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Abstract

Replication can be used to increase the availability of a service by creating many operational copies of its
data called replicas. Active replication is a form of replication that has strong consistency semantics, which
are easier to reason about and program. However, creating replicated services using active replication still
demands from the programmer the knowledge of subtleties of the replication mechanism. In this paper
we show how to use the metaprogramming infrastructure of the Cyan language to shield the application
programmer from these details, allowing easier creation of fault-tolerant replicated applications through
simple annotations.
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1. Introduction

Distributed computing offers the promise of increased reliability and performance compared to tradi-
tional, centralized computing. In particular, greater reliability can be achieved by replicating a service
among many hosts to ensure availability of a service even in the presence of faults. Each copy of the service
is called a replica and there are many strategies to create such replicated service that usually offer a balance
between consistency and scalability [1, 2]. Among these techniques, a very straightforward and studied one
is called active replication [3].

The principle underlying this technique is to consider the system being replicated as a deterministic state
machine, which has its state changed only by well defined transitions. Put in a more object-oriented way,
the system is modeled by a set of objects that only change state deterministically by calling a known set
of methods. To replicate the service, we have to identify each transition before it happens, distribute the
information about the occurrence of this transition and its data to all replicas and execute the transition in
all of them. Based on our assumption that these transitions are deterministic, if we are able to distribute
these transitions among the replicas in a strict order, the replicas will progress along the exactly same states.
These identical replicas will be able to provide the required service in an indistinguishable way from each
other.

To make the task of creating a replicated service easier, frameworks such as Treplica [4, 5] and Open-
Replica [6] were created. These frameworks help to create a replicated system by taking care of the distri-
bution, ordering and execution of the transitions selected by the application programmer. The integration
of the application into these frameworks happens differently depending on the programming language used.
In procedural languages the integration happens by function calls to the framework and callbacks from the
framework placed by the programmer. In object-oriented languages the integration happens by creating
the classes of the program by extending classes provided by the framework. Regardless of the approach
employed, the linking of application and framework usually requires adding boilerplate code, intertwined
with application code.
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Current replication frameworks, albeit useful, only help with the communication and ordering of transi-
tions required by active replication. Other requirements of this replication technique, such as a well defined
set of mutator methods and the deterministic nature of these methods, are non trivial and completely left to
the application programmer. This happens because the traditional procedural and object-oriented languages
in which these frameworks are built are not suitable to enforce these nonfunctional requirements.

Traditional languages lack mechanisms to allow a program or framework to change and validate its own
code. Languages that support metaprogramming [7] allow programs to inspect and modify their own code.
Metaprogramming has been used to translate domain specific languages [8], implement design patterns [9],
perform source code validations at compile time [10], to detect defects in object-oriented programs [11],
produce code at runtime [12], change the syntax of a language (as Lisp macros) [13], and implement pluggable
type systems [14].

In this paper we show how to use the metaprogramming infrastructure of the Cyan language [15] to
transparently generate and validate integration code that uses the Treplica replication framework [4]. We
were able to use metaobjects in a centralized object-oriented program to isolate the set of mutator methods
that change the state of a set of objects, and to generate the appropriate extended classes to integrate with
Treplica. The approach is similar in essence to OpenMP [16], OpenACC [17] and other systems that use
compiler directives to guide the automatic generation of parallel code. However, our approach is easier to
use, demanding just the addition of some annotations to methods and variable declarations, and it is the
first time metaobjects are used to create distributed code. Moreover, we were able to validate the generated
code with respect to the presence of nondeterminism in transitions by flagging mutator methods that would
violate this requirement. Our proposed set of metaobjects is able to replace nondeterministic methods with
deterministic versions and alert the programmer if it still finds a call to a nondeterministic method inside
mutator methods.

This paper is structured as follows. In Section 2 we describe the Cyan language and give an introduc-
tion to its metaprogramming features. Section 3 describes the organization of the Treplica framework. In
Section 4 we describe the proposed metaobjects, how to use them to turn a centralized Cyan program into
a replicated one and how they work. Section 5 shows the application of the metaobjects to a more complex
program as a demonstration of the feasibility of our approach. The paper ends with a review of related work
in Section 6 and some concluding remarks in Section 7. The source code of the Cyan compiler used, the set of
metaobjects and example applications can be found at https://bitbucket.org/gdvieira/cyan.treplica.git.

2. The Cyan Language

2.1. Language Overview

The language used in this paper is Cyan [15], a prototype-based object-oriented language. Unlike most
prototype-based languages, Cyan is statically typed as Omega [18], the language it was initially based on.
That makes the design of Cyan much closer to the design of class-based languages such as Java [19], C++
[20], or Cf [21] than to other prototype-based languages. Cyan programs are compiled to produce Java code,
to be run in a Java virtual machine.

Prototypes play a role similar to classes. Instead of using class to declare a class, we use the keyword
object to declare a prototype, such as Building shown in Figure 1. In this example, keyword var is used
to declare a field (instance variable) and func to declare a method. In a field declaration, the type comes
before the field name (String before name in Line 17). Fields can only be private in Cyan, it is optional to
use keyword private before a field declaration. self refers to the object that received the message. The
same as self in Smalltalk [12] or this in Java, Cf, or C++.

Each prototype is in a file with its own name (and extension .cyan). The package declaration should
appear before the prototype (Figure 1, Line 1). In this example prototype Building is in package main. For
conciseness, for now on we may show more than one prototype in the same figure and without the package
declaration.

A variable or field can be declared using keywords let and var. let is used to declare a read-only field
or local variable to which a value must be assigned. For example, a variable of type Int can be initialized
as:
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1 | package main

2 | object Building

3 func init: String name,

4 String address {

5 self .name = name;

6 self .address = address

7 }

8 func name: String name

9 address: String address {
10 self .name = name;

11 self .address = address

12 }

13 func getName -> String { return name }
14 func getAddress -> String {

15 return address

16 }

17 var String name

18 var String address

19 | end

Figure 1: A prototype in Cyan

let counter = 0;

The variable name is counter and its type, Int, is deduced from the expression. Variables and fields that can
change their values should be declared with keyword var (Figure 1, Line 17). Fields that are not preceded
by var or let are considered read-only (let) fields.

The syntax for message passing and method declaration is close to the Smalltalk syntax. Unary methods
are those that do not take parameters, as getName of Line 13 of Figure 1. Assuming aBuilding is a variable
of type Building,

aBuilding getName

is the sending of the unary message getName to object aBuilding.! Messages such as - in —-counter are
also considered unary messages. In this example, message - is being sent to object referred to by counter.

A keyword method is declared with identifiers ending with : each of which taking zero or more parameters
as method name:address: of Lines 8-12 of Figure 1. This method has two keywords. A keyword method
may be called at runtime by keyword message passing, as in this example:

aBuilding name: "Dahlia" address: "21 Drive";

In this code, message name: "Dahlia" address: "21 Drive" is sent to the object aBuilding. If
aBuilding refers to a Building object at runtime,? the method called would be that declared in line 8
of Figure 1.

The name of a method may be an operator such as + or <. Method + should take no parameters (for
unary +) or two parameters (for binary +). These methods are called as usual: 1 + 2 is the sending of
message + 2 to object 1.

