Modelling Digital Avatars: A Tuple Space Approach*

Alejandro Pérez-Vereda®, Carlos Canal, Ernesto Pimentel

ITIS Software, Universidad de Mdlaga, Spain

Abstract

The development of the Internet of Things (IoT) came with the manufacturing
of a huge amount of smart things equipped with sensors for making them
aware of their environment, and with network connection for allowing remote
interaction with them. However, most smart things still lack enough autonomy
and context-awareness, hindering them from being people-friendly and actually
useful for their users’ everyday tasks. IoT devices should take advantage of
their sensors and smartness to react automatically to the needs of their users
and to provide seamless interactions with them. Within this field, the authors
work on the design of Digital Avatars, a mobile computing framework for
dynamically programming interactions among smart devices. The framework
is based on the virtual profile of the user, which is inferred, stored, and shared
by their smartphone. The profile provides a personalized context for running
scripts which interact with [oT devices. This way, smartphones become
a digital avatar of the user, capable of acting as a personal and seamless
interface with their IoT environment. In this work, we present a formalization
of Digital Avatars by means of a Linda-based approach with multiple shared
tuple spaces. By means of a case study, we show how properties of the systems
can be proved, and we briefly describe an implementation of both the Digital
Avatars framework and the case study.

Keywords: Digital Avatars, digital avatar, virtual profile, Internet of Things,
IoT, Linda, Multiple Tuple Spaces

*This work has been funded under grants PGC2018-094905-B-100 (Spanish Government)
and UMAI18-FEDERJA-180 (Junta de Andalucia/ATech/FEDER).
*Corresponding author
Email addresses: apvereda@uma.es (Alejandro Pérez-Vereda), carloscanal@uma.es
(Carlos Canal), epimentel@uma.es (Ernesto Pimentel)

Preprint submitted to Science of Computer Programming December 21, 2020

1. Introduction

The Internet of things (IoT) is an ecosystem of devices, sensors, objects
of any kind, and people connected to the Internet for transferring data and
communicating over the network. Among them, smart things [I] are those
endowed with sensors and processing capabilities, and which offer interfaces
both to access the information they collect, and to configure how they work
(e.g. the frequency to pick up the data, or how to reset them) [2]. However,
these smart things still require a lot of manual configuration, and this becomes
a challenging problem the bigger the number of smart devices we daily interact
with. In a desirable scenario, technology should work for the people and not
the other way round. Every smart thing should adapt to the needs of the
people dynamically.

Taking advantage of the pervasive presence of smartphones, we advocate
for using them to learn about their owners, creating and storing virtual
profiles describing their preferences and other context information about
them. This way, smartphones become seamless and automatic interfaces that
can negotiate in the name of their owners, based in the information stored
in their virtual profiles, and adapting and configuring the smart things in
their surroundings to their wishes. The more comprehensive these virtual
profiles are, the better technology may adapt to the people. For that purpose,
our proposal complements virtual profiles with interaction mechanisms that
allow to configure smart things, and also to complete the virtual profiles
themselves with context knowledge obtained from these interactions. These
virtual profiles extended with behaviour is what we call digital avatars.

With this goal in mind, we are currently developing Digital Avatars, a
programming framework which allows to specify the interactions between
smartphones and smart things by means of scripts which are downloaded and
run on-the-fly [3]. These scripts are executed in the smartphone, making use
of the virtual profile stored in it, and then reconfiguring the behavior of the
smart things with the context information of the user.

In this paper, we present a formal framework for Digital Avatars. The
framework provides a formal description of virtual profiles and of the scripts
to execute on them, and it establishes the basis for issues like privacy or
security, with secure connections controlling the access to virtual profiles. The
formalization is based on a multiple shared tuple spaces model inspired by
Linda, which makes possible to ensure the soundness of the framework, and
also the analysis of some interesting properties. We illustrate our proposal by

means of a case study: a Treasure Hunt in which several participants compete
for finding a number of hidden treasures.

This work is an extension of [4], presented at the 17th International
Workshop on Coordination an Self-Adaptativeness of Software Applications
(FOCLASA 2019). Apart from a thorough reworking of many parts of
that publication, in this paper we extend the formal model in [4] with a new
primitive (nrout), a remote output operation that blocks when the tuple being
written is already present in the tuple space, and we extend the transition
system of our framework accordingly (Section [5]). As it will be shown, the
nrout primitive helps avoiding some undesirable situations, in particular when
an exclusive write operation is required, and it allows to prove additional
properties of interest for the case study.

Furthermore, we have also included in Section 4] an implementation of
the case study that uses Eddystone beacons for representing smart things.
The implementation consists in an Android application that downloads and
runs scripts in the context of the virtual profile stored in the smartphone.
The implementation shows how one single and generic application is able
to handle dynamic and personalized interactions with the IoT in a seamless
way, encouraging us to engage in a deeper development of the Digital Avatars
framework in order to explore in full the possibilities that it offers.

The rest of this paper is structured as follows. In Section [2| we present
Digital Avatars and define the concepts necessary to reason on them. In
Section |3 we formalize the interactions that take place in the framework and
formally demonstrate interesting properties of the system. Then, Section
presents the case study as a proof of concept of our proposal, and it analyzes
several of its properties by means of the formal framework. Next, Section
extends the framework with the new primitive already mentioned, and provides
a refined implementation of the case study, where additional properties can
be proved. In Section [6] we discuss some related works. Finally, Section
draws the conclusions of the paper and briefly outlines some future works.

2. Digital Avatars

In order to define a formal framework for reasoning on Digital Avatars,
we formally introduce the notion of virtual profile together with a number of
related concepts, and we describe how virtual profiles can be exploited under
the Digital Avatars framework.

2.1. Definitions

The key issue for taking into account the user in an IoT environment is
her virtual profile. It contains information about user preferences, habits,
relations, or places visited. According to our proposal, all this information is
only stored in the user’s device (e.g. a smartphone), where it can be offered
as a service to third parties. The definition below formalizes this notion.

Definition 1. A wvirtual profile P is a multiset of entities, where each entity
is a tuple t =<name,vy,...,v;,...,v,>, where name € Name represents the
name of the entity, and vq,...,v;,...,v,, each v; € Value, is a sequence of
values with a structure which depends on the entity itself. We will denote by
T the set of tuples, and by P the set of virtual profiles.

The entities of a virtual profile are structured in nested sections, for a
better organization of the information contained in the profile. Although the
model does not depend on how sections and entities are defined, we commonly
consider a predefined structure characterized as follows:

personal It consists in personal and contact information of the user (personal €
Name), containing a collection of entities like name, phone, address, or
email, all of them also in Name, with the corresponding information.

relations It provides information on how users are related to each other, in-
cluding subsections identified as family, friends, colleagues, or
acquaintances. These are collections of entities representing people
related to the user and information about them: certificate hash finger-
prints, user profiles in social networks, etc.

places It defines information concerning locations (home, office, etc.) and
places visited. Thus, entities such as home or work, both in Name, are
stored in this section.

These sections can be further tailored for specific domains, for which
additional sections can be defined, too. Moreover, the actual implementation
of entities in virtual profiles will typically include additional elements, such as
type information, or a timestamp for recording the time when it was added
to the virtual profile. However, here we omit all this additional information
as it is not relevant for the formalisation presented in this work.

Virtual profiles can be accessed and/or modified by means of processes
executing appropriate actions. In order to formalize this idea, we are inspired
by Linda [5], a coordination language [6] consisting of a set of inter-agent
communication primitives, which can be virtually added to any programming
language. The primitives in Linda allow processes to add, read, and delete
tuples from a shared tuple space. Tuple spaces are a convenient approach to
represent information shared by concurrently running processes, and a virtual
profile will be represented by a multiset of tuple entities encapsulated in a
device.

In particular, we adopt a multiple tuple space model, where each tuple
space represents a virtual profile and contains tuples with relevant information
about its owner (e.g. <personal.name,Pérez-Vereda,Alejandro>). In
addition, virtual profiles also store tuples with auxiliary information for
profile management, like read /write access rights to the tuples. For instance,
a tuple <access,personal.name/2,read> would grant reading access to the
entity name (containing two value arguments) in the personal section of
the virtual profile. Access rights and other security issues will be further
explained in Section [2.2]

Following other approaches |7, [§], we shall consider a process algebra £
including the Linda communication primitives and the usual concurrency
connectives, parallel and non-deterministic choice. The primitives permit
to add a tuple (out), to remove a tuple (in), and to check the presence (or
absence) of a tuple (rd, nrd) in a given profile (tuple space).

Processes in £ provide a convenient way to model scripts which can be
downloaded from a smart thing and run on a smart device. Thus, the syntax
of L is formally defined as follows:

Sel == 0] aS | S+S | S|S| Sk)
a € Act = rd(t) | nrd(t) | in(t) | out(d,t)

where 0 denotes the empty process, d € D a device identifier, and ¢ denotes
a tuple. The process S(t) denotes a procedure call where the procedure
definition will be given by a script template S(Z) (where T is a sequence of
variables instantiated by a sequence of tuples ¢). In order to simplify the
definition of the rules modelling the primitive actions in £ in Subsection
we will assume, as it is usual in Linda-based languages, that reading a tuple
does not imply the evaluation of operations (e.g. arithmetic operations), nor
the instantiation of variables. This assumption does not imply any loss of

generality of the proposal.

