arXiv:2003.11838v1 [cs.SE] 26 Mar 2020

Applying the Isabelle Insider Framework to Airplane Security

Florian Kammiiller

Middlesex University London and Technische Universitat Berlin

Manfred Kerber
University of Birmingham, UK

Abstract

Avionics is one of the fields in which verification methods have been pioneered and brought
a new level of reliability to systems used in safety critical environments. Tragedies, like the
2015 insider attack on a German airplane, in which all 150 people on board died, show that
safety and security crucially depend not only on the well functioning of systems but also on
the way how humans interact with the systems. Policies are a way to describe how humans
should behave in their interactions with technical systems, formal reasoning about such
policies requires integrating the human factor into the verification process. In this paper,
we report on our work on using logical modelling and analysis of infrastructure models and
policies with actors to scrutinize security policies in the presence of insiders.

We model insider attacks on airplanes in the Isabelle Insider framework. This application
motivates the use of an extension of the framework with Kripke structures and the temporal
logic CTL to enable reasoning on dynamic system states. Furthermore, we illustrate that
Isabelle modelling and invariant reasoning reveal subtle security assumptions. We summarize
by providing a methodology for the development of policies that satisfy stated properties.

Keywords: Airplane safety and security, Insider threats, Interactive theorem proving,
Security policies, Verification

1. Introduction

Airplanes offer a very safe way of travelling. Accidents and terror attacks are extremely
rare. After the 2001-09-11 attacks stringent measures were taken and have been to the day
of writing successful. The most recent major incident was an insider attack in which the
copilot of Germanwings Flight 9525 on 2015-03-24 hijacked the aircraft by locking out the
captain, who had left the cabin, and subsequently brought the aircraft to a crash in which
all 150 persons on board died. As a consequence, airlines introduced a two-person rule that
a pilot must never be on their own in the cockpit. The two-person rule has been rescinded

Email addresses: f.kammueller@mdx.ac.uk (Florian Kammiiller), M.Kerber@cs.bham.uk (Manfred
Kerber)

Preprint submitted to Elsevier March 27, 2020


http://arxiv.org/abs/2003.11838v1

in 2017 only two years after it was introduced. The 2015-03-24 incident shows that insider

attacks are an important issue and it motivated earlier work [1] of applying the existing

Isabelle Insider framework [2] to verify airplane policies in the presence of insider attacks.
This earlier work has revealed some major challenges for the Isabelle Insider framework:

e Since the policies are dealing with actors and their possibilities of moving within the
infrastructure, for example an airplane, a fixed association of actors with locations,
roles, and credentials in the model must be extended to enable representing dynamic
change.

e We need to integrate dedicated logics into the framework enabling the expression of
security and safety guarantees over the dynamically changing infrastructure state. We
need to express global validity of logical properties of policies over all reachable states;
for example, we want to express “for all states reachable from an acceptable initial
state, a suicidal copilot cannot crash the plane”.

In the current paper, we provide solutions to these challenges and demonstrate them on
the airplane case study. The main contribution of this paper are:

e State transitions as well as rules for expressing changes to the state of infrastructures
including locations, actors, their roles, credentials and behaviours are provided by
Kripke structures. This allows modelling state change and state transition.

e Temporal logic CTL is provided within the framework to formalize and prove logical
properties. This enables (a) detecting attack paths through the graph of infrastructure
state evolution and (b) from there identifying additional security assumptions that
when met guarantee that the attack is not possible any more on any path.

Another contributions of this work is to identify an improved methodology for policy inval-
idation and model refinement.

After discussing related work in Section 2, we present in Section 3 a retrospective of the
development of safety and security regulations for airplanes. We then present the existing
Isabelle Insider framework in Section 4. Next, we use this framework to model an airplane
scenario including an Insider attacker. We integrate Kripke structures into the model and
express and interactively prove central security properties using the branching time tem-
poral logic CTL (Section 5). Section 6 presents the analysis of those properties on the
airplane scenario showing how the framework can be used to scrutinize the security policies
and thereby reveal existing loopholes within their formal specifications. This procedure is
summarized into our methodology before Section 7 concludes.

The full Isabelle sources are available online [3]. In order to give an impression of the kind
of formalization the most important definitions and theorems can be found in the Appendix.

2. Related Work

In this section, we present some related work from the field of insider threats and work in
which reasoning approaches similar to the one applied in our work are applied. Furthermore
we discuss work related to the verification in avionics.

2



The insider threat patterns provided by CERT [4] use the System Dynamics model,
which can express dependencies between variables. The System Dynamics approach is also
successfully being applied in other approaches to insider threats, for example, in the mod-
elling of unintentional insider threats [5]. Axelrad et al. [6] have used Bayesian networks for
modelling insider threats in particular the human disposition. In comparison, the model we
rely on for modelling the human disposition in the Isabelle Insider framework is a simplified
classification following the taxonomy provided in [7]. In contrast to all these approaches,
our work provides an additional model of infrastructures and policies allowing reasoning at
the individual and organizational level.

A major field of application of formal methods is avionics. Companies (such as Airbus
and Boeing) and organizations (such as NASA) use formal methods to prove formal prop-
erties of aircrafts and spacecrafts. There is a large body of work, including work based on
model checking and theorem proving, which we cannot give justice in this paper. We will
mention only a few. [8] is mainly concerned with the relationship between software testing
and formal verification, and Moy et al. argue that in many application areas formal verifi-
cation outperforms testing, firstly in that the proofs show the correctness on all inputs and
not just the ones tested, but secondly also in the person power required. [9] shows how a
Z-based toolset is used to prove the correctness of embedded real time safety critical software
for Eurofighter Typhoon. Khan et al. [10] argue that complexity of avionics has increased
to a level that verification and validation of the systems need computer based approaches.
They use model abstraction to simulate hardware and software interactions.

In the domain of rigorous analysis of airplane systems, work often follows for practical and
economic reasons a philosophy of using a mix of formal and systematic informal methods. An
example from airplane maintenance procedures [11] uses a security evaluation methodology
following the Common Criteria and a formal model and verification with the model checker
AVISPA. In comparison, we use a more expressive logical model in the Isabelle Insider
framework than the AVISPA specification. To our knowledge, the focus of work on formal
methods in avionics is directed towards the correct functioning of the hardware and the
software. However, it is very important to consider the human factor.! We assume that our
work is the first to consider insider threats within airplane safety and security in a formal
way.

Logical modelling and analysis of insider threats has started off by investigating insider
threats with invalidation of security policies in connection with model checking by one of us

LQuote by Chesley B. Sullenberger [http://www.sullysullenberger.com /my-testimony-today-before-the-house-subcommi
Pilots must be able to handle an unexpected emergency and still keep their passengers and crew safe, but
we should first design aircraft for them to fly that do not have inadvertent traps set for them.

We must also consider the human factors of these accidents.

From my 52 years of flying experience, and my many decades of safety work I know that nothing happens
in a vacuum, and we must find out how design issues, training, policies, procedures, safety culture, pilot
experience and other factors affected the pilots ability to handle these sudden emergencies, especially in this
global aviation industry.

Dr. Nancy Leveson, of the Massachusetts Institute of Technology, has a quote that succinctly encapsulates
much of what I have learned over many years: ‘Human error is a symptom of a system that needs to be
redesigned.’


http://www.sullysullenberger.com/my-testimony-today-before-the-house-subcommittee-on-aviation/

in [12, 13]. This early approach also uses infrastructure models of organizations, actors and
policies but was more restricted than the Isabelle Insider framework discussed in Section
4. The use of sociological explanation has been pioneered in [14] by one of us already
with first formal experiments in Isabelle. Finally, one of us has established the Isabelle
Insider framework in [2]. Tt has been validated on two of the main three insider patterns
the Entitled Independent and Ambitious Leader. Relevant in the context of this application
are other applications of the Isabelle Insider framework, and been applied to IoT Insiders
[15, 16] by using in addition the extension of the framework to attack trees. Attack trees
provide the possibility to refine attacks once they have been identified. This refinement is
formalized together with the notion of attack trees as first introduced for insider models
in general in [17]. In other work, we applied the insider framework to auction protocols
[18]. In the CHIST-ERA project SUCCESS [19] we use the framework in combination with
attack trees and the Behaviour Interaction Priority (BIP) component architecture model to
develop security and privacy enhanced IoT solutions.

In [20] Kamali et al. present reasoning that integrates deduction based reasoning and
model checking for the formal verification of vehicle platooning. The idea is that vehicles
move in platoons and can join and leave them under certain safety conditions. In order to
model the hybrid aspects of the real-time system a hybrid system is used that makes use
of discrete decision making (such as, initiating joining a platoon) and continuous control
(of actually driving the vehicle). The formal discrete reasoning is translated to a timed
automaton which can then be used to produce actual running code (in a simulator). The
right level of abstraction is important in order to deal with complexity issues.

3. Development of Airplane Safety and Security

On 2001-09-11, four terrorist attacks took place in the USA, two on the two towers of
the World Trade Center, one on the Pentagon, and in a fourth attack the airplane crashed
when passengers tried to overcome the hijackers.? Before these attacks, aircraft hijacking
typically meant that the hijackers had some negotiable demands. Because of the risk to life
for the people on board the aircraft, the standard approach was to enter negotiations and
to avoid a resolution by force while the aircraft was in the air.

In particular, also there was no secured door between the passenger compartment and
the cockpit in airplanes; actually the door was occasionally open, even allowing passengers
to get a glimpse of the cockpit during the flight. In Western countries there were no airplane
hijackings with major loss of life between the 1970s and the 2001-09-11 attacks. This may
have created in the USA and other countries a false sense of security. In the wake of
the attacks a serious rethink of the security provision has happened. In particular, the
cockpit doors were reinforced and made bullet-proof, making it nearly impossible to open
by intruders [24].

2For a description of the events, see [21], including more than 300 further pointers. A detailed account
of the events of 9/11 and recommendations can be found in a 585 page report by the 9/11 commission [22].
A list of aircraft hijackings can be found as [23].

4



These (and other) changes seem to have had the wanted effect, since in the time since the
introduction of secured cockpit doors there were only 17 airplane hijackings or attempted
airplane hijackings® (as listed on [23]), all but one of them could be prevented from causing
fatalities, and the one that did result in fatalities was an insider attack. One nearly successful
airplane hijacking has been caused by the copilot who forced Ethiopian Airlines Flight 702
to land at Zurich airport in an attempt to blackmail asylum for himself in Switzerland. Also
this airplane hijacking can be characterized as an insider attack since the attacker was part
of the crew.

The one major exception to the rule was Germanwings Flight 9525 on 2015-03-24, which
was on the way from Barcelona to Diisseldorf. The aircraft was hijacked by the copilot who
locked out the captain who had left the cabin. The pilot tried to regain access to the cockpit
but did not succeed. Subsequently, the copilot brought the aircraft to a crash in which all
150 people on board died.

Let us now look more closely into the door and its release mechanism.* The door is
operated by a switch from inside the cockpit (with three positions: “unlock”, “norm”,
“lock”) and a keypad outside the cockpit. In order to gain access to the cockpit normally a
crew member would use the inter-phone to contact a pilot in the cockpit to request access,
then presses the hash key on the keypad, which triggers a buzzer in the cockpit, and the pilot
releases the door using the switch to open the door (by keeping it in the “unlock” position).
In case the pilot(s) is/are incapacitated the crew member outside the cockpit can enter an
emergency code to open the door. After 30 seconds (during which the buzzer sounds in the
cockpit) of no reaction by the pilots the crew member can open the door for five seconds.

Since this access method could be used by a hijacker to force a crew member to open
the door from outside the cockpit, the pilots can, within the 30 seconds between entering
the emergency code and the release of the door, lock the cockpit door by putting the toggle
button into the “lock” mode. In that case the keypad is disabled for five minutes and the
door can be opened during this time only from inside the cockpit by putting the button in
the position “unlock”.