Object constructors are methods with names init or init: (if there are parameters). They cannot be
called directly by sending messages. For each method init or init: found in a prototype, the compiler
creates a method new or new: in the same prototype with the same parameters as the original method.
This new or new: method creates an object and sends to it the corresponding init or init: message. For
example, the compiler adds a method

new: String name, String address

IMore specifically, it is the sending of message getName to the object referred to by aBuilding.
2Even if aBuilding has type Building, it may refer to an object whose type is a subprototype of Building.
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to prototype Building of Figure 1.* This method can only be called by sending a message to the prototype
itself:

Building new: "Dahlia", "21 Drive"

It is a compile-time error to send a message new or new: to anything that is not a prototype.
In prototype-based languages, prototypes are objects and they can be used in expressions. For example,
Int is an object whose value is 0.

var Int two = (Int + 1)*2 + Int*Int;

assert two == 2;
// ++ transforms both arguments to strings and
// concatenates them

let String strZero = (Int asString) ++ 1;

assert strZero == "01";

However, In Cyan, only prototypes that declare an init method, a constructor without parameters, are
considered objects with full rights. The init method is used to build the object that is accessed by the
prototype name (as Int in the expressions of the last example). This assures that the prototype fields are
correctly initialized. That would not be the case with prototype Building of Figure 1, which does not
declare a method init. If the first message passing to Building is
Building getName

there would be an error: field name would not have been initialized. A prototype without an init can
receive some kinds of messages such as new and new:.

In Cyan, prototypes play a dual role: 1) they are types as with classes in Smalltalk, Java, and C++,
and 2) when used in expressions, they work like variables that refer to a fixed object of themselves. For
example, Int, when used inside an expression, refers to an object of prototype Int (itself) whose value is 0.

Keyword extends allows the inheritance of a superprototype by a subprototype. Inherited methods
can be overridden in the subprototype, as usual. Java-like interfaces can be defined by using keyword
“interface” instead of “object” when defining a prototype.

2.2. The Cyan Metaobject Protocol

Metaprogramming is a paradigm that allows programs to manipulate other programs and change them-
selves in compilation or execution time [22] [7]. Metaprogramming has a broad meaning, it encompasses any
kind of program handling at compile-time, loading time (when the program is loaded into memory), and at
runtime. In this paper, we will limit ourselves to transformations and checks made at compile time by a
meta-level on a base program. The program that is changed or checked is called the base program or simply
program. The code that does the changes or checks is called the meta level or simply metaprogram. The
metaprogram can be just a set of classes or functions and it acts as a plugin to the compiler, potentially
changing how it parses, does type checking, generates code, and so on.

In this paper, we counsider that a metaobject protocol (MOP) is an interface between the metaprogram,
the program, and the compiler. It defines functions or methods of the metaprogram that should be called
when a prototype is inherited or a method is overridden in a subprototype, when a field is accessed, a
message is sent, or when an annotation is found in the program by the compiler. For example, the MOP
defines that a user-defined function should be called whenever a prototype is inherited. Cyan supports a
Metaobject Protocol, but not all languages that support metaprogramming do.

In Cyan, the metaprogram consists of Java classes or Cyan prototypes. The compiler is written in Java,
which makes it easy to write code in this language that interacts with the compiler. Since the Cyan compiler
translates code to Java, the metaprogram can be written in Cyan too.

During the compilation of a program, an annotation in the source code links the program (base level),
the compiler, and the metaprogram. An annotation is @ followed by an identifier, optional parameters, and
an optional DSL:

3These methods are added to the compiler internal representation, the original source code is not changed.
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1 var Int sum = Qeval("cyan.lang", "Int"){*
2 var Int count = 0;

3 for n in 1..10 {

4 count = count + n

5 }

6 return count;

7 *x};

In this case, the optional DSL is given between {* and *}. It consists of Cyan code that is interpreted at
compile-time. The result is the same as to replace the annotation by 55. The metaprogram calls a Cyan
interpreter at compile-time to produce the result. We will use just the identifier as the annotation name, as
in “annotation eval”.

1 |object Person

2 @init (name, age)

3 func getName -> String { return name }
4 func getAge -> Int { return age }

5 String name

6 Int age

7 | end

8

9 | object Program

10 func run {

11 let Person meg =

12 Person new: "Meg", 3;

13 let Person doki =

14 Person new: "Doki", 5;

15 meg getName println;

16 doki getAge println;

17 OQut println: ("This is method " ++
18 QcompilationInfo (currentmethodname) ;
19 }

20

21 | end

Figure 2: Metaobjects in Cyan

The example of Figure 2 uses two annotations: init in Line 2 and compilationInfo in Line 18. For
each annotation, the compiler creates a metaobject of a metaobject class. This class is written in Java,* as
the compiler is, and is associated with a Cyan package. When the package is imported by a Cyan program,
the metaobject class is imported too. Then new behavior and new checks can be added to the code by
importing packages and using annotations. To simplify, we will say “metaobject init” and “class of init”
for the metaobject associated with annotation init and the metaobject class of metaobject init.

Package cyan.lang is imported automatically by every Cyan program and this package keeps the metaob-
ject classes of init and compilationInfo. Thus, these annotations can be used in any Cyan source code
without explicitly importing a package, as is done in the example of Figure 2. Then, the scheme the Cyan
compiler uses for creating metaobjects is: a) when parsing the code and an annotation is found, look for a
metaobject class in the imported packages. Method getName of the metaobject class should always return
the annotation name; b) if there is no metaobject class, issue an error. Otherwise, create an object of the
metaobject class and associates it with the annotation. For each annotation there is a unique metaobject
and vice-versa.

During compilation, the Cyan compiler calls methods of the metaobjects associated with the annota-
tions. They can insert code and do checks in the code based on information supplied by the compiler. In
this example, metaobject init generates a constructor for Person. Figure 3 shows the resulting Person
prototype.

4Cyan can be used as the metaprogramming language. However, in this paper, we will consider that all metaobjects are
made in Java, which is the language used to code all metaobjects cited in the text.
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The constructor code is returned by the metaobject method as a string (in fact, a StringBuilder object)
and inserted in the source code by the compiler. Only the source code in memory is changed, the original file
with prototype Person is not changed. Annotation compilationInfo produces the current method name,
"run".

Since the metaobject inserted an init: method in the prototype, method run of Program can create
objects of Person using the new: method (constructor). Note that the Java class of metaobject init knows
the types of fields name and age. These types are necessary to generate the constructor. This information
is supplied to the metaobject by the compiler.

}

func getName -> String { return name }
func getAge -> Int { return age }
String name

Int age

1 |object Person

2 @init (name, age)

3 func init: String name,
4 Int age {

5 self .name = name;

6 self .age = age;

7

8

9

e e
v o= O

end

Figure 3: Person generated during compilation

In the remaining of this section, we will give a simplified overview of the Cyan MOP. The Metaobject
Protocol can only be understood by studying the compilation phases of the Cyan compiler, shown in Figure 4.
The compilation phases are parsing, resTypes (resolve types), afterResTypes (after resolving types), semAn
(semantic analysis), afterSemAn (after semantic analysis), and code generation. The arrows indicate the
data passed from one phase to the next. The data is described in the right-hand side of the Figure by the
labels. Then, the arrow from parsing to phase resTypes is labeled with (a), which represents the Abstract
Syntax Tree (AST). Parsing uses only local information, available in the current source code. Therefore,
after parsing there is no type information in the AST. For example, for a method parameter that has type
Int, the AST keeps only the string “Int”. In phase resTypes, the compiler looks for a prototype Int and
assigns a reference to its AST to a field type of the AST object that represents the method parameter. All
references to types outside method statements are resolved in phase resTypes.

parsing ===} resTypes =) afterResTypes mmmsd semAn mmmsd afterSemAn =mmd code gen.
(a) (b) (c) (d) (e)

(a) - AST
(b) - AST with types outside method
bodies resolved

resTypes - resolve types
afterResTypes - after Resolving types
semAn - semantic analysis
afterSemAn - after semantic analysis
code gen. - code generation to Java

(c) - AST with fields and methods
inserted by metaobjects

(d) - full typed AST with code inserted by
metaobjects inside methods

(e) - checked AST

Figure 4: The Cyan Compilation Phases

In phase afterResTypes, metaobjects can add fields and methods to the prototype in which their an-
notations are. The metaobject associated with an annotation that is in a prototype cannot add code to
another prototype. A method of metaobject init is called in phase afterResTypes. It returns, as a string®,
the code to be added, an init: method. A copy of the source code, in memory, is changed and therefore

5As a StringBuffer object, in fact.



the compilation starts again from phase parsing (but only for this file). Metaobject methods called in phase
afterResTypes have access to the AST of the prototype in which they are, except method statements. Then,
metaobject methods called in this phase know the prototype name, superprototype, implemented interfaces,
the name and type of fields, and method signatures.® Metaobjects can then use this information to generate
code, as does init.