Notice that the primitives allow accessing, adding, and removing tuples
from a local tuple space (i.e. the virtual profile stored in the device executing
the primitives). Although we could have also considered accessing and deleting
tuples from remote tuple spaces, for our purposes we only need to add tuples
remotely. For this reason, only the out primitive includes as a parameter the
device on which adding the tuple. That is, rd, in and nrd actions will only
be made locally. The same considerations were made in [§]. As it will be
shown later, remote adding of tuples will only affect the smart artefact where
the script was downloaded from, thus we will not allow arbitrary remote
adding of tuples. This asymmetric treatment of read and out primitives is
one of the distinctive features of the Digital Avatars model: local access is
only allowed to the device itself, and remote changes can only be made on
artifacts providing the scripts being run.

In our framework, we distinguish two kinds of artifacts: smart devices
and smart things. The difference between them is that smart devices exhibit
computing capabilities, and therefore they can download and execute scripts,
whereas smart things only provide a (link to a) script.

Formally, we define an artifact as a pair consisting of a virtual profile and
a process corresponding to the execution of one or several scripts. We assume
that D is a set of artifact identifiers. Every artifact, with a unique identifier
d, has also associated a script definition S4(Z) (a process with parameters)
which can be downloaded by other artifacts with computing capabilities (i.e.
smart devices). Before downloading a script from an artifact, its parameters
will be conveniently instantiated by information coming from the artifact’s
virtual profile. The following definition specifies what an artifact is.

Definition 2. An artifact d € D is characterized by a pair (P : S),, including
a virtual profile P and a process S € L, corresponding to the scripts running
on the artifact. In addition, an artifact may contain a script definition Su(Z).
We will denote by Sy(P) the script instantiated by the specific tuples in the
profile P. We will represent by D =P x L x D the set of artifacts.

A smart thing will be characterized by having only a profile; that is, it is
deprived of computing capabilities, and thus its process is always the empty
process 0. A typical example of smart thing would be a beacon broadcasting a
Bluetooth signal which encodes the URL of a script file to be downloaded from
a server. On the other hand, typical smart devices are smartphones, tablets,
or any other device with computing capabilities. Both kinds of artifacts

—smart things and smart devices— store information in a virtual profile.

2.2. Security in Digital Avatars

The actions executed over the virtual profile of a smart device may
emerge from internal processes of the device, or they may be part of a script
downloaded from another artifact, such as a beacon broadcasting a link to
a script file as mentioned above. In this case several conditions must be
fulfilled: the smart device is close enough to the beacon, the beacon artifact is
registered, its script code is trusted, etc. To manage the conditions in which
a given action can be executed in a smart device we define three mappings
governing the different scenarios we may find. A links mapping which informs
about the feasibility of establishing a connection between two given artifacts,
a certify mapping to avoid running untrusted scripts, and an accept mapping
to establish when a particular action is acceptable for a script running over
a certain virtual profile. All these mappings are implemented by means of
auxiliary tuples stored in the virtual profiles themselves.

First, for validating the identity of trusted artifacts from which to download
scripts, we assume a Certificate Authority capable of ensuring the trustful-
ness of an artifact d, and a Boolean mapping certify which provides this
information in such a way that certify(d, P) is true when the emitter d has
been authenticated by the profile P. In order to consider the authentication
process as part of the tuple space framework, we will assume that when a
device accesses a certified artifact d, a tuple <certified,d> is added to the
profile of that device. Thus, the formal definition of certify is:

certify : D x P — {true, false}
in such a way that:
certify(d, P) = true iff <certified,d> € P (1)

In addition, in order to guarantee that the actions executed while running
a script on a smart device are permitted (which may depend, for instance, on
the level of privacy defined on each entity in its virtual profile), we assume a
Boolean mapping

accept : Act x P — {true, false}

that restricts the action primitives that are enabled for a given profile, in
such a way that accept(c, P) is true when the action « is acceptable on the

profile P. Formally,

true if o =rd(t) N <access,t,read> € P
true if a =nrd(t) A\ <access,t,read> € P
true if o= out(d,t) A <access,t,write> € P
false otherwise

(2)

accept(a, P) =

The definition of accept above depends on access tuples stored in the
virtual profile of the artifact. It is worth noting that the access rights for a
given entity are either granted or forbidden to anyone. More precise access
rights could be considered by including a device parameter in the accept
mapping, and an additional value in access tuples for precising the scope or
level of the access right. This would be similar to the definition of the visibility
of attributes and methods in object-oriented languages (i.e. considering public,
private, and friend access levels).

An additional consideration on security comes from restricting who is
allowed to remotely add tuples to a given profile. As mentioned in the previous
section, the out primitive is used for adding tuples to both local and remote
virtual profiles. Although the model imposes no limitations on which profiles
can be remotely modified, for security reasons the artifact identifier d used in
a remote out(d,t) in a script Sq(Z) can only be that of the artifact d itself.
Thus, an artifact’s profile may only be remotely modified by running a script
previously downloaded from this same artifact. These protects profiles from
unwanted writing actions coming from unknown sources.

Apart from certificates and access rights, and restricting remote addition
of tuples, we also need to consider some technical issues about the feasibility
of the connection itself. Indeed, whereas certify provides a third-party dec-
laration about the trust of an artifact for downloading scripts from it, and
accept controls which actions are permitted inside an artifact once a script
has been downloaded, we need a way to detect when two artifacts are actually
able to communicate with each other, from a technical point of view.

For instance, consider a scenario where a smartphone storing a virtual
profile P approaches a smart thing d which provides a script Sy(Z). For
downloading the script from d and running it in the smartphone, we assume a
mapping, links, which provides a feasible connection to the smart thing. Thus,
the links function associates to the profile P (representing the smartphone
which is going to download the script) and the smart thing d, the feasibility
of establishing a connection between them. This may depend on different
factors, like the availability to download, the closeness between both artifacts,

a stable signal strength, etc. Indeed, this mapping guarantees the existence of
a tuple representing a link (e.g., a URI or a Bluetooth connection) to provide
a way to access the artifact d. If there are no links, or the profile P does
not accept downloading the script offered by d, the returning result will be
undefined (L).

Given a profile P and an artifact d, for defining links(P, d) we will consider
information coming from two different sources. On the one hand, auxiliary
tuples locally stored in the profile P, representing connections previously
established between the artifact d and the device having the profile P. These
connections, if any, will be stored in P by means of tuples <link,d,L>, where
L represents the URI or Bluetooth connection to access the services offered
by d.

On the other hand, the mapping links(P, d) also takes into account infor-
mation provided by the artifact d. We assume that this information is stored
in a header section of the script associated to d (i.e. Sy(Z)) as metadata to be
used during its execution. The header may contain any relevant information
about the script, such as authoring, versioning, warranty statements, request
permissions, etc. In particular, for formalization purposes, we consider that
at least it declares the number of times or the rate at which the script can
be executed: only once, a given number of times, every fifteen minutes, etc.
This avoids repeatedly running a script every time the corresponding artifact
is detected, and in particular prevents simultaneous runs of the same script
in parallel.

We will denote by header(d) this metadata information. In order to
simplify the definition of the mapping links we will only consider three
possible rate values in header(d): once, ever, or wait(n), where n is a natural
number representing milliseconds. If needed, this information will be used to
prevent further connections to the artifact d: once constrains the connection
to occur only once, ever allows successive connections to the same device
without any restriction (i.e. every time a connection to it is feasible), and
wait(n) forces to wait for n time units before connecting again to d.

To support the meaning intended for wait(n) we assume a global clock
providing the current time of the system, that will be denoted by clock.ct().

Under all these premises, links is defined as follows:

links : Px D —TU{L}

where:

(1 if Al <link,d,l>¢€ PV <once,d> € PV
<wait,t,n,d> € P with t + n > clock.ct()
<once, d> if Al <link,d,I> € P A <once,d> ¢ P A

<wait, t,n,d> ¢ P for t +n > clock.ct() A
once € header(d)

<wait, t,n,d> if 3. <link,d,l> € P N <once,d>¢& P A
<wait, t',n',d> & P fort'+n' >t A
t = clock.ct() A
wait(n) € header(d) V
ever € header(d) = n =10

links(P,d) =

\
(3)
Intuitively, when the profile P already contains a tuple <once,d>, or an
active wait tuple on d is present, then no link is established for connecting
both artifacts. We consider that a tuple <wait,t,n,d> € P is still active
when t + n is greater than the current time. When a wait tuple expires,
we assume that it is automatically removed from the profile. Alternatively,
when the profile P does not include neither a once tuple nor an active wait
tuple on d, then a new tuple is returned as a result. The two possible results
are the tuples <once,d> or <wait,t,n,d>, depending on header(d), where
t is the current time, and n represents the time units to wait (n = 0 when
ever € header(d)). In the last two cases, a link should have been previously
established to connect d, that is, <link,d,1> € P.
The benefits of defining a rate for precising how often a script must be
run can be better understood by means of an example:

Example: a smart air conditioning system.

