
Synthesizing Safe Policies under Probabilistic

Constraints with Reinforcement Learning and

Bayesian Model Checking

Lenz Belzner and Martin Wirsing

Draft. Final Version: Lenz Belzner and Martin Wirsing. Synthesizing Safe Policies under

Probabilistic Constraints with Reinforcement Learning and Bayesian Model Checking. Sci-

ence of Computer Programming, 2021, 102620, ISSN 0167-6423.

Abstract

We propose to leverage epistemic uncertainty about constraint satis-
faction of a reinforcement learner in safety critical domains. We introduce
a framework for specification of requirements for reinforcement learners
in constrained settings, including confidence about results. We show that
an agent’s confidence in constraint satisfaction provides a useful signal for
balancing optimization and safety in the learning process.

1 Introduction

Reinforcement learning enables agents to automatically learn policies maximiz-
ing a given reward signal. Recent developments combining reinforcement learn-
ing with deep learning have had great success in tackling more and more complex
domains, such as learning to play video games based on visual input or enabling
automated real-time scheduling in production systems [6, 62].

Reinforcement learning also provides valuable solutions for systems operat-
ing in non-deterministic and partially known environments, such as autonomous
systems, socio-technical systems and collective adaptive systems (see e.g. [16,
37, 19, 51]). However, it is often difficult to ensure the quality and the correct-
ness of reinforcement learning solutions [58, 5]. In many applications, learning is
focusing on achieving and optimizing system behavior but not on guaranteeing
the safety of the system (see e.g. also [16, 37, 19]).

Optimizing for both functional effectiveness and system safety at the same
time poses a fundamental challenge: If maximizing return and constraint sat-
isfaction are interfering, what should the learner optimize in a given situation?
That is, besides the fundamental dilemma of exploration and exploitation, the
learner now faces an additional choice to be made: When to optimize return,

1

ar
X

iv
:2

00
5.

03
89

8v
2

 [
cs

.A
I]

 6
 F

eb
 2

02
1

and when to optimize feasibility in case it is not possible to optimize both at
the same time?

This fundamental question has been addressed in many related works, which
can be categorized in three broad classes: Learning safe behavior using a given
or learned model of the environment [42, 34, 35], learning shields in addition to
a policy assuring that only safe actions are executed [3, 17, 7, 40] or reward-
shaping methods that try to balance optimization of return and costs incurred
by constraint violation [56, 20, 21, 28].

Typically satisfaction probability is estimated via maximum likelihood, ig-
noring the learner’s uncertainty about intermediate estimates in the empirical
learning process. We argue that when using reinforcement learning for policy
synthesis, additionally requiring a specification of confidence in the result is of
high importance as reinforcement learning is an empirical technique relying on
finite data points. We also argue that using a learner’s confidence in require-
ment satisfaction provides a highly informative signal for effectively exploring
the Pareto front of return optimization and safety.

To this end, we propose Policy Synthesis under probabilistic Constraints
(PSyCo), a systematic method for specifying and implementing agents that
shape rewards dynamically over the learning process based on their confidence
in requirement satisfaction. The basic idea is to emphasize return optimiza-
tion when the learner is confident, and to focus on satisfying given constraints
otherwise. This enables to explicitly distinguish requirements wrt. aleatoric
uncertainty that is inherent to the domain, and epistemic uncertainty arising
from an agent’s learning process based on limited observations.

For implementing PSyCo’s abstract design we propose Safe Neural Evolu-
tionary Strategies (SNES) for model-free learning of safe policies wrt. given
finite-horizon specifications. SNES leverages Bayesian model checking while
learning to adjust the Lagrangian of a constrained optimization problem ac-
cording to the learner’s current confidence in specification satisfaction. The
model-free formulation allows to synthesize safe policies in domains where only
a generative model of the environment is available, enabling learning when the
model is unknown to the agent or where analytical computation of solutions
wrt. transition dynamics is intractable for closed form representations. Also,
the model-free formulation enables fast inference (i.e. action selection) at run-
time, rendering our approach feasible for real-time application domains.

The paper makes the following contributions.

• Policy Synthesis under probabilistic Constraints (PSyCo), a systematic
method for shaping rewards dynamically over the learning process based
on the learner’s confidence in requirement satisfaction. PSyCo accounts
for empirical policy synthesis and verification based on finite observations
by including requirements on confidence in synthesized results.

• Safe Neural Evolutionary Strategies (SNES) for learning safe policies under
probabilistic constraints. SNES leverages online Bayesian model checking
to obtain estimates of constraint satisfaction probability and a confidence
in this estimate.

2

• We empirically evaluate SNES showing it is able to synthesize policies that
satisfy probabilistic constraints with a required confidence. Code for our
experiments is available at https://github.com/lenzbelzner/psyco.

The paper is structured as follows: In Section 2 we introduce the PSyCo
method. Section 3 describes safe policy synthesis with the Safe Neural Evolu-
tionary Strategy SNES. In Section 4 we present the results of two experiments,
the so-called Particle Dance and Obstacle Run case studies. Sections 5 and 6
discuss related work and the limitations of our approach. Finally, Section 7
gives a short summary of PSyCo and addresses further work.

2 The PSyCo Method for Safe Policy Synthesis
under Probabilistic Constraints

Our approach to safe policy synthesis comprises three phases: System specifi-
cation as constrained Markov decision process with goal-oriented requirements,
system design and implementation via safe policy synthesis, and verification by
Bayesian model checking. As we will see, we use Bayesian model checking in
two ways: To guide the learning process towards feasible solutions, and to verify
synthesized policies.

2.1 PSyCo Overview

PSyCo comprises the four components.

• A domain specification given by a Markov decision process. We empha-
size that our approach is model-free, therefore only requiring a generative
model of the transition dynamics. The model-free formulation allows to
synthesize safe policies when the dynamics model is unknown or where an-
alytical computation of solutions wrt. transition dynamics is intractable
for closed form representations.

• A set of goal-oriented requirements including optimization goals and prob-
abilistic safety constraints. We restrict our further discussion to a single
optimization goal and a single safety constraint for the sake of simplicity.
We think that extending our results to sets of constraints is straightfor-
ward. We derive a cost function from requirements, effectively turning the
domain MDP into a constrained Markov decision process (CMDP).

• A safe reinforcement learning algorithm L yielding the parameters of a
policy.

• A verification algorithm V to check constraint satisfaction of the learned
policy in the given CMDP.

PSyCo leverages a learning algorithm L for synthesizing safe policies wrt. re-
wards, costs and constraints (i.e. optimizing goals and probabilistic constraints),
and a verification algorithm V for statistically verifying synthesized policies.

3

https://github.com/lenzbelzner/psyco

We optimize the parameters θ ∈ Θ of the policy wrt. rewards and costs of
the derived constrained CMDP m ∈ M with the safe reinforcement learning
algorithm L, taking the given probabilistic requirement ϕ ∈ Φ into account.

L : M × Φ→ Θ (1)

We verify the optimized parameters of the synthesized policy wrt. the given
CMDP and the constraint specification.

V : M × Φ×Θ→ B (2)

Given a CMDP m and a constraint ϕ, PSyCo works by learning and verifying
a policy as follows (where θ = L(m,ϕ)).

PSyCo : M × Φ→ B (3)

PSyCo(m,ϕ) = V (m,ϕ,L(m,ϕ)) = V (m,ϕ, θ) (4)

2.2 System Specification: Constrained Markov Decision
Processes and Goal-Oriented Requirements

Domain Specification as Constrained MDP The specification for a par-
ticular domain is given by a set S of states, a distribution over initial states
ρ : p(S), a set A of actions, and a reward function R : S ×A× S → R encoding
optimization goals for the agent.

We assume the domain has probabilistic transition dynamics T : p(S|S,A).
Note that T may be unknown to the agent.

A specification comprises a set of requirements or constraints given in a
bounded variant of PCTL that we define below. We also define a way to trans-
form these constraints into a cost function C : S×A×S → R. (S,A, T,R,C, ρ)
constitutes a constrained Markov decision process (CMDP) [4].

An episode ~e ∈ E is a finite sequence of transitions (si, ai, si+1, ri, ci),
si, si+1 ∈ S, ai ∈ A, ri = R(si, a, si+1), ci = C(si, a, si+1) in the CMDP. The se-
quence ~s = s0, ..., sn−1 denotes the path s(~e) of that episode and Pathn denotes
the set of all paths of length n.

In a CMDP, the task is to synthesize a deterministic, memoryless policy
π : S → A that maximizes reward while minimizing costs. We will formally
specify our particular task after introducing our safety specifications and their
transformation into cost functions below.

We emphasize that our approach is model-free, therefore only requiring a
generative model of the transition dynamics T . The model-free formulation al-
lows us to synthesize safe policies when the dynamics model is unknown or where
analytical computation of solutions wrt. transition dynamics is intractable for
closed form representations. Note that as we only rely on sampling the domain
for policy synthesis in the following, even partial observations and a generative
model of the reward function are sufficient for our approach to work.

4

Note that CMDPs are not restricted to a single cost function in general,
however in this paper we restrict ourselves to a single cost function for sake of
simplicity. We think that our results could be extended to sets of cost functions
straightforwardly.