Phase semAn is called “the semantic analysis” even though it only finishes this analysis, started in phase
resTypes. In phase parsing, types are assigned to expressions inside methods. Every expression object of
the AST has a “type” field that is null till the start of phase semAn. After this phase all “type” fields
are resolved. Metaobjects can generate code inside methods only in this phase. This is what metaobject
compilationInfo does in the example of Figure 2. It produces the current method name as a string.

After phase semAn, metaobjects cannot change the code anymore. But they can do checks in the code in
phase afterSemAn. This phase is ideal for checks because there will be no further changes that can invalidate
the checks. Currently, metaobjects cannot act in the last phase, code generation.

Metaobject methods can be called in phases parsing, afterResTypes, semAn, and afterSemAn.” But
how the compiler knows which method it should call in each phase? The answer is in the interfaces imple-
mented by the classes of the metaobjects. The Cyan MOP provides several Java (and Cyan) interfaces that
should be implemented by metaobjects. Each interface is associated with a compilation phase. Whenever
a metaobject class implements an interface of phase afterResTypes, for example, all metaobject meth-
ods that override the interface methods are called in phase afterResTypes. As a concrete example, the
class of metaobject init is CyanMetaobjectInit that inherits from class CyanMetaobjectAtAnnot (as any
metaobject class of this paper) and implements interface IAction_afterResTypes. This interface declares
a method afterResTypes_codeToAdd that is overridden by CyanMetaobjectInit. This method is called in
phase afterResTypes by the compiler.

During the parsing of prototype Person of Figure 2, the compiler creates an object of class CyanMetaobjectInit
when it finds the annotation init in line 2. The name “init” is associated with this class because the com-
piled form of it, a Java “.class” file, is in a directory of package cyan.lang automatically imported by
every Cyan source file. And method getName() of an object of this class returns "init". The compiler
knows how to associate an annotation to a metaobject class.

The CyanMetaobjectInit object created in phase parsing is the metaobject associated with annotation
init. Method afterResTypes_codeToAdd of this metaobject is called in phase afterResTypes to produce
the Cyan init: method, which is then inserted in the code by the compiler. All methods of interface
TAction_afterResTypes are called on the metaobject. The other methods, in this case, do nothing.

The class of metaobject compilationInfo implements interface IAction semAn which declares a sin-
gle method, semAn codeToAdd. During the semantic analysis, phase semAn, the compiler calls method
semAn_codeToAdd of the metaobject associated with annotation compilationInfo of line 18 of Figure 2.
This method produces the string "run" which is inserted in the code by the compiler.

Note that there is a one-to-one relationship between annotations and metaobjects. Two compilationInfo
annotations, even with the same parameters, will cause the creation of two metaobjects in phase parsing.
Annotations can be attached to declarations such as prototypes, methods, local variables, packages, and the
program. Or they can be free as compilationInfo, which is not attached to anything.

There are several other interfaces associated with phases parsing, afterResTypes, semAn, and afterSe-
mAn. They are used to:

1. parse the DSL attached to the annotation (parsing);
create new prototypes (parsing, afterResTypes, semAn);
intercept field access (semAn);

intercept message passings (semAn);

create code after a local variable declaration (semAn);
simulate the existence of fields (semAn);

o Cuk

6 A signature of a method is composed of its name, name and type of parameters, and return value type.
7Call to metaobject methods in phase parsing will soon be deprecated.
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simulate the existence of methods (semAn);
intercept the overridding of a method (afterSemAn);
intercept the inheritance of a prototype (afterSemAn);

© ® 3

10. check any kind of declaration (afterSemAn);
11. check message passing (afterSemAn).

Metaobjects are used, in this paper, for replication. We will show the details of metaobject implemen-
tation later on using the replication metaobjects.

3. Treplica

Treplica [4] is a framework written in Java that provides an active replication structure for the develop-
ment of replicated distributed applications. In this section we briefly describe how to program this framework
through a binding developed for the Cyan language with the purpose of characterizing the programming
effort required to program a replicated application using the framework. The source code of this binding
can be found in the project tree® under 1ib/treplica.

A complete description of Treplica is beyond the scope of this paper. A full description of Treplica,
including its original Java programming interface, can be found in [5]. Nonetheless, we will briefly summarize
two properties of Treplica that are important for understanding how to use the framework: its consistency
guarantee and the way active replication works.

Replicated applications can be classified in two types reflecting the way updates are propagated: eager
and lazy [1]. Assume a client is contacting a replicated server to execute a service, and that the execution
of this service changes the state of the server. Eager replication propagates and ensures that all changes
are stable in all replicas before returning to the client. Lazy replication executes and returns to the client
immediately, propagating the changes at a later, more convenient time. Thus, in lazy replication the replicas
can diverge immediately after an update is made and later converge back to a shared state, while in eager
replication the replicas never diverge.

Lazy replication has the advantage that it exchanges fewer messages, resulting in lower consumption of
system resources and less delay associated with message exchange. This is a consequence of the flexibility to
decide when to propagate changes. Lazy replication protocols are therefore faster than eager protocols that
must exchange messages before a change is made to a replica [1]. However, to achieve this higher efficiency
lazy replication relaxes the consistency of the changes made to the replicas, leading to inconsistencies and
requiring conciliation of the resulting data [1].

For example, suppose a bank system that uses lazy replication and stores a checking account with $100
in it. Two independent purchases of $100 can be made concurrently in different replicas of the bank system.
At this moment the system is inconsistent, because the owner of the account has spent more than was
available. But, eventually a process of reconciliation will happen and, for example, one of the purchases will
be canceled for lack of funds. From the point of view of the system this is simple, but it may be a nuisance
to both client and merchant. Worse still, if the goods were delivered, it may even be impossible to revert
such transactions. Thus, the application programmer has to be aware of the need for reconciliation in every
transaction, making the application more complicated.

Eager replication is more costly, but it does not suffer from the problem created by divergence and rec-
onciliation of data. Data changes in a eager replication protocol usually guarantee a criterion of consistency
called one-copy-serializability [23]. This criterion specifies that concurrent changes to replicated objects
appear as a series of changes over a single logical copy. Solutions that use this type of consistency bear more
similarities to centralized systems and are easier to reason about and program [3]. However, even in this
case, the programming of these applications still poses significant challenges [24].

