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Abstract

Automatic test input generation (ATG) is a major topic in software engineering,
analysis and security. In this paper, we bridge the gap between state-of-the-art
white-box ATG techniques, especially Dynamic Symbolic Execution, and the
diversity of test objectives that they may be used to cover in practice, including
many of those defined by common source-code coverage criteria. We define a
new coverage specification mechanism, called labels, for specifying test objec-
tives, and prove it to be both expressive and amenable to efficient automation.
We present an efficient approach for detecting – revealing – infeasible (i.e. un-
coverable) test objectives expressed as labels. We demonstrate that measuring
the achieved coverage can be efficiently performed for labels. Finally, we propose
an innovative extension of DSE resulting in an efficient support for label cov-
erage, while the existing naive approach induces an exponential blow-up of the
search space. Experiments show that our ATG technique yields very significant
savings and confirm the interest of infeasible label detection, enabling to lift
DSE to label coverage with only a slight overhead. Overall, we show that label
coverage provides the basis of a rich framework allowing one to express and han-
dle test objectives from various contexts in an efficient and generic manner. To
illustrate this framework, we describe LTest, an all-in-one testing toolset based
on labels and used in the industry, which offers automatic program annotation,
ATG, coverage measurement and detection of infeasible test objectives.
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1. Introduction

Context. Efficient test input generation is a major issue for software engi-
neering, analysis and security, so that a tremendous amount of work has been
carried out to develop Automatic Test Generation (ATG) techniques and apply
them in various contexts. These techniques1 may select tests randomly or craft5

them to cover specific targets in the code, relying for example on search meta-
heuristics or symbolic analysis to produce the relevant tests. In the latter case,
advances in constraint solving and dynamic analysis have led to the surge of Dy-
namic Symbolic Execution (DSE) [46, 69, 74], implemented into many tools (e.g.
[30, 31, 37, 38, 47, 71]) leading to impressive case-studies (e.g. [37, 38, 49]).10

In so-called white-box testing, ATG tools are used to fulfil various kinds of
test objectives defined from the code of the program under test. For instance,
they can be employed to search for inputs triggering specific types of failures
during code execution (like buffer overflows) or capable of stressing specific zones
in the code (like those affected by a software patch). ATG may also be used to15

generate a general test suite for a piece of software, which is then passed to one
or several external oracles, in order to assess for example functional correctness,
security or performance. The more different code behaviours are exercised by
the test suite, the better. A standard way of measuring this diversity involves
coverage criteria [25, 76] (a.k.a. adequacy criteria). We focus in this paper20

on source code coverage criteria, simply referred to as coverage criteria in the
following. Many such criteria have been defined along the years, from basic
control-flow or data-flow criteria to mutations [44] and MCDC [43].

Problem. Common white-box ATG techniques may face issues to cope effi-
ciently with the diversity of test objectives that they are confronted with in25

practice. For example, DSE mostly follows an exhaustive exploration of the
path space of the program under test, aiming typically at covering most execu-
tion paths up to a given bound. While such a path-oriented exploration proves
successful in some contexts, it is well known that the resulting test suite can miss
interesting behaviors related to data rather than control. Moreover, standard30

DSE does not support coverage objectives defined over artifacts not explicitly
present in the code, such as multiple-condition coverage [25] or mutations, while
it could efficiently guide test generation towards covering them.

Another important issue is that many white-box test objectives are defined
in a structural way, i.e. expressed in terms of generic code artifacts (e.g. cover35

all instructions, all decisions, all conditions, etc.), without taking into account
the semantics of the program. This leads to the situation when some of the
resulting concrete test objectives (instructions, decisions, conditions, etc.) can
be impossible to activate by a test case – they are infeasible, i.e. uncoverable.

1The scope of this paper does not include model-based testing techniques, aiming at pro-
ducing inputs covering the specification of the code under test. We consider here only de-
terministic sequential programs, even if extending the presented techniques to concurrent
programs can be an interesting work perspective.
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Infeasible test objectives waste the test generation effort and prevent testers40

from measuring the objectives coverage ratio (proxy for test effectiveness [2, 3])
precisely.

Goals. Our first objective is to adapt a state-of-the-art ATG technique, namely
DSE, to make it able to cover efficiently a wide class of test objectives derived
from the source code of the tested program. Recent works have aimed at lifting45

DSE to various coverage criteria [51, 65, 66, 67, 68, 77], or improving DSE
bug-detection abilities by making explicit run-time error conditions [40, 48, 53].
These approaches are mainly based on an instrumentation of the code under
test and allow for black-box reuse of existing DSE tools. However, they come at
a high price since they may induce a blow-up of the path space and a significant50

overhead (previous work [51, Table 2] reports on a 272x average time-overhead,
with a worst case of 2,000x). While still relying on instrumentation of the tested
program and emphasizing black-box reuse of DSE tools as much as possible, our
goal is to provide DSE support for even more kinds of objectives with a minimal
and acceptable overhead.55

Our second objective is to automate three additional key testing services,
which we argue should be typically performed before any actual input genera-
tion. First, we offer a simple, generic and formal way to specify what the test
objectives are, for many kinds of programs and testing contexts. Second, we
enable one to efficiently detect – reveal – those of the test objectives that are60

actually infeasible (or at least a significant part of them). Third, we provide
means to measure the coverage ratio of any existing test suite w.r.t. the feasible
specified objectives. One can then leverage our adapted DSE to cover efficiently
those of the feasible specified objectives that have not been covered yet.

Approach. We introduce labels, i.e. predicates attached to given program65

instructions. Labels were named with reference to C labels, which attach an
identifier to a given program instruction (ou labels attach predicates instead).
We define label coverage, a new source code coverage criterion which appears to
be both expressive and amenable to efficient automation. A label is covered if a
test execution reaches the instruction and satisfies the predicate. Actually, labels70

can be thought of as a convenient specification mechanism for test objectives,
enabling to simulate notably many common classes of coverage criteria in a
unified way. This idea encompasses and extends several existing works [40, 48,
51, 53, 67, 77].

We propose two novel ways of taming the blow-up that may appear while75

trying to cover labels with DSE. Namely, we introduce a tight instrumentation,
where “tight” is made precise in the paper, and a coupling between DSE and
label coverage named iterative label deletion. Their combination results in a
much more effective support for label coverage in DSE. In addition, both tech-
niques can be implemented using black-box DSE tools. We also show that labels80

are amenable to an efficient coverage measurement and an efficient detection of
infeasible test objectives. Experiments reveal that DSE with tight instrumenta-
tion, iterative label deletion and infeasible label detection reaches better label
coverage ratios than vanilla DSE, with only a slight time overhead.
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Overall, we demonstrate that label coverage provides the basis of a rich85

framework allowing one to express and handle various test objectives in an
efficient and generic manner.

Contributions. The purpose of the paper is to provide a complete panorama of
various efforts related to label coverage, including basic definitions, key results
and techniques, as well as a summary of most recent extensions and industrial90

applications. Our main contributions are the following:

� We show that label coverage is expressive enough to faithfully emulate
notably many standard white-box coverage criteria, from decision or con-
dition coverage (Theorem 1) to advanced logic criteria (Theorem 2) and a
substantial subset of weak mutations (the side-effect free fragment, Theo-95

rem 3). Labels can thus be seen as a convenient and powerful specification
mechanism for coverage criteria.

� We demonstrate that infeasible labels can be detected by existing assertion
checkers after translating labels into assertions (Lemma 4).

� We formally characterize the properties of the naive instrumentation used100

in previous works lifting DSE to some kinds of the test objectives that la-
bels can encode. This instrumentation provides a sound way to achieve la-
bel coverage and leads to very efficient coverage score computation. How-
ever, it also yields an exponential increase as well as a complexification of
the paths space (Theorem 7).105

� We propose DSE?, a variant of DSE with efficient handling of all the kinds
of test objectives encodable by labels. This approach relies on tight instru-
mentation and iterative label deletion to reduce the complexity introduced
by labels. Tight instrumentation yields only a linear growth of the paths
space without any complexification (Theorem 10). Both techniques are110

orthogonal and allow for a significant speed-up. Moreover, they can be
both implemented either within the DSE algorithm or using existing DSE
tools in a black-box manner.

� We have implemented DSE? inside the PathCrawler DSE tool [74].
Experiments show that tight instrumentation and iterative label deletion115

yield very significant reductions of both the search space and computa-
tion time compared to naive instrumentation (several orders of magnitude
speed-up in some cases).

� Finally, we describe LTest, an all-in-one ATG toolset based on label
coverage. Along with DSE?-based test generation, LTest offers several120

integrated services: program annotation with labels, label coverage score
computation, as well as detection of infeasible labels via static analysis.
Our experiments with LTest demonstrate that better ATG for label cov-
erage can be achieved at a very reasonable cost compared to vanilla DSE.
For example, considering the test objectives from the advanced MCDC125

4



criterion over our benchmark programs, DSE? with infeasible label detec-
tion has a mean 1.85x time overhead compared to vanilla DSE, while the
mean reported coverage ratio is increased from 78% to 91%.

Outline. First, we present a motivating example in Section 2. After detailing
our basic notation (Section 3), we define labels and explore their expressiveness130

(Section 4). Next, we focus on automation. Detection of infeasible labels is
described in Section 5. The naive instrumentation is studied in Section 6.1 and
the optimized DSE? approach is presented in Section 6.2. Thereon, we describe
LTest, the automated testing framework based on labels (Section 7). Our
experiments are presented in Section 8, followed by the discussion of threats135

to their validity in Section 9. Recent extensions and applications of labels are
summarized in Section 10. Finally, we discuss related work (Section 11) and
provide a conclusion (Section 12).

Earlier works. The present paper attempts to offer the first consolidated
panorama of more than six years of research and industry transfer efforts around140

labels. As a consequence, this paper provides an integrated, as well as carefully
revised, enhanced and extended version of several previously published works.
More precisely, Sections 3.1, 3.3, 4, 6, 8.1, 11 are based on previous work pre-
sented at ICST 2014 [32]. The principles described in Section 5 were first intro-
duced at ICST 2015 [27]. Section 7 was originally presented at TAP 2014 [26].145

These earlier works have been extended in several ways.
Firstly, we have provided more explanations wherever possible, additional

examples of criteria simulation, clearly stated theorems for all theoretical re-
sults, a thorough discussion on the limitations of labels, a better description of
the experimental protocols, and an extended related work. A new motivating150

example (Section 2) has also been included to emphasise the integrated vision
of the various aspects of testing addressed in the paper. We have also better
presented all the coverage criteria considered in the paper (Section 3.2).

Secondly, the experiments detailed in Section 8 have been extended com-
pared to those presented in the original papers. Section 8.1 has been strength-155

ened with a new comparison with random testing and a better comparison with
standard DSE (e.g. including coverage information). Section 8.2 was added
to provide a novel comparison between vanilla DSE and DSE* with infeasible
label detection. Section 8.3 was added to provide results involving an advanced
coverage criterion (MCDC). A new section was also added to discuss threats160

to validity (Section 9).
Finally, all recent extensions [8, 9, 19, 1] , applications [35] and industrial

adoption efforts [33, 34] are now synthetised in Section 10.

2. Motivating Example

In this paper, we introduce a unified framework for automated test input165

generation. Conceptually, we argue that the test generation process should be
divided into four main activities: (1) specify the test objectives, (2) reveal the
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1 // Returns how many of the two inputs are strictly positive
2 int numPos(int a, int b) {
3 int n = 0;
4 if( a > 0 ) n++;
5 if( b > 0 ) n++;
6 return n;
7 }

Figure 1: Function numPos

infeasible objectives, (3) measure the objective coverage rate of the existing tests
and (4) generate new tests to cover the uncovered test objectives. We illustrate
now how our framework handles these four activities in two of the most common170

use cases of test generation tools, namely crafting coverage-adequate test suites
and detecting runtime failures. To do so, we consider the problem of automated
test generation for the simple C function numPos in Figure 1.

2.1. Specifying test objectives

To be efficient, automated test generation should be driven by precise and175

specific objectives to fulfill. Our framework introduces a generic test objective
specification language called labels, which can encode many of the diverse kinds
of test objectives occurring in the diverse use cases of test generation tools.

