arXiv:2005.10662v1 [cs.SE] 13 May 2020

The CLEARSY Safety Platform: 5 Years of Research,
Development and Deployment

Thierry Lecomte?, David Deharbe?, Paulin Fournier®, Marcel Oliveira”

*CLEARSY, Aiz en Provence, France
YIMD, Universidade Federal do Rio Grande do Norte, Brazil

Abstract

The CLEARSY Safety Platform (CSSP) was designed to ease the development
of safety critical systems and to reduce the overall costs (development, deploy-
ment, and certification) under the pressure of the worldwide market. A smart
combination of hardware features (double processor) and formal method (B
method and code generators) was used to produce a SIL4-ready platform where
safety principles are built-in and cannot be altered by the developer. Summariz-
ing a 5-year return of experience in the effective application in the railways, this
article explains how this approach is a game-changer and tries to anticipate the
future of this platform for safety critical systems. In particular, the education of
future engineers and the seamless integration in existing engineering processes
with the support of Domain Specific Languages are key topics for a successful
deployment in other domains. DSL like Robosim to program mobile robots and
relay circuits to design railway signalling systems are connected to the platform.

Keywords: formal methods, safety critical, software development, railway

1. Introduction

In several industrial standards (EN50128 for SIL3/SIL4, IEC61508 SIL3/SIL4,
ISO 26262 for ASIL4), formal methods are highly recommended when develop-

ing safety critical software for the highest safety levels, for the specification, the

Email addresses: thierry.lecomte@clearsy.com (Thierry Lecomte),
david.deharbe@clearsy.com (David Deharbe), paulin.fournier@clearsy.com (Paulin
Fournier), marcel@dimap.ufrn.br (Marcel Oliveira)

Submitted preprint

development and/or the verification phases. However formal methods are highly
recommended just like many other non-formal (combination of) techniques, as
these recommendations are setup collectively and represent the industrial best
practices. Convinced that formal methods could help to obtain better products
[II][12][19][I4], more easily certifiable, a generic, safe execution platform has
been researched for years, combining safety electronics and defect-free proven
softwareﬂ The CLEARSY Safety Platform was initially an in-house develop-
ment project before being funded by the R&D collaborative project LCHIP
(Low Cost High Integrity Platform) to obtain a generic version of the platform
(i.e. not only aimed at railway systems). LCHIP[I3] is aimed at allowing any
engineer to develop a function by using its usual domain specific language (DSL)
and to obtain this function running safely on a hardware platform. With an
automatic development proces&El, the B formal method will remain “behind the
curtain” in order to avoid expert transactions over several languages (domain
specific language, B language, interactive proof). As the safety demonstration
does not require any specific feature for the input B model, it could be hand-
written or the by-product of a translation process. Several DSLs are being
connected (or planned to be) based on an Open API (Bxml).

This paper demonstrates how redundant hardware and formal method can
be combined to obtain a platform able to execute a safety critical application,
while the developer only has to focus on the functional aspect. Hence software
development may be delegated to non-expert engineers and testing is limited to
validation, unit and integration testing being replaced by mathematical proof.
The main contribution is cost reduction for application development, certifi-

cation and deployment, as the execution platform is an order of magnitude

IThe software model is proved to be defect-free - complying with its formal specification
and without programming errors. The code generators and the compilers are not defect-free.
They are not required to be defect-free as the defects are detected with divergent behaviour
during execution.

2The programs developed with the CLEARSY Safety Platform are considerably simpler
than metro automatic pilot, with few properties, simpler algorithms and hence with an ex-
pected excellent automatic proof ratio. The integration of third party provers/solvers is also
expected to improve automatic proof.

cheaper than existing off-the-shelf solutions. It would also enable the embed-
ding of new safety-related devices that were not previously considered because
of their expensiveness.

This paper is structured in six parts. Section 2 introduces the Terminology.
Section 3 provides the rationale for designing the CLEARSY Safety Platform.
Section 4 briefly introduces the B method. Section 5 introduces the architecture
and safety principles of the CLEARSY Safety Platform showing how the com-
bination of the B formal method and electronic diversity ensures a high safety
level, and demonstrating how the process is automated and how high profile
engineers are not required anymore to complete the software development. Sec-
tion 6 details the on-going connection with Domain Specific Languages in order
to ease the CLEARSY Safety Platform adoption by non-formalists. More ab-
stract, section 7 shows how an Event-B model of a system could be used to
derive a CLEARSY Safety Platform program, allowing to increase the level of

confidence on the software specification.

2. Terminology

This section contains specific definitions, concepts, and abbreviations used

throughout this paper.

Atelier B is an Integrated development environment (IDE) supporting the
B method and the B language for software development, and Event-B for system-
level analysis. Atelier CSSP is Atelier B extended with redundant code generator
toolchain, bootloader, and a new project type (CSSP project).

BO is a subset of the B language that must be used at implementation
level. It contains deterministic substitutions and concrete types. BO definition
depends on the target hardware associated to a code generator.

Bxml is an XML interface to B models, supported by Atelier B.

CRC put for cyclic redundancy check[20], is an error-detecting code com-
monly used in digital networks and storage devices to detect accidental changes

to raw data.

Diversity refers to a method for improving the reliability of a message
signal by using two or more communication channels. In our case, two diverse
code generators producing different binaries from a single model allow to detect
compilation errors during execution by comparing their behaviour.

Fault tolerance is the property that enables a system to continue operating
properly in the event of the failure of some of its components. In our case, any
electronic part including the processors.

HEX is a file format[2I] that conveys binary information in ASCII text
form. It is commonly used for programming microcontrollers, EPROMs, and
other types of programmable logic devices.

PLC put for programmable logic controller[23], is an industrial digital com-
puter which has been ruggedized and adapted for the control of any activity
that requires high reliability control and ease of programming and process fault
diagnosis.

Ladder logic is a programming language[22] that represents a program by
a graphical diagram based on the circuit diagrams of relay logic hardware.

Safety refers to the control of recognized hazards in order to achieve an
acceptable level of risk.

Safety belt refers to the safety properties that are part of the modelling.
This modelling results have to be proved against these properties.

Safety computer usually refers to a computer controlling a system where
the emission of an erroneous output could injure or kill people. Safety techniques
(error detection, redundancy, etc.) have to be used to lower the probability
of occurrence of such a failure remains below an acceptable level defined by
standards.

SIL put for Safety Integrity Level[24], is a relative level of risk-reduction
provided by a safety function. Its range is usually between 0 and 4, SIL4 being
the most dependable and used for situations where people could die.

Reliability is the ability of a system to perform its required functions under
stated conditions for a specified time.

Output states (memory vs physical) A controller computes new values

for its outputs every cycle. These values (stored in memory) are used to change
(with signal conversion components) the physical state of the outputs. Identity
between values in memory and outputs physical state are checked regularly
(with a monitor checking the signal conversion) to assess if the controller is
still able to control. Depending on how the outputs are implemented (relays,
transistors), changing state may take more or less time and identity check has

to be delayed accordingly.

3. Rationale

Developing a safety computer[d] from scratch is not something you easily
decide because of the effort required to obtain such a device (several millions
of Euros have been spent to develop the current CLEARSY Safety Platform).
Two kinds of devices are currently available on the market for safety criti-
cal applications: PLCs (Siemensﬂ HIMAEI, etc.) and SIL3/SIL4-ready boards
(MENP], SCf] etc.). PLCs provide a strict, certified environment from which
it is impossible to escape, requiring systems to be designed and programmed
in specific ways. On the contrary, SIL3/SIL4-ready boards offer more freedom,
come with hardware features not incompatible with the standards but where the
safety principles have to be fully programmed by the developer in C or similar
language.

Our first safety system development [15] was aimed at controlling platform
screen doors with a Siemens S7 PLC. The PLC was programmed with Lad-
der Logic[7], one of the five programming languages mentioned by the railway
standards. This PLC comes with a SIL3 certificate requiring that Ladder Logic
programs must be entered by using their own internal editor. At that time, the
program specification was initially written in B (and somehow loosely coupled

with a preliminary system level modelling in Event-B), then implemented in

3https://new.siemens.com/global/en /products/automation/systems/industrial /plc.html
4https://www.hima.com /en/industries-solutions/overview-of-all-hima-solutions
Shttps://www.duagon.com/products/computing/safe-computing-systems
Shttps://sc3automation.com/

B0O. The BO program was proved to comply with its specification, then trans-
lated into Ladder Logic. The resulting Ladder Logic program was manually
typed in the Siemens S7 PLC. As the B0-to-ladder translator was not formally
developed / verified, peer reviews took place to check the conformance of the
code in the PLC with the BO program (the code generated was very close to
the B0). Because of these human activities, the development process was quite
heavy and the use of formal modelling and proof was mostly nullified by these
systematic reviews (many iterations were necessary to fine tune the software).
Later, unfortunately (or fortunately if we consider what happened in reaction),
one of our competitors managed to literally copy our system (hardware and
software) and to sell it at a lower price. We then decided to develop our own
solution based on the combination of redundant hardware and proven software
developed with B. Producing our own hardware would reduce by an order of
magnitude its cost compared to PLCs and SILx-ready boards while using Ate-
lier B would allow more freedom and more control on the software development.
The decision to go for B was easily taken as it is highly recommended by the
industry standard for SIL4 software development. B is also the central formal
technology we have been using during more than 20 years for most of safety
critical software development. Finally the CLEARSY Safety Platform is aimed
at easing the certification process, as the safety principles, embedded in the
electronics design and the B software, are out of reach of the developer who
cannot alter them.

Finally, the CSSP is a game changer as it proposes an alternative to the
two existing safety PLCs / safety-ready boards (we are not considering in-house

PLCs developed by train manufacturers which are not commercially available):

e black-box PLCs with a SIL3-SIL4 stamp but also a very constrained devel-
opment framework and the inability to adapt to specific requirements (sig-
nal processing on the input signal for example). The safety demonstration
heavily relies on the PLC safety certificate and the bounded development

environment.

e safety-ready boards, providing a kit of features that the developer needs
to connect and activate cautiously, in time and in order, together with
the application specific code. The safety demonstration has to be fully

designed by the developer.