The mechanism can be described on different levels and each level requires certain as-
sumptions (for instance, that the door itself will withstand any physical force that may be
exerted by an attacker). According to Occam’s razor, we try to give a representation that
is as easy as possible and still describes the situation in sufficient detail that the important
aspects are modelled. A first approximation can be given by the timed finite state machine
in Figure 1 with three states “N”, “U”, and “L” for “normal”, “unlocked”, and “locked”,
respectively. While time plays a role and it makes a difference for humans whether the door
is locked for 300ms, 300s, or 300 minutes, we will abstract from this in the following for-
malization. During the fatal flight, the copilot used this locking mechanism to lock out the
captain from the cockpit. While the mechanism has been successful so far from preventing
any fatal attempt by an outsider to hijack an aircraft, the same mechanism prevented the

3Note however that there were other attacks on flights which did not originate from passengers, such as
the Malaysia Airline Flight MH17 which was brought down by a missile over Ukraine on 2014-07-17.
4The information is extracted from a 5:32 film by Airbus [25].

bt



pin

t < s+ 300 t < s+ 300

Figure 1: A finite timed automaton to describe the lock mechanism of the door. In the three states, Ny, Us,
and L (for normal, unlocked, locked at times t or s, respectively), the pilots can lock the door, or unlock
the door at any time with immediate effect, or do nothing with respect to the door — indicated by . Cabin
crew can enter the pin of the door; entering an incorrect PIN corresponds to the empty action €. Entering
the correct PIN has an effect only in the state IV; after 30 seconds in a time window of five seconds unless
the pilots take the lock action. After no action for 300 seconds the L, state is transformed to the IV; state.

captain from re-entering the cockpit and take action to rescue the aircraft in this case.

4. Isabelle Insider Framework

Before we formalize the airplane scenario in the section 5, we give first a brief introduction
to Isabelle in this section; describe the Isabelle Insider framework with infrastructures,
policies, actors, and insiders; and describe how Kripke Structures and CTL are modelled.

4.1. Isabelle and Modular Reasoning

Isabelle/HOL is an interactive proof assistant based on Higher Order Logic (HOL). Ap-
plication specific logics are formalized into new theories extending HOL. They are called
object-logics. Although HOL is undecidable and therefore proving needs human interac-
tion, the reasoning capabilities are very sophisticated supporting “simple”, i.e., repetitive,
tedious proof tasks to a level of complete automation. The use of HOL has the advantage
that it enables expressing even the most complex application scenarios, conditions, and log-
ical requirements and HOL simultaneously enables the analysis of the meta-theory. That is,
repeating patterns specific to an application can be abstracted and proved once and for all.
As an example, we will see how general preservation theorems of the state transition relation
over the system graph and over policies can be proved as part of the insider framework and
applied in concrete applications like the airplane scenario (see Section 4.3).

An object-logic contains new types, constants, and definitions. These items reside in a
theory file, for instance, the file Insider.thy contains the object-logic for insider threats
described in the following paragraphs. This Isabelle Insider framework is a conservative
extension of HOL. This means that our object logic does not introduce new axioms and hence
guarantees consistency. Conceptually, new types are defined as subsets of existing types and

6



properties are proved using a one-to-one relationship to the new type from properties of
the existing type. This process of conservative extension has been greatly facilitated by the
datatype package that offers a restricted sort of simple recursive type definitions. Inductive
definitions are a similar tool to define new predicates by a set of rules. Both extension
features offer the specification of model elements with a theory of induction and exhaustion
properties necessary for the proof of theorems over the model.

Besides datatypes and inductive definitions, we make also use of local assumptions within
locales. This is the reasoning process we propose as part of our methodology: the insider
condition in Section 5.3 is not an axiom but is locally assumed to analyze the infrastructure’s
policies.

This process has been conceived as Modular Reasoning in Isabelle [26] and implemented
in the locales mechanism. Locales have been motivated by case studies from abstract al-
gebra where proofs about algebraic structures — like groups, rings, or fields — frequently
use assumptions — like Vr.x o 1 = x — that are valid within these algebraic structures but
not outside. Rather than repeating those local assumptions continuously in large numbers
of property statements and proofs, locales realize contexts in which those assumption can
be used. Insider threat modelling and analysis using logics shows the same needs, since
assumptions about actors are specific to a certain application’s infrastructure. Moreover,
the definition and the assumption of a locale are accessible later on, whenever the locale is
invoked. But since they are local assumptions and definitions they do not endanger HOL’s
principle of conservative extension.

We are going to use Isabelle syntax and concepts in this paper and will explain them
when they are used.

4.2. Infrastructures, Policies, Actors, and Insiders

In the Isabelle/HOL theory for Insiders, one expresses policies over actions get, move,
eval, and put. An actor may be enabled to

get data or physical items, like keys,

move to a location,

e cval a program,

put data at locations or physical items — like airplanes — “to the ground”.

The precise semantics of these actions is refined in the state transition rules for the concrete
infrastructure. The framework abstracts from concrete data — actions have no parameters:

datatype action = get | move | eval | put

The human component is the Actor which is represented by an abstract type actor and a
function Actor that creates elements of that type from identities (of type string):

typedecl actor
type_synonym identity = string
consts Actor :: string = actor



Note that it would seem more natural and simpler to just define actor as a datatype
over identities with a constructor Actor instead of a simple constant together with a type
declaration like, for example, in the Isabelle inductive package [27]. This would, however,
make the constructor Actor an injective function by the underlying foundation of datatypes
therefore excluding the fine grained modelling that is at the core of the insider definition:
In fact, it defines the function Actor to be injective for all except insiders and explicitly
enables insiders to have different roles by identifying Actor images.

Atomic policies of type apolicy describe prerequisites for actions to be granted to actors
given by pairs of predicates (conditions) and sets of (enabled) actions:

type_synonym apolicy = ((actor = bool) X action set)

For example, the apolicy pair (Ax. True, {move}) specifies that all actors are enabled
to perform action move. To represent the macro level view seeing the actor within an
infrastructure, we define a graph datatype igraph for infrastructures containing: a set
of location pairs — the actual “map” of the infrastructure and a list of actor identities
associated with each node (location) in that graph.® Moreover, an igraph contains a function
associating actors with a pair of string lists: the first list describes the credentials an actor
has while the second list defines the roles that an actor can take on. Finally, an igraph
has a component assigning locations to a string list describing the state of the component.
Slightly adapting the original insider framework, we needed to integrate the credentials,
roles, and location state into the infrastructure graph to enable the dynamic view of state
transition and Kripke structures (see Section 4.3). For each of the components there exist
corresponding projection functions and predicates has and role to express that actors have
credentials or that they can perform in specified roles, respectively, and isin to express that
locations are in a specified state (see Appendix).

datatype igraph = Lgraph (location X location)set
location = identity list
actor = (string list X string list)
location = string list

Infrastructures combine an infrastructure graph of type igraph with a policy function that
assigns local policies over a graph to each location of the graph, that is, it is a function map-
ping an igraph to a function from location to apolicy set. The Isabelle type [igraph,
location] = apolicy set abbreviates igraph = (location = apolicy set) hence
the stepwise application to igraph to return a function is possible.

datatype infrastructure = Infrastructure igraph
[igraph, location] = apolicy set

Elements of the datatype infrastructure can thus be constructed using the constructor
Infrastructure, which is a higher order function, because it takes as (second) input a

5Note that X is the usual lambda-operator of higher order logic that describes functions. For instance,
the square function can be defined — without giving it a name — as Azx.z * x.

8



policy valued function. This higher order parameter represents local policies, that is, maps
from graph locations to policies for that location. In the following section, we will see how
this higher order function enables proof of general preservation properties.

Policies specify the expected behaviour of actors of an infrastructure. We define the
behaviour of actors using a predicate enables: within infrastructure I, at location 1, an
actor h is enabled to perform an action a if there is a pair (p,e) in the local policy of 1 —
delta I 1 projects to the local policy — such that action a is in the action set e and the
policy predicate p holds for actor h.

enables I 1 h a =3 (p,e) € deltaIl. a€eAph

For example, the statement enables I 1 (Actor’’Bob’’) move is true if the atomic policy
(Ax. True, {move}) isin the set of atomic policies delta I 1 at location 1 in infrastruc-
ture I. Double quotes as in ’’Bob’’ create a string in Isabelle/HOL.

The human actor’s level is modelled in the Isabelle Insider framework by assigning the
individual actor’s psychological disposition® actor_state to each actor’s identity.

datatype actor_state = State psy_state motivations

The values used for the definition of the types motivations and psy_state (see Appendix)
are based on a taxonomy from psychological insider research [7]. The transition to become
an insider is represented by a Catalyst that tips the insider over the edge so he acts as an
insider formalized as a “tipping point” predicate. To embed the fact that the attacker is
an insider, the actor can then impersonate other actors. In the Isabelle Insider framework,
the predicate Insider must be used as a [ocale assumption to enable impersonation for the
insider: this assumption entails that an insider Actor ’’Eve’’ can act like their alter ego,
say Actor ’’Charly’’ within the context of the locale. This is realized by the predicate
UasI:

UasI a b = (Actor a = Actor b) A
Vxy.x#aAy#aA Actor x = Actor y — x =y

Note that this predicate also stipulates that the function Actor is injective for any other
than the identities a and b. This completion of the Actor function to an “almost everywhere
injective function” is needed in some proofs (for an example see Section 6.4). We generalize
here from other approaches on formal security analysis used in particular in security proto-
col verification known as the Dolev-Yao attacker model [28]. Our approach is more flexible
because it addresses not just one specific attacker with a set range of abilities (eavesdrop,
intercept, fake in Dolev-Yao) but more generally an insider, that is, someone who can im-
personate any other actor and thereby attain any ability or access rights that exist in the
system. This flexibility also allows modeling an attacker that “impersonates” more than
one actor to analyze collusions of insiders. In an earlier application of the Isabelle Insider
framework [18], we illustrated this by a “ringing attack” on the Cocaine Auction protocol.

SNote that the determination of the psychological state of an actor is not done using the formal system.
It is up to a psychologist to determine this. However, if for instance, an actor is classified as disgruntled
then this may have an influence on what they are allowed to do according to a company policy and this can
be formally described and reasoned about in Isabelle.

9



4.8. Kripke Structures and CTL

The expressiveness of Higher Order Logic allows formalizing the notion of Kripke struc-
tures as sets of states and a transition relation over those in Isabelle. Moreover, temporal
logic can be directly encoded using Isabelle’s fixpoint definitions for each of the CTL opera-
tors [29]. Combining the two, we can then apply them as generic tools to analyze dynamically
changing infrastructures with Insiders: we consider snapshots of infrastructures as states,
use the actors and their action based behaviour definition to define a state transition, to
then use temporal logic to express safety and security properties over dynamically changing
infrastructures. This application will be demonstrated on our case study in Section 5.1. We
briefly introduce here the necessary facts of Kripke structures and CTL showing how they
are instantiated for Insiders.

The transition relation on system states is defined as an inductive predicate called
state_transition_in. It introduces the syntactic infix notation I —, I’ to denote that
system state I and I’ are in this relation.

inductive state_transition_in :: [state, state] = bool ("_ —, _")

The specification of the behaviour of actors in the Insider framework allows defining the
rules for the state transition relation of the Kripke structure for infrastructures for each of
the actions. Here is the rule for put. The expression h @Q; 1 says that h is at location 1
in the graph G. The next state construction I’ uses the projections gra, agra, cgra, lgra
to select the graph itself, the actors-location association, the credentials and roles, and the
location state map, respectively. The rule expresses that an actor — who is at location 1 and
is “put”’-enabled in the infrastructure I by its policy at location 1 — can “put” the location
into a state z in the successor state I’ of the state transition for infrastructures. The double
brackets enclose the preconditions of the meta-implication = in Isabelle. A proposition
[A; B]=C simply abbreviates A—(B=C).

put: [ G = graphI I; h Qg 1;
enables I 1 (Actor a) put;
I’ = Infrastructure
(Lgraph (gra G) (agra G) (cgra G) ((1gra G) (1 := [z])))
(delta I)
|l =1-,1

We illustrate this particular rule here because we use it in the case study to express that an
actor can put the airplane to the ground (see Section 5.2).

We can already develop some very useful theorems for the state transition relation and
Kripke structures. For example, the following lemma motivates why we define infrastructures
as higher order functions where the local policies map the graph to a function over its
locations: precisely because of that generality of the infrastructure constructor we can prove
that state transitions do not change the policy delta — as one would expect.

lemma init_state_policy: I —,"* I’ — delta I = delta I’

10



The relation —,,"* is the reflexive transitive closure — an operator supplied by the Isabelle
theory library — applied to the relation —,,.