Let us suppose an air conditioning system that automatically adjusts to the
comfort temperature of the people present in a room at any given time. If we
implement such a system by means of Digital Avatars, the air conditioning
artifact would provide a script (shown in for reading the comfort
temperatures stored in the virtual profiles of each person in the room. Their
smartphones would be constantly downloading and running this script, and
continuously notifying the air conditioning about their desired temperature.
However, this continuous reminders of presence are not necessary, and they
would also consume both a lot of battery and computing resources. Conse-
quently, the script of the air conditioning artifact includes information to

10

run the script just once every few minutes. This execution rate is stated
in the <header> section of the script (see line 3). Thus, the links
mapping will return a wait tuple (in this case <wait,t,120000,d>, t being
the time when the script has been downloaded, and d the identifier of the
air conditioning artifact). As we will show when remote synchronization
is described (see Table , this tuple will be stored in the virtual profile of
the smartphones, preventing a new run of the script until two minutes have
passed. [|

We assume that all the notions introduced in this subsection (accept,
certify, and links) are conveniently implemented, and we will make use of
them to define the formal framework in the next section.

3. Formal framework

Now that we have defined the main elements and concepts of our framework,
we formalize the interactions between artifacts by means of a transition system
with in-device and remote operations. Then, we will show how some interesting
properties like bisimilarity and congruence are accomplished by the model.

3.1. In-device transition system

The operational semantics of £ is modeled by the following labelled
transition system:
—CDxAxD

defined by the rules E of Table (I, where D =P x L x D and A = {t,{,t:t €
THu{r}.

Rule OuT; describes how the output operation proceeds as an internal
move (represented by label 7) which adds the tuple ¢ to the profile P (comma
is used to represent the multiset union). Rule OUTy shows that a tuple ¢ is
ready to offer itself to the artifact/device by performing an action labelled
t. Rules IN and READ describe the behavior of the prefixes in(t) and rd(t)
whose labels are ¢ and ¢t. The difference on the effect of both actions is made
explicit in rules SYNC; and SYNCs.

In fact, rule SYNC; is the standard rule for the synchronization between the
complementary actions ¢ and ¢. It models the effective execution of an rd(t)

'For the sake of simplicity we will consider only finite processes here.

11

(OUTl)

(OUTQ)

(NREAD;)

(Sum)

(SYNCy)

(SYNCy)

(NREAD;)

(PAR;)

accept(out(d,t), P)
(P :out(d,t).S)q — (P,t:S)y

(Pt:S)y — (P:S)y

accept(rd(t), P)
(P :rd(t).S)g — (P : S)q

accept(in(t), P)
(P :in(t).8)g —= (P : S)q

accept(nrd(t), P)
(P :nrd(t).S)y — (P S)qg

<P . Sl)d i) <Pl . Si>d
<P 0 S] + SQ)d N <Pl : Si>d

(P: S~ (P S (P:Ss)a— (P So)a

(P:S) | So)g —(P:S; || S2)a

(P:S))g -5 (P SDy (P Sy)y —= (P Sh)y

<P . Sl H SQ)d ;) <Pl . Si H SQ)d

(P:S)g—5 (P S0y (P:S)a Ao
(P:S))g —5 (P:8))y

<P . Sl)d i) <Pl . Si>d
<P . Sl || SQ)d i> <Pl . Si || SQ)d

Table 1: Transition system for smart devices.

12

operation. Notice that the resulting profile is left unchanged, since the read
operation rd(t) does not modify it. Rule SYNCy defines the synchronization
between two processes performing transitions labelled with ¢ and ¢, respectively.
It models the effective execution of in(t) actions.

Rule NREAD; describes the prefix action nrd(t), and the transition is
labelled with —t. The effect of this rule is modelled by rule NREADy which
proceeds when no transition ¢ progresses from the current profile, i.e. the
tuple ¢ is not in the profile P.

All these rules modelling local actions require that the virtual profile P
involved accepts them.

It is worth noting that we do not include in the transition rules any kind
of evaluation nor variable instantiation when reading or adding tuples. In
this way, tuples are supposed to be fully instantiated (that is, ground terms).
However, the examples will assume the usual instantiation mechanisms on
free variables, and also the evaluation of expressions when tuples are managed.
These mechanisms could be easily represented in the transition rules, but for
the sake of simplicity we decided to omit them, what does not mean any loss
of generality.

Rule SUM is the standard rule for choice composition. Similarly, the
customary rule PAR; for the parallel operator can be applied to any label.
The transition system is considered closed w.r.t. commutative and associative
properties for sum (+) and parallel (||) operators.

In order to illustrate how the local label synchronization works, let us
consider again the smart air conditioning system presented in Section [2.2]
The script of the air conditioning (AC) artifact is shown in [Code 1} while
a process AC' with the actions being performed over the tuple space of the
smartphones running the script (corresponding to lines 6-11 in is
shown in [Code 2| Let us focus on the latter, where we find an rd action for
reading the comfort temperature of the user from her virtual profile (line 2),
followed by an in action (line 3) for removing the old value of the the room’s
temperature. We assume that this tuple was previously stored in the profile
in a previous execution of the script. Next, the process updates the profile
with the most recent value of the room temperature (line 4), and informs
(line 5) the air conditioning system of the comfort temperature desired by the
user (the behaviour of this last action for remote addition of tuples will be
defined in Table [2)).

Suppose now that the virtual profile, P, stored in the smartphone of one
of the people present in the room contains tuples for representing the value

13

of her comfort temperature (24°C), and the temperature of the room (27°C).
That is, we assume that P includes the following tuples:

ty = <personal.comfortTemp, 24>

ty = <room.currentTemp, 27>

and let us also assume that the required access rights for these tuples have
been granted as explained in Section [2.2] Finally, suppose that the current
temperature of the room has dropped to 26°C, a value that instantiates the
CurrentTemp parameter of the AC process in (line 1).

Then, the execution of the rd action in the instantiated script AC(26) of
is a consequence of the application of the SYNC; transition rule:

(P: AC(26)) %5 (P AC") (P : AC(26)) - (P : AC(26))
(P:AC(26)) - (P : AC")

Notice that the profile does not experiment any change (the tuple ¢; is still
present in the profile, P), and the resulting process AC" will be:

AC" = in(<room.currentTemp, RoomTemp>). AC"

where
AC" = out(<room.currentTemp, 26>). AC"

In a similar way, AC” will progress to AC” by applying now the SYNC,
rule as follows:

ta

(P:AC") — (P : AC") (P AC") EN (P': AC")
(P:AC"Y 1 (P : AC")

where in P’ the tuple to = <room.currentTemp, 27> has been removed from
the profile as a result of the execution of the in action.

If we consider now the next action to be executed (the first one in AC"),
out(<room.currentTemp, 26>), the application of rule OUT; will make the
system to progress as follows:

(P2 AC")y 5 (P": AC™)

where P” adds to P’ the tuple <room.currentTemp, 26>, which indicates the
current temperature of the room, as notified by the air conditioning artifact.

14

3.2. Bisimilarity and congruence

The scripts downloaded from an artifact may need to evolve under certain
circumstances. For instance, a software upgrade, or the development of a new
version of the script. In this kind of situations, a notion of script equivalence
would be very relevant to reason about compatibility among different ver-
sions. To formalize this, we consider the usual notion of bisimilarity-based
equivalence, taking into account the device in which the script has to be run.

Definition 3. Given a virtual profile P, two scripts S and 7" in £ are locally
bisimilar with respect to P, written S ~p T if and only if for each a € A and
de D:

1. if (P: S)y -+ (P : 8" then (P :T)q — (P":T")4 for some T such
that S/ ~ pr T/

2. if (P:T)y - (P': T4 then (P : S)q — (P : 8", for some S’ such
that S’ ~ p/ T

Local bisimilarity relation is, as usual, an equivalence relation as the
following lemma states.

Lemma 1. The bisimilarity relation ~p is an equivalence relation.
Proof. Tt is directly derived by reasoning on different rules in Table [2] O

In fact, the transition relation — (restricted to devices) defines a notion
of bisimilarity which permits to decide about script equivalence. In addition,
it would be very useful that this bisimilarity relationship is a congruence with
respect to the connectors + and ||.

Theorem 1. The bisimilarity relation ~p is a congruence with respect to
non-deterministic choice and parallel operators.

Proof. Let P be a virtual profile, and let us assume S; ~p S5. We will prove
S1|| T ~p Sy || T by structural induction. To do it, we will only analyze the
first condition in Definition [3] since the second one is symmetric. That is,

(P: S, || T)q -2 (P : Sy, (4)

15

First, we proceed by proving the proposition on the inductive base, pro-
cesses 0 and «.0 (a € Act). For these processes, the result is easily proved, by
considering each case in rules (OUTy), (OUTy), (READ), (IN) and (NREAD;).

In a general case, we have the following alternatives (depending on the
rule in Table (1] triggering the transition):

1. If (PAR;) was the rule applied to get , then we have two possibilities:
either
(P:S)a (P :8); (=5,|T)

or

(P:T)g 25 (P :Thq (S=5|T)

In the first case, as S; ~p Sz, we have (P : S5)q — (P : S}y, with
St ~pr S,. Therefore, in both cases, by applying rule (PAR;):

(P:Sy || TYg - (P : 5"y

S” being S, || T or Sy || T”, respectively. Then, by applying inductive
hypothesis on the first case " = S| || T ~p S; || T = S", and S" = 5
(hence S” ~p S’ by Lemma [1] in the second one.