Requirements We consider two kinds of goals: optimization goals and safety
constraints. Optimization goals are soft constraints and maximize an objective
function, constraints are behavioral goals which impact the possible behaviors
of the system, similar to e.g. maintain goals (which restrict the behavior of
the system) and achieve goals (which generate behavior), see KAOS [24]. In
our setting we relate the optimization goal with the rewards of the MDP and
require it to maximize the return:

Goal Optimize Return : maxE(R) (5)

where the return R is the cumulative sum of rewards R =
∑|~e|−1
i=0 ri in an

episode ~e and E(R) denotes the expectation of the return.
A suitable logic to express safety constraints in our setup is probabilistic

computation tree logic (PCTL), allowing to specify constraints on satisfaction
probabilities as well as bounding costs that may arise in system execution [55,
11]. We interpret PCTL formulas as bounded by the length of an episode n ∈ N
and consider typically formulas of the form

P≥preq (�φ) (6)

where �φ is a so-called path formula and φ is a propositional state formula built
according to the syntax for CTL state formulas (a is an atomic state proposition,
φ1, φ2 are state formulas).

φ = true | a | φ1 ∧ φ2 | ¬φ (7)

Formula 6 states that with at least probability preq, the constraint φ holds
in every state of the path of the episode (i.e. ∀k, 0 ≤ k ≤ n : sk |= φ). For the
formal semantics and a more general treatment of other formulas in PCTL, we
refer the reader to the appendix A.

Given that reinforcement learning is an empirical approach for synthesizing
policies, it is reasonable to require a confidence in any synthesized result. There-
fore we extend our constraints by an explicit operator Ccreq , requiring the rate
of false positive and false negative verification results to be bounded by 1−creq.
This allows to distinguish between aleatoric (i.e. domain-inherent, irreducible)
and epistemic (i.e. agent-inherent, reducible) uncertainty in the specification of
requirements. PSyCo enables to specify requirements for aleatoric uncertainty
by bounding the probability of a constraint violation and epistemic uncertainty
by specifying a bound on confidence. We denote our requirements wrt. con-
straint violation probability and agent confidence by

P≥preq (�φ) and C≥creq (8)

5

requiring that �φ holds with probability of at least preq and confidence of at
least creq (preq, creq ∈ [0, 1]).

Let us consider how to derive a cost function C from a given constraint. For
any propositional state formula φ we define the cost function C : S×A×S → R
such that

Cφ(s, a, s′)

{
= 0 if s′ � φ

> 0 otherwise
(9)

Note that another value of C for a violation of φ could be given by a more
general function of the post-state s′, giving the possibility to quantify the severe-
ness of a present violation.

The cumulative cost C of an episode ~e of length n with path ~s for a safety
constraint �φ is defined by the sum of violations of φ over the course of the
episode.

C�φ,~s = cφ(s0) +

n−1∑
i=0

Cφ(st, a, st+1) (10)

where the cost cφ(s0) of the initial state of an episode is computed with the
function cφ : S → R defined by

cφ(s) =

{
0 if s � φ

1 otherwise
(11)

In this way, we get a measure of how often an violation actually happened.
This provides a more fine-grained learning signal to the learning agent than a
strictly binary reward for satisfaction or violation.

Also note that the cumulative cost of an episode is zero exactly if no state
in the episode violates φ. Then the relation of a given safety constraint and the
cumulative cost of an episode ~e with path ~s is given by

~e |= �φ iff C�φ,~s = 0 (12)

For more general path formulas and details see appendix A and B.

2.3 Abstract Design: Safe Reinforcement Learning Algo-
rithm L

The task defined by a PSyCo specification is to synthesize a deterministic, mem-
oryless policy π : S → A that optimizes the following constrained optimization
problem for bounded episodes.

maxE(R) s.t. P≥preq(Cϕ = 0) and C≥creq (13)

We now discuss the learning algorithm L for synthesizing a policy optimizing
its parameters wrt. this constrained optimizaton problem.

6

We denote executing a policy parameterized by θ ∈ Θ in a CMDP m ∈ M
as follows, yielding a distribution over episodes.

m : p(E|Θ) (14)

We sample episodes from the distribution m, which we denote as follows.

~e ∼ m(θ) (15)

Note that we overload m to describe both the CMDP tuple and the prob-
ability distribution the CMDP yields when being executed with a policy and
constraints.

A policy that optimizes the constrained optimization problem (c.f. Equation
13) can be synthesized with safe reinforcement learning [31]. One approach is
to formulate the problem as a Lagrange function and use it as a reward function
for a reinforcement learning algorithm [4]. Given an episode sampled from an
MDP, we can compute cumulative return R and cost Cϕ for a given episode and
a given path formula ϕ as defined in Section 2.2. In general, we can transform
the problem

maxR s.t. Cϕ = 0 (16)

to its Lagrange formulation
maxR− λCϕ (17)

where λ ∈ R+ is a Lagrangian multiplier [13]. Without loss of generality, we
use an alternative formulation of Eq. 17 where λ ∈ (0, 1).

maxR− (1− λ)Cϕ (18)

We outline the general process of safe RL with function approximation in
Algorithm 1. Note that the expectation is not given in line 7 due to sampling of
episodes, returns and costs. Also note that Algorithm 1 does not ensure safety
while learning, but only when converging to a solution of the Lagrangian. The
key challenge in this approach is to determine an appropriate λ and to adjust
it effectively over the learning process.

Algorithm 1 Safe RL

1: procedure Safe RL(CMDP m ∈M , path formula ϕ)
2: initialize parameters θ
3: while learning do
4: generate episodes by sampling from m
5: determine return R and cumulative cost Cϕ
6: determine λ
7: update θ wrt. maxθ λR− (1− λ)Cϕ

7

2.4 Verification: Bayesian Model Checking Algorithm V

The empirical nature of reinforcement learning necessitates quantification of
confidence about properties of learned policies. We resort to statistical model
checking [47] to quantify confidence and verify policies accordingly, in particular
to Bayesian model checking (BMC) [41, 65, 15]. Bayesian model checking mod-
els epistemic uncertainty about satisfaction probability via sequential Bayesian
update of the posterior distribution. We leverage BMC in two ways: To guide
the learning process towards feasible solutions, and to verify synthesized policies.

Executing a policy in m generating an episode either satisfies or violates a
given bounded path formula without probabilistic operator. Thus, we can treat
the generation of multiple episodes as Bernoulli experiment with a satisfaction
probability psat. We want to estimate this probability in order to check whether
it complies with our probabilistic constraint preq, that is psat ≥? preq.

Rather than doing a point estimate of psat via maximum likelihood estima-
tion we assign a plausibility to each possible psat ∈ (0, 1), yielding a Bayesian
estimate. We assign a prior distribution to all possible values of psat, and then
compute the posterior distribution based on the observations O of cost con-
straint satisfaction or violation. The posterior distribution allows us to quantify
our confidence in whether a given required satisfaction probability is met.

In general, the posterior is proportional to the prior P (p) and the likelihood
of the observations given this prior.

P (p|O) ∝ P (O|p)P (p) (19)

In the particular case of a Bernoulli variable, the conjugate prior is the Beta
distribution [25], meaning that prior and posterior distribution are of the same
family (the Beta distribution in our case). The Beta distribution is defined by
two parameters α, β ∈ N+, which are given by the observed count of positive and
negative results of the Bernoulli experiment. We use a uniform prior α, β = 1
over possible values of psat, assigning the same plausibility to all possible values
before observing any data. This yields the following equality when assuming s
satisfactions and v violations of a given constraint.

P (psat|s, v) = Beta(s+ 1, v + 1) (20)

This update yields a posterior distribution over the possible values of psat
given the observation of satisfaction and violation. We can now compute the
probability mass csat of this posterior that lies above the required probability
preq to obtain a confidence about the current system satisfying our probabilistic
constraint.

csat =

1∫
preq

P (psat)dpsat = 1− Beta(s+ 1, v + 1).cdf(preq) (21)

Here, cdf denotes the cumulative density function of the Beta distribution.

8

Figure 1: Exemplary evolution of the belief distribution wrt. µ for a Bernoulli
bandit. See text for details.

Figure 1 shows the evolution of the belief distribution for an example Bernoulli
bandit with a probability µ = 0.6 of providing a reward when pulling the bandit.
We want to infer µ by sampling from the bandit, where each pull either yields
a reward or no reward. Initially, no data is observed and the prior is uniform,
representing that all values for µ are equally likely a prior (before seeing any
data). The images show the evolution of the belief distribution for an increasing
number of pulls and correspondingly observed rewards from top to bottom. An
increasing number of pulls yields a sharper (i.e. less uncertain) estimate of µ.
The probability mass (i.e. the blue integral) to the right of any value for µ is
the confidence that the true µ lies above the value. For example, the integral
to the right of 0.6 denotes the confidence that µ is indeed larger than 0.6.

We can think of the environment in combination with a particular policy
as our Bernoulli bandit, providing a reward when given constraints are satis-
fied. The agent wants to infer the satisfaction probability, and can quantify its
confidence in the result using Bayesian modeling as outlined above.

Algorithm 2 shows the pseudo code for Bayesian verification (BV) of a policy
that is parametrized with parameters θ. It repeatedly generates an episode (line
4) and computes its cumulative cost (line 5), evaluates whether it satisfies the
safety requirement by testing whether the episode cost equals zero (line 6), and
updates its confidence in satisfaction accordingly (line 7). BV terminates when
the confidence reaches a given bound (lines 8 and 9).