The proof of this invariant illustrates why for policy verification as we show here a
deductive framework like Isabelle is well suited. To deduce the above theorem, we first
prove that single step state transitions preserve the policy.

YVII°’.I—, I” — delta I = delta I’

Then we use this lemma within an application of the induction for reflexive transitive clo-
sure of relations that is provided in the Isabelle theory library to infer the above lemma
init_state_policy. Note that it is the specification in HOL of the state transition relation
that provides the case analysis rule and the induction scheme as sound rules automatically
generated from the definition.

Branching time temporal logic CTL has been integrated by one of us as part of the
Isabelle Insider framework [29] built over Kripke structures. A generic type state including
a transition —; is defined there using the concept of type classes in Isabelle. This type
class state is then instantiated to the type of infrastructures thereby instantiating the
state transition relation to —, defined in the insider theory presented above (see Appendix).
Thereby, the theory constructed and proved for this state transition —; over a generic type
state are transferred automatically to infrastructures and their transition relation —,,.

Summarizing, the CTL-operators EX and AX express that property f holds in some or all
next states, respectively.

AX f
EX f

{s. {f0. s —; f0} C f 2}
{s.df0€ f. s —; f0 }

The CTL formula AG f means that on all paths branching from a state s the formula f is
always true (G stands for ‘globally’). It can be defined using the Tarski fixpoint theory by
applying the greatest fixpoint operator.

AG f = gfp(A Z. f N AX Z)

In a similar way, the other CTL operators are defined. The formal Isabelle definition of
what it means that formula f holds in a Kripke structure M for insiders can be stated as:
the initial states of the Kripke structure init M need to be contained in the set of all states
states M that imply f.

ME f= init M C { s € states M. s € f 1}

In an application, the set of states of the Kripke structure will be defined as the set of states
reachable by the infrastructure state transition from some initial state, say example_scenario.

example states = { I. example_scenario —;"* I }

The Kripke constructor combines the constituents initial state, state set, and state transition
relation —;.

11



example Kripke = Kripke example_states {example_scenario} —;

Given some example_policy — a predicate over an infrastructure using actors, actions, and
their behaviours — we can then for example try to prove that this property holds generally
by attempting the following proof in Isabelle.

example Kripke - AG example_policy

If the proof fails, the failed attempt will reveal conditions describing a state in the Kripke
structure as well as actions leading to this state that identify an attack possibility. In the
example in Section 5.2, this will be illustrated. Additionally, the failed attempts to prove
the global validity also lead to identifying invariants of the system helping to establish
decisive side conditions as well as identifying loopholes. The loopholes lead to a deeper
insight into problems with the policy. By defining new locale assumptions and re-proving
global properties, the newly found assumptions can be refined until the proof succeeds. This
procedure will be illustrated on the airplane case study as well in Section 6.4.

Note that all the definitions in the locale airplane that we use in Section 5 have been
implemented as locale definitions using the locale keywords fixes and defines [30]. Thus
they are accessible whenever the locale airplane is invoked. But since definitions are
essentially abbreviations, they adhere to the principle of conservative extension of HOL not
endangering consistency.

5. Formalizing the Airplane Scenario

In this section we first provide the necessary infrastructure, then specify global and local
policies, and finally formalize insider attacks and safety and security.

5.1. Formalization of Airplane Infrastructure and Properties

We restrict the Airplane scenario to four identities: Bob, Charly, Alice, and Eve. Bob
acts as the pilot, Charly as the copilot, and Alice as the flight attendant. Eve is an identity
representing the malicious agent that can act as the copilot although not officially acting as
an airplane actor. The identities that act legally inside the airplane infrastructure are listed
in the set of airplane actors.

fixes airplane_actors :: identity set
defines airplane_actors_def: airplane_actors = {’’Bob’’, ’’Charly’’, ’’Alice’’}

In the above locale definition we use the fixes keyword to introduce a locale constant with
its type which is then specified by defines. In the following, we drop all these elements but
the actual definition to make the exposition shorter and clearer.

To represent the layout of the airplane, a simple architecture is best suited for the purpose
of security policy verification. The locations we consider for the graph are cockpit, door,
and cabin. They are defined as locale definitions and assembled in a set airplane_locations.

12



cockpit = Location 2

door = Location 1

cabin = Location 0

airplane_locations = { cabin, door, cockpit }

The actual layout and the initial distribution of the actors in the airplane infrastructure
is defined by the following graph in which the actors Bob and Charly are in the cockpit and
Alice is in the cabin.

ex_graph = Lgraph
{(cockpit, door), (door,cabin)}
(X x. if x = cockpit then [’’Bob’’, ’’Charly’’]
else (if x = door then []
else (if x = cabin then [’’Alice’’] else [])))
ex_creds ex_locs

The two additional inputs ex_creds and ex_locs for the constructor Lgraph are the creden-
tial and role assignment to actors and the state function for locations introduced in Section
4.2, respectively. For the airplane scenario, we use the function ex_creds to assign the roles
and credentials to actors. For example, for Actor ’’Bob’’ the following function returns
the pair of lists ([?’PIN’’], [’’pilot’’]) assigning the credential PIN to this actor and
designating the role pilot to him.

ex_creds = () x.
(if x = Actor ’’Bob’’ then ([’’PIN’’], [’’pilot’’])
else (if x = Actor ’’Charly’’ then ([’’PIN’’],[’’copilot’’])
else (if x = Actor ’’Alice’’ then ([’’PIN’’],[’’flightattendant’’])
else ([1,0[1D)))"

Locations of the infrastructure graph have specific states. For example, the door can be in
state locked. Similar to the previous function ex_creds, the function ex_locs assigns these
states to the locations of the infrastructure graph.

ex_locs = A x. if x = door then [’’norm’’]
else (if x = cockpit then [’’air’’] else [])

5.2. Initial Global and Local Policies

In the Isabelle Insider framework, we define a global policy reflecting the global safety
and security goal and then break that down into local policies on the infrastructure. The
verification will then analyze whether the infrastructure’s local policies yield the global
policy.

Globally, we want to exclude attackers to ground the plane. In the formal model, landing
the airplane results from an actor performing a put action (see Section 4.3) in the cockpit
and thereby changing the state from air to ground.

Therefore, we specify the global policy as “no one except airplane actors can perform
put actions at location cockpit” by the following predicate over infrastructures I and actor
identities a.

13



global_policy I a = a ¢ airplane.actors — —(enables I cockpit (Actor a) put)

We next attempt to define the local policies for each location as a function mapping locations
to sets of pairs: the first element of each pair for a location 1 is a predicate over actors
specifying the conditions necessary for an actor to be able to perform the actions specified
in the set of actions which is the second element of that pair. The local policy functions
are additionally parameterized over an infrastructure graph G since this may dynamically
change through the state transition.

local_policies G =
(A y. if y = cockpit then
{A x. (3 n. (n Qg cockpit) A Actor n = x), {put}),
(A x. (dn. (n Qg cabin) A Actor n = x
A has (x, ’’PIN’’)A isin G door ’’norm’’), {move}) }
else (if y = door then {(\ x. True, {movel})}
else (if y = cabin then {(\ x. True, {move})} else {})))

This policy expresses that any actor can move to door and cabin but places the following
restrictions on cockpit.

put: to perform a put action, that is, put the plane into a new position or put the lock, an
actor must be at position cockpit, i.e., in the cockpit;

move: to perform a move action at location cockpit, that is, move into it, an actor must be
at the position cabin, must be in possession of PIN, and door must be in state norm.

Although this policy abstracts from the buzzer, the 30 sec delay, and a few other technical
details, it captures the essential features of the cockpit door.

The graph, credentials, and features are plugged together with the policy into the infras-
tructure Airplane_scenario.

Airplane_scenario = Infrastructure ex_graph local_policies

5.8. Insider Attack, Safety, and Security

We now first stage the insider attack and introduce basic definitions of safety and security
for the airplane scenario. To invoke the insider within an application of the Isabelle Insider
framework, we assume in the locale airplane as a locale assumption with assumes that the
tipping point has been reached for Eve which manifests itself in her actor_state assigned
by the locale function astate

astate x = (case x of
’?’Eve’’ = Actor_state depressed {revenge, peer_recognition}
| _ = Actor_state happy {})

In addition, we state that she is an insider being able to impersonate Charly by locally
assuming the Insider predicate. This predicate allows an insider to impersonate a set of
other actor identities; in this case the set is singleton.

14



assumes Eve_precipitating_event: tipping_point(astate ’’Eve’’)
assumes Insider_Eve : Insider ’’Eve’’ {’’Charly’’}

Next, the process of analysis uses this assumption as well as the definitions of the previous
section to prove security properties interactively as theorems in Isabelle. We use the strong
insider assumption here up front to provide a first sanity check on the model by validating
the infrastructure for the “normal” case. We prove that the global policy holds for the pilot
Bob. To illustrate a proof in Isabelle, we show the statement of the theorem including the
Isabelle proof script. The system replies of the interaction with Isabelle are omitted but can
be simply recreated by running that script.

lemma ex_inv: global_policy Airplane_scenario ’’Bob’’
by (simp add: Airplane_scenario_def global_policy_def airplane_actors_def)

The proof is finished with one complex step: unfold the definitions of the scenario given
by Airplane_scenario_def and two other definitions and then apply the simplifier, an
automated technique that applies equational (including conditional) rewriting to solve a
goal.

We can prove the same theorem for Charly who is the copilot in the scenario (omitting
the proof and accompanying Isabelle commands).

global_policy Airplane_scenario ’’Charly’’

But Eve is an insider and is able to impersonate Charly. She will ignore the global policy.
This insider threat can now be formalized as an invalidation of the global company policy
for ??Eve’’ in the following “attack” theorem named ex_inva3:

theorem ex_inv3: — global_policy Airplane_scenario ’’Eve’’

This theorem can be proved by first invoking the above insider assumption about Eve un-
folding the corresponding underlying definitions provided in the Isabelle Insider framework
but finally then again using the powerful simplification tactic simp. The attack theorem is
proved in Isabelle: it says that Eve can get access to the cockpit and put the position to
ground. In other words, Eve can crash the plane. The proof is very similar to proofs of
comparable theorems in other applications of the Isabelle Insider framework, for instance,
for the TIoT [16] or for auctions [15], and can basically be copied from there just replacing
local definition names. Summarizing, the insider assumption allows modeling that actors
may be the same as other actors. Policies that are expressed according to roles thus apply
to those insiders which — given that they are attackers — are harmful.

Safety and security are sometimes introduced in textbooks as complementary properties,
see, e.g., [31]. Safety expresses that humans and goods should be protected from negative
effects caused by machines while security is the inverse direction: machines (computers)
should be protected from malicious humans. Similarly, the following descriptions of safety
and security in the airplane scenario also illustrate this complementarity: one says that the
door must stay closed to the outside; the other that there must be a possibility to open it
from the outside.

15



Safety: if the actors in the cockpit are out of action, there must be a possibility to get into
the cockpit from the cabin, and

Security:  if the actors in the cockpit fear an attack from the cabin, they can lock the door.

In the formal translation of these properties into HOL, this complementarity manifests itself
even more clearly: the conclusions of the two formalizations of the properties are negations
of each other. Safety is quite concisely described by stating that airplane actors can move
into the cockpit.

Safety I a = a € airplane_actors —> (enables I cockpit (Actor a) move)

Security can also be defined in a simple manner as the property that no actor can move into
the cockpit if the door is on lock.

Security I a = isin (graphI I) door ’’locked’’
— —(enables I cockpit (Actor a) move)

These two properties are defined for any infrastructure I so we can apply them to the initial
airplane scenario we have defined in the previous section. For this Airplane_scenario, we
can show safety, for example, for Alice because she is in the cabin.

lemma Safety: Safety Airplane_scenario ’’Alice’’

In general, we could prove safety for any airplane actor who is in the cabin for this state of
the infrastructure.