2. If the applied rule to get (4] is (SYNCy), then a = 7, P’ = P, and either
S1 or T is a parallel composition of processes T} and T, such that T}
implies a transition labelled by t. If T'= T} || Tz, we would have in the
previous alternative (1). So, let’s suppose S; = T} || Ts, and

(P:T)g—= (P:TDg (P:Ty|| Ty — (P Ty || T)a

with S" =T} || Tz || T. By applying rule (PAR;) to the left transition
above, we have (P : S))q — (P : T} || Ta)a. As Sy ~p Ss, we have

(P:S5)g — (P:5))g

for some S} with S} ~p T || T. Taking into account that transition

t only affects to the profile P, we also have (P : T)g — (P’ : T)q4.
Therefore, rule (SYNC;) applied to Sy || T gets

(P Sy || Tya — (P : Sy || T)a
At this point 8" =T || Tz || T and S ~p T} || T», which implies (again
by inductive hypothesis) S" ~% S5 || T'.

16

accept(out(e,t), Q)
(REMOTE) (P :out(e,t).8)a [(Q: T)e == (P:S)a|(Q,t:T)e
certify(e, P) A links(P,e) =b # L
(SYNG;) (P:S)g|(Q:T)e — (Pb:S| Se(Q)a|(Q:T).
(PARQ) Dl %) Dll
D, | Dy — Dll | Dy

Table 2: Transition system.

3. The other two alternatives to get transition (4f) is applying rules (SYNCs)
or (NREAD;). In both cases, the reasoning is similar to the previous
one.

In a similar way, we could prove S + 7T ~p Sy + T when S; ~p Ss. O

3.3. Remote transition system

In order to define how artifacts interact, we consider configurations com-
posed of a parallel composition of artifacts as follows:

(Pr:St)a, | (P2 So)ay |-+ | (Pu: Sn)d,

where P; (i = 1..n) are virtual profiles of artifacts —either smart devices
or smart things—, S; are scripts running in smart devices, and d; represent
the device identifiers. Notice that we denote in a different way the parallel
composition of artifacts (|) and the parallel composition of processes inside a
smart device (|]).

The transition system — defined in Table|1|is extended to configurations
by the inference rules given in Table 2]

Rule REMOTE models remote actions modifying the virtual profile which
belongs to the smart thing from which the script being run was downloaded.
We consider this transition as a silent step from an observational point of
view. For this reason, we use the label 7. It is worth noting that although the
syntax of primitive out(d,t) may suggest that we allow adding tuples on any
arbitrary artifact, our intention is to constrain this capability to add tuples
either locally, or remotely only to the remote device whose script generated

17

the out action, as it will be shown in Section [4] This limitation is consistent
with the goal of guaranteeing a controlled access to virtual profiles.

Rule SYNC3 represents the interaction between two artifacts (typically, a
smart device and a smart thing). In this case, the script associated with a
smart thing e, previously certified, is downloaded through a link establishing a
connection between the virtual profile P and e. The availability of this link is
guaranteed because links(P, e) # L (see equation [3| where links mapping was
defined). Thus, the script to be executed in the context of the smart device d
(in parallel with other possible pending processes in d) will be S.(Q), as it
was defined in Definition [2] Notice that, in this case, the script is instantiated
by the profile (). This allows customizing the script to the artifact which
provides access to it. In addition, the link tuple b is added to the profile P,
recording this way that the smart thing has been already “visited”.

In fact, this tuple b encodes information to prevent unlimited script
downloads. Remember that the mapping links is defined in such a way that
links(P,e) = L, when <once,e> € P or when <wait,t,n,e> € Pandt+n
is greater than the current time. Thus, a tuple once would be added to the
profile P the first time a connection is established, but no more connections
will take place in the future. In a similar way, if the tuple <wait,ts,n,e>
was added with a time stamp ts, and n being the time to wait before enabling
running the script again, it will not be downloaded until n time units have
passed. Which of those two tuples is added to the profile will depend on the
metadata exhibited by the artifact e, as it was defined in equation

Rule PAR;, describes the way in which the parallel composition of artifacts
proceeds. Note that the parallel composition of processes inside a smart
device is modelled by Rule PAR; in Table[I] Actually, any interaction in the
context of a smart device is governed by rules in that table.

We consider the transition system closed w.r.t. usual structural congruence
(commutative and associative properties) of both parallel connectors.

The rules in Table [Il and Table 2] are used to define the set of derivations
in an environment where smart devices and smart things are interacting with
each other. Following [7], both reductions labelled 7 and reductions labelled
—t are considered. Formally, this corresponds to introducing the following
derivation relation:

D—s D' iff (DD orD-5%D).

18

1 <digitalavatars >

2 <header>

3 <wait >120000</wait>

4 </header>

5 <script >

6 void AC(double currentTemp) {

7 double comfortTemp = dac.read("Personal/comfortTemp");

8 dac.remove ("Room/currentTemp") ;

9 dac.write ("Room/currentTemp" ,currentTemp) ;
10 dac.remoteWrite ("ComfortTemperature" ,comfortTemp) ;
11 }

12 </script >
13 </digitalavatars>

Code 1: Script for the smart air conditioning system.

1 AC(CurrentTemp) =

2 rd(<personal . comfortTemp , ComfortTemp >).
3 in(<room.currentTemp ,RoomTemp>).

4 out(<room.currentTemp , CurrentTemp>).

5 rout(<desiredTemp , ComfortTemp>). 0

Code 2: Tuple actions for the air conditioning (AC) script.

4. Case study: a Treasure Hunt

Now that we have formally defined a framework for reasoning on Digital
Avatars, we present a motivating example for showing how it works, and we
discuss how the formalization provides useful tools for checking properties
and inferring results of the systems built according to our proposal. The case
study consists in a treasure hunt game, in which several players look for a set
of five hidden treasures following clues. Each treasure found provides a clue
for a new treasure, and the player that first finds all the treasures wins the
game.

In the remainder of this section, we first present an implementation of
the case study (Section in which treasures are represented by beacons,
scattered over the scenario of the hunt. We have developed a generic smart-
phone application for detecting beacons, downloading the scripts associated
to them, and running these scripts in the context of the virtual profile stored
in the smartphone. After that, Section 4.2] presents a formalization of the
treasure hunt by means of the primitive actions defined in Section [2] Finally,

19

in Section we apply our formal framework to infer several properties of
interest of the system.

4.1. Implementation of the hunt

In order to implement our proposal we have proceeded in two steps. First,
we have developed an implementation of the Digital Avatars framework for
smartphones as one single and generic Android application which detects
smart artifacts —in particular, Bluetooth Low Energy (BLE) beacons— in
the surroundings, downloads the scripts associated to them, and executes
these scripts on the user’s terminal, for both interacting locally with the
virtual profile in the phone, and remotely with that of the artifact from which
a given script was downloaded. Then, we have written a script for specifying
the behavior of the treasure hunt itself, and we have associated this script to
a number of beacons that represent the treasures to be found.

The architecture of the system is shown in which represents the core
components of the framework. In particular, the Digital Avatar Controller
(DAC) API provides a single point of access to the virtual profile of the
smartphone’s user. The Privacy Settings module allows the user to control
which information is offered to external devices and third parties, and which
scripts are trusted to be run on the smartphone.

App Management and User Interface
Android Beacon Library Privacy Settings \

Execution Core Digital Avatar Controller
API
((())) Beanshell
<[> S °
—— User
Profile

Authentication and certification verificator

Phone Resources @
1

Figure 1: Architecture of the Digital Avatars framework (updated from [9]).

20

Scripts are encoded using operations of the DAC API, and they are always
executed in a controlled way, first checking the certificate of the script provider,
then being only able to access the virtual profile through the API. The
execution of the scripts is handled with Beanshell (http://www.beanshell.org),
a simple Java interpreter capable of uploading an executing code at runtime.
Beanshell scripts do not need to be entire classes, just pieces of Java code.
The DAC API offers a set of operations to the Beanshell execution core in
order to perform simple actions of querying and updating the virtual profile,
as well as accessing the Android operating system, for instance for displaying
notifications and messages.

Apart from interacting with the virtual profile in the smartphone running
it, a script may also remotely change the value of some entity in the script
provider’s virtual profile, as discussed in Section In turn, these updated
values may be used during future downloads for instantiating some of the
parameters of the script. Thus, the framework provides a mechanism for
changing the behavior of the smartphones running the script in these future
interactions. This is how smart things are able to automatically adapt their
behavior in a seamless way in order to suit the needs of their users.

Once we have presented the Digital Avatars smartphone app, for the
implementation of the treasure hunt itself we need the following elements:
(i) the Android application installed and running in the smartphones of the
players, (ii) a cloud server for hosting the script that specifies the behaviour
of the treasure hunt and equipped with its own digital avatar for holding
the global state of the game, and (iii) a set of Eddystone BLE beacons,
scattered over the scenario of the hunt, for representing the treasures. The
beacons emit a BLE signal with a shortened URL where the script is hosted
in the cloud server. These elements are represented in Fig. [2] The finding
of a treasure is triggered by detecting the corresponding beacon. The URL
contains a parameter which identifies the beacon issuing it, so we can pinpoint
exactly which treasure has been found, and one single script works for all the
treasures.

