapt to any ”plausible”

safety system. The extensions in Fig. 23 have not been formally validated. The

tools were developed mainly as proofs of concept, to assess if they comply to the

3-U rule: ”useful, usable, used”. In case of acceptance, stronger scientific work,

drafted in this paper, will be required to either validate the existing translation

principles or define new ones.
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