In a slightly more complex proof, we can prove security for any other identity which can
be simply instantiated to ’’Bob’’.

lemma Security: Security Airplane_scenario ’’Bob’’

The simple formalizations of safety and security enable proofs only over a particular state
of the airplane infrastructure at a time but this is not enough since the general airplane
structure is subject to state changes. For a general verification, we need to prove that the
properties of interest are preserved under potential changes. Since the airplane infrastructure
permits, for example, that actors move about inside the airplane, we need to verify safety
and security properties in a dynamic setting. After all, the insider attack on Germanwings
Flight 9525 appeared when the pilot had moved out of the cockpit. Furthermore, we want
to redefine the policy into the two-person policy and examine whether safety and security
are improved. For these reasons, we next apply the general Kripke structure mechanism
introduced in Section 4.3 to the airplane scenario.

6. Analysis of Safety and Security Properties

In this section we first introduce a Kripke structure to model state transitions in the
airplane scenario. Then we formalize the two-person rule and look how this rule is related
to the property that the airplane is not in danger with respect to an insider attack. We
show that an additional assumption is necessary to prove this property. We conclude the
section by summarizing the methodology.

16



6.1. Kripke Structure for Airplane Scenario

The state transition relation —; introduced in Section 4.3 is generally defined for a type
class state. Therefore, we can instantiate the state transition for the type infrastructure
as —,. Consequently, we can define the set of all states that are in the reflexive tran-
sitive closure of the infrastructure transition relation when starting in the infrastructure
Airplane scenario as a locale definition Air_states.

Air_states = { I. Airplane_scenario —, * I }

From there, we can define a corresponding Kripke structure by applying the constructor
Kripke to the above state set and the singleton set of Airplane_scenario as the (only)
initial state.

Air Kripke = Kripke Air_states {Airplane_scenario}

We now illustrate how we can use this Kripke structure to explore and potentially inval-
idate the policy. The state of the infrastructure that represents the fatal state is when the
pilot has moved out and the door is locked. We introduce a locale definition aid_graph to
represent the graph for this infrastructure.

aid_graph = Lgraph
{(cockpit, door), (door,cabin)}
(A x. if x = cockpit then [’’Charly’’]
else (if x = door then []
else (if x = cabin then [’’Bob’’, ’’Alice’’] else [])))
ex_creds ex_locs’

The function ex_locs’ encodes the state of the airplane where the door is now locked.

ex_locs’ = A x. if x = door then [’’locked’’]
else (if x = cockpit then [’’air’’] else [])

We finally define a new infrastructure state that takes this graph and the same local_policies
as Airplane_scenario.

Airplane_in_danger = Infrastructure aid_graph local_policies

For the analysis of security, we need to ask whether this new infrastructure state Airplane_in_
danger is reachable via the state transition relation from the initial state. It is. We can
prove the following as a theorem in the locale airplane.

theorem step_allr: Airplane_scenario —, * Airplane_in_danger

As the name of this theorem suggests it is the result of lining up a sequence of steps that
lead from the initial Airplane _scenario to that Airplane_in danger state. In fact there
are three steps via two intermediary infrastructure states Airplane_getting in danger0
and Airplane_getting in danger (see Appendix). The former encodes the state where
Bob has moved to the cabin and the latter encodes the successor state in which additionally

17



the lock state has changed to locked. The definitions of these states are very similar to
the above definition of Airplane_in danger (see Appendix). The proof of the theorem
step-allr correspondingly lines up lemmas for each of the state transitions between the
involved states. Once provided with these lemmas, the main proof is just one simplification
with the underlying definition of the reflexive transitive closure of a relation. This is the
advantage of using a richly equipped proof assistant: the theory library is well equipped
with standard mathematics and the tactics work well on this basis. The only real work
has to be done to prove the individual steps. However, although the proof scripts are a bit
lengthy, this is just simple step by step unfolding of definitions and simplification. The only
reason why it is not done in one step fully automatically is that some instantiations under
existential quantifiers have to be inserted in the application of the state transition rules, like
for example the rule put we have seen in Section 4.3.

Using the formalization of CTL over Kripke structures introduced in Section 4.3, we can
now transform the attack sequence represented implicitly by the above theorem step_allr
into a temporal logic statement. This attack theorem states that there is a path from the
initial state of the Kripke structure Air Kripke on which eventually the global policy is
violated by the attacker.

theorem aid_attack: Air_Kripke F EF ({x. — global_policy x ’’Eve’’})

The proof uses the underlying formalization of CTL and the lemmas that are provided
to evaluate the EF statement on the Kripke structure. However, the attack sequence is
already provided by the previous theorem. So the proof just consists in supplying the step
lemmas for each step and finally proving that for the state at the end of the attack path,
i.e., for Airplane_in danger, the global policy is violated. This proof corresponds precisely
to the proof of the attack theorem ex_inv3. It is not surprising that the security attack
is possible in the reachable state Airplane_in danger when it was already possible in the
initial state. However, this statement is not satisfactory since the model does not take into
account whether the copilot is on his own when he launches the attack. This is the purpose
of the two-person rule which we want to investigate in more detail in this paper. Therefore,
we next address how to add the two-person role to the model.

6.2. Introduce Two-Person Rule

To express the rule that two authorized personnel must be present at all times in the
cockpit, we define a second set of local policies. The following function realizes the two-
person constraint. It requests that the number of actors at the location cockpit in the
graph G given as input must be at least two to enable actors at the location to perform the
action put. Formally, we can express this here as 2 <length(agra G cockpit) since we
have all of arithmetic available (remember agra G y is the list of actors at location y in G
introduced in Section 4.3).

local_policies_four_eyes G =
(A y. if y = cockpit then
{(A x. (3 n. n Qg cockpit A Actor n = x) A 2 < length(agra G y) A

18



V h € set(agra G y). h € airplane_actors), {putl}),
(A x. (dn. n Qg cabin A Actor n = x) A has (x, ’’PIN’’)A
isin G door ’’norm’’), {movel})}
else (if y = door then
{(A x. ((Fn. n Qs cockpit A Actor n = x)
A 3 < length(agra G cockpit)), {move})}
else (if y = cabin then
{(A x. 3 n. n Qg door A Actor n = x), {movel})}
else {})))

Note that the two-person rule requires three people to be at the cockpit before one of them
can leave. This is formalized as a condition on the move action of location door. A move
of an actor x in the cockpit to door is only allowed if three people are in the cockpit.
Practically, it enforces a person, say Alice to first enter the cockpit before the pilot Bob can
leave. However, this condition is necessary to guarantee that the two-person requirement for
cockpit is sustained by the dynamic changes to the infrastructure state caused by actors’
moves. A move to location cabin is only allowed from door so no additional condition is
necessary here.

What is stated informally above seems intuitive and quite easy to believe. However,
comparing to the earlier formalization of this two-person rule [1], it appears that the earlier
version did not have the additional condition on the action move to door. One may argue
that in the earlier version the authors did not consider this because they had neither state
transitions, Kripke structures, nor CTL to consider dynamic changes. However, in the
current paper this additional side condition only occurred to us when we tried to prove the
following invariant which is needed in a subsequent security proof.

lemma two_person_invl:
Airplane_not_in_danger_init —,"* I = 2 < length (agra (graphI I) cockpit)

This proof requires an induction over the state transition relation starting in the infras-
tructure state Airplane not_in danger_init with Charly and Bob in the cockpit and the
two-person policy in place.

Airplane_not_in_danger_init = Infrastructure ex_graph local_policies_four_eyes

The corresponding Kripke structure of all states originating in this infrastructure state is de-
fined as Air_tp_Kripke. Within the induction for the proof of the above two_person_invi,
a preservation lemma is required that proves that if the condition 2 < length (agra
(graphI I) cockpit) holds for T and I —, I’ then it also holds for I’. The preser-
vation lemma is actually trickier to prove. It uses a case analysis over all the transition
rules for each action. The rules for put and get are easy to prove for the user as they are
solved by the simplification tactic automatically. The case for action move is the difficult
case. Here we actually need to use the precondition of the policy for location door in order
to prove that the two-person invariant is preserved by an actor moving out of the cockpit.
In this case, we need for example, invariants like the following lemma that shows that in any

19



infrastructure state originating from Airplane not_in_danger_init actors only ever appear
in one location and they do not appear more than once in a location — which is expressed
in a predicate nodup (see Appendix). The following lemma is an instantiation of a similar
general lemma proved for all Kripke structures — similar to the lemma init_state_policy
mentioned in Section 4.3.

lemma actors_unique_loc_aid_step:
Airplane_not_in_danger_init —, % I
= Va (V11. aQgapnr1) 1 AN a Qgappr1 17 — 1 =1
A (¥ 1. nodup a (agra (graphI I) 1))

6.3. Revealing Necessary Assumption by Proof Failure

We would expect — and this has in fact been presented in [1] — that the two-person rule
guarantees the absence of the insider attack. This is indeed a provable fact in the following
state Airplane not_in_danger defined similar to Airplane_in_danger from Section 6.1 but
using the two-person policy.

Airplane_not_in_danger = Infrastructure aid_graph local_policies_four_eyes
For this state, it can be proved [1] that for any actor identity a the global policy holds.
global_policy Airplane_not_in_danger a

So, in the state Airplane_not_in_danger with the two-person rule, there seems to be no
danger. But this is precisely the scenario of the suicide attack! Charly is on his own
in the cockpit — why then does the two-person rule imply he cannot act? The state
Airplane not_in danger defined in the earlier formalization is mis-named: it uses the graph
aid_graph to define a state in which Bob has left the cockpit and the door is locked. Since
there is only one actor present, the precondition of the local policy for cockpit is not met
and hence the action put is not enabled for actor Charly. Thus, the policy rule for cockpit
is true because the precondition of this implication — two people in the cockpit — is false,
and false implies anything: seemingly a disastrous failure of logic.

Fortunately, the above theorem has been derived in a preliminary model only [1] in
which state changes were not integrated yet and which has been precisely for this reason
recognized as inadequate. Now, with state changes in the improved model, we have proved
the two-person invariant two_person_invl. Thus, we can see that the system — if started in
Airplane not_in_danger_init — cannot reach the mis-named state Airplane_not_in_danger
in which Charly is on his own in the cockpit.

However, so far, no such general theorem has been proved yet. We only used CTL to
discover attacks using EF formulas. What we need for general security and what we consider
next is to prove a global property with the temporal operator AG that proves that from a
given initial state the global policy holds in all (A) states globally (G).

As we have seen in the previous section when looking at the proof of two_person_invi,
it is not evident and trivial to prove that all state changes preserve security properties.
However, even this invariant does not suffice. Even if the two-person rule is successfully
enforced in a state, it is on its own still not sufficient. When we try to prove

20



Air_tp_Kripke - AG {x. global_policy x ’’Eve’’}

for the Kripke structure Air_tp_Kripke of all states originating in Airplane not_in danger_init,
we cannot succeed. In fact, in that Kripke structure there are infrastructure states where

the insider attack is possible. Despite the fact that we have stipulated the two-person rule

as part of the new policy and despite the fact that we can prove that this policy is preserved

by all state changes, the rule has no consequence on the insider. Since Eve can impersonate

the copilot Charly, whether two people are in the cockpit or not, the attack can happen.

What we realize through this failed attempt to prove a global property is that the policy
formulation does not entail that the presence of two people in itself actually disables an
attacker.

This insight reveals a hidden assumption. Formal reasoning systems have the advantage
that hidden assumptions must be made explicit. In human reasoning they occur when people
assume a common understanding, which may or may not be actually the case. In the case
of the rule above, its purpose may lead to an assumption that humans accept but which is
not warranted.

We use again a locale definition to encode this intentional understanding of the two-
person rule. The formula foe_control encodes for any action c at a location 1 that if there
is an Actor x that is not an insider, that is, is not impersonated by Eve, then the insider is
disabled for that action c.

foe_control 1 ¢ = (V I. (3 x. x @7 1 A Actor x # Actor ’’Eve’’)
— —(enables I 1 (Actor ’’Eve’’) c))

6.4. Proving Security in Refined Model

Having identified the missing formulation of the intentional effects of the two-person rule,
we can now finally prove the general security property using the above locale definition. We
assume in the locale airplane an instance of foe_control for the cockpit and the action
put.

assumes cockpit_foe_control: foe_control cockpit put

With this assumption, we are now able to prove that for all infrastructure states of the
system airplane originating in state Airplane not_in danger_init Eve cannot put the
airplane to the ground.

theorem Four_eyes_no_danger: Air_tp_Kripke - AG {x. global_policy x ’’Eve’’}

The proof uses as a key lemma that within Kripke structure Air_tp Kripke there is always
someone in the cockpit who is not the insider.

lemma tp_imp_control: Airplane_not_in_danger_init —, * I
= 3 x. x Qy cockpit A Actor x # Actor ’’Eve’’

This lemma can be proved by using the invariant that always two people are in the cockpit.
However, the invariant two_person_invl cannot be used directly since it is a lemma over
lists rather than sets. Instead of re-formulating the model with sets, we use a simple fact
about sets and lists.