When a player finds one of the treasures (i.e. when the player gets close
enough to a beacon), the Digital Avatars app in her smartphone detects it,
accesses the corresponding URL encoded in the BLE signal, and downloads
from the cloud server the Treasure Hunt script, which is shown in [Code 3]
Each time the script is downloaded, its parameters status and clues (line 6)
are instantiated to their values in the virtual profile of the cloud server.

According to the definition of links in Section [2.2] the contents of the

21

4/)
3 2
D
” -z/
: W e—

~
~
SN—"

T

2

3]

- oo Y
i'.?1 o =5 (O3
= %®

)
1303) EJEDE
- B

T

~
~
SN—"

Figure 2: An example scenario of the Treasure Hunt.

<header> section in (lines 2-4) are checked prior to the execution
of the script. In this case, it contains a wait tag with a rate of one minute
(in milliseconds). This is the time the smartphone has to wait between two
successive executions of the script —giving the player the opportunity to get
out of the range of the beacon already found, in her quest for a new treasure.
Then, the presence of a previous once, or active wait is checked. If none
of them are in the profile, the link is solved, adding the corresponding wait
tuple to the virtual profile of the player. In any other case, links returns a
void value, and the script is not executed.

1 <digitalavatars >

2 <header>

3 <wait >60000</wait>

4 </header>

5 <script >

6 void treasureHunt (String status, List<String> clues) {
7 if (dac.read("clues") = null) {

8 // The player has just started the hunt;
9 // entities are written to the profile
10 int i — 0;

11 for (String clue : clues) {

12 dac.write("clues/" + i++, clue);

13 }

14 dac.write("treasures", 0);

15 }

16 String c¢ = dac.read("clues");

17 dac.remove("clues/", ¢);

18 if (status =— "playing") {

19 // Checks no. of treasures already found
20 int treasures = dac.read("treasures");
21 if (treasures != 4) {

22 dac.write("treasures", treasures++);
23 dac.showToast ("The new clue is " + ¢);
24 telse { // The player has won the game
25 dac.showToast (" Congratulations. You Win!");
26 dac.write("treasures", 5);

27 String me = dac.read("Personal /name");
28 String now = dac.read("System /now");
29 dac.remoteWrite ("winner /name", me);

30 dac.remoteWrite ("winner/time", now) ;
31 dac.remoteWrite ("gameover") ;

32 }

33 // Somebody else has won the game

34 }else { dac.showToast("You lose!"); }
35)

36 </script>

37 </digitalavatars >

Code 3: Java Beanshell script for the Treasure Hunt.

In the script, several DAC API operations are invoked. While showToast
shows a notification through the smartphone of the player, operations read,
write, and remove access the information stored in its virtual profile as
key /value pairs. Finally, remote Write updates the profile of the cloud server
that stores the global status of the game, from which the script has been
downloaded.

The script begins by initializing the game if this is the first time the
player downloads it. For that, it writes to the profile the clues for finding
the treasures, and it sets the number of treasures found by the player to zero
(lines 7-15). Then, it randomly takes from the profile one of the clues (lines
16-17). If the status of the game, downloaded as a script parameter from the
cloud server, is “playing” (line 18), it checks the number of treasures already
found by the player (line 20). If they are less than four (i.e. the player still
needs to find some of the five treasures), the script increments by one the

23

number of treasures found, and shows the new clue (lines 21-23). Otherwise,
if the player has already found four treasures, the treasure currently found is
the only one missing, so the script declares the player as winner of the hunt
(line 25) and it finalizes the game, remotely updating the status of the game
in the server’s virtual profile by adding a gameover tuple, together with the
name of the winner and the current time (lines 29-31). Alternatively to lines
18-32, if the game status is gameover —i.e. if someone else has already found
all the treasures—, the script just informs the player that he has lost (line
34).

An example of the global flow of the game is shown in [Fig. 21 A treasure,
represented by the beacon in the left of the figure, broadcasts a BLE signal
(1) with the URL of the script. When any of the users in the left approaches
the treasure and detects this signal, their smartphone’s Digital Avatars app
uses this URL for connecting to the server in the top, downloading the script
for running it on their terminal (2). For the player in the bottom, arriving at
time T7, the script updates the virtual profile in her phone with the treasure
found and shows a new clue (3). Later on, the same script downloaded at T
by another player, makes him win the game as he has already found all the
treasures (3). In that case, the script also executes operations for updating
the state of the game in the server’s virtual profile (4), which changes the
behaviour of the script in future detections of this or any other beacon, as the
script will be instantiated with the new status. Thus, the player in the right,
downloading the script at time 73 is informed that the game is over (5).

In our case study, the server represents a smart artifact with computing
and storage capabilities, endowed with a digital avatar holding the status of
the game, and a script template which will be instantiated with this status
each time the script is requested for downloading. This way we keep all the
players synchronised, so they know whether the game is still running or it
has been already won by another gamer. We have implemented the behavior
of the server in Node.js with Express while its virtual profile is represented
by means of a small MongoDB database which contains information about
the existing treasures and the available hints. A preliminary version of this
case study was presented in [10] where its technical aspects are described in
more detail. The full implementation of both the server and the Android
applications as well as the script are available in Githubﬂ

2https://github.com /apvereda/TreasureHuntBeacons

24

In our Treasure Hunt scenario we have employed Bluetooth beacons as
they are simple and non-expensive devices. However, they lack computing
capabilities and are only able to store and broadcast a short URL string.
Thus, they cannot be properly considered as smart devices. For this reason,
we needed a back-end server artifact for hosting the global status of the game.
In a more general scenario, the Bluetooth smart device itself would be in
charge of holding and serving the script, not only a URL to it, and also to
offer a more sophisticated behaviour. Consider for instance the smart air
conditioning system previously presented, which adjusts the temperature of a
room to the preferences of the people staying in it, or a home music system
that selects the songs to be played based on the preferences or even the mood
of the listeners. In both cases these preferences would be kept in the virtual
profiles of the users, from which they would be accessed by means of the
appropriate scripts.

4.2. Formalizing the game

For formalizing the game, we only need to define one script template
TreasureHunt for all the beacons. This script is stored in a cloud server
which also hosts a virtual profile containing tuples with the clues for the
treasures, and one extra tuple for indicating when the game is over, as it will
be explained below.

1 rd(<cluel, Cluel>). rd(<clue2, Clue2>).

2 rd(<clue3, Clue3>). rd(<clued , Clued>).

3 rd(<clueb, Clueb>). (

rd(<gameover >).

TreasureHunt(<gameover >, Cluel, Clue2, Clue3, Clue4, Clueb)
Jr

nrd(<gameover>).

TreasureHunt(<playing >, Cluel, Clue2, Clue3, Clue4, Clueb))

Code 4: Script instantiation for the Treasure Hunt.

0~ O Ul

Prior to each download, the parameters of the script must be instantiated.
The instantiation process for the TreasureHunt script (shown in
sets the clues for finding the five treasures (binding Cluel,..., Clueb).
They are fetched from the server’s virtual profile by the read actions in lines
1-3. Then, the current status of the game depends on whether there exists a
<gameover> tuple (lines 4-5) or not (lines 7-8).

25

The execution of the script interacts with the virtual profile in the smart-
phone, checking and updating which treasures have been already found by
the player, and showing the clue for a new treasure. It also informs the game
when a player has found all the treasures. The rest of the players will be
notified the next time they find a beacon, downloading again the script. The
full script of the Treasure Hunt is shown in [Code 5l There is not a strict
correspondence with the Java encoding in [Code 3| although we have tried to
keep both versions of the script aligned, for a better understanding.

1 TreasureHunt (_Status, Cluel, Clue2, Clue3, Clued4, Clue5) =
2 nrd(<clue ,C>).

3 out(<clue, Cluel>). out(<clue, Clue2>).

4 out(<clue, Clued3>). out(<clue, Clued>).

5 out(<clue, Clue5>). out(<treasures,0>). 0

6 +

7 in(<clue ,C>). out(<_Status>).(

8 in(<playing >).(

9 nrd(<treasures ,4>).
10 in(<treasures ,X>). out(<treasures ,X+1>).
11 out(<notify ,C>). 0

12 +

13 GameOver)

14 +

15 in(<gameover>).

16 out(<notify ,"You lose!">). 0)

17

18 GameOver =

19 in(<treasures,4>). out(<treasures ,5>).
20 out(<notify ,"Congratulations. You Win!">).
21 rd(<personal .name,Me>).rd(<system .now,Now>).
22 rout(<winner ,Me,Now>). rout(<gameover>). 0

Code 5: Script for the Treasure Hunt.

Before explaining the behaviour of the code, we need to make some
clarifications. First, concerning the use of the out primitive, we simplify its
syntax, considering only one argument (instead of two, as defined in Act in
Section [2] in such a way that the first argument is missing when the out
action is applied locally, while rout is used to explicitly refer to a remote out.
In other words, a script code including an action out(t) has to be interpreted
as out(l,t), | being the identifier of the (local) artifact where the script is
being executed; and rout(t) denotes out(r,t), where r is the (remote) artifact
fro which the script has been downloaded. Second, we abuse of notation

26

by considering variables and arithmetic expressions in tuples: variables in
rd actions are conveniently instantiated as a consequence of the matching
produced when reading a tuple, and arithmetic expressions are conveniently
evaluated when occurring on out actions.