The third way proposed by the CSSP offers the freedom to tailor the applica-
tion (input/output signal processing, variable cycle time, asymmetric computing
among the two processors, etc.) and to ease the safety demonstration, if the
application complies with safety hypotheses coming with the certification kit.
These hypotheses, named ”safety application conditions”, not described in this
paper, have been identified during previous certification processes and are suf-
ficient to complete the safety demonstration. Having the application B project

fully proved is one of them.

4. Introduction to the B Method

B[I] is a method for specifying, designing, and coding software systems. It
covers central aspects of the software life cycle (Fig. [1): the writing of the
technical specification, the design by successive refinement steps and model

decomposition (layered architecture), and the source code generation.

Py

¢ N

Formalization]
Software . proof
requirements |4— — — — — — — — —| Abstract model |-
Verification

| Well-implemented proof
Implementation 1 ——

\
1 ¢ Consistency

proof
Concrete model |+~

Code (ADA, C, etc.)

Figure 1: A typical B development cycle, from requirements to code.

B is also a modelling language that is used for both specification, refinement
(Fig. , and implementation (Fig. . It relies on substitution calculus, first
order logic and set theory. All modelling activities are covered by mathematical

proof that finally ensures that the software system is correct.

B is structured with modules and refinements. A module is used to break
down a large software into smaller parts. A module has a specification (called a
machine) where are formalized both a static and a dynamic description of the

requirements. It defines a mathematical model of the subsystem concerned:
e an abstract description of its state space and possible initial states,
e an abstract description of operations to query or modify the state.

This model establishes the external interface for that module: every imple-
mentation will conform to this specification. Conformance is assured by proof
during the formal development process. A module specification is refined. It
is re-expressed with more information: adding some requirements, refining ab-
stract notions with more concrete notions, getting to implementable code level.
Data refinement consists in introducing new variables to represent the state
variables for the refined component, with their linking invariant. Algorithmic
refinement consists in transforming the operations for the refined component.

A refinement may also be refined. The final refinement of a refinement column

MACHINE REFINEMENT

machine name machine name n
SETS REFINES

set names machine name
CONSTANTS

constant names
PROPERT;!-:S S'a'if' VARIABLES

precicalc s variable names
VARIABLES INVARIANT

variable names predicate
INVARIANT

predicate INITIALISATION
INITIALISATION initialisation refinement

substitution dynamic | OPERATIONS
OPERATIONS aspect operation refinements

operation definitions END
END

data for the refined component
(sets and constants
are preserved)

new variables
with
their own properties
+ linking invariant

it is not possible to introduce
new operations here

Figure 2: Structure of MACHINE and REFINEMENT components.

is called the implementation, it contains only B0-compliant models. In a com-
ponent (machine, refinement, or implementation), sets, constants, and variables
define the state space while the invariants define the static properties for its

state variables. The initialisation phase (for the state variables) and the opera-

IMPLEMENTATION

machine name_n
REFINES

machine name
VALUES } values for fixed sets

valuations and constants
CONCRETE_VARIABLES implementation variables

variable names with
INVARIANT their invariant properties

predicate + linking invariant
INITIALISATION

initialisation implementation
OPERATIONS

operation implementations
END

Figure 3: Structure of IMPLEMENTATION component.

tions (for querying or modifying the state) define the way variables are modified.
From these, proof obligations are computed such as: the static properties are
consistent, they are established by the initialisation, and they are preserved by
all the operations. Atelier B contains a model editor merging model and proof
(Fig. [4)) by displaying the number of proof obligations associated to any line of
a B model, its current proof status (fully proved or not) and the body of the
related proof obligations.

A0 X000 QO

POs on ine 21 of MO_j MO_imp. W outine 8 x

check22 1 IMPL ION MO_i ~ —
check23 2 REFINES MO I:J
SEES CTX [0 © show errors only 0)

7 proof obligations - 3)
4- IMPORTS utils, checker Expand Colapse.

check2s

~ MACHINE
CONCRETE_VARIABLES © Mo

2 are proved (green)

5 are unproved (red) 7 sane, N m::n‘s
8 sanel, sane2 not proved v sis
9 © crx
10- | INITIALISATION . v impoRTS
11 sane := FALSEj Several proofobl_lgauons gu:lsk
12 Need for inspection ~ CONCRETE VARIABLES
13 @ sane
14 @ senet
@ sane2
15 INITIALISATION
SelectedPO: M0 Lched2s 8 X |16 OPERATIONS
— |17 VAR v0, v1, v2, w0, wl, w2, LB2, UB2, DD IN O chec2
btrue & 18 v0, v1, v2 <-- getvalues;
inspection btrue & 19 w0, wl, w2, LB2, UB2, DD <-- getOthervalues;
P! v0$1 : INT & 20 sanel <-- check(v0, vl, v2); Eors nother component:
v1$1 : NAT & 21 sane2 <-- complete_check(w0, wl, w2, LB2, UB2, DD);
Integer var is natural szl i NAT & 22 IF sanel = TRUE & sane2 = TRUE
i w0$1 : INT & 23
Obviously wrong W11 : INT & o
w251 : INT & 25
LBS1 : INT & 26
UBS1 : INT & 27
DD$1 : BOOL 28
:Zsl . waT gg 1 proof obligation per line
N v All proved ¥| outine BSymbols

Figure 4: Atelier B model editor showing proof status.

Finally a B project is a set of linked B modules. Each module is formed of

components: an abstract machine (its specification), possibly some refinements

and an implementation. The principal dependencies links between modules
are IMPORTS links (forming a modular decomposition tree) and SEES links
(read only transversal visibility). Sub-projects may be grouped into libraries. A
software developed in B may integrate or may be integrated with traditionally

developed code.

5. Architecture and Safety Principles

This section contains a description of the platform architecture and its pro-
gramming model, as well as a summary of the safety principles. The safety case
contains all the details leading to complete demonstration (SIL4) but are not
disclosed here (the safety case is around 120 pages). The CSSP has already

been certified 3 times.

5.1. Introduction

The CLEARSY Safety Platform is a generic PLC able to perform command
and control over inputs and outputs. For safety critical applications, the PLC
has to be able to determine whether it is fully functional or not. In case of
failure, the PLC should move to restrictive mode where all the outputs are
deactivated. The stronger the risk of harming people in case of failure, the
higher the Safety Integrity Level. For SIL3 and SIL4, the computations have
to be performed by a minimum of two processors and checked with a voting
system. The verification listed below in Table [1] is used to detect PLC failures

and to trigger a move to restrictive mode.

5.2. Architecture

The CLEARSY Safety Platform is made of two parts: an IDE to develop
the software and an electronic board to execute this software.

The overall architecture (Fig. [5)) is common to all instances of the CLEARSY
Safety Platform (starter kits SKo and SK;). The differences lie in the number of
digital (binary) IOs: 5 for SKy, 28 for SK;. Future instances of the CLEARSY
Safety Platform will feature analog IOs and networking services (messaging)

through a maintenance processor i.e. a non safety-related processor in charge

10

outputs EEN

I CLEARSY 5
Power supply e Programming & monitoring link EL8
=1 ‘ -
73 Reset button Serial channel selector [l
Board id {8
£0 Microcontroler 2 Microcontroler 1
{8 Serial bus Serial bus [l

50 inputs

Figure 5: The CLEARSY Safety Platform starter kit SKo board

of spying the microcontrollers bus and to emit traces of execution to the out-
side. From a safety point of view, the current architecture is valid for any kind
of mono-core processor. The decision of using PIC32 microcontrollers (able
to deliver around 50 DMIPS) was made based on our knowledge and experi-
ence of this processor. Implementing the CLEARSY Safety Platform on other
hardware (STM32 for example) would “only” require to modify the existing
electronic board and software tools, without much impact on the safety demon-
stration. Note that the PIC32 microcontrollers used by the hardware platform
are commercial products. From the standards, their reliability is considered as
1072 /h.

The full process is described in Fig. [6] where rounded boxes are tools and
rectangles are files; uCy and pCsy are PIC32 microcontrollers.

The CLEARSY Safety Platform development cycle strictly follows the B

method which can be summarized as:

e specification model is written first from the natural language requirements
(Function), then comes the implementation model, both using the same
language (B). The implementable B model could be automatically refined
with Atelier B BART tool, but it requires to have a fully deterministic

model.

11

uc1

Program

Program

Sequencer
verification| +

Safety liorary

—

Implementable
o |

C translator
proof

Compiler
Coherency, no
programming error

B [Binary 1

Sequencer

+ P
Safety library verification I

\ uc2
N i

verification

Automatic
refinement

[Function [>f B model]~

Sequencer
+

—

Safety library

development execution

Figure 6: Full path from function description to safe execution

e models are proved to be coherent and to be correct refinements. The proof
is automatic if the complexity of the model is not too high for the Atelier
B theorem prover. Frequent interactive demonstrations can be turned in

proof tactics to be applied automatically,
e source code or binary is generated from implementation model:

— Binary 1 (HEX file) is directly compiled from the implementation B
model. The compiler has been developed in-house for supporting this
technology.

— Binary 2 (HEX file as well) is generated in two steps. First, Imple-
mentation models are translated to C, using the Atelier B C code

generator. Then the C code is compiled with gcc.

e The two binaries are linked to a top-level sequencer and a safety library,
both software developed in B by the CSSP IDE development team once

for all, to constitute the final software.

e This software is then loaded on the flash memory of the two microcon-

trollers (bootload mode).

e When the board enters the execution mode or is reset, the content of
the flash memory is copied in RAM for both microcontrollers which start

executing it.

12

e For each microcontroller, the top-level sequencer enters a never-ending

loop and

— calls in sequence Binary 1 then Binary 2 for one iteration
— calls the safety library in charge of performing verification.

— If the verification fails, the board enters panic mode, deactivates its

outputs and enters an infinite loop doing nothing.

5.3. Programming

The process starts with the specification of the function to develop commonly
expressed with natural language. The developer has to provide a B model of it

(specification and implementation) matching the following pattern:

e The function to program is a loop, where the following steps are performed

repeatedly in sequence:

— the inputs are read. Inputs are the same for pCh and pCy, unless
inputs are captured at different times, in which case the different

values would cause the platform to enter panic mode.;

— some computation is performed in relation with the inputs/outputs

status, local variables and the time elapsed since the last reset;

— the outputs are set.
e The steps related to inputs and outputs are fixed and cannot be modified.
e Only the computation may be modified to obtain the desired behaviour.