Active replication is a type of eager replication that ensures that many copies of a single application
known as replicas keep their state up to date and consistent even as changes are made as part of the

Shttps://bitbucket.org/gdvieira/cyan.treplica.git
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application operation. It works by assuming the application behaves like a deterministic state machine,
which only changes its internal state by deterministically executing transitions. If one is able to execute
the same transitions in the same order in all replicas, they will end up with the same resulting state due to
the deterministic nature of the transitions. As a consequence, an active replication framework must provide
a reliable way of disseminating transitions in a ordered way among all replicas and it should provide a
programming interface that allows regular applications to behave like deterministic state machines even if
they are not programmed as such.

Treplica solves the problem of disseminating transitions by using the Paxos algorithm to ensure the
transitions reach all replicas in the same order, even in the presence of failures [25]. Treplica solves the
programming interface problem by providing an object-oriented abstraction that defines the very simple
notion of a shared state and well defined changes to this state. The resulting programming interface is as
close as possible to conventional centralized applications [4], making the replication mechanism transparent
to the developers.

The shared state of an application is defined by its contezt, a single object that stores the application
data in its fields. In the Treplica framework this object should extend the Context prototype and be
serializable.? Serialization allows an object to be transformed to text, transmitted between different hosts
and transformed back to a clone of the original object. Figure 5 shows the prototype Info, an example of
an application context. This prototype contains two variables: an Int and a String, representing the state
of this application.

object Info extends Context {
var String text
var Int number

func setNumber: Int number {
self .number = number;
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func setText: String text {
self.text = text;

e e
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func getText -> String {
return self.text;
15 }

=
Bow

=
o
“

Figure 5: Prototype to be replicated

The prototype Info has two set methods used to assign values to its private variables. More importantly,
these two methods allow changing the state of the application context. The Treplica framework considers
a message sent to an object that calls one of these mutator methods to be equivalent to a transition that
changes the context state in a deterministic way. The framework then defines a way to capture and represent
this message as an action.

The prototypes that extend prototype Action implement these actions. They contain as fields the
parameters of the message to be sent and are serializable, allowing the record of this message to be sent to
other hosts. Also, they must implement the method executeOn: that defines the keywords of the message
to be sent by encoding an actual message passing operation using the fields as parameters. The target object
of the message sent by executeOn: is defined by a parameter received by this method. Figure 6 shows the
prototype SetTextAction, which implements a transition that sends message setText: to an Info object.
Statement type-case is a safe way of downcasting in Cyan. type may be followed by one or more case
clauses. The statement tries to cast the argument to type to the type that appears after case. In this

9In Cyan, every prototype is serializable.



example, the statement tries to cast context to Info. If this succeeds, the value is put in variable info and
the case statements are executed.

object SetTextAction extends Action {
var String updateText

func init: String text {
self .updateText = text;
}

override
func executeOn: Context context {
type context
case Info info {
info setText: self.updateText;
}

© 0w N ;o W N
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Figure 6: Prototype that implements a transition

The actual firing of a transition is implemented by Treplica. When the application wants to change
its state, it creates an appropriate action object and passes it to Treplica in a execute: message sent to
an object of prototype Treplica. The framework then sends a copy of this object to the other replicas,
properly ordered, and all of them send the message executeOn: to the received object, passing a local copy
of the context as the parameter. Therefore, all the copies will end up with contexts with the same values.

For this to work, no changes to the context can happen without being represented as actions and the
actions passed to Treplica for execution. The application places its state under care of the framework during
the application initialization, when a Treplica object is instantiated. In Cyan, that is usually done in a
method called run: in a prototype called Program.!? Figure 7 shows how a Treplica object is declared and
initialized in each replica. This is also an example of how an object of the prototype SetTextAction is
passed as an argument to the method execute: of the Treplica object.

1 |object Program {

2 func run: Array<String> args {
3 let info = Info new;

4 let treplica = Treplica new;

5 treplica runMachine: info
6 numberProcess: 3

7 rtt: 200

8 path: "/var/tmp/magic" ++ args[0];
9

10 let action = SetTextAction new: "text";
11 treplica execute: action;

12 }

13 |}

Figure 7: Treplica configuration and execution

The sequence diagram of Figure 8 shows the execution flow of the example in Figure 7. Both Replicas
A and B start execution in the run method of prototype Program. The context of the application (Info)
and the Treplica object (Treplica) are initialized during the execution of this method. Replica A wants
to change the replicated state, so it creates an appropriate action object (SetTextAction) and sends an
execute: message to Treplica with the object as parameter. Treplica will order and distribute the action

10This is the default that can be changed in the project file, a file that declares the packages and other configurations of a
program.
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object to both replicas and it will execute the action on both, independently, by sending an executeOn:
message to the local action object.

’ Program ’ Info SetTextAction | Treplica Treplica | SetTextAction ’ Info ’ Program
Info ne Replica A Replica B nfo new
info info
e == - B
Treplica new Treplica new
». <
L €
treplica D ﬂ treplica
[<-----*---"---:-c--- &= =& .- --- - ---Z----- >l
runMachine: ~ P runMachine:

1 i
R e i T Rttt >

execute:
<Paxos>
_executeln:
setText: executeOn g
L
777777 setText:
_—< 777777777777777777777 B -

Figure 8: Treplica execution sequence diagram

The way Treplica encodes message passing is very simple and straightforward, but it requires the ap-
plication programmer to create much boilerplate code in the form of action objects. Moreover, isolating
message passing isn’t enough to achieve replication, it is necessary that the method activated by the message
doesn’t create external effects besides changing the context state and that these changes are deterministic.
It is the responsibility of the programmer to be aware of these requirements and avoid breaking them.

For example, in Figure 9 we introduce a small change to the setText: method of Info prototype to
make it nondeterministic. The problem brought by the change is that every time the setText: method
is called the value set will be different, even if the starting state of Info and the parameters of setText:
are the same. This will make the replicas diverge, as the deterministic behavior of the transition will be
violated. Later in the paper, we show how this problem can be detected and solved.

1 e

2 |object Info extends Context {

3 e

4 func setText: String text {

5 var date = System currentTime asString;
6 self.text = text ++ date;

7 }

8 e

o [}

Figure 9: Nondeterministic setText: method

4. Metaobjects for Replication

4.1. Overview and Use
The creation of a replicated application using Treplica requires the construction of a prototype repre-
senting the application context and as many actions as messages this context can receive. For each action

11



it is necessary to define a new prototype with the correct number and type of fields, besides sending the
correct message to the application context when asked by Treplica. We have shown in the last section this
task isn’t hard, but it requires the tedious and error-prone creation of a lot of boilerplate code. Now we are
going to show how programming of replicated application can be simplified by the use of Cyan metaobjects.
We first describe how to use the metaobjects and in the next section we describe how the metaobjects are
created and how they work.

A good programming practice when using Treplica is to create action prototypes that do not have
application functional behavior and limit themselves to send a single message with the correct parameters.
Although Treplica does not impose these restrictions, by creating data-only action prototypes the coupling
between the application and Treplica is reduced. Loosely coupled modules are easier to reuse [26] and
align better with replication as a nonfunctional requirement. For example, Figure 6 shows the action
SetTextAction that represents the sending of message setText: in the form of a prototype. Notice that
this prototype, besides its executeOn: method, has a simple constructor that initializes the fields of the
created object with the same parameters used afterwards to send the encoded message. Because of this
regularity, the creation of these prototypes can be standardized. The metaobject treplicaAction will
create an appropriate action prototype when its annotation is attached to a method declaration of the
application context.