The branch starting from line 2 in the script is performed when a player
begins the treasure hunt (we assume an additional beacon located in the
starting place of the hunt), as no clues are present in his profile yet (line 2).
In that case, all the five clues are added to the virtual profile of the player
(lines 3-5). The last tuple added in line 6 is <treasures,0>, indicating that
no treasures have been found yet.

Alternatively (line 7), a random clue is read (and consumed) from the
profile, and the current status of the game (<gameover> or <playing>) is
written in the player’s profile. Then, we have again two alternatives. Either
the game is over (lines 15-16) and the player is notified of this fact, or the hunt
is still being played (lines 8-13). In the latter case, the tuple <treasures,N>
stores the number of beacons that the player has already found. If they are
less than four (i.e. <treasures,4> is not in the profile, line 9), then the
script increases the number of treasures found (line 10), and it shows a new
clue to the player (line 11).

On the contrary (line 13, linking to process GameQver in line 18), if the
player had already found four treasures (line 19), she wins the game (please
recall that the script is executed whenever the player finds a beacon, which
makes it the fifth one). In this case, both the name of the player and the
current time are got from the player’s profile (line 21), and they are used to
update the global state of the game. Indeed, two tuples are remotely added to
the server from which the script has been downloaded: one with information
on the winner, and the other one stating that the game is over (line 22).
Again, it is worth noting that the remote out actions in line 22 only have one
argument, instead of two arguments as defined in Section [2| because the first
argument implicitly corresponds to the server providing the script. That is,
although our formal model allows adding tuples to other arbitrary artifacts
(through the rout primitive), we restrict this capability only to the artifact
that generated the script including the rout primitive.

4.8. Reasoning on the case study

The formalization of Digital Avatars presented in this paper allows us to
reason on the behavior of the treasure hunt game. One of the properties that
we may want to analyze is whether it is ensured that eventually someone

27

wins the game. Indeed, this property can be proved with the Linda-based
semantics presented in Section |3| just making a couple of basic assumptions.
First, let us consider an initial configuration composed of a non-empty set of
smart devices (players) and at least one beacon pointing to a smart artifact
(a cloud server) which contains the script. This configuration is represented
by a parallel composition of all those elements:

Co =TI (P : 0)a, | (P:0) (5)

being d; the smart devices of the players, each with a profile P;, and b the
beacon associated with a server with a profile P and script template S, as
specified in [Code 5|

Second, let us assume that the cloud server is certified (i.e. certify(b, F;))
in all the profiles P;, which means that a tuple <certified,b> € P;, and
that all the devices d; can always get a link to the beacon b; that is, there
exists a link /; such that <1ink,b,[;> will be eventually included in P;. In
addition, we will assume that the script includes the heading information
<wait>60000</wait> for leaving one minute before running the script again.
In other words, we will assume that for every instant of time ¢ we will have
that links(P;, b) will include the tuple <wait, t, 60000, b> for some later time ¢
and for every ¢ = 1..n. This means that any player will eventually have access
to a beacon connected to the server. These two assumptions are formalized as
hypothesis of the next proposition, which ensures the eventual end of game.

Proposition 1. Let us consider a smart thing b referring the script template
Sy = TreasureHunt as defined in and the initial configuration Cy
specified in equation (3)), such that accept(a, P;) for every action a in any
profile P;, and certify(b, P;). If for every sequence of transitions Cy ——*
C, some of the smart devices di in C has a virtual profile Qy such that
links(Qy, b) =<wait, t,60000, b> for some t such that t + 60000 be less than
the current tick of the global clock, then there exists a trace:

C[) —* ' ‘ <t,P/ : O>b
with t=<gameover>.

Proof. Applying the assumption to the empty sequence of transitions Cy —*
Cop, we can find a device dy, such that rule SYNC3 can be eventually applied,
as both conditions of that rule are fulfilled: links(Py,,b) =<wait,t,0,b># 1,

28

and certify(b, Py,). Therefore, running the script on that device, after applying
several times the rules of Table |2| we obtain a trace:

C—" Cl

where a new configuration () is achieved containing a device di, whose
profile includes the tuple <treasures, 1>. If we apply again the hypothesis
to Cp, we find a device dy, such that rule SYNC; may be applied once
more, and a new instance of the script 5, will make ' to progress to Cs
(Cy — Cy). If dy, = dy,, its profile will include the tuple <treasures,2>.
If this is not the case, then we will have a new device with a profile also
including <treasures,1>. Taking into account that we can always repeat
this procedure (the links mapping will eventually allow the application of the
SYNC; rule), and that we have a finite number (n) of smart devices, after at
most 4n iterations, some of the devices will exhibit a profile with the tuple
<treasures,4>. Hence, the branch represented by lines 13-15 of S, will be
eventually triggered, adding the tuple <gameover> to b’s profile. O

The proposition above shows that, under some basic assumptions, a proper
initial configuration will eventually progress to a gameover status.

Additionally, some unexpected scenarios can be detected if we analyze
the script in more in depth. An exhaustive exploration of all possible
traces generated from a configuration C, like in equation , would provide
interesting information about the soundness of the script. In fact, a model
checker capable of exhaustively exploring all possible traces achievable from
C would detect some target configurations such that C' —— C’ | (P’ : 0),
where the profile P’ includes two or more copies of a tuple <winner,Me,Now>.
This means that two or more players could postulate themselves as winners
of the treasure hunt. Indeed, it is easy to imagine how C can progress to a
configuration D, such that:

D:...|<PdZSd>d|<PeISE>e|...|<P20>b (6)

where <treasures,4> is both in the profiles P; and P., and <gameover> is
not yet in P. In other words, two devices would have found four treasures
each, and the game is still being played. In this situation, if we consider a
scenario where both links(Py, b) and links(P,,b) are not undefined, then two

29

consecutive transitions can occur:

D L) |(Pd,wd:Sd || Sb(P)>d|<PEZSe>e| |<P0>b
L) |<Pd,deSd || Sb(P))d|<Pe,we:Se H Sb(P)>e| ’<P0>b

Both transitions are a consequence of applying rule SYNC3, where wy =
links(Py,b) and w, = links(P,,b). The scripts downloaded from b, Sy(P) and
Sp(P) are conveniently instantiated with information on profile P. As at the
time of script download, the tuple <gameover> had not yet been written to P
by any of the devices, both instances of S, will add a <playing> tuple to the
local profiles of d and e (line 7 in[Code 5)). And then, because <treasures,4>
is present in both profiles P, and F,, the actions in lines 19-22 of are

executed:

C —* D
L |<Pd,wd:Sd || Sb(P)>d|<Pe,we:Se || Sb(P»e’ |<P0>b
(P S | (P S e | o | (P 0)

where both P; and P! include the tuple <treasures, 5>, both players will be
notified as winners of the hunt, and the game will be stopped by remotely
adding duplicated <winner,M,T> and <gameover> tuples to P’, which of
course is not what we would desire as the result of the treasure hunt.

This unwanted situation might be addressed in several ways. The first
idea that may come up to us would be adding to the game a final podium
stage: once the game is over, the cloud server announces the actual (photo
finish) winner depending on the time of each of the two (or more) of the
<winner,M,T> tuples. Although this solution would solve the problem, it
looks somehow artificial and ad hoc, and it cannot be easily generalised to
other scenarios were a similar situation may appear.

A different alternative for solving this and similar issues would be imple-
menting a mechanism of locks or mutexes for ensuring the atomic execution
of the scripts, blocking them for download until their execution in some
other device ends. Again, our formal framework would allow us to analyze
the behavior of the system for the uniqueness of a tuple, in order to detect
problems and check whether we are able to solve them by means of locks.
However, the use of mutexes would make scripts more complex, obfuscating
their behavior, and they are error-prone when writing the scripts.

A more elegant approach to deal with situations like those mentioned
above is extending the model with a new primitive, similar to the remote

30

out action, but blocking when the tuple is already in the corresponding tuple
space. We have called this primitive nrout, and the next section presents a
extension to the formal model presented in Sections [2] and

5. Extending the expressiveness of the framework

One of the problems illustrated in the Treasure Hunt example is the lack
of expressiveness of the model to prevent adding a tuple to a virtual profile
when it already includes it. This is because both the local and remote out
primitives always success adding a tuple, without considering the status of
the tuple space. In fact, only the rd and nrd primitives suspend when a
given tuple does not exist or exists (respectively) in the shared tuple space.
Therefore, we propose to extend the language £ by considering a new action
in Act.

Hence, we redefine the syntax of an extended version of the language £’
as follows:

Sel == 0| aS | nrout(d,t).S>S | S+S | S|S | S©)
a € Act

where nrout(d,t) represents a version of out, blocking when the tuple ¢ is
already present in d, and the connective > provides an alternative to proceed
when tuple ¢ is in the profile of d.

Although the newly added primitive nrout may also be used locally (i. e.
affecting the profile of the device where the action is being executed), by now
we will consider that it is only applied remotely. That is, we will define its
behaviour by extending only Table [2| without modifying Table [1}

Thus, Table [3| presents two additional transition rules, NREMOTE; and
NREMOTEy, to define how nrout(e,t).S; > Ss works. The first rule models
how a tuple t is added to the profile () of an artifact e when the tuple was not
previously present in (). Of course, adding the tuple has to be an acceptable
action in the profile (). Note that the intended semantics of nrout(e,t) is
similar to the sequence of two actions: first, an nrd(t) action on e’s profile,
and a second action out(e, t). The main difference is that nrout(e, t) is atomic,
and no interference can occur between checking whether the tuple is in the
profile or not, and adding it.