9

Algorithm 2 Bayesian verification

1: procedure BV(Policy parameters θ, CMDP m ∈ M , requirement
P≥preq(ϕ) and C≥creq)

2: s, v ← 0
3: loop
4: ~e ∼ m(θ)
5: compute Cϕ wrt. ~e
6: update s or v wrt. Cϕ =? 0
7: determine csat wrt. Eq. 21
8: if csat ≥ creq then return true

9: if 1− csat ≥ creq then return false

While this approach allows to verify a given policy after training, it does not
directly provide a way to synthesize a policy that is likely to be verified. We
will provide an approach to this problem in the next section.

3 Safe Neural Evolutionary Strategies

The previous section outlined a methodology for engineering safe policy syn-
thesis based on specification as a CMDP, safe RL and Bayesian verification. In
this section, we propose Safe Neural Evolutionary Strategies (SNES) for learn-
ing policies that are likely to be positively verified. SNES weights return and
cost in the process of policy synthesis based on Bayesian confidence estimates
obtained in the course of learning.

3.1 Evolutionary Strategies

Evolutionary strategies (ES) [59] is a gradient free, search-based optimization
algorithm that has shown competitive performance in reinforcement learning
tasks using deep learning for function approximation. ES is attractive as it is not
based on backpropagation and can therefore be parallelized straightforwardly.
Also, it does not require expensive GPU hardware for efficient computation.

The basic ES procedure is shown in Algorithm 3. ES works by maintaining
the parameters θ of the current solution. It then generates N ∈ N+ slightly
perturbed offspring from this solution to be evaluated on the optimization task
f , for example optimizing expected episode return of a policy in an MDP (lines 4
to 7). In our case, we use N normally distributed samples with a mean of 0 and
a standard deviation of σ. The current solution is then updated by moving the
solution parameters into the direction of offspring weighted by their respective
return, in expectation increasing effectiveness of the solution (lines 8 and 9).

We normalize a set of values X ∈ RN+

to zero mean and unit standard
deviation with the following normalization procedure.

normalize(X) =def ∀x ∈ X : x← x−mean(X)

std(X)
(22)

10

Algorithm 3 ES

1: procedure ES(population size N ∈ N+, perturbation rate σ ∈ R+, learning
rate α ∈ (0, 1], task f : Θ→ R)

2: initialize parameters θ
3: while learning do
4: for i ∈ {1, ..., N} do
5: εi ∼ Normal(0, σ,N) . perturb offspring
6: θi ← θ + εi
7: Ri ← f(θi) . determine return

8: normalize(
⋃
iRi)

. update solution
9: θ ← θ + α

σN

∑N
j=1Rj ∗ εj

3.2 Safe Neural Evolutionary Strategies

Safe Neural Evolutionary Strategies (SNES) combines ES with Bayesian ver-
ification in the learning process to adaptively weight return and cost in the
course of policy synthesis such that the resulting policy is likely to be positively
verified.

SNES is an instance of safe RL based on basic ES for parameter optimization,
additionally performs a Bayesian verification step in each iteration and uses the
current verification confidence for balancing return maximization and constraint
satisfaction. The resulting confidence estimate in positive verification is then
used to determine the weighting λ of return and cost.

In order to account for confidence requirements, the confidence estimate csat
from Bayesian verification is set in relation to the required confidence creq such
that if confidence in constraint satisfaction is lower than required, only costs
are reduced in the parameter update. If the constraint is satisfied with enough
confidence, the influence of return is gradually increased.

λ← max(0, csat − creq)

1− creq
(23)

SNES is shown in Algorithm 4. SNES generates offspring by adding noise to
the parameters of the current policy (lines 7 and 8). It evaluates the offspring
by generating an episode from the MDP (line 9) and computes its return and
cost (line 10), and whether it satisfies or violates the requirement (line 11). It
uses this information to update the Lagrangian of the constrained optimization
problem to weight return and cost in the learning process (lines 12 to 14).
Learning is done by updating parameters of a policy, weighted accordingly to
normalized return and cost (lines 15 to 18).

11

Algorithm 4 Safe Neural Evolutionary Strategies (SNES) for policy synthesis
under probabilistic constraints

1: procedure SNES(population size N ∈ N+, perturbation rate σ ∈ R+,
learning rate α ∈ (0, 1], CMDP m ∈M , requirement P≥preq(ϕ) and C≥creq)

2: initialize parameters θ
3: s, v ← 0 . initally no satisfying or violating episodes
4: λ← 1
5: while learning do
6: for i ∈ {1, ..., N} do
7: εi ∼ Normal(0, σ,N) . perturb current parameters
8: θi ← θ + εi
9: ~e ∼ m(θi) . evaluate perturbation

10: compute Ri, Cϕ,i wrt. ~e
11: s← s+ I(Cϕ,i = 0) . count satisfying episodes

12: v ← v +N − s . number of violating episodes
13: csat ← 1− Beta(s+ 1, v + 1).cdf(preq) . determine confidence

14: λ← max(0, csat − creq)

1− creq
. set λ wrt. requirement

15: normalize(
⋃
iRi) . normalize return and cost

16: normalize(
⋃
i Cϕ,i)

17: θ ← θ + αλ
σN

∑N
j=0Rj ∗ εj . update parameters

18: θ ← θ − α(1−λ)
σN

∑N
j=0 Cϕ,j ∗ εj

Remark: SNES vs. maximum likelihood calibration of the Lan-
grangian To show the effect of the Bayesian treatment and the necessity
of computing confidence for adapting λ in the learning process, we compared
SNES to a naive variant for tuning λ (for results cf. Section 4.1.2). Here, we
use a maximum likelihood estimate p̂sat for satisfaction probability and adjust
λ according to the following rule, replacing lines 13 and 14 in Algorithm 4.

p̂sat ←
s

N
(24)

λ← max(0, p̂sat − preq)

1− preq
(25)

Note that the naive approach does not account for confidence in its result.

4 Experiments

In this section, we report our empirical results obtained when evaluating SNES
for two domains:1

1Code for our experiments is available at https://github.com/lenzbelzner/psyco.

12

https://github.com/lenzbelzner/psyco

• The Particle Dance domain has continuous state and action spaces, and a
fixed episode length. Its initial policy is likely to satisfy given constraints
when starting the learning process.

• The Obstacle Run domain has discrete state and actions spaces, and has
an adaptive episode length based on a termination criterion. Here, the
initial policies are likely to violate given constraints.

For each of the domains, we describe the setup of our experiment by pre-
senting the respective domain, the rewards, costs, and requirements, the neural
network for modeling the policy, and the parameters for performing the ex-
periments. Then we analyze the episode return, satisfaction probability and
confidence, and show the results of Bayesian verification for both domains. For
the Particle Dance domain, we additionally compare the SNES calibration of
the Langrangian with a maximum likelihood approach.

4.1 Particle Dance

In the Particle Dance domain, an agent has to learn to follow a randomly moving
particle as closely as possible while keeping a safe distance. The Particle Dance
domain is continuous with fixed episode length, and an initial policy is likely to
satisfy given constraints.

4.1.1 Setup

Agent and particle have a position x ∈ [−2, 2]2 and a velocity v ∈ [−0.1, 0.1]2.
The state space S describes the positions and velocities of both agent and par-
ticle. We restrict positions and velocities to their respective boundaries by
clipping any exceeding values. The state also keeps count of agent-particle col-
lisions nc ∈ N (see below for their definition). Note that the collision counter
is not observed by the agent in our setup, i.e. is not used as input for training
and querying its policy.

S : [−2, 2]4 × [−0.1, 0.1]4 × N (26)

The initial positions are sampled from [−1, 1]4 uniformly at random. The initial
velocities are fixed to zero, as is the initial collision counter.

ρ : U([−1, 1]4)× [0, 0]4 × 0 (27)

The agent can choose its acceleration at each time step. This yields the contin-
uous action space A.

A : [−0.1, 0.1]2 (28)

The agent is accelerated at each time step by a value a ∈ [−0.1, 0.1]2. The par-
ticles’ acceleration is sampled uniformly at random at each time step. Positions
are updated wrt. current velocities. We define a collision radius dmin ∈ R+

and induce a cost when the agent is closer to the particle than this radius and

13

update nc accordingly. Let s ∈ S be the systems current state and a ∈ A be
the action executed by the agent, then the transition distribution T : p(S|S,A)
is given by the following sequence of assignments:

s = (xagent, xparticle, vagent, vparticle, nc)

T (s, a) ∼

vparticle ← vparticle + U [−0.1, 0.1]2

xparticle ← xparticle + vparticle

vagent ← vagent + a

xagent ← xagent + vagent

nc ← nc + I(d(xagent, xparticle) < dmin)

Note that T is not known by the agent and detailed here only to render our
experimental setup reproducible.

Reward and Safety Predicate The agent gets a reward at each step of an
episode motivating it to get as close to the particle as possible. We define a
collision radius dmin ∈ R+ and induce a cost when the agent is closer to the
particle than this radius. We also define a collision counter nc ∈ N as an atomic
proposition of states which allows us to specify a number of collisions nmax. Note
that nc is not observed by the agent in our experiments. We set nmax ∈ 1, 4 and
dmin = 0.1 in our experiments. Let s′ = (x′agent, x

′
particle, v

′
agent, v

′
particle, n

′
c).