For example, the Info prototype in Figure 10 is similar to the one depicted in Figure 5, except that
the treplicaAction annotation is attached to the method setText:. The metaobject associated with this
annotation modifies the prototype Info, adding a new method to it and creating a new prototype that
represents the sending of message setText: as a Treplica action. Prototype SetTextAction of Figure 6
is not necessary any more, since the metaobject treplicaAction adds an equivalent prototype to the
program during compilation. Moreover, setText: messages sent directly to the application context will
be “intercepted” and replaced by the creation of a suitable action object and the sending of this object to
Treplica as an execute: message for replication and execution by the framework.

Metaobject treplicaAction replaces nondeterministic message passings inside the annotated method by
deterministic message passings. A list of replacements is given in files loaded at the start of the compilation
— the details of how this is made will be given later on.

1 | package main

2 | import treplica

3 |object Info extends Context {
4 var String text

6 @treplicaAction

7 func setText: String text {
8 self.text = text;

0 }

Figure 10: Replicated prototype using metaobjects

Initialization of the application context and of the Treplica framework also happen in a standardized way
as shown in Figure 7. This initialization is automated by the treplicalnit metaobject, whose annotations
can be attached to variable declarations whose types are subprototypes of Context This metaobject has
a double function: it marks a variable as holding the application context and it initializes Treplica. The
explicit indication of the object holding the application context is important because only the methods
belonging to the context prototype can be marked with the treplicaAction metaobject.

For example, in Figure 11 the treplicalnit metaobject is attached to variable info, with the param-
eters of the desired Treplica instance. This metaobject adds code after the variable declaration, during
compilation, to create a new instance of Treplica and assign to it the object info, similar to the method
run in Figure 7. Note that the annotation treplicalInit can be attached to the declaration because the
type of info, Info, is a subprototype of Context.
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1 |object Program {

2 func run: Array<String> args {

3 var local = "/var/tmp/magic" ++ args[0];
4 @treplicaInit ( 3, 200, local )

5 var info = Info new;

6 info setText: "text";

7

8

Figure 11: Treplica configuration using metaobjects

Using these two metaobjects only the code in Figures 10 and 11 need to be written. This code is more
compact, easier to read, and is independent from any replication concerns or implementation details. This
way we can avoid some of the pitfalls created by the programming interface of Treplica and create less

complex applications.

4.2. Implementation of the Metaobjects

This section shows how the metaobjects treplicaAction and treplicaInit are implemented. We
describe the interface of metaobjects with the Cyan MOP in Java. The source code of these metaobjects
can be found in the project tree'! under proj/meta/treplica. The compiled version of both classes, the
“.class” file, are put in directory “--meta” of package treplica. When this package is imported, as in

Figure 10, the associated annotations can be used.

object Info extends Context {

func setText: String text {
var action = InfosetText
self getTreplica execute:

new: text;
action;

@treplicaAction
func setTextTreplicaAction:
String text {
self.text = text;
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Figure 12: Prototype Info modified

CyanMetaobjectTreplicaAction is the Java class implementing the metaobject treplicaAction. This

association happens because its method getName() returns "treplicaAction".

This class implements

several interfaces, which are described below together with their role in the metaobject.

(a) IAction_afterResTypes from which methods afterResTypes_codeToAdd and afterResTypes_renameMethod

are defined. Method afterResTypes_codeToAdd adds a new method with the same name as the an-
notated method. In the example of Figure 12, the metaobject of Figure 10 adds method setText:.
The code of setText: is produced as a string based on the data of the original method. The needed
information is the method name, the parameter names and types, and return value type. The first line

of method afterResTypes_codeToAdd is
WrMethodDec md = (WrMethodDec) this.getAttachedDeclaration();

md refers to the object of the AST that represents the method annotated with treplicaAction,
setText:. Using md, we can get the method name, list of parameters, and return value type with

the following method calls:

Hhttps://bitbucket.org/gdvieira/cyan.treplica.git
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1 |md.getName ()
2 |md.getMethodSignature () . getParameterList ()
3 |md.getMethodSignature () .getReturnTypeExpr () .getType ()

This is all the information needed to create a new setText: method in string format, which is returned
by method afterResTypes_codeToAdd.

Method afterResTypes_renameMethod renames the original annotated method. In the example, setText:
is renamed to setTextTreplicaAction:. The information needed for this is obtained as in method
afterResTypes_codeToAdd.

TIActionNewPrototypes_afterResTypes from which method afterResTypes NewPrototypelist is re-
defined for creating a new prototype implementing the Treplica action. In the example, it is prototype
InfosetText of Figure 13. The new prototype is created as a string. The information needed for that
is got as in method afterResTypes_codeToAdd.

IAction_semAn from which method semAn_codeToAdd replaces calls to nondeterministic methods by
calls to deterministic ones. The list of nondeterministic methods and their replacements are put in files
loaded before the compilation starts. We will describe this nondeterminism removal operation in more
detail in the next section.
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object InfosetText extends Action {
var String textVar
func init: String text {
self.textVar = text;
}

override
func executeOn: Context context {
type context
case Info obj {
obj setTextTreplicaAction: textVar;

(d)

Figure 13: Prototype created by treplicaAction

ICheckDeclaration afterSemAn from which method afterSemAn_checkDeclaration is redefined to
check if there are any calls to nondeterministic methods in the final code. This should not be neces-
sary since method semAn_codeToAdd replaces all possible calls to nondeterministic methods by calls to
deterministic ones. However, other metaobjects may have introduced nondeterministic method calls in
phase semAn (if they add code, this code will not be visible to treplicaAction in this phase).

Class CyanMetaobjectTreplicalnit is the Java class implementing metaobject treplicaInit. This

class implements interface IActionVariableDeclaration_semAn and redefines its method semAn_codeToAddAfter.
This method adds code after the variable declaration to create and initialize the Treplica object. For exam-
ple, this metaobject takes the annotated code in Figure 11 and adds the initialization code in Lines 5-10 of
Figure 14. The newly added code makes info reference treplicainfo, the treplica object, and vice-versa.

4.3. Nondeterminism Detection

Besides removing boilerplate code from a program, the proposed metaobjects offer initial support for
validating if the resulting code is indeed able to be replicated. As we have shown in Section 3, methods that
change the state of the context must be deterministic and should not create external effects. In this work,
we considered only the question of identifying nondeterministic methods and optionally replacing them with
deterministic versions. In the previous section we have briefly cited these tests and substitutions and now
we describe them in a bit more depth.
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object Program {
func run: Array<String> args {

var local = "/var/tmp/magic" ++ args[0];

var info = Info new;

var treplicainfo = Treplica new;

treplicainfo runMachine: info
numberProcess: 3
rtt: 200
path: local;

info setTreplica: treplicainfo;

info setText: "text";
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Figure 14: Prototype Program modified

Identifying deterministic methods is complex and this work does not offer comprehensive solutions to
this problem. These methods are usually operating system services that aren’t deterministic by nature, such
as reading the time or receiving a packet from the network. Nondeterministic methods and deterministic
replacements for them are defined by the developer in rule files. Based on the information of these rule files,
metaobject treplicaAction can replace nondeterministic calls in the annotated method by deterministic
method calls.

Rule files are loaded in memory by metaobject loadNonDeterministicFiles whose annotation should
be attached to the program in the project file. Every Cyan program should have a project file that describes
its packages. The simplest example is just

program
package treplica at "C:\projetollib\treplica"
package cyan.math at "C:\Cyan\lib\cyan\math"
package main
package other

L N

The compiler will consider that the program is composed of packages treplica and cyan.math, in the
directories given after “at”, and main and other, that should be in the same directory as the project file.
The files of a package in Cyan should be in a directory whose name is the package name.