Rule NREMOTE; models how the connective > progresses when the tuple
t is already contained in the profile of the artifact e. In such a situation, the
process nrout(e, t).S; > Sy proceeds as Ss.

31

accept(out(e,t),Q) N t & Q
(NREMOTE,) (P :nrout(e,t).81 > Sa)a | (Q: T)e == (P : S1)a | (Q,t:T).
teq
(NREMOTE) (P : nrout(e,t).S1 > Sy)a | (Q :T)e == (P:S5)a| (Q:T)e

Table 3: Extended transition system for Digital Avatars.

We still denote by — the transition relation derived from the transition
rules in Tables [T} 2| and [3]

With this new primitive, we can solve the problem presented in the
preceding section, in which two players postulate as winners of the game.
Indeed, the atomic character of nrout allows an alternative definition for the
Treasure Hunt script, by substituting the process GameQver of by the
new version in [Code 6l

1 GameOver =

2 in(<treasures,4>). out(<treasures,5>).

3 out(<notify ,"Congratulations. You Win!">).

4 rd(<personal .name ,Me>).rd(<system .now,Now>). (

5 nrout(<gameover>). rout(<winner ,Me,Now>). 0
6 >

7 out(<notify ,"You lose!">). 0)

Code 6: A new version of GameOver for the Treasure Hunt.

As it is shown in [Code 6] when the first player finds the last treasure,
her smartphone executes the nrout primitive (line 5 in to add the
<gameover> tuple indicating the end of game. If another player downloads
and executes the script at the same time, and he or she is in the same situation
(i.e. with all treasures already found), the execution of the nrout action in line
5 will be blocked, because a <gameover> tuple already exists in the remote
tuple space, and then the process following the > connective is executed.
Hence, the first player who is able to add the tuple can postulate as winner
of the game remotely writing the tuple <winner,Me,Now> (line 5), whereas
subsequent players will locally write the tuple <notify,"You lose!"> (line
7). The new GameOver process is illustrated in . Suppose that the two
players in the figure download the script almost at the same time (1 and
~1). However, when putting the gameover tuple in the server with the nrout

32

primitive, the player in the left performs this action at time 2, blocking the
corresponding action of the player in the right at time ~2 (assuming 2 < ~2)
and he wins the game.

A
>
-

Figure 3: Scenario of game ending with the nrout primitive.

Therefore, we can prove that this new version of the script TreasureHunt
guarantees that only one player will win the game, as it is stated in the
following theorem.

Theorem 2. Let us consider a smart thing b referring the script template S, =
TreasureHunt as defined in[Code 3, with process GameQOuver as redefined in

and the initial configuration Cy specified in equation (@, satisfying
the same conditions as in Proposition [l Then, there exists a trace

C() —* ' | <t,P : O>b
with t=<gameover> and for every progression from C’
C'"| (t,P:0)y,—"C" | (t, P :0)

P’ has no any other occurrence of t.

33

Proof. Reasoning as in the proof of Proposition [I, we can conclude that
eventually (at most after 4n iterations) some of the devices will trigger the
process GameOver of line 13 in [Code 5| as defined in If the tuple
<gameover> is not in the cloud server’s b profile, then it will be added to it as
a consequence of applying rule NREMOTE;. On the contrary, if this tuple is
already in the profile of b, the rule NREMOTE,; would be applied, and never
again a new tuple <gameover> would be added to that profile. n

6. Discussion

The development of smart things is transforming people’s lives, as we
increasingly interact with them everyday. Our approach for handling all these
interactions was inspired by the Programmable World Roadmap [11], a vision
paper which foresees the evolution from today’s [oT, merely based on data
recollection, to truly programmable devices. This way, both smart things and
smartphones would be able to learn from each other, and to evolve through
each interaction in a transparent and dynamic way, promoting a technology
that works for the people without requiring tedious manual configurations.

Architectures based on P2P models are gradually acquiring a greater
presence in fields such as social networks [12] or recommendation systems [13].
One of the advantages of these architectures is that they offer natural place for
storing virtual profiles of the users, containing contextual data (e.g. activities,
relations with other users, etc.) [14]. Our proposal shares the goal of having
single and coherent virtual profiles which are made available to third parties
interested on giving a personalized service to the users. This way we are
able to develop a seamless [0T environment which dynamically adapts to the
needs and context of their users.

Social Computing (SC) [15] is the area of computer science that deals
with the interaction between social behavior and computer systems. SC
encompasses all those systems that collect, process and disseminate informa-
tion related to individuals and groups of people. The goal is learning about
people and their preferences and providing an easy adaptation of their IoT
environment, reducing manual configuration of devices to a minimum. Indeed,
a number of recent research works agree on giving support to the IoT by
means of a paradigm focused on the people [16].

Nowadays, very few companies are able to access and process this enormous
quantity of social information, and to exploit and make a profit from it. In

34

practice, this reduces the SC marketplace to a small number of big stakeholders.
As Tim Berners-Lee declared recently [17], SC systems should empower people,
making them the fair owners of their information, and deciding who has access
to it. Moreover, this information must be stored in a unique and accessible
place which lets third parties use it in a controlled way, following the privacy
preferences of the users.

A number of research groups are currently working in the development
of techniques for collecting and processing contextual information with the
purpose of building virtual profiles covering many different aspects, habits,
and processes of the users. See for instance [18] for a review of the literature
in this field.

In particular, Social Devices [19] is a mobile computing model which
puts its focus in the wide functionality of current smartphones, some of them
approaching them to humans, for instance translating a spoken text to written
and vice versa. The model has been implemented as a JavaScript middleware
platform called Orchestrator, which allows to proactively start interactions
between IoT devices and the people around them. The platform helps in
developing personalized smart devices using Arduino, Raspberry Pi or .NET
Gadgeteer. Our proposal shares with Social Devices the goal of adapting
the behaviour of IoT artifacts to the needs of their users, and also the use
of small pieces of code —like our scripts— for specifying the interactions
between artifacts and people. However, Social Devices does not elaborate
a concept of virtual profile of the users, nor it makes it evolve through the
interactions with the IoT. Furthermore the model is devoid of any formal
foundation which might allow to reason about the behaviour of the systems
built.

The authors of this paper have previously participated in the design of a
mobile computing architecture called People as a Service (PeaaS) [20]. This
reference architecture promotes inferring and building virtual profiles with the
preferences and context information of people. Differently to what currently
happens in social networks and other similar SC systems, these profiles are
stored locally in the smartphones of their owners, instead of the servers of
the social network enterprise. In this same sense, we advocate for developing
collaborative architectures based on smartphones. Their pervasive presence
in people’s everyday lives and their increasing sensoring and computing
capabilities, together with their communication skills, make smartphones
key elements for obtaining, processing, and sharing information about their
users [21]. Smartphones are also the most appropriate devices to be in

35

charge of negotiating the interactions of their users with smart things in their
environment.

Hence, Digital Avatars can be considered as a concrete implementation
of the PeaaS reference architecture, which does not assume implicitly any
underlying technology, nor there is any formal foundation associated to PeaaS.
Moreover, the PeeaS model mainly focused on using the smartphone for
inferring information for the virtual profiles, and then offering this information
as a service to third parties in a secure manner. Instead, in Digital Avatars the
interactions involved are not just simple transfers of data, but they consist in
executing scripts with elaborate behaviour, which are run in the smartphone
and access the virtual profile stored in it. Hence, Digital Avatars extends
the PeaaS model with a mechanism that combines the data stored in the
virtual profiles with the behaviour expressed in the scripts, allowing a general
mechanism both for configuring smart things, and to complete the virtual
profiles themselves with context information obtained from these interactions.

With the aim of proving the correctness and strength of our solution, in
this work we have validated our framework using an approach based on a
Linda-like model. Linda [6] is a coordination language where synchronization
is achieved by means of a shared tuple space, and through a set of simple but
enough expressive primitives [22]. However, a single shared tuple space would
not be adequate for describing and analysing complex, pair-wise interactions
among several participants, nor for defining restrictions on which tuples can
be accessed, when, and by whom, as required in the Digital Avatars model.

A number of research proposals derived or related to Linda have been
made by different authors. Several of them introduce some kind of mobility,
mainly based on adding capabilities for remotely modifying a given tuple
space. In particular, Lime [23] (Linda in a Mobile Environment) was proposed
as a Linda extension to support mobile computing, considering both physical
mobility of computing resources, and logical mobility of software agents.
Lime defines transiently shared distributed tuple spaces by establishing P2P
communications. Many of the goals of Lime are common with ours, but
our framework also takes into account privacy issues, which are crucial for
addressing security in virtual profiles.

Another well-known proposal in this field is KLAIM [24], a language which
extends Linda by considering the possibility of remotely adding tuples to
an accessible tuple space. In KLAIM both processes and data can migrate
through different computing environments, explicitly supporting localities as
first class data. KLAIM allows to describe read/write/execute intentions of

36

processes with respect to localities, and it is endowed with a type system that
checks whether processes actually comply with their intentions, preventing
access right violations. Our proposal shares both concerns of addressing
process mobility and data access rights.