When a test generation tool is used to craft a test suite for a given program,
the testers often aim at satisfying one of the many existing code coverage criteria,180

which define a set of syntactic elements in the program as the test objectives
to be covered. Higher coverage test suites have indeed better chances to find
bugs [2, 3]. For a significant proportion of these criteria, labels can be used to
easily specify the syntactic elements which should be covered in the program
under test to satisfy the criterion. As a simple example, the Decision Coverage185

criterion requires that running the test suite should cover all the branches in
the control-flow graph of the program. For the program in Figure 1, this leads
to four test objectives corresponding to the two branches of each of the two
conditional statements. Each of these four test objectives can be encoded by
one of the four labels l1, l2, l3 and l4 on Figure 2. A label is basically a code190

assertion and covering the test objective encoded by a label means crafting a test
that makes the program execution reach and fulfill the assertion. For example,
one can check that covering l1 is equivalent to making the condition of the first
conditional statement true, i.e. to covering the then branch of this statement.

Test generation tools can also be used to probe a program for different kinds195

of runtime failures (see [4] for a successful example), like integer overflows. For
the program in Figure 1, this means crafting test inputs able to make one of the
two n++ statements overflow. These two test objectives can be encoded with
the labels l5 and l6 on Figure 3.

Given a program under test and a coverage criterion (or well-defined kind of200

runtime failures to probe for), our framework enabales annotating automatically
the program with the corresponding labels.
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1 int numPos(int a, int b) {
2 int n = 0;
3 // l1: a > 0; l2: a <= 0
4 if( a > 0 ) n++;
5 // l3: b > 0; l4: b <= 0
6 if( b > 0 ) n++;
7 return n;
8 }

Figure 2: Function numPos with test objectives for Decision Coverage encoded as labels

1 int numPos(int a, int b) {
2 int n = 0;
3 if( a > 0 ) {
4 // l5: n == MAX_INT
5 n++;
6 };
7 if( b > 0 ) {
8 // l6: n == MAX_INT
9 n++;

10 };
11 return n;
12 }

Figure 3: Function numPos with test objectives for integer overflow detection encoded as
labels

2.2. Revealing infeasible test objectives

Many of the test objectives considered in automated test generation are
purely syntactic and thus blind to the semantics of the program under test. As205

a consequence, a significant proportion of them can turn out to be infeasible,
i.e. no input can lead to an execution satisfying them. For example, both labels
l5 and l6 on Figure 3 are infeasible, because n can only range between 0 and
2 during program execution.

Infeasible objectives are a threat to the efficiency of test generation tools,210

because a significant part of the test budget might be lost trying to cover them.
Our framework proposes to deal with this issue in a generic way, by introduc-
ing a sound approach to prune out infeasible objectives encoded as labels. In
a nutshell, proving that a label is infeasible is equivalent to proving that its
corresponding opposite assertion (i.e with the negated predicate) can never be215

violated during any program execution. Proving the latter is a standard feature
of many formal verification or model-checking tools, to which this proof can
be delegated. While label infeasibility is not decidable, i.e. the tool may not
always be able to conclude, leaving the status of some labels unresolved, our
experiments show that existing tools are able to flag many infeasible labels in220

practice. For example, for the program of Figure 4, such a tool could show that
none of its two assertions can be violated, hence we can deduce that l5 and l6

on Figure 3 are infeasible.
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1 int numPos(int a, int b) {
2 int n = 0;
3 if( a > 0 ) {
4 assert(n != MAX_INT); // Never violated => l5 infeasible
5 n++;
6 };
7 if( b > 0 ) {
8 assert(n != MAX_INT); // Never violated => l6 infeasible
9 n++;

10 };
11 return n;
12 }

Figure 4: Assertions to detect infeasible test objectives for the test objectives of Figure 3

2.3. Measuring the coverage

While building a test suite for a program, it is often useful to evaluate the225

strength of the produced test suite, to determine if additional tests should be
generated to achieve a more acceptable coverage level or, on the contrary, if the
test suite can be pruned to reduce the testing overhead. This is typically done
by measuring which proportion of the test objectives from a chosen criterion
are covered by the current test suite.230

Our framework enables transparently instrumenting the program under test
to measure the coverage level of an existing test suite, for any coverage criterion
whose objectives can be encoded as labels. This can indeed be simply done
through textually replacing any label by some code that reports the coverage of
the corresponding objective. For example, considering the labels l1 and l2 of235

Figure 2, the instrumented code could be:

...
int n = 0;
if (a > 0) report_covered_label("l1");240

if (a <= 0) report_covered_label("l2");
if( a > 0 ) n++;
...

2.4. Generating test cases covering test objectives245

While dozens of kinds of test objectives are used in the use cases of test
generation tools, these different flavours of objectives are seen as dissimilar
bases for automation, so that most tools only provide a direct support for a very
small subset of them. Supporting new flavours of objectives is time-consuming.
Our framework bridges the gap between the variety of test objective flavors250

and their limited support in test generation tools, by tailoring a state-of-the-art
test generation approach, namely dynamic symbolic execution, to efficiently and
generically cover objectives encoded as labels in the program under test. For
example, considering the program of Figure 2 and its four labels, our tailored
dynamic symbolic execution would need only 4 trials before covering all the255

labels, while the common naive approach might necessitate up to 16 trials.
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3. Background

3.1. Notation

Given a program P over a vector V of m input variables taking values
in a domain D , D1 × · · · × Dm, a test datum t for P is a valuation of260

V , i.e. t ∈ D. The execution of P over t, denoted P (t), is a path (or run)
σ , (loc1, S1) . . . (locn, Sn), where the loci denote control-locations (or simply
locations) of P and the Si denote the successive internal states of P (≈ valuation
of all global and local variables as well as memory-allocated structures) before
the execution of each loci. A test datum t reaches a location loc with internal265

state S, denoted t  P (loc, S), if P (t) is of the form σ1 · (loc, S) · σ2. A test
suite TS is a finite set of test data.

Assume that for a given test objective c, there is an adequate notion of
covering (left unspecified for the moment), and we write t P c if test datum t
covers c. We extend the notation for a test suite TS and a set of test objectives270

C, writing TS  P C when for any c ∈ C, there exists t ∈ TS such that
t  P c. A (source-code based) coverage criterion C is defined as a systematic
way of deriving a set of test objectives C = C(P ) for any program under test P .
A test suite TS satisfies (or achieves) a given coverage criterion C if TS covers
C(P ). When no confusion is possible, we can identify the coverage criterion C275

for a given program P with the derived set of test objectives C = C(P ).
These definitions are generic and leave the exact definition of “covering” to

the considered coverage criterion. For example, test objectives derived from the
Decision Coverage criterion are of the form c , (loc, cond) or c , (loc, !cond),
where cond is the condition of the branching instruction at location loc, and280

t P c if t reaches some (loc, S) such that cond evaluates to true (resp. false)
in S.

Finally, given a test suite TS and a set C of test objectives, the coverage
score of TS w.r.t. C is the ratio of the number of test objectives in C covered by
TS to its cardinality |C|. The coverage score of TS w.r.t. a coverage criterion285

C is defined as its coverage score w.r.t. the set C = C(P ). We also designate
it as the C score (resp. C score) of TS to emphasize the underlying set of test
objectives (resp. coverage criterion).

3.2. Coverage criteria

This section defines the standard coverage criteria (a.k.a adequacy criteria)290

used throughout the paper and their associated notions of covering. We follow
the classification of Ammann and Offutt [25].

Control-flow graph and call graph coverage criteria. The Statement
Coverage (SC) criterion (a.k.a. Instruction Coverage) requires a test suite to
cover, that is, to reach, each statement of the program under test, while Decision295

Coverage (DC, a.k.a. Branch Coverage) requires a test suite to cover each
branch of the program, that is, to activate both true and false branches of each
program decision. Function Coverage (FC) is a restricted form of SC, requiring
only to reach all function entrypoints.
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Logic expression coverage criteria. The three simplest criteria of this family300

are CC, DCC and MCC. Condition coverage (CC) requires to activate both
true and false values for each of the atomic conditions in the predicates appearing
in any program decision point (e.g. conditional or loop predicates). Decision-
Condition Coverage (DCC) requires to satisfy both DC and CC. Multiple-
Condition Coverage (MCC) requires to activate all combinations of truth values305

of atomic conditions in each decision. MCDC is a family of more intricate logic
expression coverage criteria [43], well-known for being required for certification
of aeronautic software. In a nutshell, the MCDC criteria require to demonstrate
that each single atomic condition, alone, can influence the value of the whole
decision. In this work, we focus on two MCDC criteria, General Active Clause310

Coverage (GACC) and General Inactive Clause Coverage (GICC). Notice
that while MCDC is much more complex to cover than DCC, it requires a
number of tests only linear in the number of atomic conditions, whereas MCC
may require an exponential number of tests. Finally, the Implicant Coverage
(IC) and Unique True Point Coverage (UTPC) criteria also aim at covering315

different behaviors of the predicates appearing at the program decision points,
but considering that these predicates have been first syntactically normalized
into Disjunctive Normal Form (DNF). The reader can find a detailed definition
of these criteria in [25]. (It will be explicitly expressed using labels below in the
sketch of proof for Theorem 1.)320

Mutation criteria. In mutation testing [44], test objectives consist of mutants,
i.e. slight syntactic modifications of the program under test P . In the strong
mutation setting M, a mutant M is covered (or killed) by a test datum t if the
output of P (t) differs from the output of M(t). In the weak mutation setting
WM [50], a mutant M is covered by t if the internal states of P (t) and M(t)325

differ from each other right after the mutated location (see Figure 5). M is a
very powerful coverage criterion [24, 61]. While less powerful in theory, WM is
almost equivalent to M in a practical setting [59].
Mutation testing is parameterized by a set of mutation operators O. An (atomic)
mutation operator op ∈ O is a function mapping a program P into a finite set330

of well-defined programs (mutants), such that P differs from each mutant M in
only one location. We denote MO and WMO the strong and weak mutation
criteria restricted to mutants created through operators in O.

Black-box criteria. The Input Domain Coverage criterion (IDC) assumes a
partition of the input domain D of P given as disjoint predicates ϕ1, . . . , ϕk,335

and consists of considering one input for each ϕi.

3.3. Symbolic execution

We recall here a few basic facts about Symbolic Execution (SE) [23, 54].
Let us consider again the program P presented in Section 3.1 and its input

variables V , defined over domain D. Let us also consider an execution path340

σ in the control-flow graph of P , i.e. a path in the graph linking the starting
node of P to one of its intermediate or exiting nodes. The goal of SE is then
to generate an input valuation tσ ∈ D so that P (tσ) covers (i.e. activates) σ.

10



Figure 5: Strong and weak mutations

The key insight of SE is that, if P is deterministic, it is possible to compute a
path constraint φσ for σ such that for any input valuation t ∈ D, we have: t345

satisfies φσ iff P (t) covers σ. Indeed, such a path constraint φσ can be built by
virtually executing P over symbolic inputs and aggregating the constraints that
arise over these symbolic inputs, as one forces the execution to follow path σ.
For example, executing the program of Figure 1 over the two symbolic inputs a
and b and forcing the execution to follow the path along the then branches of350

the two conditional statements produces the path constraint a > 0 ∧ b > 0.
Once the path constraint is built, it is solved using an off-the-shelf con-

straint solver, yielding the expected input valuation tσ or proving that the path
is infeasible if the constraint is unsatisfiable. In practice, the path constraint
must sometimes be under-approximated, as P might contain statements (like355

calls to external libraries) from which the corresponding constraints cannot be
easily extracted. Moreover, SE requires the availability of an (efficient) solving
procedure for the conditions of the path constraint. These two issues have nev-
ertheless been strongly alleviated during the last two decades with (a) the rise of
Dynamic Symbolic Execution (DSE), which interleaves concrete and symbolic360

execution and uses the dynamically collected data to suggest better approxima-
tions for the path constraints, and (b) the development of fast constraint solvers
based on a Satisfiability Modulo Theories (SMT) approach [22].