Annotations can be attached to the program and to packages:

import treplica at "C:\projeto\lib\treplica"
@loadNonDeterministicFiles(

"C:\calculator \main\--data\nonDeter_to_DeterMethod.txt")
program

package treplica at "C:\projetollib\treplica"
package cyan.math at "C:\Cyan\lib\cyan\math"
package main

package other

© 0 N O A W N e

Package treplica imported in the first line has metaobject loadNonDeterministicFiles used in line
2. This metaobject reads the rule files given as parameters (any number of them) and creates a data
structure with the loaded data. This data structure is retrieved by metaobject treplicaAction in methods
semAn_codeToAdd and afterSemAn_checkDeclaration. The first is responsible to replace a nondeterministic
method by a deterministic one. The second checks if no other metaobject added a nondeterminitic call in
phase semAn (this code addition would not be visible to method semAn_codeToAdd).

For each nondeterministic method, a rule file defines a replacement method. This method can be im-
plemented by the application of by a supporting library and should provide a deterministic version of the
indicated method. For example, it is possible to define a method that returns not the current time, but a
timestamp prerecorded in the action object.

In a rule file, each rule is defined in a line and its format is shown in Figure 15. The rules are split into
two parts by the symbol -. The first part defines the package, prototype, and name of the nondeterministic
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1 | packageA ,PrototypeA ,methodA - packageB ,PrototypeB,methodB

Figure 15: Example of nondeterminism rule

method. The method name of a keyword method is composed of each keyword followed by its number of
parameters. Then, method

1 func add: Int n, String s to: Int n

has name “add:2 to:1”.

The second part of the line, after -, defines the package, prototype, and name of the deterministic method
that will replace the nondeterministic one.

During compilation, metaobject treplicaAction will replace methodA with a call to methodB, with the
parameters of the original call used as parameters of this new call. The object that receives message methodB
is packageB.PrototypeB

For example, suppose the line below is in one of the rule files used by the program.

1 |util, MyArray, add:2 to:1 - other, DetArray, always:2 theSame:1

And a method annotated with treplicaAction has the code:

1 // package util was imported
2 | var MyArray array = MyArray new;
3 |array add: 0, ("aazero" substring: 2) to: (Fat fat: 5);

Then treplicaAction will replace the message passing of the last line by

1 |other.DetArray always: O, ("aazero" substring: 2)
2 theSame: (Fat fat: 5);

If an expression that is an argument to this message passing has a nondeterministic call, it would be replaced
according to the rules. That is, the replacement works as expected.

Annotation nonDeterministic can be attached to a method to mark it as nondeterministic. The asso-
ciated metaobject does some checks, described next.

1. It checks if all superprototype methods with the same name are also attached to the same annotation.

2. Whenever the method is overridden in a subprototype, the metaobject checks if the overridden method
is also attached to annotation

nonDeterministic
Then, by this item and the previous one, all methods with the same name in a hierarchy are either all
marked as nondeterministic or none is.

3. Whenever there is a message passing in which the attached method may be called, the metaobject
checks whether the current method, the method in which the message passing is, is annotated with
“@nonDeterministic” or “@treplicaAction”. If not, it issues an error because the method is also
nondeterministic, not marked as such, and the message passing will not be replaced by a deterministic
method call.

Metaobject treplicaAction uses the data from the rule files to replace some message passings by other
ones. It does so even if the method to be replaced is not annotated with nonDeterministic. However,
if a method is annotated with nonDeterministic and no replacement for it is specified in any rule file,
treplicaAction issues an error.

There are limitations in the detection of nondeterminism described in this Subsection. It depends on
humans to annotate methods as nondeterministic and to put the replacement method call in rule files. There
is no help from tools other than metaobject nonDeterministic. A tool that does static analysis of the code
could detect nondeterminism based on any direct or indirect use of some methods for input and output,
time, network, etc. This will be future work.
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Rule files may be inconsistent and this is not detected by the metaobjects. The inconsistent arises when
the rule files describe the replacement of some methods of a hierarchy but not for others with the same
name. Using the previous MyArray example, suppose we have the message passing:

1 | var MySuperArray array = MyArray new;
2 |array add: 0, ("aazero" substring: 2) to: (Fat fat: 5);

Assume that MySuperArray is superprototype of MyArray and that there is no replacement, in the rule
files, for method “add:2 to:1” of util.MySuperArray. Then the message send of the last line will not
be replaced, even though it is nondeterministic according to one of the lines of a rule file. Metaobject
treplicaAction is not smart enough to detect this nondeterminism.

A complete solution to this kind of problem demands the knowledge of AST of the whole program.
Then a metaobject would do a static analysis in the whole program and detect all nondeterminism based on
the root nondeterministic methods pointed out in the rule files or annotated with nonDeterministic. For
example, a method not cited in any rule file and not annotated with nonDeterministic would be considered
nondeterministic if it may call a nondeterministic method.'? Currently, that cannot be done because the
MOP limits the information given to metaobjects. These limitations prevent some bad Software Engineering
practices but also the implementation of some useful tools. See Guimaraes [27] for more details.

5. Case Study: Warriors and Mages

Active replication allows us to create applications that share state among different instances without a
central data repository. Peer-to-peer games, in particular turn-based “board” games, are the perfect match
for active replication. These games have a complex state that need to be shared, composed of the game
board, the pieces, the position of each piece, the current player, among others. This state changes after each
player’s turn as a consequence of her actions, and must be propagated to the other players before they take
their turns. We created a turn-based game using Cyan and Treplica, to assess the suitability of creating a
replicated application through the set of metaobjects presented in this paper.

The two-player board game Warriors and Mages simulates a battle for dominance of the board. Each
player controls a group of three characters (two warriors and a mage), and players take turns moving or
attacking. In her turn a player can make three of these actions before the other player’s turn begins. The
game ends when one player eliminates all the characters of the opposing player. As validation of the proposed
metaobjects and as an example of how a designer would use them, we have implemented Warriors and Mages
using Cyan and a very simple text-based user interface. In this section we will briefly describe the software
architecture of our implementation as it was first designed: a centralized, nonpersistent application. Then,
we will show the simple steps required to turn it into a replicated, fault-tolerant application. The source
code of the final application can be found in the project tree'® under app/rogue.

5.1. Implementation Outline

The implementation of the board game follows a very simple MVC software architecture. The model
is implemented by the prototype Board. The player commands (move or attack) are sent as method calls
to Board, that executes them accordingly to the rules of the game. For instance, a player is not allowed
to make an illegal move. The execution of the move by prototype Board updates the internal state of the
game, allowing the correct execution of further moves.

The prototype Window implements the view, using a simple Java Swing text field containing a visual
representation of the board as shown in Figure 16. Each letter or symbol represents an element of the
board. A (.) is free space, a (?) is a mage, a (@) the warrior and walls are represented by a (#). Besides
showing the current state of the board, the prototype Window receives keyboard inputs and passes them to
the controller. The commands are simple letters (S, M, A), converted to select, move or attack, respectively.

I2Note that the definition of “nondeterministic method” is recursive: a method is nondeterministic if a) it is cited in a rule
file or annotated with nonDeterministic or b) it may call a nondeterministic method.
Bhttps://bitbucket.org/gdvieira/cyan.treplica.git
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Figure 16: The game board

The controller is implemented by prototype Program. This prototype creates the board and the window,
acting as a bridge between the two. It is responsible for the initialization of the application. Also, it receives
the callbacks from prototype Window and calls appropriate methods of prototype Board.

To implement the complete game 14 prototypes were created, including these three central prototypes
(Board, Program and Window). Figure 17 shows a simplified UML diagram of the main application’s pro-
totypes. To give a sense of the style and complexity of the application, we will briefly describe the most
important prototypes and their relation.