21



(V a. nodup a 1) — card (set 1) = length 1

This general lemma enables together with the invariant actors_unique_step_loc_aid_step
the proof of the more suitable invariant two_person_set_inv.

lemma two_person_set_inv: Airplane_not_in_danger_init —, * I
— 2 < card (set (agra (graphI z) cockpit))

Using the assumption foe_control, we can now mainly by applying modus ponens derive
that Eve is not enabled in cockpit to perform put for any infrastructure state originating
from Airplane not_in_danger_init.

Airplane_not_in_danger_init —,"* I == — enables I cockpit (Actor ’’Eve’’) put

Now, the proof of theorem Four_eyes_no_danger (see Appendix) uses simplification on basic
lemmas for Kripke structures and CTL to reduce to the above fact which finishes the proof.

6.5. Summarizing Methodology

We propose an informal methodology by summarizing the steps for the development of
secure policies in the presence of insiders using the Isabelle Insider framework.

1. Build a model of the infrastructure, its actors, and local policies with roles and cre-
dentials and define the security property of interest as global policy.
2. Identify initial state(s) and define Kripke structure.

Rl

Use the tipping point and insider assumptions to specify the potential insider(s).

4. Invalidate the global policy, that is, negate the property to specify an infrastructure
state in which the insider can violate it.

5. Explore the state transition function to find a path from the initial state(s) to this
state in which the global policy is violated. For the invalidation and exploration,
CTL can be used: first attempt to prove AG {x. global policy x ’’Eve’’}; failure
produces potentially a candidate for an attack; next prove EF —{x. global_policy
x ’’Eve’’} to establish the attack path.

6. Repeat the previous two steps to improve the policy, until the proof of AG {x. global_
policy x ’’Eve’’} succeeds.

7. 1f after repeated cycles in the previous 3 steps the proof of the AG property is still not

successful, try to identify a missing global assumption (like foe_control). Going back

to step 4, add the assumption as a locale assumption and re-iterate.

7. Discussion and Conclusions

In this section, we briefly discuss limitations and approaches to developing airplane
policies, summarize the contributions of the paper, and present some concluding remarks.

22



7.1. Aspects of Airplane Policies

In order to prove consequences of policies certain assumptions have to be made and it
is important to analyze the assumptions, since any consequences hold only with respect to
the assumptions. An important assumption is that the airplane is initially not in danger,
Airplane not_in danger_init. That is, if the assumption is violated initially (before the
airplane leaves the ground) then we cannot conclude that the airplane will not be in danger
later. Current policies do not assume that the cockpit door must be locked before passengers
board the airplane. Actually, often it is still open and closed only later. This means that
an attack by an outsider during this phase cannot be ruled out.

For airlines it is an important question whether they should follow a two-person rule
and as a consequence of the events on 2015-03-24 with the Germanwings flight 9525 a
number of countries recommended the rule and a number of airlines” introduced them -
without consideration of possible negative consequences. In a more recent development,
some German airlines have rescinded the two-person rule,® since the introduction has also
the disadvantage that it takes considerably longer for one person to leave and another to enter
the cockpit than just for one person to leave. This means that with the two-person policy,
each time a pilot/co-pilot leaves the cockpit the door is open for much longer than without
the policy, hence increasing the risk of a hostile attack. Up to now no good improvement
on the protocol for the door has been found, since any change seems to be paired with
substantial disadvantage as well.

We have not formally modelled the situation and the reasoning behind this. We do
this informally here. If we assume pg, the probability that one pilot is an insider; p;, the
probability that a terrorist can use the time the door is open to enter the cockpit following
the one-person rule and take over the plane; and ps, the corresponding probability that a
terrorist can enter the cockpit following the two-person rule.

Fortunately all these probabilities are very small. This means, however, that there is no
reliable way to determine their values. It seems obvious that p, > p;, it can be assumed
that py is considerably bigger than p;.”

With these probabilities we get that an aircraft is in danger according to the one-person
rule:
probability(insider OR terrorist) = po + p1 — probability(insider AND terrorist) = py + p1

With the two-person rule:
probability(insider OR terrorist) = 0+ py — 0 - ps = po

The second equation of the first case assumes that the events that a pilot is an insider
and that a terrorist can use the one-person rule to enter the cockpit are independent. The
approximate equality follows since both py and p; are very small, that is, the size of pg - p; is

"This is  reported, for  instance, in an article of < 2015-03-26 by  Reuters,
http://www.reuters.com/article/france-crash-cockpits-idUSL6NOWS6GR20150326.

8See https://phys.org/news/2017-04-german-airlines-scrap-two-person-cockpit.html and
https://www.swiss.com/corporate/EN/media/newsroom/press-releases/media-release-20170428.

9See, https://www.easa.europa.eu/newsroom-and-events/news/minimum-cockpit-occupancy-easa-
issues-revised-safety-information-bulletin

23


http://www.reuters.com/article/france-crash-cockpits-idUSL6N0WS6GR20150326
https://phys.org/news/2017-04-german-airlines-scrap-two-person-cockpit.html
https://www.swiss.com/corporate/EN/media/newsroom/press-releases/media-release-20170428
https://www.easa.europa.eu/newsroom-and-events/news/minimum-cockpit-occupancy-easa-issues-revised-safety-information-bulletin

negligible compared to either py or p;. In the second case it is assumed that the probability
that an insider can harm the plane if not on their own is 0.

In order to follow a rational policy, an airline should look at the relationship of the
probabilities in the two cases, that is, between ps and pg + p;. It should go for the smaller
probability. If the probability of a terrorist getting in following the two-person rule is greater
than that of getting in following the one-person rule plus the probability of an insider doing
harm then follow the one-person rule, else the two-person rule.

However, as we have mentioned above it is very difficult to determine these probabilities.
Hence, when it comes to defining policies, it looks much more fruitful to consider possibilistic
specifications of systems, actors, and their possible behaviours in order to understand better
the shortcomings and possible glitches when imposing policies as security rules than to apply
probabilistic reasoning.

7.2. Advantages and drawbacks of the approach

While the detection of attacks is a very useful feature, the use of a heavier, that is,
a more labour intensive analysis, like interactive theorem proving with Isabelle may seem
to be an academic exercise. Particularly in the light of related logical analysis techniques
like model checking or SMT (Satisfiability Modulo Theory) solving, the interaction might
appear like an unnecessary limitation. However, as the foundations of logic and computation
theory teach us, properties may become undecidable as soon as higher order elements are
in the models. And this is the case when we want to express policies over infrastructures,
and prove properties that often necessitate proofs of invariants which can only be proved by
induction.

Invalidation of policies of infrastructures to detect insider threats [12] uses model check-
ing to discover paths to system states in which the security policy is violated. However,
the restrictions on the description of infrastructure models in model checkers renders them
insufficient for our purposes: we need to consider a variety of actors and restrictions like the
number of people in locations and changing configurations created by actors moving about
between them. Model checking explores the entire state space of systems for all possible
instantiations of all state variables. This process — if implemented as a decision procedure
— requires finite models and is exponential in the number of state components — a problem
known as state explosion. Due to the resulting restrictions on the state specification it is
not possible to use general arithmetic expressions — for example using state variables over
infinite data domains like x < 2 for x being an integer — nor to describe security policies
using higher order predicates — for example using expressions like “a is at location [” as
an input for a graph based policy model generalizing over actors a and locations [ of an
infrastructure. Similarly, SMT solvers use a complete enumeration of all possible interpre-
tations of logical formulas and satisfiability checking has only recently been extended to
higher order logic in an efficient way [32]. The application of model checkers would require
to apply abstraction and considerable work would need to be done to find a suitable level of
abstraction. The formalization in the rich language of Isabelle/HOL looks cognitively more
adequate and allows to more easily experiment with different policies.

24



7.83. Summary of Contributions

The current paper presents a complete formalization and analysis of preliminary work
previously presented as a workshop paper [1] on examining insider attacks on airplanes. The
main improvements and additional contributions over this and other previous works with
the Isabelle Insider framework are:

e We have improved the Isabelle Insider framework by integrating the credentials, roles,
and location state into the infrastructure graph. This is necessary when using infra-
structures as states in Kripke structures but also generally improves the infrastructure
model.

e We have identified a crucial implicit condition intentional in the two-person rule for-
malizing it as foe_control in our model.

e We have shown for the first time how invariant reasoning and induction can be used
to prove that a global policy holds over a Kripke structure in the Isabelle Insider
framework. By using an instance of foe_control we showed that the two-person rule
provides insider security.

e We have summarized the procedure as an informal methodology.

Isabelle and other HOL tools support a rich set of type definitions and inductive pred-
icates. This work has shown the benefits of using these definition tools as a natural match
for concepts in the application. Without such well-founded definitions, proof rules that are
used on features of a model cannot be considered as mathematically sound. Datatypes and
induction on predicates are derived from first principles like fixpoint induction and datatype
isomorphism in HOL. This is known as the principle of conservative extension. It is this
principle that adds a special quality of mathematical soundness to Isabelle formalizations.

The complexity of the application domain of infrastructures including actors and policies
necessitated the use of higher order functions to represent policies. We have illustrated this
necessity by showing some meta-level invariants for the insider framework. The proof of
invariants needs induction.

As discussed in Section 2, the Isabelle Insider framework has been initially designed and
validated on the insider threat patterns identified by CERT [4]. The present application of
the Isabelle Insider framework is based on the same insider model but greatly enhances it
by the generic state transition model based on Kripke structures and CTL. The definition
of the airplane application uses earlier insider applications as a blueprint. Hence basic
proofs can be reused. The current application additionally provides reusable proofs at
the level of the insider theory itself (for example, preservation of the local policies by the
state transition) and shows how proofs about the dynamic behaviour of the application are
conducted. This can similarly inspire future applications allowing reusability of the Isabelle
Insider framework.

25



7.4. Conclusions

The current work has picked up on the challenging earlier application [1] on investigating
airplane safety and security in the presence of insiders. We have successfully proved the
major observation of that earlier paper: a thorough logical analysis of the airplane scenario
requires the exploration of the state space for all possible changes to the state. Integrating
the extensions to Kripke structures and CTL in our model we were now able to explore the
airplane scenario thoroughly and completely. The analysis in the interactive theorem prover
[sabelle has shown that earlier results were partly misleading because security results were
only relating statically to one specific state at a time. In the current version, the use of
an inductive state transition relation enables us to prove invariants and most prominently
revealed a missing assumption when clarifying the policy specification.

This shows that a rigorous validation as part of the process in the development of new
airplane policy is very import.

Finally, we were able to establish the proof of the global security property in presence of
an insider. As a by-product, the extensive study has provided general improvements to the
Isabelle Insider framework.

References

[1] F. Kammiiller, M. Kerber, Investigating airplane safety and security against insider threats using
logical modeling, in: IEEE Security and Privacy Workshops, Workshop on Research in Insider Threats,
WRIT’16, IEEE, 2016.

[2] F. Kammiiller, C. W. Probst, Modeling and verification of insider threats using logical analysis, IEEE
Systems Journal, Special issue on Insider Threats to Information Security, Digital Espionage, and
Counter Intelligence 11 (2) (2017) 534-545. doi:10.1109/JSYST.2015.2453215.

URL http://dx.doi.org/10.1109/JSYST.2015.2453215

[3] F. Kammiiller, IsabelleInsider — insider framework based on Kripke structures and CTL with example
of airplane attack, available from https://github.com/flokam/IsabelleInsider. (2019).

[4] D. M. Cappelli, A. P. Moore, R. F. Trzeciak, The CERT Guide to Insider Threats: How to Prevent,
Detect, and Respond to Information Technology Crimes (Theft, Sabotage, Fraud), 1st Edition, SEI
Series in Software Engineering, Addison-Wesley Professional, 2012.