With a similar philosophy, SCEL [25] (Service Component Ensemble
Language) was designed to provide a parametric language to capture various
programming abstractions for autonomic components and their interaction.
SCEL explicitly represents aggregations, behaviors and knowledge according
to specific policies, and supports formal reasoning on component behavior,
from which properties of the overall systems can be inferred.

In both KLAIM and SCEL, Linda-like primitives were added to allow
remote interactions with shared tuple spaces, similarly to our approach.
Hence, digital avatars and virtual profiles could have been represented using
any of these languages. However, our proposal makes a number of specific
assumptions and constraints. Among them, that accessing a virtual profile
has to be made only by its owner, with the only exception of remote writing
under well-defined and restricted conditions. For that reason, we have chosen
to define a new Linda-like language, with specific interaction primitives and
semantics, and endowed with a particular access control mechanism built
in the language, while in SCEL one would need to specify it via a specific
acccess control policy.

7. Conclusions

In this paper, we have shown how the formalization of Digital Avatars by
means of a multiple tuple space approach provides interesting tools to verify
different properties of the system. Properties of bisimilarity and congruence
allow to validate the compatibility of different versions of a given script
in a Digital Avatars system. Moreover, we have shown that it is feasible
to check formally the interactions in a Digital Avatars system, which gives
the opportunity of studying its correctness, proving desired (or undesired)
properties, and studying what happens in different situations. An example
of it has been shown in the Treasure Hunt case study, ensuring that the
game always ends. In order to avoid some issues on expressiveness, we have
extended the framework by considering a remote blocking write action, which
allows to ensure expected properties, for instance that only one player wins
the hunt.

37

As previously discussed, our proposal presents shared concerns with other
languages derived from Linda, such as KLAIM or SCEL. In particular, the
definition of multiple data spaces, data access rights, and process location
and mobility. In this sense, whether the specific restrictions of the operational
semantics of Digital Avatars could be encoded in terms of any of these or
other languages derived from Linda deserves some exploration, as it would
give us the chance to reuse their results and tools. We leave this for future
work.

Also as future work, we plan to model our framework in the executable
specification language Maude [26} 27], which offers model checking capabilities
to allow the analysis of desirable or undesirable properties exhibited by the
scripts. The intention is specifying the transition rules defined for the Digital
Avatars framework as rewriting rules, and then using Maude’s model checker
to prove properties of interest of the scripts.

References

[1] D. Guinard, V. Trifa, F. Mattern, E. Wilde, From the Internet of Things
to the Web of Things: Resource-oriented architecture and best practices,
in: Architecting the Internet of Things, Springer, 2011, pp. 97-129.

[2] J. Gubbi, R. Buyya, S. Marusic, M. Palaniswami, Internet of Things
(IoT): A vision, architectural elements, and future directions, Future
generation computer systems 29 (7) (2013) 1645-1660.

[3] A. Pérez-Vereda, D. Flores-Martin, C. Canal, J. M. Murillo, Towards
dynamically programmable devices using beacons, in: Current Trends
in Web Engineering — ICWE 2018 International Workshops (Revised
Selected Papers), Vol. 11153 of LNCS, Springer, 2018, pp. 49-58.

[4] A. Pérez-Vereda, C. Canal, E. Pimentel, A formal programming frame-
work for Digital Avatars, in: SEFM 2019 Collocated Workshops — Revised
Selected Papers, LNCS, Springer, 2020 (in press).

[5] N. Carriero, D. Gelernter, Linda in context, Commun. ACM 32 (4) (1989)
444-458. 'doi:10.1145/63334.63337.

[6] D. Gelernter, N. Carriero, Coordination languages and their significance,
Commun. ACM 35 (2) (1992) 96-. |doi:10.1145/129630. 376083

38

https://doi.org/10.1145/63334.63337
https://doi.org/10.1145/129630.376083

[7] N. Busi, R. Gorrieri, G. Zavattaro, On the Turing equivalence of Linda
coordination primitives, Electr. Notes Theor. Comput. Sci. 7 (1997) 75.

[8] R. Menezes, A. Omicini, M. Viroli, On the semantics of coordination
models for distributed systems: The LOGOP case study, in: Foundations
of Coordination Languages and Software Architecture (FOCLASA 2003),
Vol. 97 of Electronic Notes in Theoretical Computer Science, Elsevier,
2004, pp. 97-124.

[9] A. Perez-Vereda, J. Murillo, C. Canal, Dynamically programmable
virtual profiles as a service, in: 5th IEEE International Conference
on Internet of People (IoP 2019), IEEE, 2019, pp. 1789-1794. doi:
10.1109/SmartWorld-UIC-ATC-SCALCOM-I0P-SCI.2019.00317.

[10] D. Bandera, A. Pérez-Vereda, C. Canal, E. Pimentel, One step towards
dynamically programmable things: an implementation using beacons,

in: 2019 IEEE Symposium on Computers and Communications (ISCC),
[EEE, 2019, pp. 1171-1176.

[11] A. Taivalsaari, T. Mikkonen, A roadmap to the programmable world:
software challenges in the IoT era, IEEE Software 34 (1) (2017) 72-80.

[12] Y. Wang, A. V. Vasilakos, Q. Jin, J. Ma, Survey on mobile social net-
working in proximity (MSNP): approaches, challenges and architecture,
Wireless networks 20 (6) (2014) 1295-1311.

[13] W.-S. Yang, S.-Y. Hwang, iTravel: A recommender system in mobile
peer-to-peer environment, Journal of Systems and Software 86 (1) (2013)
12-20.

[14] T.-M. Grenli, G. Ghinea, M. Younas, Context-aware and automatic
configuration of mobile devices in cloud-enabled ubiquitous computing,
Personal and ubiquitous computing 18 (4) (2014) 883-894.

[15] F.-Y. Wang, K. M. Carley, D. Zeng, W. Mao, Social computing: From
social informatics to social intelligence, IEEE Intelligent systems 22 (2)
(2007).

[16] J. S. Silva, P. Zhang, T. Pering, F. Boavida, T. Hara, N. C. Liebau,
People-centric Internet of Things, IEEE Communications Magazine 55 (2)
(2017) 18-19.

39

https://doi.org/10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00317
https://doi.org/10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00317

[17]

[18]

[19]

20]

[21]

22]

23]

[24]

[25]

[26]

T. Berners-Lee, Solid, https://solid.inrupt.com/, accessed: 2019-01-
21.

P. Makris, D. Skoutas, C. Skianis, A survey on context-aware mobile
and wireless networking: On networking and computing environments’
integration, IEEE Communications Surveys and Tutorials 15 (1) (2013)
362-386.

N. Makitalo, et al., Social devices: Collaborative co-located interactions
in a mobile cloud, in: Proc. 11th Int’l Conf. Mobile and Ubiquitous
Multimedia, 2012, p. article no. 10.

J. Guillen, J. Miranda, J. Berrocal, J. Garcia-Alonso, J. M. Murillo,
C. Canal, People as a Service: a mobile-centric model for providing
collective sociological profiles, IEEE software 31 (2) (2014) 48-53.

M. Raento, A. Oulasvirta, N. Eagle, Smartphones: An emerging tool for
social scientists, Sociological methods & research 37 (3) (2009) 426-454.

A. Brogi, J.-M. Jacquet, On the expressiveness of coordination via
shared dataspaces, Sci. Comput. Program. 46 (1-2) (2003) 71-98. doi:
10.1016/S0167-6423(02)00087-4.

G. P. Picco, A. L. Murphy, G.-C. Roman, Lime: Linda meets mobility, in:
Proceedings of the 21st International Conference on Software Engineering,
ICSE 99, ACM, 1999, pp. 368-377. doi:10.1145/302405.302659.

R. De Nicola, G. L. Ferrari, R. Pugliese, Klaim: a kernel language
for agents interaction and mobility, IEEE Transactions on Software
Engineering 24 (5) (1998) 315-330. doi:10.1109/32.685256.

R. De Nicola, D. Latella, A. L. Lafuente, M. Loreti, A. Margheri,
M. Massink, A. Morichetta, R. Pugliese, F. Tiezzi, A. Vandin, The
SCEL Language: Design, Implementation, Verification, Springer, 2015,
pp- 3-71. doi:10.1007/978-3-319-16310-9_1.

M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer,
C. Talcott, All about maude-a high-performance logical framework: how
to specify, program and verify systems in rewriting logic, Springer, 2007.

40

https://solid.inrupt.com/
https://doi.org/10.1016/S0167-6423(02)00087-4
https://doi.org/10.1016/S0167-6423(02)00087-4
https://doi.org/10.1145/302405.302659
https://doi.org/10.1109/32.685256
https://doi.org/10.1007/978-3-319-16310-9_1

[27] F. Duréan, S. Eker, S. Escobar, N. Marti-Oliet, J. Meseguer, R. Rubio,
C. Talcott, Programming and symbolic computation in maude, Journal
of Logical and Algebraic Methods in Programming 110 (2020) 100497.

41

	Introduction
	Digital Avatars
	Definitions
	Security in Digital Avatars

	Formal framework
	In-device transition system
	Bisimilarity and congruence
	Remote transition system

	Case study: a Treasure Hunt
	Implementation of the hunt
	Formalizing the game
	Reasoning on the case study

	Extending the expressiveness of the framework
	Discussion
	Conclusions