The Atelier CSSP creates a skeleton of a B project. Fig. [7] shows the be-
havioural part of the project. The top level module is made of two components:
user_component (the specification) and user_component_i (the implementation).
This implementation imports 4 modules: wuser_ctz, inputs, logic, and outputs.
user_ctz contains only constants and sets defined by the developer; inputs and
outputs contain variables and operations for accessing the inputs (read access)

and outputs (write access). logic contains the control & command logic of the

13

board. user_ctz and logic are the only two modules to modify. Other modules
could be required by logic and have to be imported by logic_i. Programming

the board consists of:
e describing, in the component logic, the behaviour of the board;
e declaring and using constants, defined in the component user_ctz;

e reusing operations defined in the component inputs and in the safety li-

brary.

user_app =
BEGIN

divergence_test_var := 0;
read_inputs;

user_logic;

writs_outputs
) ﬁ%ﬂ
write_outputs =

VAR
po <—- get_00 = 1eb

BEGIN s, ™

po = 00 d by, 1sb: (1sb : uint8_t);

user_logic = skip;

read_inputs =
BEGIN
10 <-- read_global_input(0);
I1 <-- read_global_input(1);

12 <-- read_global_input(2)
; -7 - END.

END;
1sb <-- get_00;

po <-- get_I0 = N po <-- get_Ol = write_global_output (0, 1sb);
BEGIN o | | meenn used by i
po <-- read_global_input (0) & po := 01 1sb <-- get_Ol;

; - - ¢ END write_global_output (1, lsb)

END

po <-- get_Il =
BEGIN
po <-- read_global_input (1)
END;

po <-- get_I2 —
BEGIN

po <-- read_global_input (2)
END

Figure 7: A typical CLEARSY Safety Platform project. The divergence_test_var is exposed
as it is required by the code generation toolchain but has no impact on the modelling.

The B language supported by the CLEARSY Safety Platform differs from
the one described in [I], among which (Fig. :

e safety variables are all unsigned integers, coded either on 8, 16, or 32 bits.

e digital inputs and outputs are unsigned integers coded on 8 bits (uint8.t).

Their values are either IO_OFF or IO_ON.

e testing conditions are restricted to one term only. Multiple conditions

have to be in nested IF.

e local variables have to be typed with a "becomes such as” substitution.

14

e arithmetic operators able to produce overflow (+, -, *) are replaced by
non-overflowing operators using modulo calculation to produce a result in

the range of the variable receiving the result.

user_logic =
BEGIN
VAR il_; i2_, i3_ IN
il_ @ (il_ : uint8_t);
12 #aCi2 . o AinEs,)
i3_ ¢ (i3_ : uint8_t);

il_ <— get_Il;
i2_ <— get_I2;
i3_ <— get_I3;

Ol := I0_OFF;
IF il_ = IO_ON THEN
IF i2_ = IO_ON THEN
IF i3_ = IO_ON THEN
Ol := I0_ON

END
END
END;
IF Ol = IO_ON THEN
02 := I0_OFF
ELSE
02 := I0_ON
END
END
END

Figure 8: One implementation of the operation user_logic

All the operations defined in the components inputs and outputs have to
remain unchanged, as well as the accessing functions get_* defined in the com-
ponent logic. Although the implementable B model, or implementation, is usu-
ally developed manually, it may also be automatically generated with the B
Automatic Refinement Tool. The B models are proved (mostly automatically
as the level of abstraction of typical command & control applications is low)
to be coherent and to contain no programming error. From the implementable

model, two binaries are generated:

e Binary;, obtained via a dedicated compiler (developed by CLEARSY)
transforming a B model into a HEX file,

e Binarys, produced with the Atelier B C code generator, then compiled
with the GCC compiler into another HEX file.

Each binary represents the same function but is supposed to be made of different
sequences of instructions because of the diversity of the tool chains. Then the

two binaries Binary; and Binaryy are linked with:

15

e a sequencer, in charge of 1) reading inputs, 2) executing once Binary; then

Binarys, 3) setting the outputs;

e a safety library, in charge of performing safety verification. In case verifi-
cation fails, the board enters panic mode, meaning the outputs are deac-
tivated (no power is provided to the Normally Open (NO) outputs, so the
output electric circuits are open), the board status LED starts flashing,
and the board enters an infinite loop doing nothing. A hard reset (power

off or reset button) is the only possibility to interrupt this panic mode.

The final program is thus made of Binary;, Binarys, the sequencer and the
safety library. The memory mappings of Binary; and Binary, are separate.
This program is then uploaded on the two micro-controllers pC7 and uCs.

5.4. Safety Principles

For the safety case, the feared event is the wrong powering of one of the
outputs i.e. this output has to be OFF (the relay should not be powered)
but it is currently ON (the relay is powered). The power is provided by both
microcontrollers, so if one of the two is reset, it would not power the relay and
the board is in a restrictive safe state. The safety principles are distributed
on the board and on the safety library. The safety case demonstrates that the
verification performed during development and execution are sufficient to ensure
the target safety integrity level.

The bootloader, on the electronic board, checks the integrity of the program
(CRC, separate memory spaces). Then both microcontrollers start to execute
the program. During execution, the following verifications are conducted. If

any of these verification fails, the board enters the panic mode:
e internal verification (performed within a single microcontroller):

— every cycle, Binary; and Binarys data memory spaces (variables) are

compared within each microcontroller;

16

— regularly, Binary; and Binarys program memory spaces are com-
pared. This verification is performed “in the background” over thou-

sands / millions cycles - to keep a reasonable cycle time.;

— regularly, the identity between memory outputs states and physical
output states is checked to detect if the board is unable to command

the outputs.
e external verification (performed between both microcontrollers):

— regularly (every 50ms at the latest), data memory spaces (variables)

are compared between pC7 and pCls.

Code G il
Application generator ompiler
m Refining \ Source _\'lTary’_
tool code code
: "

proof proof
| Binary R
Application

code
ASM MIPS, HEX HEX

Cod
Safety Belt [gean:tur] [Compiler]
C

Abstract oncrete _l’ Source

Formal model Formal model code !
proof proof C HEX Memory mapping
Crass verification

Source Binary .
code ode
e e [|

Figure 9: Tools and files involved in the generation of the software

Natural
laneuage Abstract Concrete
-g. g(Formal model Formal model
specification

— LIBRARY

The whole process is fully supported by dedicated tools. None of the tools
part of the toolchain are proved to be correct. In Fig.[0] the tools and generated
text and binary files are made explicit for both the application (the process is

conducted every time an application is developed) and the safety belt (developed

once for all by the IDE development team D) All the tools come from Atelier
B, except:

e the B to HEX compiler, initially developed to control platform screen
doors for metro lines in Brazil. This tool proceeds in two steps: a trans-
lation from B to ASM MIPS, then from ASM MIPS to HEX. In order
to ease debugging as ASM MIPS to HEX is a straightforward line-to-line

translation.
e the C-to-HEX gcc compiler.

e the linker that combines the two HEX files with the safety sequencer and

libraries.
e the bootloader.

Some of the tools have been “certified by usage” since 1998 [4], but the newest
tools of this toolchain have no history to rely on for certification. It is not a
problem for railway standards as the whole product is certified (with its envi-
ronment, the development and verification process, and other elements). Hence
it is not required to have every tool certified. Instead the main feature used
for the safety demonstration is the detection of a misbehaviour among the four
instances of the function and the two microcontrollers. This way, similar bugs
that could affect two independent tools at the same time and with the same
effects are simply neglected: the standards incorporate the assumption that two
tools developed with independent teams using different technologies could not

show exactly the same buggy behavioulﬂ So a bug will always be detected by

"Note that from the abstract formal model, one part of the software is developed in B
with a concrete formal model, while the other part is developed manually. It happens when
using B provides no added-value (for example low-level IO). A component modelled in B and
implemented manually is called a basic machine.

8Common cause failures may happen with shared conditions (same compiler, same library,
same programming language, same design, same team, etc.) and break the diversity principle.
If the absence of common cause failures is established during the safety analysis then the
probability of occurrence of the same failure on the two paths at the same time is considered
to be lower than the probability of disappearance of the atmosphere - hence neglected in the
safety case.

18

comparing the behaviour of the two tools.

Table 1: Verification performed during development and execution
Stage # | Failure CSSP verification
specification 1 | Typing error Typechecker tool detects typing error
specification 2 | Specified behaviour incompatible Unprovable proof obligation indicates
with invariant properties specification mistake
implementation | 3 | Typing error Typechecker tool detects typing error
implementation | 4 | Implemented behaviour incompatible Unprovable proof obligation indicates
with invariant properties implementation mistake
implementation | 5 | Implemented behaviour incompatible Unprovable proof obligation indicate
with specified behaviour implementation mistake
implementation | 6 | Overflow capable arithmetic operators Detected by the B-to-HEX compiler
used instead of dedicated ones
implementation | 7 | IF clause with more than one condition | Detected by the B-to-HEX compiler
(B0 language restriction)
implementation | 8 | LOCAL variables not typed before use | Detected by the B-to-HEX compiler
(B0 language restriction)
code generation | 9 | Syntax errors in the C generated code Detected by the MICROCHIP compiler
code generation | 10 | Incorrect naming in the C Detected by the linker
generated code
code generation | 11 | Incorrect memory map Memory overlap detected by the
bootloader
compilation 12 | Wrong binary code generated Detected during execution by the safety
library by comparing binary; and
binarys variables in memory
with CRC on the same puC
uploading 13 | Incorrect transfer between host Detected by bootloader during upload (CRC)
and electronic board and during execution over several cycles
execution 14 | RAM error (variables) Detected by comparing binary
and binarys variables in memory
with CRC on the same uC
execution 15 | RAM error (program) Detected by comparing binary;
and binarys program in memory
with CRC with the other uC
execution 16 | Failure of one uC Detected by handshake between uCt
and pCy at least every 50 ms
execution 17 | Outputs not command-able Detected by checking physical state

and command issued by the software

The safety is built on top of several principles:

e a B formal model of the function to develop, proved to be coherent, to

correctly implement its specification, and to be programming error-free

i.e. no division by zero, no overflow, no access to a table outside of its

range;

19

e four instances of the same function running on two micro-controllers (two
per micro-controller with different binaries obtained from diverse tool-
chains) and the detection of any divergent behaviour among the four in-

stances;

e the deferred cross-verification of the programs on-board the two micro-

controllers;

e outputs require both uCy and puCs to be live and running as one provides

energy and the other one the command;

e physical output states are regularly verified to comply with the software

output states, to check the ability of the board to command its outputs;

e input signals are continuous (0 or 5V) and are made dynamic (addition of
a frequency signal) in order not to consider short-circuit current as high

level (permissive) logic.