URL http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0321812573

[5] F. L. Greitzer, J. R. Strozer, S. Cohen, A. P. Moore, D. Mundie, J. Cowley, Analysis of unintentional
insider threats deriving from social engineering exploits, in: Proceedings of the third IEEE Workshop
on Research in Insider Threats, WRIT 14, IEEE, 2014.

[6] E. T. Axelrad, P. J. Sticha, O. Brdiczka, J. Shen, A bayesian network model for predicting insider
threats, in: 2013 IEEE Security and Privacy Workshops, IEEE Computer Society, Los Alamitos, CA,
USA, 2013, pp. 82-89. doi:http://doi.ieeecomputersociety.org/10.1109/SPW.2013.35.

[7] J. R. C. Nurse, O. Buckley, P. A. Legg, M. Goldsmith, S. Creese, G. R. T. Wright, M. Whitty,
Understanding Insider Threat: A Framework for Characterising Attacks, in: IEEE Security and Privacy
Workshops (SPW), IEEE, 2014.

[8] Y. Moy, E. Ledinot, H. Delseny, V. Wiels, B. Monate, Testing or formal verification: Do-178c¢ alterna-
tives and industrial experience, IEEE Software 30 (3) (2013) 50-57. doi:10.1109/MS.2013.43.

[9] C. O’Halloran, Automated verification of code automatically generated from simulink, Automated
Software Engineering 20 (2) (2013) 237-264. doi:10.1007/s10515-012-0116-5.

[10] M. O. Khan, M. Sievers, S. Standley, Model-based verification and validation of spacecraft avionics,
NASA Jet Propulsion Laboratory.
URL http://hdl.handle.net/2014/44932

26


http://dx.doi.org/10.1109/JSYST.2015.2453215
https://doi.org/10.1109/JSYST.2015.2453215
http://dx.doi.org/10.1109/JSYST.2015.2453215
https://github.com/flokam/IsabelleInsider
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0321812573
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0321812573
https://doi.org/http://doi.ieeecomputersociety.org/10.1109/SPW.2013.35
https://doi.org/10.1109/MS.2013.43
https://doi.org/10.1007/s10515-012-0116-5
http://hdl.handle.net/2014/44932
http://hdl.handle.net/2014/44932

[11] D. v. Oheimb, M. Maidl, R. Robinson, Security architecture and formal analysis of an airplane software
distribution system, in: AIAA (Ed.), 26th Congress of the International Council of the Aeronauti-
cal Sciences (ICAS), Proceedings on CD-ROM available from secr.exec@icas.org, 2008, pp. 1-12,
http://ddvo.net/papers/ICASO8.html.

[12] F. Kammiiller, C. W. Probst, Invalidating policies using structural information, in: IEEE Security and
Privacy Workshops, Workshop on Research in Insider Threats, WRIT’13, 2013.

[13] F. Kammiiller, C. W. Probst, Combining generated data models with formal invalidation for insider
threat analysis, in: IEEE Security and Privacy Workshops, Workshop on Research in Insider Threats,
WRIT’14, 2014.

[14] J. Boender, M. G. Ivanova, F. Kammiiller, G. Primiero, Modeling human behaviour with higher order
logic: Insider threats, in: STAST’14, IEEE, 2014, co-located with CSF’14 in the Vienna Summer of
Logic.

[15] F. Kammiiller, J. R. C. Nurse, C. W. Probst, Attack tree analysis for insider threats on the IoT
using Isabelle, in: Human Aspects of Information Security, Privacy, and Trust - Fourth International
Conference, HAS 2015, Held as Part of HCI International 2016, Toronto, Lecture Notes in Computer
Science, Springer, 2016, invited paper.

[16] F. Kammiiller, Human centric security and privacy for the iot using formal techniques, in: 3d Interna-
tional Conference on Human Factors in Cybersecurity, Vol. 593 of Advances in Intelligent Systems and
Computing, Springer, 2017, pp. 106-116, affiliated with AHFE2017.

[17] M. G. Ivanova, C. W. Probst, R. R. Hansen, F. Kammiiller, Transforming graphical system models
into graphical attack models, in: Graphical Models for Security, GraMSec’15, LNCS, Springer, 2015,
co-located with CSF’15.

[18] F. Kammiiller, M. Kerber, C. Probst, Towards formal analysis of insider threats for auctions, in: 8th
ACM CCS International Workshop on Managing Insider Security Threats, MIST16, ACM, 2016.

[19] CHIST-ERA, Success: Secure accessibility for the internet of things,
http://www.chistera.eu/projects/success (2016).

[20] M. Kamali, L. A. Dennis, O. McAree, M. Fisher, S. M. Veres, Formal verification
of autonomous vehicle platooning, Science of Computer Programming 148 (2017) 88-106.
doi:10.1016/j.scico0.2017.05.0086.

[21] Wikipedia, September 11 attacks, accessed June 2019 (2019).

URL https://en.wikipedia.org/wiki/September_11_attacks

[22] T.H. Kean et al., Complete 9/11 commission report, http://govinfo.library.unt.edu/911/report/911Report.pd
(2004).

[23] Wikipedia, List of aircraft hijackings, accessed June 2019 (2019).

URL https://en.wikipedia.org/wiki/List_of_aircraft_hijackings

[24] The Star, Jet cockpit doors nearly impossible to open by intruders, accessed June 2019 (2018).

URL http://www.thestar.com/news/world/2015/03/26/jet-cockpit-doors—-nearly-impossible-to-open-by-

[25] Reinforced cockpit door — description & procedures, an Airbus film directed by Bertrand Sirven. Ac-
cessed June 2019 (September 2002).

URL https://www.youtube.com/watch?v=ixEHV7c3VXs

[26] F. Kammiiller, Modular reasoning in isabelle, in: D. MacAllester (Ed.), 17th International Conference
on Automated Deduction, CADE-17, Vol. 1831 of LNAI, Springer, 2000.

[27] L. C. Paulson, Proving properties of security protocols by induction, in: CSFW, IEEE Computer
Society, 1997, pp. 70-83.

[28] D. Dolev, A. C. Yao, On the security of public key protocols, in: 22nd Annual Symposium on Founda-
tions of Computer Science, SFCS ’81, IEEE, 1981.

[29] F. Kammiiller, Isabelle modelchecking for insider threats, in: Data Privacy Management, DPM16, 11th
Int. Workshop, Vol. 9963 of LNCS, Springer, 2016, co-located with ESORICS16.

[30] F. Kammiiller, M. Wenzel, L. C. Paulson, Locales — a sectioning concept for Isabelle, in: Y. Bertot,
G. Dowek, A. Hirschowitz, C. Paulin, L. Thery (Eds.), Theorem Proving in Higher Order Logics, 12th
International Conference, TPHOLs’99, Vol. 1690 of LNCS, Springer, 1999.

27


secr.exec@icas.org
http://ddvo.net/papers/ICAS08.html
https://doi.org/10.1016/j.scico.2017.05.006
https://en.wikipedia.org/wiki/September_11_attacks
https://en.wikipedia.org/wiki/September_11_attacks
http://govinfo.library.unt.edu/911/report/911Report.pdf
https://en.wikipedia.org/wiki/List_of_aircraft_hijackings
https://en.wikipedia.org/wiki/List_of_aircraft_hijackings
http://www.thestar.com/news/world/2015/03/26/jet-cockpit-doors-nearly-impossible-to-open-by-intruders.html
http://www.thestar.com/news/world/2015/03/26/jet-cockpit-doors-nearly-impossible-to-open-by-intruders.html
https://www.youtube.com/watch?v=ixEHV7c3VXs
https://www.youtube.com/watch?v=ixEHV7c3VXs

[31] D. Gollmann, Computer Security, Wiley, 2008.

[32] H. Barbosa, A. Reynolds, D. El Ouraoui, C. Tinelli, C. Barrett, Extending SMT solvers to higher-order
logic, in: P. Fontaine (Ed.), 27th International Conference on Automated Deduction, CADE-27, Vol.
11716 of LNAI, Springer, 2019, pp. 35-54.

Appendix A. Isabelle Code Extracts

This section contains a subset of the Isabelle formalization of the Insider framework
and the airplane case study showing all relevant definitions, most interesting lemmas and
theorems without proofs (proofs are replaced by the tag (proof)), and some proof examples.
The following code has been abridged from the latex generated from the Isabelle sources
available online [3]. In this repository there is also a directory latex that contains the
latex-generated pdf outputs of the formalization in full (document.pdf, 61 pages) as well as
the outline (outline.pdf, 25 pages).

Appendiz A.1. Kripke Structures and CTL

theory MC
imports Main
begin

definition monotone :: (‘a set = 'a set) = bool
where monotone =NV pqgp Cq—T17pCTq)

lemma monotonel: monotone T = p C g = 7 p C T ¢
(proof)

lemma Ifpl: monotone 7 — (fp = {Z. 7 Z C Z})
(proof)

lemma gfpl: monotone T — (gfp T = {Z. Z C 7 Z})
(proof)

primrec power :: ['a = 'a, nat] = ('a = 'a) ((- "~ -) 40)
where

power-zero: (f ~0) = (X z. z) |

power-suc: (f ~ (Suc n)) = (fo (f " n))

lemma predtrans-empty:

assumes monotone T

shows v i. (7 ") ({}) € (7 "(i + 1))({})
proof (rule alll, induct-tac 1)

show (7 " O:unat) {} C (7 " (0:nat) + (1:nat)) {} by simp
next show A(i:nat) nunat. (1 "n) {} C (v “n + (1:nat)) {}

= (7 " Sucn) {} C (1 " Sucn+ (1:nat)) {}
proof —

28



fix i n

assume a : (7 "n) {} C(r "n+ (I:nat)) {}

have (7 ((t "n) {})) C (v ((r ~ (n + (I :: nat))) {})) using assms
apply (rule monotoneR)
by (rule a)

thus (7 "~ Suc n) {} C (7 " Suc n + (1:nat)) {} by simp

qed
qed

lemma infchain-outruns-all:
assumes finite (UNIV :: 'a set)
and Vi :: nat. (1 " 4) ({}:: ‘aset) € (1 " i+ (1 :: nat)) {}
shows Vj :: nat. 3i :: nat. j < card ((7 " i) {})
(proof

lemma no-infinite-subset-chain:
assumes finite (UNIV :: 'a set)
and  monotone (1 :: (‘a set = 'a set))

and Vi :nat. (7 'aset = 'aset) ") {} C(r "i+ (1 ::nat)) ({} :: a set)

shows Fulse
(proof

lemma finite-fizp:
assumes finite(UNIV :: 'a set)
and monotone (1 :: ('a set = 'a set))

shows 3 4. (1 "i) {}) =(r (i + 1){})
(proof)

lemma predtrans- UNIV:

assumes monotone T

shows V i. (t " ¢) (UNIV) D (r “(i + 1))(UNIV)
(proof

lemma down-chain-reaches-empty:

assumes finite (UNIV :: 'a set) and monotone (1 :: 'a set = 'a set)

and (Vi :: nat. ((7 :: 'a set = 'a set) " i + (1 :: nat)) UNIV C (t " i) UNIV)
shows 3 (j :: nat). (r "j) UNIV = {}
(proof)

lemma Ifp-loop:
assumes finite (UNIV :: 'b set) and monotone (7 :: ('b set = 'b set))
shows 3 n.lfp1T = (v "n){}

(proof

lemma gfp-loop:

29



assumes finite (UNIV :: b set)
and monotone (7 :: (b set = 'b set))
shows 3 n . gfp 7 = (7 “n)(UNIV :: 'b set)