Nowadays, DSE is studied and used by a large and dynamic research com-
munity and it is the core principle of a wide variety of test input generation365

tools, successfully applied in the industry. Yet, the large amount of time that
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Input: a program P and a finite set of its execution paths Paths(P )
Output: a test suite TS , i.e. a set of pairs (t, σ), such that

∀ feasible σ ∈ Paths(P ), ∃(t, σ) ∈ TS , P (t) P σ
TS := ∅;
Spaths := Paths(P );
while Spaths 6= ∅ do

choose σ ∈ Spaths; Spaths := Spaths \ {σ};
compute path constraint φσ for σ;
switch Solve(φσ) do

case sat(t) do TS := TS ∪ {(t, σ)};
case unsat do skip;

end

end
return TS ;

Algorithm 1: Symbolic Execution algorithm

may be required to attempt solving the constraints (often written in an unde-
cidable logic), together with the explosion in the number of paths to process,
remain the two main bottlenecks faced by the technique when used to generate
a test suite TS covering a significant set of paths in a real-world application.370

A simplified description of the SE process is depicted in Algorithm 1. While
highly abstracted, it is sufficient to understand the remainder of the paper.
Note that Solve represents a call to the constraint solver, which can either
return unsat (no solution found) or sat(t) (where t is a solution).

4. Generic Specification of Test Objectives with Labels375

4.1. Definitions

Given a program P , a label l is a pair (loc, ϕ) where loc is a location of P
and ϕ is a predicate such that:

� ϕ contains only valid expressions using variables visible at location loc;

� ϕ contains no side-effect expressions2.380

An annotated program is a pair 〈P,L〉 where L is a set of labels defined over P .
A test datum t covers a label l , (loc, ϕ), denoted t  〈P,L〉 l, if t reaches (at
least once) the location loc with some internal state S such that the predicate
ϕ is satisfied in S.

2We choose to forbid side-effect expressions in label predicates for practical reasons, as
it would make the implementation of our testing framework more complex. For example,
measuring label coverage in a safe way would require to sandbox the side-effects occurring
during label predicate evaluation or to undo them after it.

12



4.2. Simulating coverage criteria using label coverage385

Given an annotated program 〈P,L〉, we define the label coverage criterion,
denoted LC, as the function returning L as the set of test objectives. Thus, a
test suite satisfies LC if it covers all labels in L, denoted TS  ψ(P ) LC.

We seek to characterize the power of the LC coverage criterion to emulate
other criteria. A key notion here is that of labelling function. A labelling390

function ψ maps a program P into an annotated program ψ(P ) , 〈P,L〉.

Definition 1. A coverage criterion C can be simulated by LC if there exists a
labelling function ψ that annotates any given program P with labels correspond-
ing to the test objectives derived following C, so that, for any test suite TS, we
have TS  P C iff TS  ψ(P ) LC.395

In order to make the test objectives of some of the criteria discussed be-
low directly encodable by labels, we consider in the rest of the paper only
normalized programs, i.e. programs such that no side-effect occurs in any con-
dition of a branching instruction. This is not a fundamental restriction since
any (well-defined) program P1 can be rewritten into a normalized program P2,400

using intermediate variables to evaluate the side-effect prone conditions out-
side the branching instruction. For example, if (x++ <= y && e == f) {. . .}

becomes tmp = x++; if (tmp <= y && e == f) {. . .}. Notice that similar
transformations are automatically performed by the Cil library [63] frequently
used by DSE tools for C programs [69, 74].405

Basic graph and logic expression coverage criteria. To simulate SC and
FC, we add one label with a true predicate, respectively, before each statement
of the program and at the beginning of each function body. To emulate DC,
CC, DCC and MCC, we introduce one label per truth value to cover before any
decision in P . Some illustrating examples are given in Figure 6. For instance,410

for CC the corresponding labelling function ψCC inserts labels that enforce
coverage of both truth values of the two atomic conditions x==y and a<b.

Theorem 1. The coverage criteria SC, DC, CC, DCC and MCC can be
simulated by LC.

Sketch of proof. We need to define a suitable labelling function for any of the415

considered criteria. For SC, we choose the labelling function ψSC adding all
labels of the form (loc, true), where loc is any location of P . Given a test suite
TS , TS  P SC iff TS can reach any loc of P iff TS covers any (loc, true) iff
TS  ψSC(P ) LC. We conclude that SC can be simulated by LC. The reasoning
is similar for FC. Other criteria are handled similarly. The labelling function420

ψDC adds the set of all (loc, ϕ) and (loc,¬ϕ), where loc contains a conditional
statement with condition ϕ. ψCC adds the set of all (loc, ai) and (loc,¬ai),
where loc contains a conditional statement whose atomic conditions are exactly
the ai. ψDCC adds the union of labels added by ψDC and ψCC. ψMCC adds the
set of all (loc,

∧
i āi), where loc contains a conditional statement whose atomic425

conditions are the ai, and āi denotes either ai or ¬ai.
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statement_1;
if (x==y && a<b)
{...};

statement_3;

→

statement_1;
%l1: x==y && a<b
%l2:!(x==y && a<b)
if (x==y && a<b)
{...};

statement_3;

statement_1;
%l1: x==y
%l2: !(x==y)
%l3: a<b
%l4: !(a<b)
if (x==y && a<b)
{...};

statement_3;

Decisions Conditions

statement_1;
%l1: x==y && a<b
%l2: x!=y && a<b
%l3: x==y && a>=b
%l4: x!=y && a>=b
if (x==y && a<b)

{...};
statement_3;

Multiple Conditions

int foo(int x){
statement_1;
...

}

→

int foo(int x){
// l1: true
statement_1;
...

}

int foo(int x){
// l1: x==0
// l2: x>0
// l3: x<0
statement_1;
...

}

Functions Input Domain Partition

Figure 6: Simulating standard coverage criteria with labels

Advanced logic expression coverage criteria. Pandita et al. [68] show
that GACC (and thus GICC) can be simulated through additional branches
to cover, which can be directly specified in terms of labels, as we did for DC.
For IC and UTPC, we introduce one label per truth value to cover in the DNF430

of each decision predicate in P .

Theorem 2. The coverage criteria GACC, GICC, IC and UTPC can be
simulated by LC.

Sketch of proof. Let us consider a predicate p in P that involves n atomic con-
ditions c1, . . . , cn. GACC requires that for each clause ci, the test suite triggers
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two distinct evaluations of p: one execution A where ci is true, one execution
B where ci is false, and both such that the truth value of ci impacts the truth
value of the whole predicate, i.e.:

p(cA1 , . . . , c
A
i−1, true, cAi+1, . . . , c

A
n ) 6= p(cA1 , . . . , c

A
i−1, false, cAi+1, . . . , c

A
n )

for execution A and:

p(cB1 , . . . , c
B
i−1, false, cBi+1, . . . , c

B
n ) 6= p(cB1 , . . . , c

B
i−1, true, cBi+1, . . . , c

B
n )

for execution B. For each clause ci this requirement can be encoded in two
atomic labels: (locp, li,A) and (locp, li,B) with

locp ≡ the location of predicate p,

li,A ≡ ci ∧ ( p(c1, . . . , ci−1, true, ci+1, . . . , cn)

6= p(c1, . . . , ci−1, false, ci+1, . . . , cn) ),

li,B ≡ ¬ci ∧ ( p(c1, . . . , ci−1, false, ci+1, . . . , cn)

6= p(c1, . . . , ci−1, true, ci+1, . . . , cn) ).

Similarly, to encode GICC, for each clause ci of a predicate p one needs to
define four atomic labels: (locp, li,A), (locp, li,B), (locp, li,C) and (locp, li,D) with

li,A ≡ ci ∧ p(c1, . . . , cn)

li,B ≡ ¬ci ∧ p(c1, . . . , cn)

li,C ≡ ci ∧ ¬p(c1, . . . , cn)

li,D ≡ ¬ci ∧ ¬p(c1, . . . , cn)

For the next criterion, for a predicate p, we consider the disjunctive normal

form (DNF) of p and of its negation ¬p: dnf(p) =
∨
i

imp
dnf(p)
i and dnf(¬p) =435 ∨

k

imp
dnf(¬p)
k . (The formulas imp

dnf(p)
i and imp

dnf(¬p)
k are called implicants of

these DNFs.) To encode Implicant Coverage (IC), one needs to define, for each
predicate p:

� a label (locp, imp
dnf(p)
i ) for any implicant imp

dnf(p)
i of the DNF of p,

� a label (locp, imp
dnf(¬p)
k ) for any implicant imp

dnf(¬p)
k of the DNF of ¬p.440

Finally, to encode Unique True Point Coverage (UTPC), one needs to define,
for each predicate p:

� a label (locp, imp
dnfmin(p)

i ∧
∧
j 6=i
¬impdnfmin(p)

j ) for each implicant impdnfmin(p)

i of

the minimal DNF3 dnfmin(p) of p,

3A DNF is minimal if (a) no implicant can be omitted, and (b) no subterm of an implicant
can be omitted. We refer the reader to [25] for detailed definitions.

15



   Program with labels

statement i-1;
// d != dp
x := d;   
// (x>0) != (x>7)          
if (x>0) y := e;             
statement i+2;

  Program P

statement i-1;
x := d;
if (x>0) y := e;
statement i+2;

    Mutant M2

statement i-1;
x := d;
if (x>7) y := e ;
statement i+2;

    Mutant M1

statement i-1;
x := dp ;
if (x>0) y := e;
statement i+2;

labels 

mutations

Figure 7: Simulating weak mutants with labels

� a label (locp, imp
dnfmin(¬p)
k ∧

∧
l 6=k
¬impdnfmin(¬p)

j ) for each implicant impdnfmin(¬p)
k445

of the minimal DNF dnfmin(¬p) of ¬p.

The reader can easily check that these labels precisely represent the required
test objectives according to the definition of these criteria in [25].

Mutation testing. We now consider an even more involved coverage crite-
rion, namely weak mutations, and show that a well-defined part of WM can be450

simulated by LC. We consider only atomic mutations operators that can affect
either a left-hand side expression (lhs), an expression or a condition. This is a
very generic model of mutations, encompassing all standard operators [25], as
well as deletion of assignments, since the replacement of an assignment x:=exp
by x:=x models its deletion. Finally, we restrict ourselves to mutation opera-455

tors neither affecting nor introducing side-effect expressions (in particular, calls
to side-effect prone functions). We refer to such operators as side-effect free
mutation operators.

Theorem 3. For any finite set O of side-effect free mutation operators, WMO

can be simulated by LC.460
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Sketch of proof. We have to define a suitable labelling function. For simplicity,
let us consider first a single mutation operator op ∈ O. The main idea is to
introduce one label for each mutant M created by op, so that covering the label
is equivalent to distinguishing M from P once the modified location has been
reached. This transformation is depicted in Figure 7. Let us consider a mutant465

M differing from P only at location loc. We consider three cases, depending on
the modification introduced by op:

� lhs := expr becomes lhs := expr ′: we add label l , (loc, expr 6= expr ′).
We must prove that t  P M iff t  ψ(P ) l. Note that t  ψ(P ) l iff
t reaches loc with an internal state such that expr and expr ′ evaluate470

to different values. This is equivalent to say that P (t) and M(t) are in
different internal states right after loc, which corresponds by definition t
t P M .

� if (cond) becomes if (cond ′): we add label l , (loc, cond ⊕ cond ′),
where ⊕ is the xor-operator. We follow the same line of reasoning as in475

the previous case. The ⊕ operator ensures that P (t) and M(t) will not
follow the same branching condition.

� lhs := expr becomes lhs ′ := expr : we add label l , (loc, α(lhs) 6= α(lhs ′)∧
(lhs 6= expr ∨ lhs ′ 6= expr)), where α(x) denotes the memory location (≈
address) of x, not its value. For example, in C the memory location is480

given by the & operator. This case requires a little bit more explanation.
In order to observe a difference between P (t) and M(t) right after the
mutated location, we need first that lhs ′ and lhs refer to different memory
locations (which is not always obvious in the case of aliasing expressions).
Moreover, no difference can be observed if both locations had the assigned485

value, i.e. if the old value of lhs and the old value of lhs ′ were equal to
expr in P (t) before the assignment. To observe the difference, at least
one of them should be modified by the assignment. This is exactly what
l encodes.

By iterating this technique for all considered mutation operators op ∈ O, we490

obtain the desired labelling function.