The verification performed by the CLEARSY Safety Platform, either during
development or execution stages, is summarized in Table
The safety critical electronic board needs some vital elements to comply with

the highest SIL requirements, such as:

e ensuring galvanic isolation between the two half-boards, to avoid that one

side of the board wrongly provides energy to the other side’s outputs

e activate safety outputs with a sinusoidal signal instead of a continuous
signal, to ignore fault current. The micro-controller needs to be alive to
generate the sinusoidal signal. An electrical transformer connected to the

output line will generate power only if powered by alternative current.

These features, that are not implemented on the starter kits, are only needed for
real-life safety critical systems and do not prevent developers, whether students,
researchers or engineers, to get educated with the CLEARSY Safety Platform
and to develop prototypes.

20

6. Engineering through DSLs

The CLEARSY Safety Platform is a software plant where a B model is auto-
matically proved and transformed into a binary program that executes safely on
dedicated hardware. The connection between Domain Specific Languages and
the CLEARSY Safety Platform, through a translation from DSL to B, would
entitle engineers to make profit of the CLEARSY Safety Platform safety features
and to quite easily obtain a safety function issued from the used usual modelling
language. T'wo experiments are being conducted: one with relay schemes for the
French railways to replace wired-logic devices by programmed ones, the other
with RoboSim to address the robotics domain. With these two case-studies, the
objective is not to directly obtain a safety critical design but to demonstrate
that the translation from these two formalisms to B (as supported by the CSSP)
is doable and enables a path from one DSL model to a safe execution. In both
cases, the properties expressed in the B specification are almost minimal as they

are expected to have been verified at the DSL level.

6.1. Relay Circuits

Relay circuits are electrical circuits that have been first considered for trans-

lation and support by the CSSP.

6.1.1. Technical and Industrial Context

Despite the existence of digital systems, it is still common to use relay-based
systems. Indeed, in the railway signaling domain, the interlocking systems re-
sponsible for allowing or denying trains movement are still nowadays imple-
mented by electrical circuits containing relays. These electrical circuits receive,
use and transmit information through the use of electromagnetic switching ele-
ments. These elements are composed of electromagnet (coils) and contacts. The
natural state of the contact (dictated by gravity) is modified by the state of the
coil. When the coils are activated, the state of the contacts is modified thus
powering or disabling other coils. Such combinations are a mean to implement

logic functions.

21

Such electrical systems are designed by drawing electrical circuits, namely,
relay circuits (we refer the interested reader to e.g. [I8]). An example of such
a specification is presented in Fig. [I0} It is a circuit for controlling the state
of a color light signal installed sideways of the tracks. This design has been

provided to us by SNCF Réseau (owner and main manager of the French railway

network).

O L3
™ R RS R [} RPA -3 O -

! ! ‘ o

o . « Jo
S 2 T w |l o
¥ . O cs
Lt L 0 e . QJla
— meer ®
i i Centre
B | %]
- retour 400Kz 00 0o |
"
m{mﬂwmw@j—_@aﬁz
. i Q0 gon:alil
'-::" {5;‘} £ :| Entrie LO®
L, — 189! oo * s
retour LOOHZ (:D mﬁ s g
oo——Ooo®
OO—1—00® ¢
[11
1 1 CA amont

® amont |

Figure 10: Example of a relay circuit.

These relay circuits are mainly composed of :

e Electrical sources (positive and negative):

+ o—
-.—

e Inputs, which are a special case of electrical sources that can be either

activated or disabled.

e Qutputs, which are just electrical sources but that have effect outside of

the system and thus are monitored.

e Mono-stable relays, which are composed of a single electromagnet; they

are active when an electric current goes through them, inactive otherwise.

22

In the example, the relays are depicted from left to right: CM, CFR,
RPCS, CRR, CA, RPA, BS, EX1 and EX2. They are pictured with a

rectangular shape containing a chevron.

e Contacts, which have two states: open or closed. A closed contact lets the
current flow through whereas an open contact prevents it. Contacts are

associated to a relay. There are two types of contacts:

— a normally opened contact requires its relay to be active to close;

— a normally closed contact requires its relay to be active to open.

In the example, the contacts are aligned vertically with their associated
relay and are visually connected with a dashed line. For instance, there
are two contacts associated with the relay BS. The visual position of the
contact indicates whether it is normally opened (drawn below the wire)
or normally closed (drawn above the wire). For example, the top-most
contact associated to BS is normally opened while the bottom-most is

normally closed.

Notice also that, in this drawing, relay CRR is active since its normally-
opened contacts are closed and, conversely, its normally-closed contacts

are open. All the other relays are inactive.

Note that other components exist, such as light control block (BKF), timers,

bi-stable relays and timed relays.

6.1.2. Translating Relay Circuits Design to B Components
To re-use the design of relay circuits to implement a safe digital circuit, we
developed a prototype allowing to translate relay circuits to B components. This

prototype is composed of the following two steps:

1. Enter the circuit structure using a simple interface based on highlighting.

2. Translate automatically the entered circuit to B.

These steps are detailed in the following. Also, since each such step may contain

errors, and since this system is critical (a wrong output may induce the train

23

driver to enter a track section allocated to another train), it is necessary to

verify their output. We also present how these steps may be verified.

Highlighting. First the user uses a graphical user interface that allows to high-
light the circuit piece-wise. The principle is that the user must highlight every
single linear wire (ending either in inputs, outputs, electrical sources or junc-
tions), and click sequentially on every element on the wire. Every time the user
clicks on an element, the interface queries the nature and the identity of the
component. This process allows to convert the graphical scheme to a simple
tabular format.

Highlighting provides the user with a visual clue of which part of the circuit
have already been entered. Once the user has completed entering all the relevant
parts of the circuit, the first step is finished.

A visual representation of the result of highlighting the scheme of Fig. is
given in Fig. Parts of the circuit that have not been entered are greyed out.
In the final setup, these parts will not be executed by the CLEARSY Safety

Platform, and they shall be implemented by other physical components.

Translation to B. Once the relevant part of the circuit has been entered by
highlighting, tables are filled with all the information required to perform the
translation into B components that are compatible with the CLEARSY Safety
Platform. The principles of the translation are the following.

The inputs of the CLEARSY safety platform are the inputs of the relay
circuit, i.e., electrical sources identified as inputs by the user. Likewise, the
output of the CLEARSY safety platform are the outputs of the relay circuit.

The variables encode the states of the relays (either active or inactive). For
each relay, there is a corresponding bi-valuated variable. The computation done
during a cycle of the Clearsy safety platform consists of computing the new
state of the relays according to the state of the inputs and the previous states
of the relays. This computation is done by evaluating whether each strand is
closed or open: a strand is open if and only if it contains at least one open

contact. The algorithm processes each strand from a positive electrical source

24

?
9
d
— 8

! | |
H
Entrées LOP ¢

|
i
B &
]
T
|
|

f@

o

i
|
o0z i !‘ i
‘. |
| |
|
? L 2
\ i
B 3

Figure 11: Highlighting of the scheme of Fig. Highlighted wires appear in yellow, entered
circuit elements appear in green (when energized in default state) and red (otherwise) squares

to a negative electrical source, exploring each possibility when encountering a
junction. When a positive and a negative source can be connected with a closed
strand, then the state of each relay on the strand is set to active. Since these
new relay states may change the states of the contacts, the strands processing
must be reevaluated. So this process is performed until a fixed-point is reached
(no relay changed value between two consecutive processing cycles).

Note that, if a fixed-point is not reached, the firmware in the CLEARSY
Safety Platform guarantees that the system falls back to a fail-safe state. In
the current version of the translator, no check is performed to verify whether
this situation might happen. We assume that the design of the relay scheme
prevents the oscillation of the electrical circuit and thus ensures the existence
of a fixed-point.

Note as well that the transient states of the electrical circuit and of the
Clearsy safety platform (before the fixed-point is reached) may be different.

The only guarantee is that the fixed-point reached is the same as in the relay

25

circuit.

6.1.3. Verification

Verification of the Highlighting. The highlighting process, being done by hand,
is error-prone. We thus developed a tool to compare the result of the highlighting
with the original scheme. In addition to the information needed to translate the
scheme into B we also save the coordinates of the components. This allows us
to re-draw a scheme from the elements highlighted and selected by the users.
It is thus easy to compare (by superposition, for example) the two objects to

verify that no components or connections have been omitted.

Verification of the translation. Two kinds of verification may be performed for
the generated B code: a structural verification and a behavioral verification. A
structure based verification is easily achievable since the generated code has a
structure that follows precisely that of the intermediate, ad hoc, formats used.
It would thus be easy, but cumbersome, to compare the two. We envision a tool
that would implement a reverse translation from the generated B code back to
the strand representation.

Another approach is to verify the behavior of the generated B code against
the expected properties of the system. For relay-based schemes, the properties
express the expected values of the output after the circuit has stabilized. These
properties can then be encoded in the generated B as ASSERT instructions.
This results in proof obligations generated in the B environment. Since we
are dealing here with finite systems, the proof can be done by exhaustive model
checking using ProB. As an example, for a circuit commanding a light, one could
require that (even in case of bulb default) the output signal is less permissive
than the commanded signal. For instance, the output commanding the green
light should not be set if either the orange or the red light are commanded.
Conversely, if the orange light is commanded, the output setting the red signal
may be set, e.g., if the orange bulb is broken.

Following this approach, we have verified that the code generated for example

in Fig. [I0] satisfies a number of expected properties provided together with the

26

scheme, expressed in natural language and translated manually to first-order
logic.

Model checking was conducted in a few seconds with ProB on this simple
industrial design. It is noteworthy that, through such model checking-based
verification, we have obtain a counter-example that showed a property was
not held (this was expected by the provider of the example). It also helped us
identify an early mistake in the translation process (that we have now corrected).