(proof

class state =
fixes state-transition :: ['a :: type, 'a] = bool ((- —; -) 50)

definition AX where AX f = {s. {f0. s —; f0} C [}
definition EX'where EX'f={s .3 f0 € f. s —; f0 }

definition AF where AF f = lfp (AN Z. f U AX 7)

definition EF where EF f = Ifp (A Z. f U EX' Z)
definition AG where AG f =gfp (AN Z. f N AX Z)
definition EG where EG f = gfp (A Z. f N EX' Z)
definition AU where AU f1 f2 = lfp(A Z. f2 U (f1 N AX 7))
definition EU where EU f1 f2 = ifp(A\ Z. f2 U (f1 N EX' Z))
definition AR where AR f1 f2 = gfp(A Z. f2 N (f1 U AX 7))
definition ER where ER f1 {2 = gfp(A Z. f2 N (f1 U EX' 7))

datatype ’a kripke = Kripke 'a set 'a set

primrec states where states (Kripke S I) = S
primrec init where init (Kripke S I) = 1

definition check (- - - 50)
where M + f = (init M) C {s € (states M). s € f }

definition state-transition-refl ((- —;x -) 50)
where s —;x s" = ((s,s") € {(z,y). state-transition x y}*)

lemma EX-step: assumes r —; y and y € f shows z € EX' f
(proof)

lemma EF-step: assumes © —; y and y € f shows z € FF f
(proof)

lemma EF-step-step: assumes z —; y and y € FF f shows =z € EF f
(proof

lemma EF-step-star: [z —xy;y € f] = x € EF f
(proof)

lemma EF-induct: (a::'a::state) € EF (f :: 'a :: state set) —
mono (N Z. (f:a::state set) U EX' Z) —>

30



(A\z::'a::state.
€ (N Z. (f:'azstate set) U EX' Z)(EF f N {x::'a::state. (P::'az:state = bool) z})) =
Pz) =
Pa
(proof)

lemma EF-step-star-rev|rule-format]: v € EF s = (3 y € s. & —* y)
(proof)

lemma EF-step-inv: (I C {sa:'s :: state. (i::'s€l. i —;x sa) A\ sa € EF s})
= Vaezel. dyes x—xy
(proof

lemma AG-in-lem: € AGs = x € s
(proof)

lemma AG-step: y —; 2 =y € AGs = z € AG s
(proof)

lemma AG-all-s: © —xy=—= 1€ AGs = y € AG s
(proof)

lemma AG-imp-notnotEF:

I #{} = ((Kripke {s : ('s :: state). 3 i € I. (i —;x )} (I :: ('s iz state)set) H AG s)) =
(=(Kripke {s :: (s :: state). 3 i € I. (i —x )} (I = (s :: state)set) = EF (— s)))

(proo)

end

Appendiz A.2. Insider Framework

theory Airinsider

imports MC

begin

datatype action = get | move | eval |put

typedecl actor
consts Actor :: string = actor

type-synonym identity = string
type-synonym policy = ((actor = bool)  action set)

datatype location = Location nat

datatype igraph = Lgraph (location * location)set location = identity list
actor = (string list x string list) location = string list

31



datatype infrastructure =
Infrastructure igraph
[igraph, location] = policy set

primrec loc :: location = nat

where loc(Location n) = n

primrec gra :: igraph = (location * location)set

where gra(Lgraph g a cl) = g

primrec agra :: igraph = (location = identity list)
where agra(Lgraph g a cl) = a

primrec cgra :: igraph = (actor = string list x string list)
where cgra(Lgraph g a cl) = ¢

primrec lgra :: igraph = (location = string list)

where lgra(Lgraph g a cl) =1

definition nodes :: igraph = location set
where nodes g — { . (7 y. ((z,y): gra g) | ((y.2): gra )}

definition actors-graph :: igraph = identity set
where actors-graph g == {z. ? y. y : nodes g A\ = € set(agra g y)}

primrec graphl :: infrastructure = igraph

where graphl (Infrastructure g d) = g

primrec delta :: [infrastructure, igraph, location] = policy set

where delta (Infrastructure g d) = d

primrec tspace :: [infrastructure, actor | = string list x string list
where tspace (Infrastructure g d) = cgra g

primrec Ispace :: [infrastructure, location | = string list

where [space (Infrastructure g d) = lgra g

definition credentials :: string list * string list = string set
where credentials lxl = set (fst lxl)
definition has :: [igraph, actor * string] = bool
where has G ac = snd ac € credentials(cgra G (fst ac))
definition roles :: string list x string list = string set
where roles lxl = set (snd lzl)
definition role :: [igraph, actor % string] = bool
where role G ac = snd ac € roles(cgra G (fst ac))
definition isin :: [igraph,location, string] = bool
where isin Gl s = s € set(lgra G 1)

datatype psy-states = happy | depressed | disgruntled | angry | stressed

datatype motivations = financial | political | revenge | curious | competitive-advantage | power
| peer-recognition

32



datatype actor-state = Actor-state psy-states motivations set
primrec motivation :: actor-state = motivations set

where motivation (Actor-state p m) = m

primrec psy-state :: actor-state = psy-states

where psy-state (Actor-state p m) = p

definition tipping-point :: actor-state = bool where
tipping-point a = ((motivation a # {}) A (happy # psy-state a))

definition Uasl :: [identity, identity] = bool
where Uasl a b = (Actor a = Actor b) A (VY zy. z # a Ny # a A Actor x = Actor y — = =

Y)

definition Insider :: [identity, identity set, identity = actor-state] = bool
where Insider a C as = (tipping-point (as a) — (¥ beC. Uasl a b))

definition atl :: [identity, igraph, location] = bool (- @(_) - 50)
where a Q| = a € set(agra G 1)

definition enables :: [infrastructure, location, actor, action] = bool
where
enables 'l a ' = (3 (p,e) € delta I (graphl I) 1. a’ € e A p a)

primrec nodup : ['a, 'a list] = bool
where
nodup-nil: nodup a [| = True |
nodup-step: nodup a (z # ls) = (if © = a then (a & (set ls)) else nodup a ls)

definition move-graph-a :: [identity, location, location, igraph] = igraph
where move-graph-a n 11’ g = Lgraph (gra g)
(if n € set ((agra g) 1) & n ¢ set ((agra g) 1) then
((agra g)(1 := del n (agra g 1)))(I":= (n # (agra g 1))
else (agra g))(cgra g)(lgra g)

inductive state-transition-in :: [infrastructure, infrastructure] = bool ((- — -) 50)
where
move: [ G = graphl I; a Qg I; | € nodes G; I’ € nodes G
(a) € actors-graph(graphl I); enables I 1" (Actor a) move;
I' = Infrastructure (move-graph-a a 11’ (graphl I))(delta I) | = I —, I’
| get : [ G = graphl I; a Qg I; o’ Qg I; has G (Actor a, 2);
enables 11 (Actor a) get;
I' = Infrastructure
(Lgraph (gra G)(agra G)
((cgra G)(Actor a’ :=
(z # (fst(cgra G (Actor a'))), snd(cgra G (Actor a')))))

33



(lgra G))
(delta I)
|=1-,TI
| put : [ G = graphl I; a Q¢ I; enables I 1 (Actor a) put;
I’ = Infrastructure
(Lgraph (gra G)(agra G)(cgra G)
(gra G)(1 := [2])))
(delta I) ]
= ] =, I’
| put-remote : [ G = graphl I; enables Il (Actor a) put;
I’ = Infrastructure
(Lgraph (gra G)(agra G)(cgra G)
((gra G)(1 = [2])))
(delta I) |
= I =, I'

instantiation infrastructure :: state
begin
definition
state-transition-infra-def: (i —; i) = (i —, (i’ :: infrastructure))

instance
by (rule MC'.class.MC'.state.of-class.intro)

definition state-transition-in-refl ((- —,* -) 50)
where s —,x s = ((s,s') € {(z,y). state-transition-in z y}*)

lemma mowve-graph-eq: move-graph-a a ll g = g
by (simp add: move-graph-a-def, case-tac g, force)

lemma delta-invariant: ¥V z z'. z —, 2’ — delta(z) = delta(z")
by (clarify, erule state-transition-in.cases, simp+)

lemma init-state-policy: [ (z,y) € {(z::infrastructure, y::infrastructure). x —, y}* | =
delta(z) = delta(y)
proof —
have ind: (z,y) € {(z:infrastructure, y::infrastructure). x —, y}*
— delta(z) = delta(y)
proof (insert assms, erule rtrancl.induct)
show (A a::infrastructure.
(V (z::infrastructure) (z "infrastructure). (z —y, 2') — (delta z = delta 2')) =
(((a, a) € {(z :infrastructure, y :: infrastructure). x —, y}*) —
(delta a = delta a)))
by (rule impl, rule refl)

34



next fix a b ¢
assume a0: V (z::infrastructure) z':infrastructure. z —, 2’ — delta z = delta 2’
and al: (a, b) € {(z:infrastructure, y::infrastructure). © —, y}*
and a?2: (a, b) € {(z:infrastructure, y::infrastructure). © —, y}* —
delta a = delta b
and a3: (b, ¢) € {(x:infrastructure, y::infrastructure). x —,, y}
show (a, ¢) € {(z:infrastructure, y::infrastructure). © —, y}* —
delta a = delta c
proof —
have a4: delta b = delta ¢ using a0 al a2 a3 by simp
show ?thesis using a0 al a2 a8 by simp
qed
qed
show ?thesis
by (insert ind, insert assms(2), simp)
qed

lemma same-nodes: (I, y) € {(z:infrastructure, y::infrastructure). © —, y}*
— nodes(graphl y) = nodes(graphl I)

(proof)

lemma same-actors: (I, y) € {(z::infrastructure, y:infrastructure). x —, y}*

= actors-graph(graphl I) = actors-graph(graphl y)
(proof)

end
end

Appendiz A.3. Airplane

theory Airplane

imports Airlnsider

begin

datatype doorstate = locked | norm | unlocked
datatype position = air | airport | ground

locale airplane =

fixes airplane-actors :: identity set

defines airplane-actors-def: airplane-actors = {"'"Bob”, ""Charly”, " Alice'’}
fixes airplane-locations :: location set

defines airplane-locations-def:

airplane-locations = {Location 0, Location 1, Location 2}

fixes cockpit :: location

defines cockpit-def: cockpit = Location 2

fixes door :: location

defines door-def: door = Location 1

35



fixes cabin :: location
defines cabin-def: cabin = Location 0

fixes global-policy :: [infrastructure, identity] = bool
defines global-policy-def: global-policy I a = a ¢ airplane-actors
— —(enables I cockpit (Actor a) put)

fixes ex-creds :: actor = (string list * string list)
defines ez-creds-def: ex-creds =
(A z.(if © = Actor "Bob"
then ([""PIN", ["pilot"))
else (if z = Actor ""Charly”
then (["PIN"],["copilot”])
else (if © = Actor "Alice”
then ([""PIN",[""flightattendant ')
else (1,0)))

fixes ex-locs :: location = string list
defines ex-locs-def: ex-locs = (X z. if x = door then ["'norm"] else
(if x = cockpit then ["air"] else []))

fixes ex-locs’ :: location = string list
defines ez-locs’-def: ex-locs’ = (X x. if © = door then ["locked”] else
(if x = cockpit then ["air"] else []))

fixes ex-graph :: igraph
defines ez-graph-def: ex-graph = Lgraph

{(cockpit, door),(door,cabin)}

(X z. if x = cockpit then ["Bob”, ""Charly"

else (if © = door then ||
else (if x = cabin then ["Alice”] else [])))
ex-creds ex-locs

fixes aid-graph :: igraph
defines aid-graph-def: aid-graph = Lgraph
{(cockpit, door),(door,cabin)}
(X z. if x = cockpit then ["Charly”]
else (if x = door then ||
else (if © = cabin then ["Bob”, ""Alice] else [])))
ex-creds ex-locs’

fixes aid-graph0 :: igraph

defines aid-graphO-def: aid-graph0 = Lgraph
{(cockpit, door),(door,cabin)}
(X z. if x = cockpit then ["Charly”]