The subset of mutations we have been considering so far is limited to (1)
atomic mutations and (2) side-effect free operators. The first restriction is not a
major issue as atomic mutations have been observed to be almost as powerful as
high-order mutations [58]. The second restriction has two sides: (2.a) it forbids495

mutation operators introducing side-effects, for example mapping x to x++, and
(2.b) it forbids to mutate a side-effect prone expression. Restriction (2.a) is not
severe: it encompasses operators ABS, ROR, AOR, COR and UOI [25], which
have been shown mostly equivalent to much larger sets of operators [60, 73]. It
is left as an open question to quantify more precisely what is lost with restriction500

(2.b).

Black-box criteria. Assuming a partition of the input domain D of program
P given as disjoint predicates ϕ1, . . . , ϕk, the IDC criterion requires one input
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ti for each ϕi. The corresponding labelling function adds all labels of the form
(loc0, ϕj), where loc0 is the entry point of P . The approach is independent of the505

way the partition is obtained, covering both interface-based and functionality-
based partitions [25, Chap. 4]. Figure 6 illustrates the approach with k = 3,
ϕ1 ≡ (x == 0), ϕ2 ≡ (x > 0) and ϕ3 ≡ (x < 0).

4.3. Specifying other useful test objectives with labels

While test generation tools are often used to generate coverage adequate test510

suites, they have also been applied in other use cases, like e.g. runtime failure
detection [21] or patch testing [20]. Test objectives corresponding to run-time
failures such as those implicitly searched for in active testing or assertion-based
testing [40, 48, 53] can be easily captured by labels, including division by zero,
out-of-bound array accesses or null-pointer dereference. Typically, any error-515

prone instruction at location loc with a precondition ϕsafe will be tagged by a
label (loc,¬ϕsafe). Test objectives corresponding to reaching code zones affected
by a patch can be encoded by labels with a true predicate at the entrance of
each basic bloc modified by the patch.

4.4. Limitations of label expressiveness520

The following classes of test objectives cannot be directly encoded through
labels [19]:

� objectives constraining paths rather than program locations (e.g. data-flow
or prime paths coverage criteria [25]),

� objectives relating different paths (e.g. MCDC criteria other than GACC525

and GICC, hyperproperties), possibly in slightly different programs (i.e.
strong mutations).

While the first class of criteria can be encoded by labels with the help of ad-
ditional instrumentation (see e.g. [18] for data-flow criteria), for the others no
simple encoding has been found yet. As already pointed out, weak mutations530

with side-effect operators are also outside the direct scope of labels. When no
exact simulation is known, labels can still be used for approximations. For ex-
ample, even the most intricate MCDC criterion (a.k.a. RACC) can be upper-
approximated (with MCC) or lower-approximated (with GACC).

An extension of labels, named hyperlabels, is presented in Section 10.1. Hy-535

perlabels [8, 9] provide combination operators over labels, yielding a very expres-
sive framework for the specification of test objectives. While standard labels are
restricted to state-reachability constraints (the test datum must reach a specific
state), hyperlabels can express test objectives defined over trace reachability
(the test datum must follow a particular sequence of states) or even hyper-540

reachability (constraints are here expressed over finite sets of traces, typically
pairs).
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5. Infeasible Label Detection

A significant proportion of the labels in an annotated program can turn out
to be infeasible, i.e. no input can satisfy them. Infeasible labels are a threat to545

the efficiency of label-driven test generation, because a significant part of the
test budget might be lost trying to cover them. In this section, we introduce a
sound approach to prune out infeasible labels.

5.1. Definitions

We first formally define infeasible labels.550

Definition 2. Given a label l , (loc, ϕ) in an annotated program 〈P,L〉, we
say that l is infeasible if there is no input datum t such that t 〈P,L〉 l.

Given a program P , an assertion is a pair (loc, ϕ) where loc is a location of
P and ϕ is a predicate that contains only valid and side-effect free expressions.

Definition 3. An assertion of P is valid iff for any test datum t and for any555

internal state S of P such that t reaches loc with internal state S, we have that
ϕ evaluates to true in S.

Definition 4. Given a label l , (loc, ϕ) in an annotated program 〈P,L〉, the
opposite assertion of l is the assertion (loc,¬ϕ).

5.2. Reducing label infeasibility to assertion validity560

Lemma 4. A label is infeasible iff its opposite assertion is valid.

Sketch of proof. If a label l , (loc, ϕ) is infeasible, then for any test datum t
of P that reaches loc with some internal state S, we have that ϕ evaluates to
false in S. As a consequence, ¬ϕ evaluates to true in S. Thus, by definition,
the opposite assertion of l is valid. The reverse can be proven by a similar565

reasoning.

5.3. A practical approach to detecting infeasible labels

Assertion validity is a very common kind of safety properties and many
assertion checker tools are available [18, 27], relying on various formal techniques
such as weakest-precondition or value analysis, as well as model-checking. By570

Lemma 4, a natural approach to detect if a label is infeasible is to send its
opposite assertion to an off-the-shelf assertion checker: if the checker is able
to prove that the assertion is valid, then we know that the label is infeasible.
As assertion checking is an undecidable and complex problem, the assertion
checker may time out or return no answer, so that our infeasible label detection575

approach is only partial.
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6. Label Coverage Measurement and Label-Driven Symbolic Execu-
tion

6.1. Naive approach

Given an annotated program 〈P,L〉, we seek for automatic methods for:580

(1) computing the LC score of a given test suite TS , and (2) deriving a test
suite achieving high LC score. We propose first a black-box approach, reusing
standard automatic testing tools through a direct instrumentation of P . This
technique underlies previous works aiming at extending DSE coverage abili-
ties [40, 48, 51, 53, 67, 68, 77]. While it allows for cheap LC score computation,585

it is far from efficient for automated test generation (abbreviated as ATG below),
mainly because of an exponential blow-up of the path space of the program.

6.1.1. Direct instrumentation

The direct instrumentation P ′ for 〈P,L〉 consists in inserting for each label
l , (loc, ϕ) ∈ L a new branching instruction I: if (ϕ) {}; such that all590

instructions leading to loc in P lead to I in P ′, and I leads to loc. The transfor-
mation is depicted in Figure 8. When different labels are attached to the same
location, the new instructions are chained together in a sequence ultimately
leading to loc.

statement_1;
//label p
statement_2;

−→
statement_1;
if(p){};
statement_2;

Figure 8: Direct instrumentation P ′

Let us denote by NTD the set of test objectives over P ′ requiring to cover595

all New Then-Decisions introduced by this transformation. Direct instrumen-
tation is obviously sound w.r.t. LC in the following sense.

Theorem 5 (Soundness). Given an annotated program 〈P,L〉, its direct instru-
mentation P ′ and a test suite TS, we have: TS  〈P,L〉 LC iff TS  P ′ NTD.
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1 int numPos(int a, int b) {
2 int n = 0;
3 if( a > 0 ) {
4 // l1: a == 5
5 n++;
6 }
7 if( b > 0 ) n++;
8 // l2: n > 0
9 return n;

10 }

Figure 9: Function numPos with two labels

This is interesting for both LC score computation and ATG. Indeed, any600

ATG tool run on P ′ will produce a test suite TS covering LC for 〈P,L〉 as
soon as TS covers all branches of interest in P ′. Besides, a slightly modified
version of direct instrumentation, updating coverage information in the new
then-branches, allows efficient coverage score computation.

Theorem 6. Given an annotated program 〈P,L〉, its direct instrumentation P ′605

and a test suite TS, then the LC score of TS can be computed in time bounded
by |TS | ·maxtime({P ′(t)|t ∈ TS}).

Note that by computing the maxtime over P ′ in the above formula, we
implicitly include the overhead of evaluating labels within the code. The expec-
tation is that only a small fraction of the labels in the program are evaluated in610

any path, so that maxtime(P ′) is substantially smaller than |L|×maxtime(P ).
It follows from Theorems 3 and 6 that coverage measurement of the side-effect
free subset of weak mutation (WM) can then be efficient in practice: rather
than re-running program execution for each mutant, we can measure a relatively
small number of labels for a given test case.615

6.1.2. Discussion

The direct instrumentation, while useful for label coverage measurement, is
inefficient for ATG using symbolic execution, because of two main issues that
we illustrate on the function numPos annotated with two labels as shown in
Figure 9.620

The paths of this program and those resulting from its direct instrumentation
P ′ are shown in Figure 10 (a) and (b). The first issue is that the initial program
has only 4 paths, while the direct instrumentation leads to 12 more intricate
paths (some of which being infeasible). In particular, all the feasible paths
covering the second label contain a constraint coming from the condition of the625

first label, that is, the condition a=5 or its negation. Not present in the initial
program logic, this constraint is irrelevant for covering subsequent branches and
uselessly increases the size of the path constraint to be solved during DSE.

The second issue is that running DSE on P ′ will lead to covering the second
label five times since five feasible partial paths lead to the condition n>0 in P ′,630
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and five test cases will be generated to cover it (e.g. (a, b) = (5, 1), (5, 0), (1, 1),
(1, 0) and (0, 1)). In contrast, a minimal test suite covering the two labels is the
single case (a, b) = (5, 1).

To synthesize, the two issues of direct instrumentation that make it inefficient
for ATG are:635

(†) P ′ is too complex: it exhibits many more paths than P , most of them
being unduly complex for covering the labels we are targeting.

(‡) DSE will naturally produce test suites that cover the same labels several
times, requiring substantially more analysis effort than necessary.

Let us formalize the first point (†) hereafter. We consider two dimensions in640

which P ′ is “too complex”: the size of the search space, denoted |Paths(P ′)|, and
the shape of the paths in Paths(P ′). Let us call label constraints the conditions
of all additional branches ϕ and ¬ϕ introduced in P ′ compared to P .

Theorem 7 (Non-tightness). Given an annotated program 〈P,L〉 and its direct
instrumentation P ′, let us assume that Paths(P ) is bounded, that k represents645

the maximal length of paths in Paths(P ) and that m is the maximal number of
labels per location in P . Then:

� |Paths(P ′)| can be exponentially larger than |Paths(P )| by a factor 2m·k;

� any σ′ ∈ Paths(P ′) may carry up to m · k (positive or negative) label
constraints.650

Sketch of proof. A single path σ ∈ P may correspond to up to 2m·|σ| paths in P ′,
since each label of P creates a branching in P ′ and at most m such branchings
can be found at each step of σ. Note also that the paths σ′ ∈ P ′ corresponding
to σ ∈ P have length bounded by m · |σ|. Therefore they can pass through up
to m · |σ| label constraints, while (by definition) σ does not pass through any655

label constraint.

Both aspects are problematic for symbolic execution: more paths means
more requests to a constraint solver, while more constraint-laden paths means
more expensive requests.

6.2. Efficient label-driven DSE660

We describe in this section two main ingredients in order to obtain efficient
ATG for LC: (1) a tight instrumentation avoiding all drawbacks of the direct
instrumentation, and (2) a strong coupling of label coverage and DSE through
iterative label deletion.
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Figure 10: Paths(〈P,L〉) compared to the paths of P , its direct and tight instrumentation for
function numPos of Figure 1 annotated by two labels

6.2.1. Tight instrumentation665

Given a label l , (loc, ϕ), the key insights behind the tight instrumentation
are the following:

� label constraint ϕ is useful only for covering l, and should not be propa-
gated beyond that point;

� label constraint ¬ϕ is pointless w.r.t. covering l, and should not be en-670

forced in any way.

Keeping these lines in mind, the instrumentation works as depicted in Fig-
ure 11: for each label (loc, ϕ), we introduce a new instruction if (nondet)
{assert(ϕ); exit}; where assert(ϕ) requires ϕ to be verified, exit
forces the execution to stop and nondet is a non-deterministic choice4.675

In the resulting instrumented program P ? (Figure 11, right column), when
an execution reaches loc, it gives rise to two execution paths: the first one tries
to cover the label by asserting ϕ and stops right there, the second one simply
follows its execution as it would do in P , neither ϕ nor ¬ϕ being enforced.

4Note that any DSE engine can simulate non-deterministic choices by an additional input
array of (symbolic) Boolean values.
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statement_1;
// label p
statement_2;

−→

statement_1;
if(nondet){
assert(p);
exit(0);

};
statement_2;

Figure 11: Tight instrumentation P ?