R(s, a, s′) = −d(x′agent, x
′
particle) (29)

φ = d(x′agent, x
′
particle) ≥ dmin ∨ n′c ≤ nmax (30)

Requirements and Cost The reward computes the negative distance be-
tween particle and agent. Minimizing the distance means maximizing the re-
ward. Thus the optimizing goal is to maximize the expectation of the return R
(see (5)):

Goal Optimize Return : maxE(R) (31)

The safety constraint requires the agent to keep a minimum distance of the
particle except in nmax cases. We set the required probability for satisfying the
constraint preq = 0.85 and the required confidence creq = 0.98.

Goal Constraint BoundedCollisions : P≥0.85(�φ) and C≥0.98 (32)

The cost induced by the safety constraint is given by equation 10.

Policy Network We model the policy of our agents as a feedforward neu-
ral network with parameters θ. Our network consists of an input layer with
dimension 8 (position and velocity of agent and particle), a hidden layer with
dimension 32, and has an output dimension of 2 (two dimensions of accelera-
tion). Let θ = {θ1, θ2} be the networks’ weights in the input and hidden layer
respectively, and let f1 and f2 be non-linear activation functions, with f1 being

14

a rectified linear unit [33] and f2 being tanh in our case. Then, the networks
output is given as follows.

y ← f2(θ2f1(θ1x+ 1) + 1) (33)

Other Parameters We report our results for episode length n = 50, pop-
ulation size N = 20, learning rate α = .01 and perturbation rate σ = .1.
Experiments with other parameters yielded similar results.

Experimental Setup Each experimental run comprised learning a policy
with SNES over 60000 episodes. Every 1000 episodes, we performed Bayesian
verification for a maximum of 1000 episodes (outside the learning loop of SNES)
to evaluate the policy synthesized by SNES up to that point.

We repeated the experiment five times and show mean values as solid lines
and standard deviation by shaded areas in our figures.

A Note on Performance The performance of SNES depends on the neu-
ral network architecture, the simulation of the MDP transitions and the used
hardware. In our setup using a laptop computer, each step took less than a
millisecond of execution time.

4.1.2 Results

The SNES agent learns to follow the particle closely. In Figure 2 we see sample
trajectories of the particle and the agent (color gradients denote time). We
observe that the synthesized policy learned the task to follow the particle suc-
cessfully.

We can observe the effect of SNES learning unconstrained and constrained
policies on the obtained episode return in Figure 3. Return and constraint define
a Pareto front in our domain: Strengthening the constraint reduces the space
of feasible policies, and also reduces the optimal return that is achievable by a
policy due to increased necessary caution when optimizing the goal, i.e. when
learning to follow the particle as close as possible.

Figure 4 shows the proportion of episodes that satisfy the given requirement.
We can see that the proportion closely reaches the defined bound, shown by the
dashed vertical line. Note that the satisfying proportion is closely above the
required bound.

Figure 5 shows the confidence of the learning agent in its ability to satisfy
the given requirement based on the observations made in the learning process
so far. The confidence is determined from the Beta distribution maintained
by SNES over the course of training. Note that the confidence is mostly kept
above the confidence requirement given in the specification. This shows SNES
is effectively incorporating observations, confidence and requirement into its
learning process.

Figure 6 shows the results of Bayesian verification (see Alg. 2) performed
throughout the learning process every 1000 episodes. Here, we fix the current

15

Figure 2: Sample trajectories of the particle (light to dark blue, color gradient
denotes time) and the agent (light to dark red). The shown trajectory has been
learned by an unconstrained agent and achieves a return of ca. −15 without
incurring a collision.

Figure 3: Episode return for various constraints. Constraint 0.0 denotes uncon-
strained policy synthesis.

16

Figure 4: Proportion of episodes satisfying cost requirement.

Figure 5: Confidence csat in satisfying specification based on observations in the
course of learning.

17

Figure 6: Confidence obtained when exhaustively verifying stationary current
policies over the course of learning with Bayesian verification BV every 1000
episodes.

policy, and perform Bayesian verification of the policy wrt. the given require-
ment. The quantity measured is the confidence in requirement satisfaction after
either surpassing creq (i.e. the policy satisfies the requirement with high confi-
dence), falling below 1− creq (i.e. the policy violates the requirement with high
confidence) or after a maximum of 1000 verification episodes. We can see that
the confidence in having learned a policy that satisfies the requirement is in-
creasing over the course of training. However, as the goals of optimizing return
and satisfying collision constraints are contradictory in the Particle Dance do-
main, SNES may still produce policies that eventually violate the specification.

Figures 7, 8 and 9 show return and collisions (i.e. cost) obtained, split by
episodes that satisfy the constraint and those that violate it. We can see the
violating episodes are more effective in terms of return but keep collisions well
below the requirement, highlighting again the Pareto front of return and cost
given by our domain. Note that we smooth the shown quantity over the last
100 episodes, and that collision only can take discrete values. This may explain
that the shown quantity is well below the theoretically given boundaries (one
or four in our case). SNES is able to learn policies that exploit return in the
defined proportion of episodes, and to optimize wrt. the Pareto front of return
and cost otherwise.

Results on SNES vs. maximum likelihood calibration of the La-
grangian We compared SNES’ Bayesian approach to calibrating λ (Eq. 23) to

18

Figure 7: Return of episodes satisfying (left) and violating (right) constraints.

Figure 8: Return of episodes satisfying (left) and violating (right) constraints
as shown in Figure 7, showing the final episodes in more detail. The less con-
strained policy is able to optimize its return more effectively.

19

Figure 9: Number of collision events (i.e. cost) of episodes satisfying (left) vs.
violating (right) constraints.

a maximum likelihood variant (Eq. 25). Figures 10, 11 and 12 show return and
cost for both approaches, separated by satisfying and violating episodes. We
show the results for nmax = 1, aggregated for 12 repetitions of the experiment.

The MLE approach over-satisfies the given constraint, and consequently does
not yield as high returns as SNES. In contrast, SNES is able to find a local Pareto
optimum of return and constraint satisfaction.

4.2 Obstacle Run

In the Obstacle Run domain, an agent has to reach a target position while
not colliding with a moving obstacle. In contrast to Particle Dance, Obstacle
Run has discrete states and actions, and episodes terminate when the agent
reaches the target position. Also, an initial policy is likely to violate the given
constraints when starting the learning process.

4.2.1 Setup

The setup is similar to the Particle Dance, except that positions are discrete
with x ∈ {0, ..., 4}2 and that the agent does not change the velocity but only the
movement direction in each step. The state space S : {0, ..., 4}4 × N consists of
the positions of agent and obstacle and of a collision counter nc ∈ N. As in Par-
ticle Dance, the collision counter is not used as input for training and querying
the agent’s policy and positions are restricted to their respective boundaries by
clipping any exceeding values.

The initial positions are sampled from {0, ..., 4}4 uniformly at random. The
initial collision counter is set to zero.

ρ : U({0, ..., 4}4)× 0 (34)

20

Figure 10: Return of episodes satisfying (left) and violating (right) constraints
for SNES and MLE of p̂sat.

Figure 11: Return of episodes satisfying (left) and violating (right) constraints
for SNES and MLE of p̂sat as shown in Figure 10, showing the final episodes
in more detail. SNES is able to exploit the Pareto front of optimization and
constraints more effectively.

21

Figure 12: Proportion of satisfying episodes for SNES and MLE of p̂sat.

The agent can choose its movement direction at each time step. This yields
the discrete action space A.

A : {(0, 0), (1, 0), (0, 1), (−1, 0), (0,−1)} (35)

The agent is moves at each time step by according to its chosen action. The
obstacle’s movement is sampled uniformly at random from A at each time step.
Positions are updated wrt. actions. A collision occurs if agent and obstacle
share the same position, and update nc accordingly. Let s ∈ S be the systems
current state and a ∈ A be the action executed by the agent, then the transition
distribution T : p(S|S,A) is given by:

s = (xagent, xobstacle, nc)

T (s, a) ∼

xobstacle ← xobstacle + U(A)

xagent ← xagent + a

nc ← nc + I(xagent = xobstacle)

Note that T is not known by the agent and detailed here only to render our
experimental setup reproducible.

We fix the target position xtarget = (0, 0) and end an episode if xagent =
xtarget.

Requirements, Reward, and Cost The agent gets a reward of −1 at each
step of an episode motivating it to reach the target as fast as possible. The

22

optimizing goal is to maximize the expectation of the return R (see (5)). Note
that this is achieved by reaching the target position as fast as possible.

R(s, a, s′) = −1 (36)

Goal Optimize Return : maxE(R) (37)

The safety constraint requires the agent to avoid the (moving) obstacle ex-
cept in nmax cases. We set the required probability for satisfying the constraint
preq = 0.9 and the required confidence creq = 0.98.

φ = xagent 6= xtarget ∨ nc ≤ nmax (38)

Goal Constraint BoundedCatches : P≥0.9(�φ) and C≥0.98 (39)

The cumulative cost is again given by equation (10). In our experiments we set
nmax ∈ 1, 4 .