36



else (if © = door then [""Bob"
else (if © = cabin then [""Alice”] else [])))

ex-creds ex-locs

fixes agid-graph :: igraph
defines agid-graph-def: agid-graph = Lgraph
{(cockpit, door),(door,cabin)}
(X z. if x = cockpit then ["Charly”
else (if x = door then ||
else (if © = cabin then ["Bob”, ""Alice] else [])))
ex-creds ex-locs

fixes local-policies :: [igraph, location| = policy set
defines local-policies-def: local-policies G =
(A y. if y = cockpit then
{(Az. (?n. (n Qg cockpit) N Actor n = z), {put}),
(A z. (?n. (n Qg cabin) A Actor n = z A has G (z, "PIN")
A isin G door "norm’),{move})
}

else (if y = door then {(\ z. True, {move}),
(A z. (?n. (n Qg cockpit) N Actor n = z), {put})}
else (if y = cabin then {(\ z. True, {move})}
else {})))

fixes local-policies-four-eyes :: [igraph, location] = policy set
defines local-policies-four-eyes-def: local-policies-four-eyes G =
(X y. if y = cockpit then
{(Xz. (?n.(n Qg cockpit) N Actor n = x) A
2 < length(agra G y) A (VY h € set(agra G y). h € airplane-actors), {put}),
(A z. (?n. (n Qg cabin) A Actor n = x A has G (z, "PIN") A
isin G door "morm’"),{move})
}

else (if y = door then
{Zz. ((?n.(n Qg cockpit) N Actor n = z) A 8 < length(agra G cockpit)), {move})}
else (if y = cabin then
{Xz. ((?n. (n Qg door) N Actor n = x)), {move})}

else {})))

fixes Airplane-scenario :: infrastructure (structure)
defines Airplane-scenario-def:
Airplane-scenario = Infrastructure ex-graph local-policies

fixes Airplane-in-danger :: infrastructure

defines Airplane-in-danger-def:
Airplane-in-danger = Infrastructure aid-graph local-policies

37



fixes Airplane-getting-in-danger0 :: infrastructure
defines Airplane-getting-in-danger0-def:
Airplane-getting-in-danger0) = Infrastructure aid-graph0 local-policies

fixes Airplane-getting-in-danger :: infrastructure
defines Airplane-getting-in-danger-def:
Airplane-getting-in-danger = Infrastructure agid-graph local-policies

fixes Air-states
defines Air-states-def: Air-states = { 1. Airplane-scenario —,* 1 }

fixes Air-Kripke
defines Air-Kripke = Kripke Air-states { Airplane-scenario}

fixes Airplane-not-in-danger :: infrastructure
defines Airplane-not-in-danger-def:
Airplane-not-in-danger = Infrastructure aid-graph local-policies-four-eyes

fixes Airplane-not-in-danger-init :: infrastructure
defines Airplane-not-in-danger-init-def:
Airplane-not-in-danger-init = Infrastructure ex-graph local-policies-four-eyes

fixes Air-tp-states
defines Air-tp-states-def: Air-tp-states = { I. Airplane-not-in-danger-init —,* I }

fixes Air-tp-Kripke
defines Air-tp-Kripke = Kripke Air-tp-states { Airplane-not-in-danger-init }

fixes Safety :: [infrastructure, identity] = bool
defines Safety-def: Safety I a = a € airplane-actors
— (enables I cockpit (Actor a) move)

fixes Security :: [infrastructure, identity] = bool
defines Security-def: Security I a = (isin (graphl I) door "locked”)
— —(enables I cockpit (Actor a) move)

fixes foe-control :: [location, action] = bool
defines foe-control-def: foe-control | ¢ =
(I I:: infrastructure. (2 x :: identity.
T Qurpnr 11N Actor z # Actor "Eve”)
— —(enables 11 (Actor "Eve’) ¢))

fixes astate:: identity = actor-state
defines astate-def: astate v = (case z of

38



"Eve' = Actor-state depressed {revenge, peer-recognition}
| - = Actor-state happy {})

assumes Fuve-precipitating-event: tipping-point (astate ""Eve’)
assumes Insider-Eve: Insider ""Eve” {"Charly'} astate
assumes cockpit-foe-control: foe-control cockpit put

begin

lemma Safety: Safety Airplane-scenario ("Alice”)
(proof)

lemma Security: Security Airplane-scenario s
(proof)

lemma stepOr: Airplane-scenario —,* Airplane-getting-in-danger0
(proof)

lemma steplr: Airplane-getting-in-danger0) —,x Airplane-getting-in-danger
(proof)

lemma step2r: Airplane-getting-in-danger —,x Airplane-in-danger
(proof)

theorem step-allr: Airplane-scenario —,* Airplane-in-danger
(proof)

theorem aid-attack: Air-Kripke & EF ({z. = global-policy x ""Eve'’})
proof (simp add: check-def Air-Kripke-def, rule conjI)
show Airplane-scenario € Air-states
by (simp add: Air-states-def state-transition-in-refl-def )
next show Airplane-scenario € EF {x::infrastructure. — global-policy x "Eve'}
by (rule EF-lem2b, subst EF-lem000, rule EX-lemOr, subst EF-lem000, rule EX-step,
unfold state-transition-infra-def, rule step0, rule EX-lem0Or,
rule-tac y = Airplane-getting-in-danger in EX-step,
unfold state-transition-infra-def, rule stepl, subst EF-lem000, rule EX-lemOl,
rule-tac y = Airplane-in-danger in EX-step, unfold state-transition-infra-def ,
rule step2, rule Collectl, rule ex-invj )
qed

lemma actors-unique-loc-base:
assumes [ —,, I’
and (V 1l a @gmphlll N a @gmphll ' — 1= l/)/\
(V 1. nodup a (agra (graphl I) 1))
shows (V 11" a Qoraphr 11 VAN @ Qb 17 I —1=10)A

39



(V 1. nodup a (agra (graphl I') 1))
(proof)

lemma actors-unique-loc-step:
assumes (I, I') € {(z::infrastructure, y::infrastructure). © —, y}*
and V a. (V 1. a @gmphll [N a @gmphI] I'— 1= ls/\
(V 1. nodup a (agra (graphl I) 1))
shows V a. (V Il a Qoraphr 1/ VN @ Qi 17 ' —1=1)A
(V 1. nodup a (agra (graphl I') 1))
(proof)

lemma two-person-inv:
fixes z 2’
assumes (2:nat) < length (agra (graphl z) cockpit)
and nodes(graphl z) = nodes(graphl Airplane-not-in-danger-init)
and delta(z) = delta(Airplane-not-in-danger-init)
and (Airplane-not-in-danger-init,z) € {(z::infrastructure, y::infrastructure). © —, y}*
and z —,, 2’
shows (2::nat) < length (agra (graphl z') cockpit)
(proof)

lemma airplane-actors-inv:
assumes (Airplane-not-in-danger-init,z) € {(z::infrastructure, y::infrastructure). x —, y}*
shows V h::char list€set (agra (graphl z) cockpit). h € airplane-actors
(proof)

lemma FEve-not-in-cockpit: (Airplane-not-in-danger-init, I)
€ {(z:infrastructure, y::infrastructure). © —, y}* =
z € set (agra (graphl I) cockpit) = x # ""Eve”
(proof)

lemma tp-imp-control:
assumes (Airplane-not-in-danger-init,I) € {(z::infrastructure, y::infrastructure). x —, y}
shows (7 z :: identity. = Qg 51 | cockpit N Actor z # Actor "Eve”)

(proof)

*

lemma Fend-2:  (Airplane-not-in-danger-init,I) € {(x::infrastructure, y::infrastructure). © —,
yyt =
— enables I cockpit (Actor "Eve’) put
by (insert cockpit-foe-control, simp add: foe-control-def, drule-tac = I in spec,
erule mp, erule tp-imp-control)

theorem Four-eyes-no-danger: Air-tp-Kripke b AG ({z. global-policy x ""Eve’’})
proof (simp add: Air-tp-Kripke-def check-def , rule conjl)

show Airplane-not-in-danger-init € Air-tp-states

40



by (simp add: Airplane-not-in-danger-init-def Air-tp-states-def
state-transition-in-refl-def )
next show Airplane-not-in-danger-init € AG {x::infrastructure. global-policy x ""Eve’’}
proof (unfold AG-def, simp add: gfp-def,
rule-tac x = {(z = infrastructure) € states Air-tp-Kripke. ~("Eve” @
rule conjl )
show {z::infrastructure € states Air-tp-Kripke. = ""Eve’’ @
C {z:zinfrastructure. global-policy x ""Eve'’}
by (unfold global-policy-def, simp add: airplane-actors-def, rule subsetl,
drule CollectD, rule Collectl, erule conjF,
simp add: Air-tp-Kripke-def Air-tp-states-def state-transition-in-refl-def
erule Fend-2)
next show {z::infrastructure € states Air-tp-Kripke. — "Eve’’ @
C AX {z:infrastructure € states Air-tp-Kripke. = ""Eve @
Airplane-not-in-danger-init
€ {z:infrastructure € states Air-tp-Kripke. = "Eve” @
proof
show Airplane-not-in-danger-init
€ {z:infrastructure € states Air-tp-Kripke. — " Eve" Qgraphl ¢ cockpit}
by (simp add: Airplane-not-in-danger-init-def Air-tp-Kripke-def Air-tp-states-def
state-transition-refi-def ex-graph-def atl-def Air-tp-Kripke-def
state-transition-in-refl-def )
next show {z::infrastructure € states Air-tp-Kripke. — "Eve" Qgraphl o cockpit}
C AX {z:infrastructure € states Air-tp-Kripke. — ""Eve" Qgraphl « cockpit}
proof (rule subsetl, simp add: AX-def, rule subsetl, rule Collectl, rule conjI)
show A(z:infrastructure) za::infrastructure.
z € states Air-tp-Kripke N\ — "Eve" Qgraphl z cockpit =
za € Collect (state-transition x) = za € states Air-tp-Kripke
by (simp add: Air-tp-Kripke-def Air-tp-states-def state-transition-in-refil-def
simp add: atl-def, erule conjF,
unfold state-transition-infra-def state-transition-in-refi-def,
erule rtrancl-into-rtrancl, rule CollectI, simp)
next fix z za
assume al: © € states Air-tp-Kripke A = "Eve” Qgraphl o cockpit
and al: za € Collect (state-transition x)
show — "Eve’’ @ cockpit
proof —
have b: (Airplane-not-in-danger-init, xa)
€ {(z:infrastructure, y::infrastructure). & —, y}*
proof (insert a0 al, rule rtrancl-trans)
show z € states Air-tp-Kripke N = ""Eve” Qgraphl ¢ cockpit =
za € Collect (state-transition ) =
(z, za) € {(z:infrastructure, y::infrastructure). x —, y}*
by (unfold state-transition-infra-def, force)
next show z € states Air-tp-Kripke N\ — ""Eve” Qyraph ¢ cockpit =

graphl z cockpit)} in exl,

graphl z cockpit}

graphl ¢ cockpit }

graphl & Cockpit} A

graphl « cockpit }

graphl xa

41



za € Collect (state-transition x) =
(Airplane-not-in-danger-init, z) € {(x::infrastructure, y::infrastructure). & —, y}*
by (erule conjE, simp add: Air-tp-Kripke-def Air-tp-states-def state-transition-in-refi-def )+
qed
show ?thesis
by (insert a0 al b, rule-tac P = "Eve"” Qgraphl za cockpit in notl,
simp add: atl-def, drule Eve-not-in-cockpit, assumption, simp)
qed
qed
qed
qed
qed

end

interpretation airplane airplane-actors airplane-locations cockpit door cabin global-policy
ex-creds ex-locs ex-locs’ ex-graph aid-graph aid-graph0 agid-graph
local-policies local-policies-four-eyes Airplane-scenario Airplane-in-danger
Airplane-getting-in-danger0 Airplane-getting-in-danger Air-states Air-Kripke
Airplane-not-in-danger Airplane-not-in-danger-init Air-tp-states
Air-tp-Kripke Safety Security foe-control astate

(proof)

end

42



	1 Introduction
	2 Related Work
	3 Development of Airplane Safety and Security
	4 Isabelle Insider Framework
	4.1 Isabelle and Modular Reasoning
	4.2 Infrastructures, Policies, Actors, and Insiders
	4.3 Kripke Structures and CTL

	5 Formalizing the Airplane Scenario
	5.1 Formalization of Airplane Infrastructure and Properties
	5.2 Initial Global and Local Policies
	5.3 Insider Attack, Safety, and Security

	6 Analysis of Safety and Security Properties
	6.1 Kripke Structure for Airplane Scenario
	6.2 Introduce Two-Person Rule
	6.3 Revealing Necessary Assumption by Proof Failure
	6.4 Proving Security in Refined Model
	6.5 Summarizing Methodology

	7 Discussion and Conclusions
	7.1 Aspects of Airplane Policies
	7.2 Advantages and drawbacks of the approach
	7.3 Summary of Contributions
	7.4 Conclusions

	Appendix  A Isabelle Code Extracts
	Appendix  A.1 Kripke Structures and CTL
	Appendix  A.2 Insider Framework
	Appendix  A.3 Airplane