Let us denote by NA the set of test objectives over P ? requiring to cover all680

New Assert introduced by the instrumentation with condition evaluating to
true (cf. Figure 11). Alternatively, NA comes down to cover all new instructions
coming from the tight instrumentation, or to cover all the newly introduced
exit(0). We also extend our definition of coverage for NA as follows, as P ?

contains non-deterministic choices: TS  P? NA if for each na ∈ NA, there is685

a test datum t ∈ TS such that one of the possible executions of P ? over t covers
na. Tight instrumentation is sound w.r.t. LC in the following sense.

Theorem 8 (Soundness). Given an annotated program 〈P,L〉, its tight instru-
mentation P ? and a test suite TS, we have: TS  〈P,L〉 LC iff TS  P? NA.

Sketch of proof. We use the notation of Figure 11. Clearly, if (the execution690

of) a test datum t can reach a newly introduced exit(0) in P ? (preceded
by instruction assert(p) which corresponds to location loc), then t over P
reaches location loc with a memory state satisfying p, as the newly introduced
instructions cannot modify memory states, they can just observe it. Conversely,
if a test datum t over P reaches a location loc with a memory state satisfying695

predicate p, there is an execution in P ? where t reaches the corresponding newly
introduced exit(0): indeed, it happens when all non-deterministic choices but
the one covering the label choose to follow the original program execution, while
the remaining one chooses to bifurcate over the assert(p) when the execution
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reaches loc with an adequate memory state – which is ensured to happend, as700

it does over P .

In particular, an ATG tool run on P ? and producing a test suite TS covering
NA will also cover the labels of the annotated program 〈P,L〉. The following
result now follows from Theorems 5 and 8.

Corollary 9. Let 〈P,L〉 be an annotated program with direct instrumentation705

P ′ and tight instrumentation P ?. Then both DSE(P ?) and DSE(P ′) achieve
the same coverage and can be used to cover all coverable labels in 〈P,L〉.

Interestingly, tight instrumentation does not show any of the issues reported
in Theorem 7. The underlying reasons have been sketched at the beginning of
Section 6.2.1 and are depicted in Figure 12. A single execution path in P going710

through n labels gives birth up to 2n paths in P ′ (left column), while it creates
at most n + 1 paths in P ? (right column). Moreover, each path in P ? can go
through at most one single positive label constraint (because of the exit node),
while a path σ′ in P ′ can carry up to |σ′| (positive or negative) label constraints.
These results are summarized in Theorem 10.715

Figure 12: Direct vs. tight instrumentation

Theorem 10 (Tightness). Given an annotated program 〈P,L〉 and its instru-
mented version P ?, let us assume that Paths(P ) is bounded, that k is the maxi-
mal length of paths in Paths(P ) and that m is the maximal number of labels per
location in P . Then P ? is tight in the following sense:
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� |Paths(P ?)| is linear in |Paths(P )| and m ·k. More precisely, |Paths(P ?)|720

is bounded by (m · k + 1) · |Paths(P )|;

� any σ ∈ Paths(P ?) carries at most one label constraint.

Sketch of proof. The main reasons behind this result directly follow from the
tight instrumentation, and have already been exposed just before Theorem 10.

725

To illustrate the benefits of tight instrumentation on our running example,
consider the paths of P , P ′ and P ? shown in Figure 10 (a), (b) and (c). Instead
of 12 paths of P ′, the tight instrumentation P ? contains only 9 paths, that is,
one additional path for each partial path reaching a label in P . Unlike in direct
instrumentation, neither of these paths uselessly keeps any constraint for the730

first label: either the label constraint is the last one in the path and is necessary
to cover the label, or it is bypassed without complicating the constraint set for
covering subsequent branches.

Theorems 7 and 10 imply that any path-based program analysis like DSE
conducted over P ? will have a much easier task than if conducted over P ′, since735

P ? contains exponentially fewer paths and those paths are simpler. The issue
(†) identified in Section 6.1.2 is thus avoided for tight instrumentation.

6.2.2. Iterative label deletion

We focus now on issue (‡) pointed out in Section 6.1.2. A DSE procedure
launched on P ? tries to cover all paths from P ?, while we are only interested740

in covering branches corresponding to labels. Especially, it may try to cover
(partial) paths ending in an already-covered assert(ϕ). Whether they fail or
not, these computations are redundant since Theorem 8 only requires each new
assert to be covered once.

For our running example, DSE on the tight instrumentation P ? will still try745

to cover the second label four times since four feasible partial paths lead to the
condition n>0 in P ? (cf. Figure 10 (c)), and will generate three test data to
cover it (e.g. (a, b) = (1, 1), (1, 0) and (0, 1)).

Iterative deletion of labels (IDL) aims at taming issue (‡) by (conceptually)
erasing label constraints as soon as they are covered, so that that does not affect750

the rest of the path search. In practice, this can be implemented by making our
program instrumentation keep track of the coverage state of each label during
the path exploration by the DSE tool. We depict in Figure 13 how our tight
instrumentation can be modified in such a way. In a nutshell, each label l is asso-
ciated with a boolean flag coveredl in an external database called label state db,755

and this flag should be true iff l has already been covered during path explo-
ration. In addition, the value of coveredl in the database can be read or set by
using the is covered(label state db, l) and set covered(label state db, l, value)
primitives. Before the path exploration starts, flag coveredl is initialized to
false. As a consequence, the call to is covered(label state db, l) guarding the760
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statement_k;
if(nondet){
assert(p);
exit(0);

}
statement_k+1;

−→

statement_k;
if(nondet && !is_covered(label_state_db,l)){
assert(p);
set_covered(label_state_db,l,1);
exit(0);

}
statement_k+1;

Figure 13: idl variant of tight instrumentation P ?

access to label l in the modified tight instrumentation will always return false
and the DSE tool will be allowed to explore paths leading to l being covered5.
Yet, as such paths end by a call to set covered(label state db, l, true), as soon
as one of them has been explored by the DSE tool, all the subsequent calls to
is covered(label state db, l) guarding the access to the label l will always return765

true and the DSE tool will thus be barred from exploring any additional path
leading to l being covered. This behaviour corresponds to the label being erased
from the program after being covered by the DSE tool.

We denote by DSE?(P ?) this combination of tight instrumentation and idl.
Considering only deterministic DSE techniques, the following result holds.770

Theorem 11 (Relative completeness). Let 〈P,L〉 be an annotated program,
and P ? its tight instrumentation. Then DSE?(P ?) covers as many labels as
DSE(P ?) does.

Sketch of proof. The main argument here is that discarding a path σ passing
through an already covered label l in DSE?(P ?) can never prevent from covering775

another not-yet-covered label l′, as by construction there always exist a “label
free” path σ′ – similar to σ but without label constraints – passing through
l′.

7. Implementation: the LTest Toolset

Putting Sections 4, 5 and 6 together, we see that labels form the basis of780

a very powerful framework for automated testing, providing various services
and handling many different flavours of test objectives in a complete and uni-
form fashion. Figure 14 gives an overview of this framework. Starting from
a program P and choosing a way C to derive test objectives (like a coverage

5A reader familiar with DSE may point out that the DSE tool will consider the label state
database as another input of the program and try to generate values for the label flags as
well. However, this undesired behaviour can be easily avoided in most DSE tools by making
the state database a purely concrete value.
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Figure 14: LC-based testing framework

criterion), the labelling function ψC creates the C-compliant label-annotated785

program 〈P,L〉. In particular, predefined labelling functions are available for
all common coverage criteria. Assertion checkers can be leveraged on 〈P,L〉 in
order to detect infeasible (or uncoverable) labels. Finally, efficient LC score
computation can be performed to measure the coverage of a given test suite,
and efficient label-driven DSE can be used to cover feasible labels.790

7.1. Overview of the LTest platform

We have implemented our framework in the context of C programs within
the LTest toolset [26], which offers the following services:

Program annotation: the LAnnotate module annotates the program with
labels according to a chosen coverage criteria.795

Uncoverable label detection: the LUncov module leverages off-the-shelf
assertion checkers to detect infeasible labels. The information is primarily
used by other modules, but it can also be exported for external use.

Coverage estimation: the LReplay module replays a given test suite and
reports its label coverage. Coverage is given as a whole (all test objectives800

taken into account) and per criterion. Moreover, infeasible and uncovered
labels are reported.

ATG: the LGenTest module uses DSE*(P*) to build a test suite covering the
labels. In case a test suite has already been replayed, LGenTest will try
to complete the achieved coverage rather than starting from scratch.805
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The platform currently provides automatic label annotation for the follow-
ing coverage criteria: decision coverage (DC), function coverage (FC), condition
coverage (CC), multiple-condition coverage (MCC), weak mutation (WM, op-
erators AOR, ROR, COR, ABS), interface-based input domain partition (IDC)
and general active clause coverage (GACC). Moreover, coverage criteria can810

be combined together, test objectives can be restricted to certain procedures of
the program under test and it is possible to add hand-written test objectives.

7.2. Technical details

The four modules LAnnotate, LReplay, LUncov and LGenTest in-
teract through shared information comprising the annotated program and a815

database mapping each label to its current status, namely: covered, uncover-
able, unknown (i.e. neither covered nor proven uncoverable). LAnnotate acts
as a front-end and comes with predefined labelling functions for all the criteria
supported by the platform. It annotates the program with the correspond-
ing labels according to the criteria chosen by the user and creates the status820

database. An API is provided for developers to easily write labelling functions
for additional criteria. Labels are inserted in the C code as external function
calls and can be suppressed on-demand by the C compiler via a simple C macro.
Manual edition of labels in the source code and status database is made easy if
needed. The three other modules provide user-level services. They can update825

label statuses and take advantage of them.
The LTest toolkit is built on top of the Frama-C verification platform for

C programs [42] whose main analyzers are open source (LGPL). We took advan-
tage of the plugin-based architecture of Frama-C, reusing existing analyses of
interest for our needs. In particular, LUncov takes advantage of the assertion830

checking capabilities of Frama-C to detect infeasible labels. These capabili-
ties are based on the weakest-precondition and value analysis approaches. The
Frama-C kernel, LAnnotate, LGenTest and LUncov modules are writ-
ten in OCaml. The ATG engine of LGenTest relies on an implementation of
DSE? within the DSE tool PathCrawler [74], written in ECLiPSe/Prolog.835

The LTest code (except for the LGenTest module) is open-source (LGPL)6.