Policy Network As in Particle Dance, the policy network is a feedforward
neural network with a hidden layer of dimension 32 and its output is computed
by equation (33). The input layer has dimension 4 (position of agent and ob-
stacle) and the output layer has dimension 5.

Actions are chosen by identifying the index of the maximum output and
choosing one of the five available actions accordingly.

Other Parameters As for Particle Dance we report our results for a maxi-
mum episode length n = 50, population size N = 20, learning rate α = .01 and
perturbation rate σ = .1. Experiments with other parameters yielded similar
results.

Experimental Setup Each experimental run comprised learning a policy
with SNES over 20000 episodes. Every 1000 episodes, we performed Bayesian
verification for a maximum of 1000 episodes (outside the learning loop of SNES)
to evaluate the policy synthesized by SNES up to that point.

We repeated the experiment five times and show mean values as solid lines
and standard deviation by shaded areas in our figures.

4.2.2 Results

We can observe the effect of SNES learning unconstrained and constrained poli-
cies on the obtained episode return in Figure 13. Constraint 0.0 denotes uncon-
strained policy synthesis. Return and constraint define a Pareto front in our
domain: Strengthening the constraint reduces the space of feasible policies, and
also reduces the optimal return that is achievable by a policy due to increased
necessary caution when optimizing the goal, i.e. when learning to avoid the
obstacle as good as possible.

Figure 14 shows the proportion of episodes that satisfy the given require-
ment. We can see that the easily surpasses defined bound, shown by the dashed

23

vertical line. In contrast to Particle Dance, the agent is able to find policies
that easily satisfy the given constraint by reaching the target as fast as possible,
thus reducing the probability of a collision.

Figure 13: Obstacle Run: Episode re-
turn for various constraints.

Figure 14: Obstacle Run: Proportion
of episodes satisfying cost requirement.

Figure 15 shows the confidence of the learning agent in its ability to satisfy
the given requirement based on the observations made in the learning process
so far. The confidence is determined from the Beta distribution maintained by
SNES over the course of training. The agent is able to learn a policy that allows
to both optimize return and satisfy the given constraint in a stable way.

Figure 16 shows the results of Bayesian verification performed throughout
the learning process every 1000 episodes. In contrast to the Particle Dance
domain, in the Obstacle Run domain the agent is likely to violate the constraint
at the start of the learning process. Therefore, in the beginning it tends to
underestimate its ability to satisfy the constraint, as can be seen from comparing
its confidence while learning (Figure 15) with the (offline) confidence acquired
from verifying (Figure 16).

Figures 17 and 18 show return and collisions (i.e. cost), split by episodes
that satisfy the constraint and those that violate it. We can see the violating
episodes are more effective in terms of return but keep collisions well below the
requirement, highlighting again the Pareto front of return and cost given by
our domain. SNES is able to learn policies that exploit return in the defined
proportion of episodes, and to optimize wrt. the Pareto front of return and cost
otherwise.

5 Related Work

For synthesizing policies of autonomous and adaptive systems, PSyCo comprises
a systematic development method, algorithms for safe and robust reinforcement
learning, and a Bayesian verification method which is related to MDP model
checking and statistical model checking approaches. In this section we discuss
related work in these areas.

24

Figure 15: Obstacle Run: Confidence
csat in satisfying specification based on
observations in the course of learning.

Figure 16: Obstacle Run: Confidence
obtained when exhaustively verifying
stationary current policies over the
course of learning with Bayesian veri-
fication BV every 1000 episodes.

Systematic Development of Adaptive Systems PSyCo borrows its no-
tion of goals from KAOS [24], an early method for goal-oriented requirements
engineering. KAOS distinguishes hard and soft goals, is formally based on lin-
ear temporal logic, and proposes activities for refining the goals and deriving
operation requirements which serve as the basis for system design. In contrast
to PSyCo, it does neither cover system design nor implementation.

SOTA [1] is a modern requirements engineering method for autonomous
and collective adaptive systems with a specific format for goals. Properties of
goals can be analyzed by a modelchecking tool [2] based on LTL formulas and
the LTSA modelchecker [49]. SOTA does neither address system design nor
implementation; but it was used for requirements specification in the systematic
construction process for autonomous ensembles [64] of the ASCENS project [63].

The ensemble development life cycle EDLC [18, 38] of ASCENS is a general
agile development process covering all phases of system development and relat-
ing them with the “runtime feedback control loop” for awareness and adaptation.
Its extension “Continuous Collaboration” [37] integrates a machine-learning ap-
proach into EDLC, but as EDLC, it does not address (policy) synthesis.

The following papers address more specific development aspects. In [16] a
generic framework for modeling autonomous systems is presented which is cen-
tered around simulation-based online planning; Monte Carlo Tree Search and
Cross Entropy Open Loop Planning are used for online generation of adaptive
policies, but safety properties are not studied. In [26], Dragomir et al. propose
an automated design process based on formal methods targeting partially ob-
servable timed systems. They describe how to automatically synthesize runtime
monitors for fault detection, and recovery strategies for controller synthesis.

25

Figure 17: Obstacle Run: Return of episodes satisfying (left) and violating
(right) constraints.

Figure 18: Obstacle Run: Number of collision events (i.e. cost) of episodes
satisfying (left) vs. violating (right) constraints.

26

Multi-Objective Reinforcement Learning and Preference-Based Plan-
ning Many applications have not only one but several optimising goals. Multi-
objective optimisation [23] and multi-objective reinforcement learning [27] aim
at simultaneously optimising several, usually conflicting objective functions.
The solution is not unique, but consists of a set of so-called Pareto optimal
policies which cannot be further improved in any objective without worsening
at least another objective. Maintaining such multi-objective Pareto fronts is
significantly more complex than dealing with a single optimizing goal. Thus
in many approaches, the multi-objective problem is transformed into a single
objective problem by using so-called scalarisation functions to combine the val-
ues of the different objectives into a single value. The resulting single objective
problem can then be solved by standard learning and planning algorithms, for
an overview see [57]. Using a Lagrangian approach, PsyCo transforms a multi-
objective problem into a single objective problem.

Another related approach for optimizing behavior wrt. multiple user goals
(i.e. preferences) is preference-based planning and learning where (user) pref-
erences determine the quality of plans or a policies [12, 60]. Instead of using
numerical rewards, policies and plans are compared w.r.t partial order “prefer-
ence” relations.

Model Checking for MDPs PSyCo provides a framework for synthesizing
policies that maximize return while being conform to a given probabilistic re-
quirement specification. A related line of research is treating the problems of
verifying general properties of a given MDP, such as reachability. Here, verifica-
tion is done either for all possible policies, or for a particular fixed one turning
the MDP into a Markov chain to be verified. [11, 9] present an overview of
model checking techniques for qualitative and quantitative properties of MDPs
expressed by LTL and PCTL formulas. For a recent review of this field see [10].
There are also software tools available, e.g. the PRISM model checker [45].

Statistical Model Checking Model checking is known to be time and mem-
ory consuming; its use is restricted to small and middle sized domains. Statis-
tical model checking [47, 46] is a line of research for addressing this problem.
In statistical model checking multiple executions of a system are observed and
used for estimating the probabilities of system traces and giving results within
confidence bounds. While our work builds on these ideas, policy synthesis is
not a core aspect of statistical model checking: Usually information about the
verification process is not induced into a learning process [47, 22, 45]. Other
prior work has discussed the Bayesian approach to model checking based on
the Beta distribution, which is a key component of the PSyCo framework. In
contrast to our work, these works did not use information about the verification
process to guide policy synthesis [41, 15].

Safe and Robust Reinforcement Learning Closely related to our ap-
proach of verifiable policy synthesis are works in the area of safe reinforcement

27

learning modeling the problem in terms of a constrained optimization problem
[56, 32, 21, 28]. In contrast to our approach, these approaches do not reason
about the statistical distribution of costs and corresponding constraint viola-
tion, nor do they provide a statistically grounded verification approach of given
constraints.

[29, 30] propose a method for safe reinforcement learning which combines
verified runtime monitoring with reinforcement learning. In contrast to our
approach, their method requires a fully verified set of safe actions for a subset
of the state space. While it is an interesting approach guaranteeing safety in
the modeled subset, it is infeasible to perform exhaustive a-priori verification
for very large or highly complex MDPs.

A notable exception is proposed in [20], which provides statistical optimiza-
tion wrt. the cost distribution tail. In contrast, PSyCo provides (a) a framework
integrating formal goal specifications and policy synthesis and (b) Bayesian ver-
ification of synthesized polices including statistical confidence in verification
results. While the cost distribution tail adequately captures aleatoric uncer-
tainty inherent to the domain, to the best of our knowledge, leveraging the
Beta distribution to represent a learning agent’s epistemic confidence in con-
straint satisfaction and adapting the Lagrangian of a constraint optimization
problem accordingly is a novel approach.

Other approaches to learning safe behavior are using a given or learned model
of the environment [42, 34, 35, 8] or learning shields in addition to a policy
assuring that only safe actions are executed [3, 17, 7, 43, 40]. Also, there are
approaches to synthesizing policies maximizing the probability of satisfying LTL
constraints without maximizing reward at the same time [36]. These approaches
are orthogonal to our work, and using a learner’s confidence as a learning signal
in these setups could be an interesting venue for further research.