This approach is effective up to midsize designs (as shown by the example
in Section [7) but we have not yet applied it to large circuits. However, since
the translation targets a subset of the B expression language where types are
essentially Booleans, alternative automatic formal verification such as SAT are

also applicable and would certainly be able to address larger circuits.

6.1.4. Concluding Remarks

The work presented shows the feasibility to replace heavy and physically
large electrical relay circuits (they need to be fit in a cabinet sideways of the
track) by smaller and cheaper digital devices. This approach benefits from
the guarantees offered by the application of formal methods (B method, model
checking) and from a generic fail-safe device (the CLEARSY Safety Platform).

6.2. RoboSim for Robotics

RoboSim [6] is a diagrammatic language to model simulations of robotic
systems by state machines combined to define concurrent and distributed de-
signs that use specified services of a platform. Its visual representation is akin
to notations currently used by practitioners and much more friendly than any
programming language. RoboSim main distinction is that its models can be
verified against a UML-like design of a controller defined in RoboChart [I6].
This is possible because both notations have been given a unified semantics us-
ing CSP [I7], a process algebra for refinement with well established tools like
FDR3 [9]. Hence, by automatically translating their models into CSP and check-
ing for refinement using FDR3, it is possible to automatically check correctness

of simulation models regarding their design.

27

CSP itself has been given a UTP (Unifying Theories of Programming) [10]
theory. This allows the encoding of the CSP semantics in the UTP making it
possible to obtain support for theorem proving using the powerful prover Is-
abelle/HOL [8]. In this context, with RoboSim, Cavalcanti et al. fully bridge
the gap between the state-machine modelling and simulation paradigms. Never-
theless, RoboSim is intended to be an intermediate notation to describe verified
simulations that can be automatically translated into code for use with stan-
dard robotic simulators. In this section, we present a step towards achieving
this using the CLEARSY Safety Platform.

In Fig. [12| we present an illustrative example originally presented in [6] of a
RoboSim model of a robot that can move around, detect obstacles, and stop.
The module SimC FootBot is composed of the robotic platform FootBot and
the SimM ovement controller that has a reference to a single simulation machine
SitmSMovement. It is important to notice that the module specifies the cycle
period by including a (simple) predicate stating cycle == 1. The same happens
with the the controller SimMovement and the machine SimSMovement.

The interfaces can group variables, operations, and events. In Fig. [T2] the
interface MovementI has the operations move(lv, av) and stop(), provided by
the robotic platform, and required by the controller. The operation move(lv, av)
can be used to move the robot with linear speed [v and angular speed av. The
instruction to the robot to stop is given using the operation stop. The interface
Obstaclel has just the event obstacle, which is used in the platform, in the
controller, and in the state machine. The event obstacle, an abstraction of a
sensor that detects obstacles, occurs when the robot gets close to any object in its
environment. The robotic platform FootBot defines the interface of the system
with its environment via the operations of the provided interface Movementl
and the user interface Obstaclel. Assynchronously, the occurrence of the event
obstacle is sent to the single controller of our example SimMovement. The
behaviour of a controller is defined by one or more state machines, specifying
threads of execution. In our case, the behaviour of SimM ovement is defined just

by the machine Sim.SMovement. It is important to notice that two different

28

Movement! Obstaclel

A
Qmove(!v: real, av: real) | | & obstacle

3 simsMovement [cycleDef = (cycle==1)] o8 SimMovement [cycleDef = (cycle == 1))
L‘v: reall Movement!
:rea’
et Obstaclel
MBC nbstade[]
Inputs Outputs &3 ref SimSMovement| |oPStecle
(@ Obstaclel ® Movementl obstacle
? [since(MBC)<P1/av]
SMoving e SimCFootBot [cycleDef = (cycle == 1)]
entry $move(lv, 0) [since(MBC)>=Pi/av] exec
& FootBot
[P| Movementl imM :
DMoving | exec [Sobstacle]/#MBC; $stop() — (i) Obstaclel g ref Sim
urning
entry Smove(0, av) ob.st_acile ??E'e
[not Sobstacle] I_' async I_I
% Robotic Platform «f Controller £2 State machine () Used Interface
[F] Provided interface @® Required interface X Variable declaration TC Constant
Q Operation ¢4 Event [Event @ [Initial junction

Figure 12: RoboSim: obstacle detection

29

symbols denote an event: the lighting is used when declaring an event, whereas
the square is used to indicate event passing information.

State machines are similar to those in UML, except that they have a well-
defined action language, and time primitives. The state machine Sim.SMovement
has three local constants PI, lv, and av, and clock M BC. The event obstacle
declared in the interface Obstaclel is an input, and the operations move and
stop declared in the interface Movementl are outputs.

A RoboSim model specifies a cyclic mechanism; a special marker event exec
defines points where behaviour evolution must stop until the next cycle. In each
cycle, inputs are read from registers, processed, outputs are written to registers,
and then time elapses in a period of quiescence until the next cycle. During
processing, the simulation machine takes control of execution until progress
requires the (next) occurrence of exec.

The visible behaviour is the reading and writing of registers, which is char-
acterised by the inputs and outputs. Their values capture interactions corre-
sponding to platform events, access to platform variables, and calls to platform
operations. For instance, the event obstacle is captured in our example as a
register with a boolean value indicating whether an obstacle has been detected
or not. The boolean variable $obstacle corresponding to this input is used in
guards, not triggers, of transitions. In RoboSim, the only trigger used is ezec.

The overall behaviour of SimSMovement is as follows. The first cycle starts
with the transition from the initial junction to the SMoving state, in which it
is recorded that move must be called, as indicated by move(lv,0). The $ indi-
cates that the operation is not called immediately. Afterwards, it changes to the
DM oving state, where it waits for the next cycle, because there are no transi-
tions from DM oving not triggered by exec. In the next cycle, Sim.SMovement
checks whether an obstacle has been perceived. If not, it remains in DM oving.
Otherwise, it moves to STurning, when it resets the M BC' clock (denoted by
the command #M BC'), records that stop and then move must be called, besides
moving to DTurning, all in one cycle. In the subsequent cycle, if the amount

of time since M BC has been reset is less than PI/av, it remains in DTurning;

30

it returns to SMoving otherwise.

6.2.1. Translation Overview

The translation from RoboSim to the CLEARSY Safety Platform, on which
we are currently working, must consider the fact that we have two different
notions of cycles. On one hand, we have the cycle of the board itself (CLEARSY
Safety Platform cycle), which is able to execute around 50 million instructions
per second. In each CLEARSY Safety Platform cycle, the board reads the inputs
from the input pins and stores their values in reserved input variables, executes
the behaviour defined in an special B operation called user_logic and writes
the values stored in reserved output variables to the output pins. On the other
hand, we have the cycle of the simulation model (Model Cycle), which executes
one cycle of its state machine possibly reading values from the reserved input
variables and writing values to the reserved outputs variables. Conceptually,
the time unit of the simulation does not need to be defined. Nevertheless, for
execution purposes, we have to provide a definition for that. Our translation
defined a constant cycle_unit, which must be valuated before loading the project
into the board. For the sake of our example, we assigned 100ms to the cycle
unit.

A summary of the control flow of B implementation resulting from the trans-
lation of RoboSim models is presented in Fig. Initially, the CLEARSY Safety
Platform reads all inputs from the pins and stores their values in reserved input
variables. Next, we have to check if this is the first time that the user_logic is
being executed. This is because RoboSim models do not wait one model cycle
to provide its first outputs, which must be given immediately if the simulation
model says so. For example, in Fig. the model determines that, initially,
the controller must invoke the operation move(lv,0) before waiting for the next
cycle (exec). For this reason, in the control flow presented in Fig. if the
user_logic is being executed for the first time, we proceed to the execution
of one cycle of the controller state machine. Nevertheless, for reasons we will

present later in this section, every such execution must be preceded by a reset of

31

write to all outpuls

read allinputs and store

= their values i -~ using the values stored

& = \amuell; n Lelsene inreserved output

4] bl variables

~
MO
Is this the first
time the . Has tlhet_mod el reset Ithi_model

a o cycle timer cycle timer
A =S userlogicis MO reached the cycle
g & executed? YES X

. duration? 'Yy

H VES

A

reset all
outputs

h
[execute the next cycle of the state w

machine

state_machine

Figure 13: A Summary of the resulting B implementation control flow

all outputs. Finally, we start a timer that counts the model cycle time and the
CLEARSY Safety Platform writes to all output pins using the values stored in
reserved output variables that might have had their values changed in the execu-
tion of state machine cycle. However, if we are not executing the user_logic for
the first time, we proceed to the execution of one cycle of the state machine only
if the model cycle timer has reached the cycle duration. Again, we precede this
execution with the outputs being reset and, afterwards, the CLEARSY Safety
Platform writes to all output pins using the values stored in reserved output
variables. Finally, if the cycle duration has not been reached, the CLEARSY
Safety Platform simply writes to all output pins using the values stored in re-
served output variables. In fact, the vast majority of the board cycles are empty
cycles in the sense that they ignore the inputs being read and do not change
any written output.

Another important aspect is that a fine tuning of the model cycle unit is

essential to make inputs noticeable by the controller and to make outputs no-

32

1 MACHINE user ctx
2 SEES g_types

3 SETS STATE = {INIT, EXEC 1, EXEC 2} 1 IMPLEMENTATION user ctx i
4 — CONCRETE CONSTANTS - -
5 // Translation constants 2- REFINES user_ctx
] cycle_unit, // ms 3 /{ pragma CONSTANTS
7 // Model constants 4 SEES g types
8 SimsMovement_cycle_def, av, 1lv, pi 5— V.BLUES_
9 G ~
10— T — [/I T:ansTat_on constants
11 // Translation constants 7 cycle unit = 100; // ms
12 cycle_unit:uint32_t & 8 // Model Constants
13 // Model constants 9 SimsSMovement cycle def = 1;
14 SimSMovement cycle def:uint32 t & 10 av = 7;
15 av:uint32 t & lv:uint32 t & 11 1v = 7;
16 pi:uint32 t & N i
17 avil..7 & lvii..7 1z pi — 7000
18 END 13 END
(a) Context Specification (b) Context Implementation

Figure 14: Specification and Implementation of the Simulation Model Constants. The pragma
CONSTANTS indicates a context machine impacting the safety and to be checked by the code
generation toolchain.

ticeable to the robotic platform. For example, a long model cycle degrades
the time between readings of the obstacle sensor and a short model cycle can
make it impossible for the car engine to react to the command. Further fine
tuning is also necessary in the definition of the values of each of the model con-
stants, namely [v, av, and pi. All constants are specified in a separate context B
machine that specifies the properties of these constants. The values of the con-
stants are defined in an implementation B component that refines this context;
hence, the B method ensures that the values assigned to all constants satisfy
their properties declared in the specification. Fig.[14] presents both components
of our example.