8. Experimental Evaluation

8.1. Evaluating label-driven DSE for basic coverage criteria

Objectives. This first batch of experiments have been conducted in order to
investigate the following properties of our label-driven DSE approach over basic840

common coverage criteria:

� the relative gain of our optimizations (cf. Sections 6.2.1 and 6.2.2) w.r.t. di-
rect instrumentation,

6LTest source code is available online at https://sites.google.com/view/
michaelmarcozzi/software/frama-cltest
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Random DSE(P ) DSE(P ′) DSE(P?) DSE?(P?)
(witness) (witness)

trityp CC #paths 1,500 35 183 83 46
50 loc 24 l time 1.6s 1.3s 1.6s 2.0s 1.6s

cover 12/24 24/24 24/24 24/24 24/24

MCC #paths 1,619 35 337 110 66
28 l time 2.1s 1.3s 1.9s 3.0s 2.1s

cover 16/28 17/28 28/28 28/28 28/28

WM #paths 4,301 35 x 506 98
129 l time 5.1s 1.3s x 12s 5.1s

cover 61/129 112/129 x 125/129 125/129

4balls WM #paths 1,903 7 195 75 23
35 loc 67 l time 2.1s 1.2s 1.9s 1.1s 2.1s

cover 25/67 55/67 56/67 56/67 56/67

utf8-3 WM #paths 2,551 134 1,379 626 313
108 loc 84 l time 3.8s 1.4s 4.2s 4.3s 3.8s

cover 52/84 53/84 55/84 55/84 55/84

utf8-5 WM #paths 5,396 680 11,111 3,239 743
108 loc 84 l time 8.1s 2s 40s 24s 8.1s

cover 53/84 80/84 82/84 82/84 82/84

utf8-7 WM #paths 23,053 3,069 81,133 14,676 3,265
108 loc 84 l time 35s 5.8s 576s 110s 35s

cover 53/84 80/84 82/84 82/84 82/84

tcas CC #paths 3,096 2,787 3,508 3,508 2,815
10 l time 3.4s 2.9s 3.6s 4.9s 3.4s

cover 10/10 10/10 10/10 10/10 10/10

MCC #paths 3,182 2,787 3,988 3,988 3,059
12 l time 3.9s 2.9s 4.2s 5.2s 3.9s

cover 11/12 10/12 11/12 11/12 11/12

tcas’ WM #paths 20,347 4,420 300,213 20,312 6,014
111 l time 27s 5.6s 662s 120s 27s

cover 90/111 88/111 101/111 101/111 101/111

replace WM #paths 11,747 866 87,498 6,420 2,347
100 loc 79 l time 14s 2s 245s 64s 14s

cover 68/79 69/79 70/79 70/79 70/79

full bad CC #paths 5,180 2,563 5,148 5,129 3,209
219 loc 16 l time 7s 5s 8s 14s 7s

cover 9/16 12/16 12/16 12/16 12/16

MCC #paths 9,393 2,563 12,360 12,296 7,043
39 l time 19s 5s 19s 32s 19s

cover 17/39 24/39 24/39 24/39 24/39

WM #paths 9,425 2,563 19,336 10,610 5,414
46 l time 19s 5s 35s 40s 19s

cover 29/46 34/46 34/46 34/46 34/46

TO: time-out (5,400s) x: crash due to a bug in the underlying solver

Table 1: Experiments (1/2) for DSE? vs DSE and random testing
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Random DSE(P ) DSE(P ′) DSE(P?) DSE?(P?)
(witness) (witness)

get tag-5 CC #paths 56,468 11,833 40,102 22,669 11,843
240 loc 20 l time 64s 60s 210s 651s 64s

cover 20/20 20/20 20/20 20/20 20/20

MCC #paths 42,380 11,833 41,605 23,794 11,848
26 l time 48s 60s 100s 510s 48s

cover 26/26 26/26 26/26 26/26 26/26

WM #paths 35,935 11,833 58,646 28,919 11,856
47 l time 51s 60s 140s 719s 51s

cover 42/47 44/47 44/47 44/47 44/47

get tag-6 CC #paths 1,305,971 76,456 76,468
240 loc 20 l time 1,512s 3,011s TO TO 1,512s

cover 20/20 20/20 20/20

MCC #paths 1,353,672 76,456 76,472
26 l time 1,481s 3,011s TO TO 1,481s

cover 26/26 26/26 26/26

WM #paths 1,287,924 76,456 76,481
47 l time 1,463s 3,011s TO TO 1,463s

cover 44/47 44/47 44/47

gd-5 CC #paths 53,330 14,516 18,220 17,018 14,605
319 loc 36 l time 59s 51s 66s 91s 59s

cover 16/36 36/36 36/36 36/36 36/36

MCC #paths 68,691 14,516 20,261 18,799 15,201
36 l time 80s 51s 71s 101s 80s

cover 14/36 29/36 29/36 29/36 29/36

WM #paths 74,999 14,516 14,607
63 l time 94s 51s TO TO 94s

cover 46/63 61/63 62/63

gd-6 CC #paths 2,785,951 107,410 131,726 125,024 107,500
319 loc 36 l time 2,945s 3,740s 3,816s 5,534s 2,945s

cover 23/36 36/36 36/36 36/36 36/36

MCC #paths 3,247,423 107,410 144,840 137,328 111,208
36 l time 3,447s 3,740s 3,822s 6,281s 3,447s

cover 18/36 29/36 29/36 29/36 29/36

WM #paths 2,064,394 107,410 107,521
63 l time 2,232s 3,740s TO TO 2,232s

cover 52/63 62/63 63/63

TO: time-out (5,400s) x: crash due to a bug in the underlying solver

Table 2: Experiments (2/2) for DSE? vs DSE and random testing
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� the overhead of lifting DSE to LC and the gain in terms of coverage,

� the gain in terms of coverage over random testing.845

Protocol. We consider 12 standard benchmark programs7 taken from related
works [40, 67, 65], mainly coming from the Siemens test suite (tcas), the Verisec
benchmark (get tag and full bad from Apache source code) and MediaBench
(gd from libgd). We also consider three classes of labels simulating standard
coverage criteria of increasing difficulty: CC, MCC and WM (cf. Section 4.2).850

For WM, we use the operators AOIU, AOR, COR and ROR [25] (in a similar
way to what is done by MuJava in a Java context [55]), which are considered
very powerful in practice [60, 73]. In the end, we consider a total of 26 pairs
of programs and coverage criteria, discarding the experiments with CC and
MCC for programs without decision predicates involving more than one atomic855

condition (in this case CC and MCC indeed come down to DC).
We compare the following testing techniques (cf. the columns of Tables 1

and 2): random testing (witness) denoted Random, standard DSE (witness)
denoted DSE(P ), standard DSE on direct instrumentation denoted DSE(P ′),
standard DSE on tight instrumentation denoted DSE(P ?), and DSE with it-860

erative label deletion run on tight instrumentation denoted DSE?(P ?). The
DSE engine runs in deterministic mode, generating the same concrete values
from one run to the other. All DSE variants are stopped either when a chosen
time-out value has been reached or when all the DSE-reachable paths within a
chosen upper bound in the total number of loop iterations have been covered.865

As for the variants of DSE, random testing time includes both test generation
and test execution steps. For each benchmark program, random testing is al-
located the same time as consumed by DSE?(P ?). To avoid non-representative
results, random testing is repeated at least 5 times for each example, and even
more if necessary until the average number of generated tests is measured with870

a relative standard error less than 5%. Time-out for the solver is set to 1 min,
time-out for test generation is set to 90 min. Experiments are performed on an
Intel Core2 Duo 2.40 GHz, 4 GB of RAM.

For DSE derivatives, we record the following information: number of paths
explored by the search, computation time and achieved coverage. The number875

of paths is a good measure for comparing the complexity of the different search
spaces, and therefore to assess both the “cost” of lifting DSE to labels and the
benefits of our optimizations. Coverage score together with computation time
indicate how practical label-based DSE is. For random testing, we record the
allocated computation time, the average number of tests generated and executed880

(indicated in the “#paths” rows of Tables 1 and 2), and the average coverage
score.

Results. Results for our 26 examples are presented in Tables 1 and 2, and
summaries on overhead and achieved coverage can be found in Tables 3 and 4.

7http://micdel.fr/public/ltest/benchmarks-TAP2014.tar.gz
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DSE(P ′) DSE(P?) DSE?(P?)

Min ×1.02 ×0.92 ×0.49
Median ×1.79 ×2.55 ×1.37
Max ×122.50 ×105.88 ×7.15

Mean ×20.29 ×10.50 ×2.15

Time-outs∗ 5 5 0

∗Overheads take into account time-outs, counted as 5400s (90min).

Table 3: Overhead (slow-down) with respect to DSE

Random DSE(P ) DSE(P ′) DSE(P?) DSE?(P?)

Min 37% 61% 62% 62% 62%
Median 63% 90% 92% 93% 95%
Max 100% 100% 100% 100% 100%

Mean 70% 87% 88% 88% 90%

Time-outs are excluded from the coverage computation.

Table 4: Label coverage ratios

First, note that when no time-out occurs, direct instrumentation and both vari-885

ants of tight instrumentation achieve the same coverage, and that this coverage
is high (>90% on 18/26 examples). We also observe that direct instrumenta-
tion yields a significant overhead, confirming previous work [51]: DSE(P ′) has
four time-outs (TO) while DSE(P ) has none, the time-overhead goes up to 122x
(excluding TO), and the blow-up of the path-space reaches 50x.890

On the other hand, tight instrumentation DSE?(P ?) yields only a very
reasonable overhead w.r.t. standard DSE: no time-out is reported, the time-
overhead is kept under 7x with an average of 2.15x, and the path-space growth
is limited to 3x. On some examples, tight instrumentation performs remarkably
better than direct instrumentation (94s vs TO on gd-5-WM). For programs895

where the execution time is not meaningful enough or very close for various
techniques, the number of explored paths still clearly illustrates the benefits.
Interestingly, DSE?(P ?) does perform better than standard DSE (up to 2x) on
a few examples with very few additional paths (e.g. for get tag 6 or gd-6).
We conjecture that additional label constraints may sometimes greatly simplify900

the solving process by introducing pertinent case considerations, but this point
must be investigated further.

From a coverage point of view, DSE?(P ?) performs better than standard
DSE on 10/26 examples, with an increase in coverage from 3% up to 39%
(trityp-MCC). Any increase in coverage coming at a reasonable cost is wel-905

come, since hard-to-cover test objectives are considered more likely to detect
bugs [17]. Recall also that DSE?(P ?) offers relative completeness guarantees
regarding label coverage, while standard DSE does not.

Finally, we observe that random testing obtains very unstable label coverage
(varying between 44% to 100% of the coverable labels, with the average of 70%).910

Yet, it remains significantly lower than the DSE?(P ?) coverage (91% in average).

Conclusion. These experiments confirm our formal predictions:
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� DSE?(P ?) performs dramatically better on difficult programs than the
direct instrumentation, both in terms of search space and computation
time;915

� the overhead of DSE?(P ?) w.r.t. standard DSE turns out to be always
acceptable and often very low8, while label coverage is indeed increased
in many cases—sometimes very significantly;

� finally, DSE?(P ?) achieves considerably better coverage than random test-
ing for the same time budget.920

These results suggest that DSE can be efficiently lifted to LC coverage thanks
to our optimizations.

Random DSE(P ) DSE?(P?)
vanilla INF

Min. 37% 61% 62% 80%
Med. 63% 90% 95% 100%
Max. 100% 100% 100% 100%

Mean 70% 87% 90% 96%

For DSE?(P?)-inf, ratios take into account the detected infeasible labels.
Time-outs are excluded from the coverage computation.

Table 5: Label coverage ratios

8.2. Evaluating the impact of infeasible label detection

Objectives. Our framework enables detecting infeasible labels. In this sec-
tion, we aim at evaluating how efficient this detection can be. We also measure925

the impact of infeasible label detection over the efficiency of our label-driven
test generation. Indeed, if some infeasible labels have been pruned before in-
strumentation and test generation, DSE?(P ?) can be stopped as soon as it has
attempted covering all the remaining (presumably feasible) labels, instead of
wasting time trying to cover the infeasible labels as well.930

Protocol. We consider the same annotated benchmark programs and the same
three coverage criteria (CC, MCC and WM) as in the previous section.

We compare the following variants of symbolic execution (cf. Tables 6 and
7): the DSE?(P ?) technique presented so far9 and DSE?(P ?)-inf that exploits
in addition the infeasible labels detected through a preliminary pass with our935

LUncov module. The computation time of DSE?(P ?)-inf does not include the
computation time of LUncov, whose results are reported in a separate column.
Thanks to the knowledge of at least some infeasible labels, label coverage for

8The overhead is even further reduced with the optimizations presented in Section 8.2.
9with the additional ability to stop when all the labels have been covered, instead of

terminating only when all the DSE-reachable paths within a chosen upper bound for the total
number of loop iterations have been explored.