Another direction to safe reinforcement learning is the use of adversarial
methods, which treat the agent’s environment as an adversary to allow for
synthesis of policies that are robust wrt. worst case performance or differences in
simulations used for learning and real world application domains [54, 44, 53, 39].
These approaches optimize for worst-case robustness, but do not provide formal
statistical guarantees on the resulting policies.

Another important line of research deals with the quantification of uncer-
tainty and robustness to out-of-distribution data in reinforcement learning, en-
abling systems to identify their “known unknowns” [61, 48]. This is important
also from a verification perspective, as any verification results achieved before
system execution are valid if the data distribution stays the same at runtime.

6 Limitations

While SNES is able to incorporate information from the learning process into
the synthesis of feasible policies given probabilistic constraints as requirements,
there are a number of limitations to be aware of.

28

Feedback loops and non-stationary data As the policy is changing in
the course of learning, the estimation of satisfaction probability and confidence
therein is done on data that is generated by a non-stationary process. In the
other direction, the current estimate is used by SNES to update the policy,
thus creating a feedback loop. Therefore, the estimates made by SNES while
learning are to be interpreted with care: The degree of non-stationarity may
severely influence the validity of the estimates. This does however not affect
a posteriori verification results, which are obtained for stationary CMDP and
policy.

Lack of convergence proof While our current approach leveraging the Beta
distribution for adaptively adjusting the Lagrangian yields interesting and ef-
fective results empirically, SNES lacks rigorous proofs of convergence and local
optimality so far. We consider this a relevant direction for future work.

Bounded verification In its current formulation, SNES performs bounded
verification for a given horizon (i.e. episode length). It is unclear how to inter-
pret or model probabilistic system requirements and satisfaction for temporally
unbound systems, as in the limit every possible event will occur almost surely.
A promising direction could be the integration of rates as usually performed in
Markov chain analysis, or to resort to average reward formulations of reinforce-
ment learning [50]. Another approach could involve learning accepting sets of
Büchi automata based on the MDP structure with non-determinism resolved by
the current policy.

No termination criterion PSyCo combines optimization goals with con-
straints. While it is possible to decide whether constraints are satisfied, or at
least to quantify confidence in the matter, it is usually not possible to decide
whether the optimization goal has been reached or not. One approach to this
would be to formulate requirements wrt. reward as constraints as well, such
as requiring the system to reach a certain reward threshold [14]. In this case,
policy synthesis could terminate when all given requirements are satisfied with
a certain confidence.

7 Conclusion

We proposed to leverage epistemic uncertainty about constraint satisfaction of
a reinforcement learner in safety critical domains. We introduced Policy Syn-
thesis under probabilistic Constraints (PSyCo), a framework for specification of
requirements for reinforcement learners in constrained settings, including confi-
dence about results. PSyCo is organized along the classical phases of systematic
software development: a system specification comprising a constrained Markov
decision process as domain specification and a requirement specification in terms
of probabilistic constraints, an abstract design defined by an algorithm for safe

29

policy synthesis with reinforcement learning and Bayesian model checking for
system verification.

As an implementation of PSyCo we introduced Safe Neural Evolutionary
Strategies (SNES), a method for learning safe policies under probabilistic con-
straints. SNES is leveraging online Bayesian model checking to obtain estimates
of constraint satisfaction probability and a confidence in this estimate. SNES
uses the confidence estimate to weight return and cost adaptively in a princi-
pled way in order to provide a sensible optimization target wrt. the constrained
task. SNES provides a way to synthesize policies that are likely to satisfy a
given specification.

We have empirically evaluated SNES in a sample domain designed to show
the potentially interfering optimization goals of maximizing return while reach-
ing and maintaining constraint satisfaction. We have shown that SNES is able
to synthesize policies that are very likely to satisfy probabilistic constraints.

We see various directions for future research in safe system and policy syn-
thesis. As a direct extension to our work, it would be interesting to extend
other reinforcement learning algorithms with our approach of online adaptation
of the Lagrangian with Bayesian model checking, such as value-based, actor-
critic and policy gradient algorithms. We also think that notions for unbound
probabilistic verification are of high interest for policy synthesis with general
safety properties. Another direction could be the inclusion of curricula into the
learning process, gradually increasing the strength of the constraints over the
course of learning, thus potentially speeding up the learning process and allow-
ing for convergence to more effective local optima. Finally, we think that safe
learning in multi-agent systems dealing with feedback loops, strategic decision
making and non-stationary learning dynamics poses interesting challenges for
future research.

Acknowledgements We thank the anonymous reviewers for their construc-
tive criticisms and helpful suggestions.

A Finite PCTL for MDPs

We adapt probabilistic computation tree logic (PCTL) to finite sequences yield-
ing a suitable logic to express safety constraints in our setup, allowing to specify
constraints on satisfaction probabilities as well as bounding costs that may arise
in system execution [55, 11].

In our approach, a PCTL constraint is of the form PJ(ϕ) and specifies a
bound J ⊆ [0, 1] on the probability that ϕ holds. The path formula ϕ consists
of a single modal operator©, U, U≤m,�, or ♦ and propositional state formulas
as arguments. More formally, the path formula ϕ is formed according to the
following syntax.

ϕ =©φ | φ1Uφ2 | φ1U≤mφ2 | �φ | ♦φ (40)

30

Here m ∈ N and φ, φ1, φ2 are propositional state formulae built over atomic
formulas using the constant true and the propositional connectives ¬,∧, and ∨.

We interpret PCTL path formulas as bounded by the length of an episode
and define the semantics by a satisfaction relation |=≤n over finite episodes of
a fixed length n where w.l.o.g. we assume n ≥ max(m, 2).

The semantics ~e |=≤n ϕ is defined as follows for finite sequences ~e = e1, ..., en
of episodes of length n with ei = (si−1, ai−1, si, ri, ci) for i = 1, ..., n and |~e| = n.

~e |=≤n ©φ ⇐⇒ s1 |= φ (41)

~e |=≤n φ1Uφ2 ⇐⇒ ∃j, 0 ≤ j ≤ n : sj |= φ2 ∧ ∀k, 0 ≤ k < j : sk |= φ1 (42)

~e |=≤n φ1U≤mφ2 ⇐⇒ ∃j, 0 ≤ j ≤ m : sj |= φ2 ∧ ∀k, 0 ≤ k < j : sk |= φ1 (43)

~e |=≤n �φ ⇐⇒ ∀k, 0 ≤ k ≤ n : sk |= φ (44)

The satisfaction relation s |= φ for propositional formulas φ in state s is
defined as usual. The semantics of the probability operator is given by the
probability measure Prs of all episodes of length n starting at state s and
satisfying a path formula ϕ.

s0 |= PJ(ϕ) if Prs0{~e ∈ Episodesn : ~e |=≤n ϕ} ∈ J (45)

As usual we define ♦φ =def true U φ. Then the � modality can be expressed
as follows (see e.g. [9]): PJ(�φ) =def P[0,1]\J(♦¬φ).

This semantics coincides with the usual PCTL semantics over infinite paths.
To show this we consider infinite sequences ~e∞ of episodes and their infinite
sequences s0, s1, s2, . . . of states which we denote by s(~e∞). Let ~e∞|n denote
the prefix (or starting sequence) of length n of ~e∞.

We define the n-bounded relativization ϕ≤n of a path formula ϕ (with n ≥
max{2,m}) as follows:

(©φ)≤n =def ©φ (46)

(φ1Uφ2)≤n =def φ1U
≤nφ2 (47)

(φ1U
≤mφ2)≤n =def φ1U

≤mφ2 (48)

(�φ)≤n =def �
≤nφ (49)

(♦φ)≤n =def true U≤n φ (50)

where the auxiliary box modality �≤n is semantically defined by

s0, s1, s2, . . . |= �≤nφ ⇐⇒ ∀k, 0 ≤ k ≤ n : sk |= φ (51)

For any path formula, the semantics over finite episodes of length n coincides
with the standard PCTL semantics of its n-bounded relativization; since we
consider only bounded path formulas, the same holds for a leading probability
operator:

31

Fact 1 For any infinite sequence ~e∞ of episodes with initial state s0, any path
formula ϕ, and any n with n ≥ max{2,m+ 1}, the following holds:

s(~e∞) |= ϕ≤n ⇐⇒ ~e∞|n |=≤n ϕ (52)

s0 |= PJ(ϕ≤n) ⇐⇒ s0 |=≤n PJ(ϕ) (53)

B Cost Function and Cumulative Cost

For any propositional state formula φ we define a cost function Cφ : S×A×S →
R for a given CMDP for all a ∈ A, s, s′ ∈ S.

Cφ(s, a, s′) =

{
0 if s′ � φ

1 otherwise
(54)

Cφ assigns a cost for the value of φ in the post state of any transition.
The cost of the initial state of an episode can be computed with the function

cφ : S → R defined by

cφ(s) =

{
0 if s � φ

1 otherwise
(55)

Let ~e be an episode of length n, m ≤ n, and ~s = s0, ..., sn = s0 ◦ ~s′ denote
the path s(~e) of that episode.