In Fig. we present the B implementation of the user_logic. In this B
implementation, first_time is a state variable that is initially TRU E. Further-
more, reset_outputs and state_machine are operations, which set all output
variables to TO_OFF and executes one cycle of the state machine, respec-
tively. Inputs and outputs are not coded with Boolean as a single memory
perturbation is able to change one valid state to another. Hence two values
have been defined, IO_OFF and IO_ON, both defined on 8 bits such as it is
very unlikely that a memory corruption leads to the other valid state. If one

output is assigned a value that is different from {IO_OFF, IO_ON} then the

33

254 user logic =

255 BEGIN

256-— IF first_time = TRUE THEN

257 reset_outputs;

258 state machine;

259 cycle timer <-—— get ms tick;

260 first_time := FALSE

26l- ELSE

262 - VAR time elapsed, cycle duration IN

263 time_elapsed: (time_elapsed:uint32_t);
264 cycle_duration: (cycle_duration:uint32_t);
265

266 time elapsed <-- since(cycle_timer);

267 cycle_duration := mul_uint32 (SimSMovement_cycle_def,cycle_unit);
268

269 - IF (cycle_duration <= time_elapsed) THEN
270 reset_outputs;:

271 state machine;

272 cycle_timer <—— get_ms_tick

273 END

274 END

275 END

276 END;

Figure 15: B Implementation of the user_logic

CLEARSY Safety Platform enters panic mode. In order to reset the cycle
timer (lines 259 and 272), stored in the state variable cycle_timer, we use the
operation get_ms_tick, which gives us the current time in miliseconds. To check
whether the timer has reached the model cycle duration, we compare the value
of the cycle duration (cycle_duration) with the time elapsed in the current cy-
cle (time_elapsed). The former is the result of multiplying (mul_uint32) the
constant SimSMovement_cycle_def, which is specified in Fig. and corre-
sponds to the cycle duration of the SimSMovement state machine defined in
Fig. with the cycle unit defined in the fine tuning of the implementation in
Fig. [[4] which is 100ms. The latter can be obtained using the operation since,
which receives the value with which the cycle timer has been initialised in the
last time it has been reset and returns the difference between this value and the
current time, once again using the operation get_ms_tick. Finally, the opera-
tion state_machine, implements the execution of the controller state machine.
In our example, we have a single controller state machine. Nevertheless, Ro-
boSim models can have many state machines with different cycle duration each.
Our approach naturally deals with this possibility by using different constants

for each state machine cycle duration.

34

6.2.2. Translating the Controller State Machine

In general, a translation of state machines into B is not challenging. Nev-
ertheless, unless marked with the special marker event exec, RoboSim state
transitions are timeless. This important characteristic would not be respected
if we simply translate RoboSim models using a straightforward translation be-
cause it imposes a wait of at least one model cycle between state transitions.

Our solution is to normalise the states with respect to the model cycles.
The state machine resulting from this normalisation has one initial state and
one state for each model cycle, which corresponds to the end of transitions
marked with the special marker event exec. All operation calls of that cycle are
composed sequentially and executed in that cycle. For instance, in Fig. we
present the result of normalising the state machine of Fig.

In the normalized state machine we only have three states:

e INIT: corresponds to the end of the transition leaving the initial junction.

In Fig. [I6] represented with the circle;

e EXFEC 1: corresponds to the end of the transition leaving the state
DM oving;

e EXFEC_2: corresponds to the end of the transition leaving the state
DTurning.

These states are specified as members of an enumerated set, STATE, which is
declared in the context machine presented in Fig. [I4]

Now, the translation of the normalized state machine is relatively trivial.
Initially, the code invokes operation move(lv,0) and enters state EXEC;. In
the remaining execution, the resulting code always waits one model cycle before
leaving the current state. The main differences of the normalized state machine

of our example with that presented in Fig. are:

1. operation calls placed in states, like $move(lv, 0) originally in state SMoving,

are now in the state transitions, and

35

[sinceMBCY < Plfav] $Smove(0) [since(MBC) < Pl/av]

2
3
=
% $move(lv.0)
& [$obstacle] f
2 #MBC;
% $stopd ;
E $rmove(D.av) |
ZE EXEC_1 > » EXEC_2
[not $obstacle]
Figure 16: normalized State Machine
2. the transition from EX FC; to EX ECs, in which the commands #M BC'; $stop(),

originally in the transition from DM oving to STurning, and $move(0, av),
originally in the entry of state STurning, are sequentially composed in a

single transition.

In Fig. [L7) we present part of the B implementation of the state machine of

our example. All source files can be found at http://bit.ly/2JtkxuQ, where

you can find the complete Atelier-B project of our running example and an

Arduino program that emulates the behaviour of the robotic platfornﬂ The

smstate is a state variable that is initialised with INIT. Hence, the first time
this operation is invoked, this machine invokes the operation move(lv,0) and
updates the smstate variable to EXFEC;. The control returns to the opera-
tion user_logic, which only invokes the state_machine after it reaches the cycle
duration. Now, this operation uses the CLEARSY Safety Platform operation
get_i_Obstaclel _obstacle to get the value of the reserved input variable, obstacle.
As a standard, we prefix the name of all inputs like obstacle with an ¢ and the

name of its interface. For example, i_Obstaclel _obstacle corresponds to the the

9 After creating the CLEARSY Safety Platform project, the only files we have edited are
RoboSim_ctx, RoboSim_ctx_i, logic and logic_i (the main file, in which all operations men-
tioned in this paper can be found)

36

http://bit.ly/2JtkxuQ

212 state_machine =

213- BEGIN

214 IF smstate = INIT THEN

215 move (1v,0);

216 smstate := EXEC 1

217- ELSIF smstate = EXEC_1 THEN

218- VAR local_ cbstacle IN

218 local obstacle: (local cbstacle:uint8 t);
220

221 local_cbstacle <-- get_i_ ObstacleI_obstacle;
222 — IF local obstacle = IO _ON THEN

223 MBC <-- get_ms_tick:

224 stop;

225 move (0,av) ;

226

227 smstate := EXEC_2

228- ELSIF local_ cbstacle = IO OFF THEN
229 smstate := EXEC 1

230 ELSE skip

231 END

232 END

233- ELSIF smstate = EXEC_2 THEN

Figure 17: B Implementation of the State Machine

input signal obstacle of the interface Obstaclel. If the value retrieved is IO_ON,
the clock M BC, implemented as a state variable, is reset (line 223), the oper-
ations stop and move(0, av) are invoked in this order (lines 224 and 225) and

the state machine remains in the current state, EX EC 1.

6.2.3. Translating Operation Calls

As previously presented, the operation calls of RoboSim models are directly
translated to the invocation of operations of the B implementation. In order
to follow the RoboSim semantics presented in [6], we need to consider, for each
operation of a RoboSim model, a boolean output value and the operation output
values. The former indicates that the operation has been invoked in the current
cycle.

An important restriction is the number of input and output pins available
in the CLEARSY Safety Platform. In its current version, SK1, the board pro-
vides 20 inputs and 8 outputs. During the project creation, we configure the
CLEARSY Safety Platform board by mapping each pin to the corresponding
input/output. Fig. presents the mapping we have implemented in our ex-
ample. The first input pin is used to receive the only input, obstacle. Our
translation uses one output pin for each output operation to indicate that it has

been invoked: the output 1 indicates that move has been invoked and output 8

37

o_Movementl move av o Movementl move lv

A A
[|} 1

o_Movementl stop [2] [1] [0] [2] [1] [0] o_Movementl_move

LA LA LA LA LA LA L] L]
8 1 6 Bl 4 3 2 1

2019181716 1514131211 109 8 76 5 4 3 21
ARARARAAR R ARl AARRAR

i Obstaclel obstacle

Figure 18: CLEARSY Safety Platform Inputs and Outputs

indicates that stop has been invoked. Similarly to the inputs, our standard pre-
fixes the name of all outputs like move with an o and the name of its interface.
For example, o_MovementI_move corresponds to the invocation of the output
operation move from the interface Movementl. Finally, we are left with six out-
put pins which are used to output the values of lv (pins 2, 3 and 4) and av (pins
5, 6 and 7). For output arguments, we use the name of the argument and the
index of the bit as suffixes. For example, o_MovementI_move_lv_0 corresponds
to the least significant bit of the argument [v of the operation mowve.

The limitation on the number and type of outputs imposes a property of the
constants used in the model. Both, lv and av, can only receive natural values
ranging from 0 to 7. This platform restriction is included in the PROPERTIES
clause of the context machine presented in Fig. in which we include the
predicate av : 0..7 & [v : 0..7. As for all other constants, the B method ensures
that the values assigned to these constants in the B implementation satisfy these
properties.

By way of illustration, in Fig. [[9] we present the implementation of the
operations stop and move. The former implements a parameterless model oper-
ation; hence, it simply indicates that the operation has been invoked by assingn-
ing IO_ON to the reserved output variable that corresponds to the operation

stop, o_MovementI _stop (line 150). The latter, however, implements a model

38

148 stop =

149- BEGIN

150 o_MovementI_stop := IO ON

151 END;

152

153 move (1_1lv, 1 _av) =

1Fe= BEGIN

155 o _MovementI move := IO ON;

156 o_MovementI move_ lv_2,

157 o_MovementI move_ lv_1,

158 o_MovementI_move lv_0 <-— nat_3_bits_to_bin 3 bits(l_1v);
159 o_MovementI move av_2,

160 o_MovementI move_ av_1,

161 o_MovementI move av 0 <-- nat 3 bits to bin 3 bits(l_aw)
le2 END;

Figure 19: Operations move and stop

operation with arguments. For this reason, besides indicating that the opera-
tion has been invoked (line 155) it also assigns the values of the arguments lv
and av to the corresponding output pins (lines 156 to 161). A local operation
nat_3_bits_to_bin_3_bits is used to convert the natural number ranging from 0 to
7 into a binary number and assigns each of its bits to the right corresponding
pin.