Prototype Board holds the game state and implements its rules. The rules are implemented by key
methods of Board that check if the a player move is valid and change the state of the board accordingly.
These central methods are startAction:, selectAction:,moveAction: and attackAction:, which allows
to reset the game to its initial configuration, select a piece, move a piece or perform an attack, respectively.
Other accessory methods of Board, such as getPlayer:, checkEndTurn: and checkValidTarget:, allow
checking game rules conditions without changing the local state.

The current state of the game is held by the map attribute of Board, an instance of prototype Map.
This prototype holds a matrix with the positions of all elements present on the board, each of them a
sub-prototype of Entity. The prototype Entity abstracts the type of each element and also houses the
abstract draw method, responsible for creating a representation of each element on screen. There are two
concrete sub-prototypes of Entity: Figure and Tile. The prototype Figure represents a piece on the
board, either a mage of a warrior. This prototype holds information about the current status of each piece
and its capabilities, providing methods to query and change this state respecting the games rules. The
prototype Tile represents the floor and obstacles that define the playable board.

Finally, the prototype Board keeps an array of Player instances and an attribute currentPlayer,
allowing it to keep track of which player is allowed to play at each turn.

5.2. Replication Using Metaobjects

Once the application was built, we wanted to enable two players in different machines using replication.
We assumed the simple model where each player executes a local instance of the game, which stores a replica
of the game state. Players take turns, and the moves each player executes give the flow of the game: after
three moves are made by a player, it is the other player’s turn. Each player executes her moves as operations
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Figure 17: Game implementation main prototypes

that change the local state of the game, and these operations should be ordered and replicated among all
replicas, ensuring the same game state for all players.

To replicate the game we are only interested in the model of the application. View and controller are
local to a replica and their state does not need to be replicated. Thus, the prototype Board is the main locus
of replication, defining the Treplica context. This prototype was made a sub-prototype of Context to signal
this fact. Once the context is defined we must identify the mutator methods that change the state defined
by this context. In this application these are the methods of prototype Board that implement player moves
(startAction:, selectAction:, moveAction: and attackAction:). These methods must be wrapped in a
prototype that extends prototype Action defined by Treplica. In our implementation that uses metaobjects
this is accomplished by the use of the annotation @treplicaAction in each of these methods, as shown in
Figure 18.

1 |object Board extends Context

2 e

3 @treplicaAction

4 func selectAction: String target { ... }
6 @treplicaAction

7 func attackAction: String target { ... }
8

9 @treplicaAction

10 func moveAction: String direction, String value { ... }
11 e

12 @treplicaAction

13 func startAction { ... }

14 .

15 | end

Figure 18: Prototype Board

Once the context and actions are properly defined, it is necessary to instantiate and start the Treplica
object responsible for replication, binding it to the context. Prototype Program is responsible for initializa-
tion of the application including instantiation of the Board object acting as context. At the point of creation
of Board the use of the annotation @treplicalnit does all the required initialization and binding, as shown
in Figure 19.
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object Program extends Input

func run: Array<String> args {
Window build: self;

var local = ("/var/tmp/magic" ++ args[0]);
Q@treplicaInit ( 2, 200, local )

var data = Board new: args[0];

data startBoard;
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Figure 19: Prototype Program

Once the binding of Treplica and context is done, all calls to the mutator methods of prototype Board
tagged with @treplicaAction will be replicated. This fits the original behavior of the application, in which
callbacks from prototype Window are received by Program and turned into calls to methods of Board. Thus,
the main loop of the application remains the same, moves are made by the local player through events
generated by the text window. Moreover, board state can also change though replicated method calls
originating from the other player’s replica. These moves are represented in the local replica window as they
happen, through the calls to the draw: methods of Map and Entity.

This example shows that the proposed set of metaobjects is enough to allow the replication of a fairly
complex application. Moreover, it is a demonstration of the simplicity of use of the proposed metaobjects.
For a MVC application, which already has a clear defined model with a set of mutator methods, it is only
necessary to add the proper annotations. Other type of applications may require some refactoring effort to
define a clear bounded model. It is part of our ongoing research the evaluation of the ease of use of the
proposed metaobjects for general software projects. This future work includes avoidance of some pitfalls,
such as nondeterminism.

6. Related Work

OpenReplica [6] is a framework to implement replicated services similar to Treplica [4]. Along with
Treplica, OpenReplica represents the state of the art for easily creating replicated applications and both
use a similar object-oriented approach that suffers from the same transparency and code verification prob-
lems. Both frameworks require an interface layer to encapsulate the methods implementing changes to the
replicated state and neither allows code inspections that search for inconsistencies in the implementation
of the interface. In this paper we use metaprogramming to tackle these challenges, similarly to the way
metaprogramming has been used to attack similar problems.

Rentschler et al. [8] argues the use of domain specific languages (DSLs) to increase programmer produc-
tivity and quality and proposes the use of metaprogramming to translate these DSLs in other languages.
They use the Xtend language [8] to transform a DSL using active annotations. We use a similar approach
of automatic code transformation. However, starting from centralized code written in a general purpose
language, we arrive in distributed code written in the same language. Another similar work is the one
by Blewitt et al. [9] that proposes the use of metaprogramming to automatically create components that
implement design patterns.

Xtend [8], Groovy [28], Nemerle [29], Scala [30], Rust [31], Python [32], Java [33], AspectJ [34], Converge
[35], Elixir [36] and Cyan [15] are examples of languages with compile-time metaprogramming features.
Some of these languages (Xtend, Groovy, Nemerle, Scala, Java) allow the traversing the abstract syntax
tree (AST) both to gather information and to change it. Others use a refined form of Lisp-like [13] quotes
and unquotes, as Xtend, Nemerle, Groovy, Converge, and Elixir. Languages that only support quotes and
unquotes are not directly related to the Cyan MOP.
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Compilers of Scala, Java, and Rust support compiler plugins that play the same role as metaobjects in
Cyan. The documentation about them is scarce except for Scala. Compiler plugins usually can register
themselves with the compiler to be called at specific compilation phases. In Cyan, this registration is made
by implementing interfaces associated with the phases. For example, a method semAn_codeToAdd is called
in phase semAn because the metaobject class implemented interface IAction_semAn. In a compiler plugin,
there may not be a direct association between annotations and the plugin. The plugin may take actions
when it finds an annotation but, if the compiler plugin is not used, there is no action associated with it (and
no compiler error).

AST transformations are similar to the Cyan metaobjects with one difference: they cannot be called
when an operation, as subprototyping, method override, or field access is made. In Cyan, some metaobject
methods intercept these operations.

The main difference between Cyan and languages with compiler plugins (Scala, Java, Rust) and AST
transformations (Xtend, Groovy, Nemerle, Rust, Java) is the way new code is added to a prototype or
class. In Cyan, the new code is returned, as a string, by metaobject methods. For example, method
afterResTypes_codeToAdd of a metaobject can return a string with fields and methods to be added to
the current prototype. The compiler is responsible for adding the new code and it tags the code with the
annotation that created it. If there is an error, the compiler will point out exactly who made it. As an
example, suppose two metaobjects ask for the insertion of field “address” to a prototype. Since there will
be two fields with the same name, the compiler will issue an error. It will point exactly the two annotations
that produced the code. In all other languages cited above, the code to be inserted should be an AST object.