For any path ~s, the cumulative cost function C�φ : Pathn → R of path
formula �φ counts the number of violations of the state formula φ in ~s; the
cumulative cost is 0 if there are no violations, if �φ holds for ~e. We give here a
specification of C�φ based on the recursively defined cost of the corresponding
bounded path formula C�≤nφ.

C�φ,~s = C�≤nφ,~s (56)

C�≤mφ,~s = cφ(s0) + C′�≤mφ,~s (57)

C′�≤mφ,~s =

{
0 if m = 0

Cφ(s0, a0, s1) + C′�≤m−1φ,~s if m > 0
(58)

Clearly definition 56 is equivalent to the sum in equation 10. The cumulative
of ©φ is the cost of the first action of the episode. For φ1Uφ2 and φ1U

≤mφ2
we count the number of violations of φ1 and possibly the last violation of φ2.

C©φ,~s = Cφ(s0, a0, s1) (59)

Cφ1Uφ2,~s = Cφ1U≤nφ2,~s (60)

Cφ1U≤mφ2,~s = cφ2
(s0)

(
cφ1

(s0) + C′φ1U≤mφ2,~s

)
(61)

C′φ1U≤mφ2,~s =

{
1 if m = 0

Cφ2
(s0, a0, s1)

(
Cφ1

(s0, a0, s1) + C′φ1U≤m−1φ2,~s

)
if m > 0

(62)

32

The cumulative costs of a path constraint are 0 if the path constraint holds
for the episode.

Fact 2 Let ~e be any episode and ϕ any path formula. Then the following holds:

~e � ϕ iff Cϕ,s(~e) = 0 (63)

References

[1] D. Abeywickrama, M. Mamei, and F. Zambonelli. The SOTA approach to
engineering collective adaptive systems. International Journal on Software
Tools for Technology Transfer, 1, 2020.

[2] Dhaminda B. Abeywickrama and Franco Zambonelli. Model checking goal-
oriented requirements for self-adaptive systems. In Miroslav Popovic, Bern-
hard Schätz, and Sebastian Voss, editors, IEEE 19th International Confer-
ence and Workshops on Engineering of Computer-Based Systems, ECBS
2012, Novi Sad, Serbia, April 11-13, 2012, pages 33–42. IEEE Computer
Society, 2012.

[3] Mohammed Alshiekh, Roderick Bloem, Rüdiger Ehlers, Bettina
Könighofer, Scott Niekum, and Ufuk Topcu. Safe reinforcement learn-
ing via shielding. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32, 2018.

[4] Eitan Altman. Constrained Markov decision processes, volume 7. CRC
Press, 1999.

[5] Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schul-
man, and Dan Mané. Concrete problems in AI safety. arXiv preprint
arXiv:1606.06565, 2016.

[6] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil An-
thony Bharath. Deep reinforcement learning: A brief survey. IEEE Signal
Processing Magazine, 34(6):26–38, 2017.

[7] Guy Avni, Roderick Bloem, Krishnendu Chatterjee, Thomas A Henzinger,
Bettina Könighofer, and Stefan Pranger. Run-time optimization for learned
controllers through quantitative games. In International Conference on
Computer Aided Verification, pages 630–649. Springer, 2019.

[8] Edoardo Bacci and D. Parker. Probabilistic guarantees for safe deep rein-
forcement learning. In Proceedings of the 18th International Conference on
Formal Modeling and Analysis of Timed Systems, pages 231–248, 2020.

[9] Christel Baier, Luca de Alfaro, Vojtech Forejt, and Marta Kwiatkowska.
Model checking probabilistic systems. In Edmund M. Clarke, Thomas A.
Henzinger, Helmut Veith, and Roderick Bloem, editors, Handbook of Model
Checking, pages 963–999. Springer, 2018.

33

[10] Christel Baier, Holger Hermanns, and Joost-Pieter Katoen. The 10,000
facets of MDP model checking. In Computing and Software Science, pages
420–451. Springer, 2019.

[11] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. MIT
press, 2008.

[12] Jorge A. Baier and Sheila A. McIlraith. Planning with preferences. AI
Mag., 29(4):25–36, 2008.

[13] Brian Beavis and Ian Dobbs. Optimisation and Stability theory for Eco-
nomic Analysis. Cambridge University Press, 1990.

[14] Lenz Belzner and Thomas Gabor. QoS-aware multi-armed bandits. In
2016 IEEE 1st International Workshops on Foundations and Applications
of Self* Systems (FAS* W), pages 118–119. IEEE, 2016.

[15] Lenz Belzner and Thomas Gabor. Bayesian verification under model uncer-
tainty. In 2017 IEEE/ACM 3rd International Workshop on Software Engi-
neering for Smart Cyber-Physical Systems (SEsCPS), pages 10–13. IEEE,
2017.

[16] Lenz Belzner, Rolf Hennicker, and Martin Wirsing. Onplan: A framework
for simulation-based online planning. In Christiano Braga and Peter Csaba
Ölveczky, editors, Formal Aspects of Component Software - 12th Interna-
tional Conference, FACS 2015, Niterói, Brazil, October 14-16, 2015, Re-
vised Selected Papers, volume 9539 of Lecture Notes in Computer Science,
pages 1–30. Springer, 2015.

[17] Suda Bharadwaj, Roderik Bloem, Rayna Dimitrova, Bettina Könighofer,
and Ufuk Topcu. Synthesis of minimum-cost shields for multi-agent sys-
tems. In 2019 American Control Conference (ACC), pages 1048–1055.
IEEE, 2019.

[18] Tomás Bures, Rocco De Nicola, Ilias Gerostathopoulos, Nicklas Hoch,
Michal Kit, Nora Koch, Giacoma Valentina Monreale, Ugo Montanari,
Rosario Pugliese, Nikola B. Serbedzija, Martin Wirsing, and Franco
Zambonelli. A life cycle for the development of autonomic systems:
The e-mobility showcase. In 7th IEEE International Conference on
Self-Adaptation and Self-Organizing Systems Workshops, SASO, 2013,
Philadelphia, PA, USA, September 9-13, 2013, pages 71–76. IEEE Com-
puter Society, 2013.

[19] Rui P. Cardoso, Rosaldo J. F. Rossetti, Emma Hart, David Burth Kurka,
and Jeremy Pitt. Engineering sustainable and adaptive systems in dynamic
and unpredictable environments. In Margaria and Steffen [52], pages 221–
240.

34

[20] Yinlam Chow, Mohammad Ghavamzadeh, Lucas Janson, and Marco
Pavone. Risk-constrained reinforcement learning with percentile risk crite-
ria. The Journal of Machine Learning Research, 18(1):6070–6120, 2017.

[21] Yinlam Chow, Ofir Nachum, Edgar Duenez-Guzman, and Mohammad
Ghavamzadeh. A Lyapunov-based approach to safe reinforcement learn-
ing. In Advances in neural information processing systems, pages 8092–
8101, 2018.

[22] Edmund M Clarke and Paolo Zuliani. Statistical model checking for cyber-
physical systems. In International Symposium on Automated Technology
for Verification and Analysis, pages 1–12. Springer, 2011.

[23] Carlos A. Coello Coello. Multi-objective optimization. In Rafael Mart́ı,
Panos M. Pardalos, and Mauricio G. C. Resende, editors, Handbook of
Heuristics, pages 177–204. Springer, 2018.

[24] Anne Dardenne, Axel van Lamsweerde, and Stephen Fickas. Goal-directed
requirements acquisition. Sci. Comput. Program., 20(1-2):3–50, 1993.

[25] Persi Diaconis, Donald Ylvisaker, et al. Conjugate priors for exponential
families. The Annals of Statistics, 7(2):269–281, 1979.

[26] Iulia Dragomir, Simon Iosti, Marius Bozga, and Saddek Bensalem. De-
signing systems with detection and reconfiguration capabilities: A formal
approach. In Margaria and Steffen [52], pages 155–171.

[27] Madalina M. Drugan. Multi-objective optimization perspectives on rein-
forcement learning algorithms using reward vectors. In ESANN, 2015.

[28] Jiameng Fan and Wenchao Li. Safety-guided deep reinforcement learning
via online Gaussian process estimation. arXiv preprint arXiv:1903.02526,
2019.

[29] Nathan Fulton and André Platzer. Safe reinforcement learning via formal
methods: Toward safe control through proof and learning. In Thirty-Second
AAAI Conference on Artificial Intelligence, 2018.

[30] Nathan Fulton and André Platzer. Verifiably safe off-model reinforcement
learning. In International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, pages 413–430. Springer, 2019.

[31] Javier Garcıa and Fernando Fernández. A comprehensive survey on safe
reinforcement learning. Journal of Machine Learning Research, 16(1):1437–
1480, 2015.

[32] Yangyang Ge, Fei Zhu, Xinghong Ling, and Quan Liu. Safe Q-learning
method based on constrained Markov decision processes. IEEE Access,
7:165007–165017, 2019.

35

[33] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier
neural networks. In Proceedings of the fourteenth International Conference
on Artificial Intelligence and Statistics, pages 315–323, 2011.

[34] Sofie Haesaert, Sadegh Soudjani, and Alessandro Abate. Temporal logic
control of general Markov decision processes by approximate policy refine-
ment. IFAC-PapersOnLine, 51(16):73–78, 2018.