The translation from RoboSim to the CLEARSY Safety Platform has proved
to be an interesting subject and application of CLEARSY Safety Platform for
robotic platforms. We are currently working on more elaborated and complex
simulation models that will validate our current translation strategy and raise
the need for more complex solutions. For instance, some of the models that are
in our translation plans have more than 8 outputs (SK; board). Nevertheless,
it is possible to connect different boards in sequence in a way that some of the
outputs of one board are inputs to a different board. An investigation on how
the model behaviour can spread among different boards is in our near future
research agenda. A crucial result that will allow the application of our approach
in industry is the automation of our translation strategy. This implementation
is also in our research agenda and will define the level of user interaction in
the translation process. For example, most of the simulation models like our
example model, as expected of simulation models, do not define constant values
and cycle unit. This, however, is essential to execute the resulting program in

the CLEARSY Safety Platform and needs to be given at some point by the user

39

to the translator.

Finally, as for RoboChart and RoboSim, we intend to provide a CSP seman-
tics to our B implementations. By doing so, it will be possible to automatically
check correctness of our B implementations regarding their simulation models
by checking for refinement using FDR3. Furthermore, this also allows the en-
coding of the CSP semantics in the UTP making it possible to obtain support
for theorem proving using the powerful prover Isabelle/HOL [g].

7. Applications from a System-Level Formal Analysis

This section presents how the design of a CSSP-based product may be con-
ducted in a process that originates in the formal analysis of a system design
and proceeds with a model-based design realized through decomposition and
refinement.

system safety domain knowledge
design properties - failure model

~_1

system -
compliance
model
(candidate)

animation

oK

formal verification

oK

system
compliance
model
(final)

Figure 20: The formal analysis process

The inputs of this process are:

e a system design;
e one or several safety properties that must be ensured by the system;
e domain knowledge;

e identification of the elements of the system that should be implemented

in a CSSP-based board;

40

The formal analysis is based on the first three inputs. Once the formal
analysis has been conducted, the last input is used to derive a specification for
the CSSP-based component that will be part of the system.

The output of the analysis is a formal model that contains not only the
system design logic, but also the required safety properties and all the hypothe-
ses that are necessary to ensure that the system meets the properties. These
hypotheses synthesize the domain elements that are necessary to establish the
demonstration that the design complies to the safety requirements. These hy-
potheses must be validated by domain experts. In the case of a fail-safe design,
part of the domain knowledge is the possible failure modes of the devices used
to implement the system design.

The formal analysis process is pictured in Fig. The process initiates
with the construction of a model that encodes the system design, the required
safety properties (and possibly the failures). The model is first animated to
ensure that it matches the expected behavior. The feedback from this animation
might be to include some domain knowledge into the model. A typical domain-
oriented constraint would be that a fail-safe sensor does not miss any event
that it is supposed to detect. Formal verification is also applied, either through
systematic exploration (model checking) or reasoning (proof).

,,,,,,,,,,,,,,, EventB _ B

system systslm structured model

model © subsystem B method subsystem
- specification .~ implementation

... refines

Legend: . refines .

Figure 21: From a System-Level Compliance Model to a CSSP-Based Solution.

Once the system compliance model has been constructed, the next step
is to produce the specification of the system component to be implemented
with a CLEARSY Safety Platform board (see Fig. . This step is performed
using both Event-B [2] and the B method. This step takes as input the system
compliance model produced by formal analysis, and the boundaries of the sub-
system that shall be implemented as a CSSP-based product. These inputs

guide the decomposition of the compliance model into a structured model of

41

the system. In this model, all the logic that is to be executed by the CSSP-
based subsystem is factored into a B machine. This decomposition is conducted
using the Event-B modeling language, extended to allow component structuring
constructions.

In the realm of the B method, the machine thus obtained is the specification
of the function to be executed by the CLEARSY Safety Platform. It is the
starting point of the refinement based design approach of the B method, which
we use to obtain an implementation capable of being compiled and uploaded to
a CLEARSY Safety Platform board (see fig[J).

We have applied this approach for an interlocking system for the railways: a
temporary wrong-way interlocking (see Fig. . This is a system that is used to
manage a track that is temporarily shared between two lines, when a portion of
one line is to be temporarily closed. It is composed of two temporary stations,
A and C, located at each end of the shared track portion, as well as several
sideways equipment, fixed and temporary. The safety property is the absence of

- - » station A temporarily closed track station C -— >
- -

| shared track Wi

Figure 22: Provisional Wrong-Way Installation

front collision on the track. The given system design was a relay-based solution
for both stations A and C (presented in [3]). We applied the approach described
in this section to build a B module implementing most elements composing
station A and derived an implementation compatible for a CSSP-based solution.
In practice this would allow to safely replace the expensive, heavy cabinet of
interconnected relays, that has to be installed sideways the track nowadays, with
a much smaller and lighter fail-save electronic device based on the CLEARSY

Safety Platform.

42

8. Conclusion and Perspectives

Exploitation. The CLEARSY Safety Platform, combined with improved proof
performance and connection with Domain Specific Languages, pave the way to
easier development of SIL4 functions (including both hardware and software).
The platform safety being out of reach of the software developer, the automa-
tion of the redundant binary code generation process and the certificates already
obtained for products embedding CLEARSY Safety Platform building blocks,
would enable the repetition of similar performances without requiring highly
qualified engineers. The CLEARSY Safety Platform building blocks have been
used in successive projects where these building blocks have been modified /
improved to fulfill diverse requirements. Even if complete cost reduction figures
are not yet available, our findings are that software development and certifi-
cation are reduced by at least 30% as the safety principles do not need to be
designed/programmed and as a significant part of the safety case comes from
the certification kit (a set of documents explaining how the CLEARSY Safety
Platform safety was designed, implemented, tested, and verified, and how the
CLEARSY Safety Platform has to be integrated into target hardware - the so-
called exported constraints). Moreover, the hardware platform is generic enough
to host a large number of complexity-bounded industry applications, with a spe-
cial focus on the robotics and autonomous vehicles/systems domains. Intelligent
road infrastructure also seems of interest, as it appears that fully autonomous
cars would require additional support from their environment to deliver a really

safe mobility service. This aspect is going to be developed in the coming years.

Dissemination. The CSSP IDE is based on Atelier B 4.5.3, providing a simpli-
fied process-oriented GUI. It also contains the toolchain to generate the binary,
and a bootloader to upload the binary produced on the CSSP board. A first
starter kit, SKg, containing the IDE and the execution platform, was released

by the end of 2017|E|7 presented and experimented at the occasion of several

10https://www.clearsy.com/en/our-tools/clearsy-safety-platform/

43

hands-on sessions organized at university sites in Europe, North and South
America. Audience was diverse, ranging from automation to embedded sys-
tems, mechatronics, computer science and formal methods. Results obtained

are very encouraging:

e Teaching formal methods is eased as students are able to see their model
running in and interacting with the physical world. It was the occasion to
demonstrate how formal methods could be used with embedded systems
and IoT. Fruitful discussions took place about how to specify / guarantee

performances, what can or cannot be proved with such systems, etc.

e Less theoretic profiles (computer science, mechatronics, automation) may
be introduced/educated to more abstract aspects of computation. clock
and combinatorial exercises were a starting point for specification enrich-
ment and the discovery of the formal proof. Of course, the pedagogical
objective in term of formalization was lower than with more formal pro-
files, but the students managed to understand the absence of programming

error and the non-deterministic substitutions for simple modelling.

e The platform has demonstrated a certain robustness during all these ma-
nipulations and has been enriched with the feedback collected so far. Sev-
eral electronics / software errors were detected during the preparation of

course when designing exercises, others during these exercises:

— USB interface is used to program the board and to power it. The
second release of the board embeds LEDs to show inputs and outputs
status. Many computers do not provide enough current to power all
the LEDs, leading to erratic behaviour. The workaround is to power

the board with a power supply instead of the USB cable.

— Time synchronization algorithm between microcontrollers was erro-
neous. It was not detected during short programming sessions but

after leaving boards running during (quite long) coffee breaks.

44

e The IDE GUI was improved with the automation of the code generation
process and the display of a carousel showing graphically the progress of
the generation. The configuration of the board was also simplified, by
displaying the position of the switches on the board and by filling the

configuration file with default inputs and outputs names.

e CLEARSY Safety Platform is yet used to teach in Master 2 in universities
and engineering schools. Electronic documentatioﬂ is used to structure
the courses and is updated every 2 months. With three inputs and two
outputs, the starter kit SKO is for discovering the technology; another
version of the board is planned for 2020 able to handle more I/O (up to
64).

Future. The CLEARSY Safety Platform is a software plant able to generate
automatically software for safety critical applications and guarantee its safe
execution (outputs are deactivated in case of misbehaviour). This way, it is not
required that the developer knows (and masters) all the technical details of the

design.

uct
o ‘ Program

[

Relay scheme
Program

DSL to B verificatior}

RoboSim translator '/_\ {_ Compiler
Grafcet J/ Automatic 1 Implementable
» refinement = B model
i 0

[atomatic 4T compler
proof

Eﬁ”ﬁ;ﬁ tlgr B verification]
Coherency, no
programming eror I B

Cf Binary 2

Sequencer

¥
Safety library vermcahonI
\ uc2
N » T
e

eeeee

il

Event-B

execution

Figure 23: The complete picture including connection with DSLs and system-level proven
models. The connection with Grafcet, ongoing, is required to connect with PLCs

Moreover, the connection of the CLEARSY Safety Platform with domain

1 Available at https://www.clearsy.com/en/our-tools/clearsy-safety-platform/download-
clearsy-safety-platform/

45

specific languages, expected to fully hide the formalities, does not perturb the
developer in his design activities. The possibility to derive CLEARSY Safety
Platform software specification from a proven system-level specification im-
proves the level of confidence of the final system. Finally the CLEARSY Safety
Platform building blocks have been embedded and certified in a number of rail-
way projects in Brazil, Sweden and US, with diverse certification bodies. The
CLEARSY Safety Platform is expected to lower the cost of certified safety sys-
tems in a number of industrial domains, to contribute to increase citizens safety
in our always-more-automated world, and also to convert students and engineers

to formal methods due to its ease of implementation.