The language may have macros or language mechanisms that transform strings into AST objects, a step
that is not necessary in Cyan. In all other languages, code is added by AST handling. ASTs are a low-level
structure of the compiler. They are subject to change, which would invalidate the compiler plugins or AST
transformations, and they are not easy to understand. A typical compiler may have more than one hundred
AST classes, each one with dozens of methods that can only be understood after a substantial understanding
of the compiler. Cyan also allows the visiting of AST nodes, but that is made with the MOP AST, which is
a read-only wrapped version of the compiler AST. This AST reflects the language structure, it does not have
any specific details of the compiler. And there are security checks when accessing AST nodes. To cite one
of them, a metaobject of an annotation in a prototype P cannot access the AST of statements of a method
in another prototype T . This would make prototype P dependent on T, a dependency that is not registered
by the compiler. If T changes, prototype P should be re-compiled. This breaks modularity because internal
changes in a prototype are causing the recompilation of another prototype.

It is easy to make a mistake and invalidate the AST when handling it directly. In this case, the compiler
may crash, generate wrong output code, or it may detect the invalid AST in a later compilation phase
producing a confusing error message. If the code inserted causes a compilation error, the compiler will point
out the error. But it will not give any information on which AST transformation or compiler plugin inserted
the wrong code. In general, it is easy to code metaobjects in the Cyan MOP because they do not interact
with the original compiler AST and they produce code as strings.

The metaobject treplicaAction could be implemented in languages that support compiler plugins and
AST transformation. However, there is a feature of this metaobject difficult to implement: the checks made
by metaobject treplicaAction, in phase afterSemAn, in the Cyan method annotated with treplicaAction.
The metaobject looks for nondeterministic method calls that may have been added by other metaobjects.
In this phase, the method code cannot be changed by any other metaobject.

In all other languages, in general there is no guarantee that compiler plugins or AST transformations will
not change the code after a compilation phase. Then the checks can be made but, after it, another compiler
plugin or AST transformation can add, in the annotated Cyan method, a call to a nondeterministic method.
It may be possible to implement nondeterminism checks using some clever compiler trick, but we are not
aware of that. A complete comparison between Cyan and other languages that support metaprogramming
is made by Guimaraes [27].

Regarding the problem of separating the nonfunctional requirements from the functional ones, there are
works on AOP (aspect-orientated programming) that address the same problem. AspectJ [37] [38] is a Java
extension that supports aspects. An aspect is composed of pointcuts and advice declarations. Pointcuts
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pick out points of code called join points which may be method calls, object creation, field access, etc. An
advice is composed of a pointcut and code. It uses the pointcut to select some join points that are wrapped
with the advice code. For example, a pointcut can pick out all execution join points related to methods
of a Java class called Animal that start with get. Then, the advice can wrap each method call with code
to be executed before, after, or around the call. In AspectJ, this wrapping, called weaving, can happen at
compile-time, post-compile time (using the binary files), or at loading time. With Intertype declarations,
aspects can add fields and methods to classes and interfaces.

AOP and the Cyan MOP have largely different goals and this fact reflects in their features. In Cyan,
metaobjects can only change the prototype they are associated with or, in a limited way, calls to methods of
the prototype they are associated with. Aspects can change multiple files spread in the program, breaking
modularity. It is not enough to read a source file in order to understand it because aspects, declared in other
files, can change it. This is one of eight problems with metaprogramming that the Cyan MOP addresses
total or partially [27]. AspectJML [39] is an AOP language that solves this problem by associating aspects
with types. Each aspect only changes the subtypes thus limiting the affected code.

In Cyan, an annotation attached to the program or to a package (remember annotation loadNonDeterministicFiles)
can add code to all prototypes of the program or to all prototypes of a package. The annotation is repeatedly
applied to all prototypes of the program or the package. Using this mechanism, many features of AspectJ
can be simulated in Cyan. A DSL attached to the annotation can even define pointcuts and code that should
run on them.

Cyan metaobjects can visit the AST nodes of a prototype, method, statement, etc. This is not possible
in AspectJ. Then, aspects cannot detect nondeterminism as metaobject treplicaAction. This detection
depends on AST traversal. An aspect can add a superclass or add an implemented interface to a class. In
Cyan, metaobjects cannot do that. This was on purpose, to prevent the MOP of making deep changes in
the code.

Advice code can use variable thisJoinPoint to access, at runtime, information on join points. It can
also be used to issue errors and warnings at compile-time. However, the information made available by
thisJoinPoint is much more limited than in Cyan or any other language supporting compiler plugins
or AST transformations. In Cyan, all the information the compiler has that is related to the language
itself (and not related to internal compiler details) is available to metaobjects. This is necessary to the
metaobject associated with annotation treplicaAction. Figure 12 shows the prototype Info modified by
annotation treplicaAction attached to method setText: (see Figure 10). The new methods setText:
and setTextTreplicaAction: of Figure 12 use information that is available in Cyan, at compile-time, but
is not available in AspectJ: the parameter name text (line 3), the prototype and method name used to
compose the prototype name InfosetText (line 4), and the method name setText: (used for composing
the method name setTextTreplicaAction of line 8). In AspectJ, this information is available only when
the final program, changed by the aspects, is running. Hence, in AspectJ, the generated code needs to use
reflection and thisJoinPoint in order to access information available at compile-time in Cyan.

Chlipala [10] shows a proposal for using metaprogramming to perform source code validations at compile
time using macros. Inspecting the source code for problems during compilation increases the application
performance, because it is unhindered by run-time validations. Mekruksavanich [11] proposes similar valida-
tions in which metaprogramming is used to detect defects in object-oriented programs by the use of software
components capable of describing and identifying such defects. Both these works tackle different problems
from the ones described in this paper, but both show the benefits of the use of metaprogramming as an aid
in the development of correct programs.

Compiler directives, have been successfully used to accelerate the creation of parallel programs. OpenMP [16]
aims to ease the conversion of legacy centralized C++ and Fortran code into portable shared-memory parallel
code. OpenACC [17] uses the same approach of compiler directive annotated code to offload some compute
intensive tasks to accelerator devices such as general-purpose graphic processing units (GPGPUs). Both
approaches simplify the task of producing parallel code, but still require a considerable knowledge of the
programmer about how parallel programs work. We use metaobjects in a simpler way and aim to completely
shield the programmer from details about the distributed programming model that is used. Currently we
block the occurrence of invalid nondeterministic method calls and intend in the future to extend detection

22



to other types of consistency violations.

7. Conclusion

We have shown how to use the metaprogramming infrastructure of the Cyan language to transparently
generate and validate integration code that uses the Treplica replication framework. This way, programs
written in Cyan can easily be converted from a centralized architecture to a replicated one by attaching
metaobjects to mutator methods. The set of metaobjects created showed for the first time that it possible
to automatically create replicated code using metaprogramming.

We also demonstrated the power and simplicity of the MOP of the Cyan language to create useful
metaobjects in a very direct way. The programmer of a metaobject in Cyan does not have to deal with the
AST to generate code, she only needs to produce source code as strings. However, the programmer can use
the AST if necessary, for example, to visit the AST nodes of a method.

Moreover, we demonstrated the potential of using the metaprogramming infrastructure of a modern
language to make the use of frameworks easier not only by removing boilerplate code, but also by making
semantic validations that require integration with the compiler. In this paper we validate the generated
code with respect to the presence of nondeterminism, by replacing the nondeterministic operations with
equivalent deterministic operations. We believe the technique presented to detect nondeterminism can be
extended to other types of violations of replication integrity, such as calling static methods outside the
application context. In the future, we envision an application environment where distributed programming
errors, one of the main factors limiting the use of this programming paradigm, can be directly found by
the compiler. Also, the ability to create isolated, deterministic operations seems to be very useful in the
creation of tests suites.
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