34



Random DSE(P ) DSE?(P?) Uncov. DSE?(P?)
(witness) (witness) detect. INF

trityp CC #paths 1,500 35 35 35
50 loc 24 l time 1.6s 1.3s 1.4s 0.6s 1.4s

cover 12/24 24/24 24/24 0/24 24/24

MCC #paths 1,619 35 51 51
28 l time 2.1s 1.3s 1.9s 0.5s 1.9s

cover 16/28 17/28 28/28 0/28 28/28

WM #paths 4,301 35 98 83
129 l time 5.1s 1.3s 5.0s 0.7s 5.0s

cover 61/129 112/129 125/129 4/129 125/125

4balls WM #paths 1,903 7 23 23
35 loc 67 l time 2.1s 1.2s 2.1s 0.5s 2.1s

cover 25/67 55/67 56/67 0/67 56/67

utf8-3 WM #paths 2,551 134 313 283
108 loc 84 l time 3.8s 1.4s 3.8s 0.5s 2.7s

cover 52/84 53/84 55/84 29/84 55/55

utf8-5 WM #paths 5,396 680 743 189
108 loc 84 l time 8.1s 2.0s 8.1s 0.6s 3.5s

cover 53/84 80/84 82/84 2/84 82/82

utf8-7 WM #paths 23,053 3,069 3,265 152
108 loc 84 l time 35s 5.8s 35s 0.6s 3.0s

cover 53/84 80/84 82/84 2/84 82/82

tcas CC #paths 3,096 2,787 255 255
10 l time 3.4s 2.9s 1.6s 0.5s 1.6s

cover 10/10 10/10 10/10 0/10 10/10

MCC #paths 3,182 2,787 3,059 3,059
12 l time 3.9s 2.9s 3.9s 0.5s 3.9s

cover 11/12 10/12 11/12 0/12 11/12

tcas’ WM #paths 20,347 4,420 6,014 5,388
111 l time 27s 5.6s 27s 0.7s 26s

cover 90/111 88/111 101/111 6/111 101/105

replace WM #paths 11,747 866 2,347 126
100 loc 79 l time 14s 2s 14s 0.8s 13s

cover 68/79 69/79 70/79 5/79 70/74

full bad CC #paths 5,180 2,563 3,209 2,648
219 loc 16 l time 7s 5s 7s 0.5s 6.5s

cover 9/16 12/16 12/16 2/16 12/14

MCC #paths 9,393 2,563 7,043 3,470
39 l time 19s 5s 19s 0.6s 13s

cover 17/39 24/39 24/39 9/39 24/30

WM #paths 9,425 2,563 5,414 2,976
46 l time 19s 5s 19s 0.7s 14s

cover 29/46 34/46 34/46 7/46 34/39

loc: number of lines of code l: number of labels

Table 6: Experiments (1/2) for DSE? with infeasible label detection
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Random DSE(P ) DSE?(P?) Uncov. DSE?(P?)
(witness) (witness) detect. INF

get tag-5 CC #paths 56,468 11,833 94 94
240 loc 20 l time 64s 60s 2.1s 0.7s 2.1s

cover 20/20 20/20 20/20 0/20 20/20

MCC #paths 42,380 11,833 98 98
26 l time 48s 60s 1.4s 0.7s 1.4s

cover 26/26 26/26 26/26 0/26 26/26

WM #paths 35,935 11,833 11,856 11,856
47 l time 51s 60s 51s 0.7s 53s

cover 42/47 44/47 44/47 2/47 44/45

get tag-6 CC #paths 1,305,971 76,456 306 306
240 loc 20 l time 1,512s 3,011s 2.6s 0.6s 2.6s

cover 20/20 20/20 20/20 0/20 20/20

MCC #paths 1,353,672 76,456 310 310
26 l time 1,481s 3,011s 2.6s 0.6s 2.6s

cover 26/26 26/26 26/26 0/26 26/26

WM #paths 1,287,924 76,456 76,481 76,481
47 l time 1,463s 3,011s 1,463s 0.7s 1,281s

cover 44/47 44/47 44/47 2/47 44/45

gd-5 CC #paths 53,330 14,516 10,386 10,386
319 loc 36 l time 59s 51s 34s 1.2s 34s

cover 16/36 36/36 36/36 0/36 36/36

MCC #paths 68,691 14,516 15,201 10,443
36 l time 80s 51s 80s 1.9s 47s

cover 14/36 29/36 29/36 7/36 29/29

WM #paths 74,999 14,516 14,607 14,607
63 l time 94s 51s 94s 1.7s 94s

cover 46/63 61/63 62/63 0/63 62/63

gd-6 CC #paths 2,785,951 107,410 77,780 77,780
319 loc 36 l time 2,945s 3,740s 1,577s 1.1s 1,577s

cover 23/36 36/36 36/36 0/36 36/36

MCC #paths 3,247,423 107,410 111,208 77,851
36 l time 3,447s 3,740s 3,447s 1.9s 1,557s

cover 18/36 29/36 29/36 7/36 29/29

WM #paths 2,064,394 107,410 77,796 77,796
63 l time 2,232s 3,740s 1,445s 1.5s 1,445s

cover 52/63 62/63 63/63 0/63 63/63

loc: number of lines of code l: number of labels

Table 7: Experiments (2/2) for DSE? with infeasible label detection
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DSE?(P ?)-inf is computed w.r.t. the set of potentially coverable labels, i.e.
labels detected as infeasible are discarded.940

Results. A total of 84 infeasible labels were identified, spanning over 13/26
programs and topping at 35% of the total number of labels in some examples.
This yields a substantial improvement of the reported coverage ratios (see Ta-
ble 5). In 6 out of 26 cases, the coverage ratios do reach 100% of the actually
feasible objectives.945

When infeasible objectives are detected in the tested program, pruning out
those infeasible objectives made DSE* in average 2.18x faster, the speedup
topping at 11.66x. Results on the whole benchmark are more mitigated (cf. Ta-
bles 6 and 7). Yet, note that the detection of infeasible labels takes an acceptable
amount of time w.r.t. the test generation time on our benchmark programs (12%950

of the total computation time in average), and induces almost no slow-down for
the bigger examples (less than 3% when test generation takes more than 10s).

Conclusion. The experiments confirm the ability of our framework to detect
infeasible labels efficiently and the interest of doing so to speed up test genera-
tion.955

8.3. Experiments with a complex coverage criterion

Objectives. We want to check if the results of Sections 8.1 and 8.2 still hold
for GACC, which is a more complex criterion, known as challenging for test
automation tools [25].
Protocol and results. We reuse the same protocols and benchmark programs960

that those in Sections 8.1 and 8.2. Yet, we restrict ourselves to the 6 programs
with decision predicates involving more than one atomic condition. Results
are reported in Tables 8, 9, and 10. DSE?(P ?) achieves good coverage results
(>90% on 4/6 examples, average 85%), significantly better than random testing
and DSE. Yet, the overhead is significantly more important than for the other965

criteria (max. of 60x vs 7x, average of 10.55x vs 2.15x). Compared with direct
instrumentation, DSE?(P ?) does avoid a time-out and is twice as fast on average
(excluding TO). Finally, infeasible label detection allows to recover a reasonable
overhead (max 3.14x, average 1.85x) and to detect 37 uncoverable labels out of
91 uncovered ones.970

Conclusion. Experiments confirm that GACC is a challenging criterion for
automatic tools. Yet, while the overhead of DSE?(P ?) is more important than
it is with other criteria, it is still affordable in most cases, and the technique
achieves very good coverage—much better than random testing or standard975

DSE. Infeasible label detection keeps overhead low. Surprisingly, MCC seems
significantly easier to cover on these examples than GACC, while it is more
powerful. We conjecture that our GACC encoding may lead to too complex
formula to solve. Though, this encoding is very succinct (linear) in the number
of atomic conditions while the MCC encoding is exponential, which could make980

a huge difference on very complex branching conditions.
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Random DSE(P ) DSE(P ′) DSE?(P?) Uncov. DSE?(P?)
(witness) (witness) detect. INF

trityp #paths 1,438 56 65 61 56
34 l time 2.3s 1.3s 2.3s 2.3s 0.7s 1.8s

cover 16/34 34/34 34/34 34/34 0/34 34/34

tcas #paths 6,319 2,787 10,168 4,234 4,201
46 l time 9.1s 2.9s 10.9s 9.1s 0.7s 9.1s

cover 46/46 46/46 46/46 46/46 0/46 46/46

full bad #paths 17,562 2,563 10,000 3,619 3,041
34 l time 23s 5.0s 27s 23s 3.7s 11.6s

cover 22/39 24/39 30/34 30/34 2/34 30/32

get tag-5 #paths 33,877 7,456 116,121 8,077 7,742
94 l time 73s 40s 330s 73s 1.2s 58s

cover 59/94 58/94 60/94 60/94 11/94 60/83

get tag-6 #paths 1,123,829 47,216 753,409 50,957 48,819
94 l time 2,388s 1,467s 5,258s 2,388s 1.5s 2,274s

cover 60/94 59/94 61/94 61/94 10/94 61/84

gd-5 #paths 45,876 14,516 52,419 15,459 15,401
76 l time 90s 51s 134s 90s 7.9s 92s

cover 40/76 58/76 66/76 66/76 7/76 66/69

gd-6 #paths 3,723,361 107,410 113,044 112,671
76 l time 5,269s 3,740s TO 5,269s 7.9s 5,241s

cover 48/76 58/76 66/76 7/76 66/69

Table 8: Results for GACC

DSE(P ′) DSE?(P?)
vanilla INF

Min 1.44× 1.41× 1.38×
Med 3.76× 1.81× 1.44×
Max 130.79× 59.40× 3.14×

Mean 21.99× 10.55× 1.85×

Time-outs∗ 1 0 0

∗ For DSE(P ′), a time-out counts as a 5400s (90min).

Table 9: Overhead (slow-down) w.r.t. DSE for GACC

Random DSE(P ) DSE?(P?)
vanilla INF

Min 47% 62% 64% 72%
Med 55% 76% 88% 96%
Max 100% 100% 100% 100%

Mean 60% 78% 85% 91%

For DSE?(P?)-inf, ratios take into account the detected infeasible labels.
Time-outs are excluded from the coverage computation.

Table 10: Label coverage ratios for GACC
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Overall, taking into account all the coverage criteria considered in Section 8.1
plus GACC, overhead is kept small (no time-out, average 3.93x for DSE?(P ?),
1.57x with infeasible label detection), and reported coverage ratio is very high
(average of 90%, median value 94%)—especially with the help of infeasibility985

detection (average 95%, median value 100%).

9. Threats to Validity

The validity of our results has been crosschecked in several ways:

� We verify that all the labels covered by DSE(P ) are also consistently
covered by DSE(P ?) and that all the labels covered by DSE(P ?) are also990

consistently covered by DSE?(P ?) (both properties are satisfied as all DSE
variants are run in the same deterministic way, so that the optimizations
of more advanced variants free up additional test budget to cover more
labels).

� We replay the test suites generated by all DSE variants using the LRe-995

play tool and check that the reported coverage ratios are consistent with
those reported by DSE(P ?) and DSE?(P ?).

� We check that all the labels covered by any technique (including random
testing) are disjoint from the labels identified as infeasible by our approach.

� We specifically test that DSE?(P ?) does not try to branch on an already1000

covered label and that all path constraints from DSE(P ?) have at most one
label constraint (by reviewing a fraction of the output logs for constraint
solving and covered labels).

Another class of threats may arise because of the tool implementations we
used, as it cannot be completely excluded that Frama-C or our implementation1005

are defective. However, Frama-C is a mature tool with industrial applications
in highly demanding fields (e.g., aeronautics) and thus, it is unlikely to cause
important problems. Moreover, our sanity checks would have likely spotted such
issues.

While we have not directly evaluated the bug-finding power of label-based1010

DSE, we have relied on common coverage criteria, whose bug-finding capabilities
have already been extensively studied.

Common to all studies relying on empirical data, the present study may be of
limited generalizability. To diminish this threat we used 12 standard benchmark
programs, mainly coming from the Siemens test suite, the Verisec benchmark1015

and MediaBench, and explored overall more than 10 millions of execution paths.
While dynamic symbolic execution might still face scalability challenges in some
situations, due to path explosion and constraint solving, it is yet a popular and
powerful test generation technique, successfully applied in many industrial con-
texts. Additionally, our label framework is not tied to symbolic execution but1020
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could also be integrated with other test generation approaches. As demon-
strated in [19], detecting infeasible labels can scale up to large programs, via a
compositional and parallel applications of assertion checkers.

Our results might also have been affected by the choice of the considered
coverage criteria and in particular the specific mutation operators we employ.1025

To reduce this threat, we used popular coverage criteria (CC, MCC, GACC and
WM) included in software testing standards [13, 12], and employed commonly
used mutation operators included in recent work [11, 10].

Finally, other threats may be due to the form of the infeasible objectives that
we target, as well as the significance of their number in the considered software.1030

However, infeasible objectives are a well-known issue, usually acknowledged in
the literature as one of the main cost factors of the software testing process [16,
15, 14]. To reduce this threat, we considered several coverage criteria and various
examples of programs in the benchmarks.