Limits of the approach. The CLEARSY Safety Platform is an innovation com-
bining a number of existing results, many of them issued from previous com-
pleted software and electronic projects at CLEARSY. The core of the CLEARSY
Safety Platform (software toolchain, core hardware) is certifiable as two notify
bodies issued three certificates for railway systems last two years. All the tech-
nical justifications are in the 120 pages of the (not public) safety demonstration.
The CLEARSY Safety Platform seems competitive up to now as several con-
tracts based on it have been won. However our best experts were involved in its
development and first applications. The next systems based on it and developed
by ”more regular practitioners” will constitute the real test for its acceptance.
Similarly the genericity of the platform will be assessed - implemented safety
features and design degrees of freedom were designed to adapt to any ”plausible”
safety system. The extensions in Fig. have not been formally validated. The
tools were developed mainly as proofs of concept, to assess if they comply to the
3-U rule: ”useful, usable, used”. In case of acceptance, stronger scientific work,
drafted in this paper, will be required to either validate the existing translation

principles or define new ones.

46

Acknowledgements

The work and results described in this article were partly funded by BPI-
France (Banque Publique d’Investissement) and Métropole Aix-Marseille as part
of the project LCHIP (Low Cost High Integrity Platform) selected for the call
AAP-21. This research was also partially funded by INES 2.0, FACEPE grant
APQ-0399-1.03/17, CAPES grant 88887.136410/2017-00, and CNPq grant 465614 /2014~
0.

References

[1] Abrial, J.: The B-book - assigning programs to meanings. Cambridge Uni-
versity Press (2005)

[2] Abrial, J.: Modeling in Event-B - System and Software Engineer-
ing. Cambridge University Press (2010), http://www.cambridge.org/uk/
catalogue/catalogue.asp?isbn=9780521895569

[3] de Almeida Pereira, D.I.; Déharbe, D., Perin, M., Bon, P.: B-specification
of relay-based railway interlocking systems based on the propositional logic
of the system state evolution. In: Dutilleul, S.C., Lecomte, T., Romanovsky,
A.B. (eds.) Reliability, Safety, and Security of Railway Systems. Modelling,
Analysis, Verification, and Certification - Third International Conference,
RSSRail 2019, Lille, France, June 4-6, 2019, Proceedings. Lecture Notes
in Computer Science, vol. 11495, pp. 242-258. Springer (2019), https:
//doi.org/10.1007/978-3-030-18744-6_16

[4] Behm, P., Benoit, P., Faivre, A., Meynadier, J.: Météor: A successful ap-
plication of B in a large project. In: Wing, J.M., Woodcock, J., Davies,
J. (eds.) FM’99 - Formal Methods, World Congress on Formal Methods
in the Development of Computing Systems, Toulouse, France, Septem-
ber 20-24, 1999, Proceedings, Volume I. Lecture Notes in Computer Sci-
ence, vol. 1708, pp. 369-387. Springer (1999), https://doi.org/10.1007/
3-540-48119-2_22

47

http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=9780521895569
http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=9780521895569
https://doi.org/10.1007/978-3-030-18744-6_16
https://doi.org/10.1007/978-3-030-18744-6_16
https://doi.org/10.1007/3-540-48119-2_22
https://doi.org/10.1007/3-540-48119-2_22

[5]
[6]

[12]

Boulanger, J.: Safety of Computer Architectures. Wiley (2010)

Cavalcanti, A.L.C., Sampaio, A.C.A., Miyazawa, A., Ribeiro, P., Filho,
M.C., Didier, A., Li, W., Timmis, J.: Verified simulation for robotics.
Science of Computer Programming 174, 1-37 (2019), https://www-users.
cs.york.ac.uk/~alcc/publications/papers/CSMRCD19.pdf

Corbier, F.: Accelerate the development of certified software for train con-
trol and monitoring systems. In: in ‘Proceedings of 8th European Congress

on Embedded Real Time Software and Systems: ERTS 2016 (2016)

Foster, S., Zeyda, F., Woodcock, J.C.P.: Unifying Heterogeneous State-
Spaces with Lenses. In: Sampaio, A.C.A., Wang, F. (eds.) Theoretical
Aspects of Computing — ICTAC 2016. pp. 295-314. Springer International
Publishing, Cham (2016)

Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A.: FDR3
— A Modern Model Checker for CSP. In: Abrahém, E., Havelund, K.
(eds.) Tools and Algorithms for the Construction and Analysis of Systems.
Lecture Notes in Computer Science, vol. 8413, pp. 187-201 (2014)

Hoare, C.A.R., Jifeng, H.: Unifying Theories of Programming. Prentice-
Hall (1998)

Lecomte, T.: Safe and reliable metro platform screen doors con-
trol/command systems. In: Cuéllar, J., Maibaum, T.S.E., Sere, K. (eds.)
FM 2008: Formal Methods, 15th Int’l Symposium on Formal Methods,
Turku, Finland, May 26-30, 2008, Proc. LNCS, vol. 5014, pp. 430-434.
Springer (2008)

Lecomte, T.: Applying a formal method in industry: A 15-year trajectory.
In: Alpuente, M., Cook, B., Joubert, C. (eds.) Formal Methods for In-
dustrial Critical Systems, 14th Int’l Workshop, FMICS 2009, Eindhoven,
The Netherlands, November 2-3, 2009. Proc. LNCS, vol. 5825, pp. 26—-34.
Springer (2009)

48

https://www-users.cs.york.ac.uk/~alcc/publications/papers/CSMRCD19.pdf
https://www-users.cs.york.ac.uk/~alcc/publications/papers/CSMRCD19.pdf

[13]

[14]

[15]

[16]

[20]

Lecomte, T.: Double cceur et preuve formelle pour automatismes sil4. 8E-

Modeles formels/preuves formelles-stireté du logiciel (2016)

Lecomte, T., Déharbe, D., Prun, E., Mottin, E.: Applying a formal method
in industry: A 25-year trajectory. In: da Costa Cavalheiro, S.A., Fiadeiro,
J.L. (eds.) Formal Methods: Foundations and Applications - 20th Brazilian
Symposium, SBMF 2017, Recife, Brazil, November 29 - December 1, 2017,
Proceedings. Lecture Notes in Computer Science, vol. 10623, pp. 70-87.
Springer (2017), https://doi.org/10.1007/978-3-319-70848-5_6

Lecomte, T., Servat, T., Pouzancre, G.: Formal methods in safety-critical
railway systems. In: in ‘Proceedings of Brazilian Symposium on Formal

Methods: SMBF 2007. pp. 26-30 (2007)

Miyazawa, A., Ribeiro, P., Li, W., Cavalcanti, A.L.C., Timmis, J.: Au-
tomatic property checking of robotic applications. In: IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems. pp. 3869-
3876 (2017), https://www-users.cs.york.ac.uk/~alcc/publications/
papers/MRLCT17 . pdf

Roscoe, A.: Understanding Concurrent Systems. Springer-Verlag New

York, Inc., New York, NY, USA, Ist edn. (2010)

Rétiveau, R.: La signalisation ferroviaire. Presse de I’Ecole Nationale des

Ponts et Chaussées (1987), (in French)

Sabatier, D.: Using formal proof and B method at system level for indus-
trial projects. In: Lecomte, T., Pinger, R., Romanovsky, A. (eds.) Reliabil-
ity, Safety, and Security of Railway Systems. Modelling, Analysis, Verifica-
tion, and Certification - 1st Int’l Conf., RSSRail 2016, Paris, France, June
28-30, 2016, Proc. LNCS, vol. 9707, pp. 20-31. Springer (2016)

Wikipedia contributors: Cyclic redundancy check — Wikipedia, the
free encyclopedia (2020), https://en.wikipedia.org/wiki/Cyclic_

redundancy_check, [Online; accessed 08-May-2020]

49

https://doi.org/10.1007/978-3-319-70848-5_6
https://www-users.cs.york.ac.uk/~alcc/publications/papers/MRLCT17.pdf
https://www-users.cs.york.ac.uk/~alcc/publications/papers/MRLCT17.pdf
https://en.wikipedia.org/wiki/Cyclic_redundancy_check
https://en.wikipedia.org/wiki/Cyclic_redundancy_check

[21]

22]

[23]

[24]

Wikipedia contributors: Intel hex — Wikipedia, the free encyclopedia
(2020), https://en.wikipedia.org/wiki/Intel_HEX, [Online; accessed
08-May-2020]

Wikipedia contributors: Ladder logic — Wikipedia, the free encyclope-
dia (2020), https://en.wikipedia.org/wiki/Ladder_logicl [Online; ac-
cessed 08-May-2020]

Wikipedia contributors: Programmable logic controller — Wikipedia,
the free encyclopedia (2020), |https://en.wikipedia.org/wiki/

Programmable_logic_controller, [Online; accessed 08-May-2020]

Wikipedia contributors: Safety integrity level — Wikipedia, the free ency-
clopedia (2020), https://en.wikipedia.org/wiki/Safety_integrity_
level, [Online; accessed 08-May-2020]

50

https://en.wikipedia.org/wiki/Intel_HEX
https://en.wikipedia.org/wiki/Ladder_logic
https://en.wikipedia.org/wiki/Programmable_logic_controller
https://en.wikipedia.org/wiki/Programmable_logic_controller
https://en.wikipedia.org/wiki/Safety_integrity_level
https://en.wikipedia.org/wiki/Safety_integrity_level

	1 Introduction
	2 Terminology
	3 Rationale
	4 Introduction to the B Method
	5 Architecture and Safety Principles
	5.1 Introduction
	5.2 Architecture
	5.3 Programming
	5.4 Safety Principles

	6 Engineering through DSLs
	6.1 Relay Circuits
	6.1.1 Technical and Industrial Context
	6.1.2 Translating Relay Circuits Design to B Components
	6.1.3 Verification
	6.1.4 Concluding Remarks

	6.2 RoboSim for Robotics
	6.2.1 Translation Overview
	6.2.2 Translating the Controller State Machine
	6.2.3 Translating Operation Calls

	7 Applications from a System-Level Formal Analysis
	8 Conclusion and Perspectives