[35] Mohammadhosein Hasanbeig, Alessandro Abate, and Daniel Kroening.
Cautious reinforcement learning with logical constraints. In Proceedings of
the 19th International Conference on Autonomous Agents and Multi-Agent
Systems, pages 483–491, 2020.

[36] Mohammadhosein Hasanbeig, Daniel Kroening, and Alessandro Abate.
Deep reinforcement learning with temporal logics. In Proceedings of the
18th International Conference on Formal Modeling and Analysis of Timed
Systems, pages 1–22, 2020.

[37] Matthias M. Hölzl and Thomas Gabor. Continuous collaboration for chang-
ing environments. Trans. Found. Mastering Chang., 1:201–224, 2016.

[38] Matthias M. Hölzl, Nora Koch, Mariachiara Puviani, Martin Wirsing, and
Franco Zambonelli. The ensemble development life cycle and best practices
for collective autonomic systems. In Wirsing et al. [63], pages 325–354.

[39] Manfred Jaeger, Giorgio Bacci, Giovanni Bacci, Kim Guldstrand Larsen,
and Peter Gjøl Jensen. Approximating euclidean by imprecise markov de-
cision processes. In International Symposium on Leveraging Applications
of Formal Methods, pages 275–289. Springer, 2020.

[40] Nils Jansen, Bettina Könighofer, Sebastian Junges, Alex Serban, and Rod-
erick Bloem. Safe Reinforcement Learning Using Probabilistic Shields (In-
vited Paper). In Igor Konnov and Laura Kovács, editors, 31st Interna-
tional Conference on Concurrency Theory (CONCUR 2020), volume 171
of Leibniz International Proceedings in Informatics (LIPIcs), pages 3:1–
3:16, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für In-
formatik.

[41] Sumit K Jha, Edmund M Clarke, Christopher J Langmead, Axel Legay,
André Platzer, and Paolo Zuliani. A Bayesian approach to model checking
biological systems. In International Conference on Computational Methods
in Systems Biology, pages 218–234. Springer, 2009.

[42] Sebastian Junges, Nils Jansen, Christian Dehnert, Ufuk Topcu, and Joost-
Pieter Katoen. Safety-constrained reinforcement learning for MDPs. In
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, pages 130–146. Springer, 2016.

[43] Sebastian Junges, Nils Jansen, and Sanjit A Seshia. Enforcing almost-sure
reachability in POMDPs. arXiv preprint arXiv:2007.00085, 2020.

36

[44] Richard Klima, Daan Bloembergen, Michael Kaisers, and Karl Tuyls. Ro-
bust temporal difference learning for critical domains. In Proceedings of
the 18th International Conference on Autonomous Agents and MultiAgent
Systems, pages 350–358. International Foundation for Autonomous Agents
and Multiagent Systems, 2019.

[45] Marta Kwiatkowska, Gethin Norman, and David Parker. Prism 4.0: Veri-
fication of probabilistic real-time systems. In International Conference on
Computer Aided Verification, pages 585–591. Springer, 2011.

[46] Kim Guldstrand Larsen and Axel Legay. Statistical model checking the
2018 edition! In Tiziana Margaria and Bernhard Steffen, editors, Lever-
aging Applications of Formal Methods, Verification and Validation. Ver-
ification - 8th International Symposium, ISoLA 2018, Limassol, Cyprus,
November 5-9, 2018, Proceedings, Part II, volume 11245 of Lecture Notes
in Computer Science, pages 261–270. Springer, 2018.

[47] Axel Legay, Benôıt Delahaye, and Saddek Bensalem. Statistical model
checking: An overview. In International Conference on Runtime Verifica-
tion, pages 122–135. Springer, 2010.

[48] Björn Lötjens, Michael Everett, and Jonathan P How. Safe reinforcement
learning with model uncertainty estimates. In 2019 International Confer-
ence on Robotics and Automation (ICRA), pages 8662–8668. IEEE, 2019.

[49] Jeff Magee and Jeff Kramer. Concurrency - State Models and Java Pro-
grams (2. ed.). Wiley, 2006.

[50] Sridhar Mahadevan. Average reward reinforcement learning: Foundations,
algorithms, and empirical results. Machine learning, 22(1-3):159–195, 1996.

[51] Houssem Ben Mahfoudh, Giovanna Di Marzo Serugendo, Anthony Boul-
mier, and Nabil Abdennadher. Coordination model with reinforcement
learning for ensuring reliable on-demand services in collective adaptive sys-
tems. In Margaria and Steffen [52], pages 257–273.

[52] Tiziana Margaria and Bernhard Steffen, editors. Leveraging Applications
of Formal Methods, Verification and Validation. Distributed Systems - 8th
International Symposium, ISoLA 2018, Limassol, Cyprus, November 5-9,
2018, Proceedings, Part III, volume 11246 of Lecture Notes in Computer
Science. Springer, 2018.

[53] Thomy Phan, Thomas Gabor, Andreas Sedlmeier, Fabian Ritz, Bernhard
Kempter, Cornel Klein, Horst Sauer, Reiner Schmid, Jan Wieghardt, Marc
Zeller, and Claudia Linnhoff-Popien. Learning and testing resilience in
cooperative multi-agent systems. In Proceedings of the 19th International
Conference on Autonomous Agents and Multiagent Systems. International
Foundation for Autonomous Agents and Multiagent Systems, 2020.

37

[54] Lerrel Pinto, James Davidson, Rahul Sukthankar, and Abhinav Gupta.
Robust adversarial reinforcement learning. In Proceedings of the 34th In-
ternational Conference on Machine Learning-Volume 70, pages 2817–2826.
JMLR. org, 2017.

[55] Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium
on Foundations of Computer Science, pages 46–57. IEEE, 1977.

[56] Alex Ray, Joshua Achiam, and Dario Amodei. Benchmarking safe explo-
ration in deep reinforcement learning. Technical report, Open AI, 2019.

[57] Diederik M. Roijers, Peter Vamplew, Shimon Whiteson, and Richard Daze-
ley. A survey of multi-objective sequential decision-making. J. Artif. Intell.
Res., 48:67–113, 2013.

[58] Stuart Russell, Daniel Dewey, and Max Tegmark. Research priorities for
robust and beneficial artificial intelligence. AI Magazine, 36(4):105–114,
2015.

[59] Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever.
Evolution strategies as a scalable alternative to reinforcement learning.
arXiv preprint arXiv:1703.03864, 2017.

[60] Dirk Schäfer and Eyke Hüllermeier. Preference-based reinforcement learn-
ing using dyad ranking. In Larisa N. Soldatova, Joaquin Vanschoren,
George A. Papadopoulos, and Michelangelo Ceci, editors, Discovery Sci-
ence - 21st International Conference, DS 2018, Limassol, Cyprus, October
29-31, 2018, Proceedings, volume 11198 of Lecture Notes in Computer Sci-
ence, pages 161–175. Springer, 2018.

[61] Andreas Sedlmeier, Thomas Gabor, Thomy Phan, Lenz Belzner, and Clau-
dia Linnhoff-Popien. Uncertainty-based out-of-distribution classification in
deep reinforcement learning. arXiv preprint arXiv:2001.00496, 2019.

[62] Bernd Waschneck, André Reichstaller, Lenz Belzner, Thomas Altenmüller,
Thomas Bauernhansl, Alexander Knapp, and Andreas Kyek. Optimization
of global production scheduling with deep reinforcement learning. Procedia
CIRP, 72(1):1264–1269, 2018.

[63] Martin Wirsing, Matthias M. Hölzl, Nora Koch, and Philip Mayer, editors.
Software Engineering for Collective Autonomic Systems - The ASCENS
Approach, volume 8998 of Lecture Notes in Computer Science. Springer,
2015.

[64] Martin Wirsing, Matthias M. Hölzl, Mirco Tribastone, and Franco Zam-
bonelli. ASCENS: engineering autonomic service-component ensembles. In
Bernhard Beckert, Ferruccio Damiani, Frank S. de Boer, and Marcello M.
Bonsangue, editors, FMCO 2011, Revised Selected Papers, volume 7542 of
Lecture Notes in Computer Science, pages 1–24. Springer, 2011.

38

[65] Paolo Zuliani, André Platzer, and Edmund M Clarke. Bayesian statisti-
cal model checking with application to Simulink/Stateflow verification. In
Proceedings of the 13th ACM International Conference on Hybrid Systems:
Computation and Control, pages 243–252. ACM, 2010.

39

	1 Introduction
	2 The PSyCo Method for Safe Policy Synthesis under Probabilistic Constraints
	2.1 PSyCo Overview
	2.2 System Specification: Constrained Markov Decision Processes and Goal-Oriented Requirements
	2.3 Abstract Design: Safe Reinforcement Learning Algorithm L
	2.4 Verification: Bayesian Model Checking Algorithm V

	3 Safe Neural Evolutionary Strategies
	3.1 Evolutionary Strategies
	3.2 Safe Neural Evolutionary Strategies

	4 Experiments
	4.1 Particle Dance
	4.1.1 Setup
	4.1.2 Results

	4.2 Obstacle Run
	4.2.1 Setup
	4.2.2 Results

	5 Related Work
	6 Limitations
	7 Conclusion
	A Finite PCTL for MDPs
	B Cost Function and Cumulative Cost