10. Extensions and Applications1035

We summarize here some recent extensions to the framework for automated
test generation presented in this paper.

10.1. Extending the expressive power of labels: hyperlabels

While labels can express a large range of criteria (including a large part of
weak mutations WM, and the weak GACC variant of MCDC), they still face1040

some limits in terms of expressiveness. For instance, labels cannot express strong
variants of MCDC, higher-order mutations or most path and dataflow criteria
directly. In [8, 9], we introduce five simple label combination or enrichment
operators: value bindings, sequences, guards, conjunctions and disjunctions.
By combining and enriching labels using these operators, one can build new1045

and more complex objectives to be covered, called hyperlabels. Hyperlabels are
able to encode all criteria from the literature but full mutations, and enable
specifying test objectives aiming at detecting violations of complex security
properties, such as non-interference. Lifting our framework to provide efficient
test generation and infeasible objective detection for hyperlabels is interesting1050

future work.

10.2. Pruning out redundant and infeasible labels, at scale

As full objective coverage is rarely reached in practice, testers rely on the
ratio of covered objectives to measure the strength of their test suites. How-
ever, the working assumption of this practice is that all objectives are of equal1055

value. Testing research demonstrated that this is not true, as duplication and
subsumption can make a large number of feasible test objectives redundant.
Such feasible redundant objectives may artificially deflate or inflate the cover-
age ratio, skewing the measurement, which may misestimate test thoroughness
and fail to evaluate correctly the remaining cost to full coverage. The approach1060

introduced in [19] is similar to the one used here to detect infeasible labels and
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enables one to prune out many redundant pairs of labels. The proof of redun-
dancy for a pair of labels is reduced to a proof of validity for a corresponding
assertion in the code, which is delegated to an off-the-shelf assertion prover.

Infeasible and redundant label detection relies on using an assertion prover1065

as a back-end, whose complex analyses may poorly scale to real world programs.
Marcozzi et al. [19] also demonstrate that scalable detection of infeasible and
redundant labels is possible, using local-scoped compositional analyses and a
multicore implementation. Experiments over large real-world applications such
as OpenSSL and SQLite show that one can process hundreds of thousands of1070

labels in hundreds of thousands of lines of code in acceptable time, pruning out
more than 10% of the labels as either infeasible or redundant.

10.3. Ongoing industrial adoption of label-based technology

Recent work [33] reports on an ongoing industrial adoption and further en-
hancements of label-based testing tools at MERCE, a research center of Mit-1075

subishi Electric. MERCE performed experiments with an industrially adapted
and extended version of LTest (including program annotation, detection of
infeasible objectives and test generation) on a real industrial code (with about
1,300 functions and 80,000 lines of C code). The labels were generated auto-
matically thanks to the program annotation module. The detection of infeasible1080

objectives using static analysis was very efficient and classified 8.3% of objec-
tives as infeasible, within a couple of minutes. Test generation for the remaining
labels covered 86% of test objectives and took about 8 hours. MERCE roughly
estimated the effective time benefit factor compared to the manual testing as
more than 230x for test input generation.1085

An even more recent experiment combining label-based testing with genetic
search-based test-generation techniques reported by MERCE [34] lead to the
classification (that is, either covering by a test case or proving to be infeasible)
of more than 99% of test objectives out of 20,000 objectives on a real industrial
code (with about 82,000 lines of C code). Those very good results are very1090

encouraging for further pushing the technology in industry.

10.4. Using labels for combinations of testing and proof

An interesting usage of label coverage appeared in recent research on com-
binations of testing and proof. In the context of certification of avionic soft-
ware [12] (e.g. according the the DO-178C norm, level A), the verification1095

engineer must demonstrate sufficient testing coverage of both code (structural
coverage) and specification (functional coverage). When some parts of code
are formally proved, while others are tested, the requirements on the coverage
should be modified. Recent work [35] proposed a new notion of verification
coverage based on the notion of labels and mutation coverage. It also proposed1100

a methodology to ensure that a verification campaign is complete with respect
to this coverage. It allows the verification engineer to combine testing tools and
provers in the verification process and to reduce the verification cost.
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10.5. Using labels for detecting polluting test objectives for data-flow criteria

For dataflow criteria, test objectives are often expressed using the notion of1105

a def-use pair, linking a statement where a variable is defined (written) to a
statement where it is used (read) without being redefined in between. A def-use
pair can be defined as a sequence of two labels with an additional condition on
the path between them (that must be def-clear for that variable). Def-use pairs
are combined to form more complex criteria such as all-defs and all-uses. They1110

are examples of criteria expressible in hyperlabels (cf. Section 10.1).
Recent work [1] extended the LUncov module of LTest to the detection

of polluting test objectives for dataflow criteria using various static analysis
techniques: dataflow analysis, value analysis and weakest precondition calcu-
lus. The reported experiments (on programs of up to 11000 loc) show that 64%1115

of objectives were identified as polluting (non-inapplicable, infeasible or redun-
dant). The analysis time remained acceptable (taking at most 64min. on the
longest example with ∼45000 test objectives).

11. Related Work

Lifting DSE to various coverage criteria. The need for enhancing DSE1120

with better coverage criteria has already been pointed out in active testing
(also known as assertion-based testing) [40, 48, 53], Mutation DSE [65, 66] and
Augmented DSE [51, 68, 77]. The present work generalizes these results and
proposes ways of taming the potential blow-up, resulting in an effective support
of advanced coverage criteria in DSE with only a small overhead. More precisely,1125

we give a more generic view of the problem, identifying labels and annotated
programs as the key concept underlying the approach. We also clearly state the
limits and hypotheses of the method by introducing the notions of simulation
and labelling functions, identifying the side-effect free fragment of WM, proving
soundness of direct instrumentation and providing a formalization of the path1130

space complexification induced by direct instrumentation. Most importantly,
we propose the tight instrumentation which is proved to completely prevent
complexification. Finally, our optimizations can be implemented in a pure black-
box setting and we do not impose any specific search heuristics, keeping room
for future improvements.1135

Active testing targets run-time errors by adding explicit branches into the
program. It is similar to the Run-Time Error Coverage criterion presented in
Section 4. Labels are a more general approach. The direct instrumentation
P ′ for this criterion is mostly equivalent to P ? since additional branches can
only trigger errors and stop the execution. Yet, active testing could benefit1140

from the IDL optimization. Finally, since most test objectives are (hopefully!)
uncoverable for Run-Time Error Coverage, some approaches aim at combining
DSE with static detection of uncoverable targets [39, 40]. They can be reused
for labels, and should be useful when many labels are uncoverable.

Following Offut et al. [45], Papadakis et al. show that WM can be reduced1145

to branch coverage through the use of a variant of Mutant Schemata [72]. This
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is pretty similar to the direct encoding P ′ mentioned here. They propose es-
sentially two variations of DSE for mutation testing: a black-box approach [65]
based on a direct encoding similar to our DSE(P ′) scheme, and a more ad
hoc approach [65] preventing reuse of existing DSE tools but offering several1150

optimizations. Papadakis et al. propose a variant of IDL, a dedicated search
heuristic based on shortest paths [64] and an improvement of the direct encoding
through the use of mutant identifiers (following exactly Mutant Schemata). On
the one hand, it ensures that a given path cannot go through several different
mutants, on the other hand there is still an exponential blow-up of the search1155

space in the worst case, and IDL cannot cover more than one mutant at once.
Augmented DSE [51] is a variant of direct instrumentation. Several coverage

criteria are encoded, getting results similar to those of Section 4.2, yet the side-
effect free subset of WM is not identified. Experiments [51, Table 2] report an
average time-overhead of 272x, going up to >2,000x. That confirms the strong1160

benefits of our optimizations, that yield a maximal overhead of 7x (60x with
GACC). Following the same approach, Pandita et al. show that GACC can
be simulated through direct instrumentation [68]. This result can be directly
recast in terms of labels, cf. Section 8.3.

In the same line of ideas, JPF allows specifying complex coverage criteria1165

through temporal logic formulas [78]. This is slightly more expressive than la-
bels because temporal formulas can express constrained reachability objectives
(e.g. dataflow criteria) while labels are in principle limited to strict reachabil-
ity. Yet, constrained reachability can be reduced to strict reachability with
proper instrumentation. Labels describe test objectives in a somewhat less con-1170

venient way, yet we propose an in-depth analysis of their expressive power in
terms of coverage criteria (especially mutations) and a very efficient support in
symbolic execution. Note that JPF provides an encoding of Masking MCDC
(a.k.a. CACC [25]), a criterion standing in between GACC and MCDC.
Their approach [78] can be recast in terms of labels.1175

Labels and optimized DSE. The label-specific optimizations described here
can be freely mixed with other DSE optimizations. It is left as future work
to explore which optimizations turn out to be the most effective for labels.
As already stated, combining static discovery of uncoverable labels with DSE
[39, 40] could be useful for often-uncoverable labels, such as those generated1180

for Run-Time Error Coverage or MCC. First results in that direction [26] are
presented in Section 8.2, more recent results about uncoverability detection can
be found in [27]. Other promising directions are to adapt DSE search heuristics
[75] by taking advantage of the dissimilarities between labels and branches,
possibly getting inspiration from [64] and [70], or to distribute the DSE search1185

thanks to a static pre-partitioning of test objectives [79].
The IDL optimization shows some similarities with Look-Ahead pruning

(LA) [29, 36]. Basically, LA takes advantage of (global) static analysis to prune
partial paths which cannot reach any uncovered branches. In particular, on P ?,
idl prunes several label-terminated paths at once thanks to dynamic analysis,1190

which is orthogonal to LA.
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Automation of mutation testing. Mutation coverage [44, 61] has been
established as a powerful criterion through several experimental studies [24,
61]. Yet, it is very difficult to automate. Even mutation score computation is
expensive in practice if not done wisely. Weak mutations [50] relax mutation1195

coverage by abandoning the “propagation step”, making WM easier to compare
with standard criteria and easier to test for. WM has been experimentally
proved to be almost equivalent to strong mutations [59], and from a theoretical
point of view WM subsumes many other criteria [62].

The few existing symbolic methods for mutation-based ATG rely on the1200

encoding proposed by Offutt et al. and have already been discussed [45, 67, 66].
The Mutation Schemata technique [72] was originally developed in order to
factorize the compilation costs of hundreds of similar mutants. Static analysis
has been proposed for the “equivalent mutant detection” problem [57, 56] in a
way similar to what is sketched in Section 7.1205

The side-effect free fragment of WM presented in this paper seems to be a
sweet spot of mutation testing: it is amenable to efficient automation and still
very expressive. It is left as future work to identify if something essential is lost
within this fragment. Finally, our encoding of WM into LC is orthogonal to
and can be combined with some of the many techniques developed for efficient1210

mutation testing, such as operator reduction [60, 73] or smart use of operators
[52].

Property-based testing. Property-based testing [5] uses an automatic test
generation tool to find violations of some semantic properties by the program
under test. Contrary to labels, which are structural test objectives generated1215

automatically and massively from a syntactic analysis of the program under test,
property-based testing targets violations of a limited number of hand-written
partial specifications of the program’s semantics. While some recent works have
advocated the use of more directed test generation approaches in property-
based testing [6, 7], state-of-the-art tools rely on random test generation to find1220

property violations and do not take advantage of static analyses to prove correct
properties.

12. Conclusion

In this paper, we present a complete panorama of different achievements
related to the label coverage criterion. Label coverage appears to be both ex-1225

pressive and amenable to efficient automation. Some of the ideas behind labels
underlie previous work by other teams. We generalize them, propose ways of
taming the potential complexification of the path space and provide both formal
and experimental evidence. Especially, we have shown how to extend DSE for
label coverage in a black-box manner with an acceptable overhead and how to1230

efficiently detect infeasible test objectives by existing assertion checkers. Experi-
ments show that our optimizations yield very significant improvements. Recent
applications and ongoing adoption of the label coverage based techniques in
industry [34, 33] demonstrate the practical interest of the technology.
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This work also bridges part of the gap between symbolic ATG techniques1235

and coverage criteria. On the one hand, we show that DSE techniques can be
cheaply extended to support more advanced coverage criteria, including side-
effect free weak mutations. On the other hand, we identify a powerful criterion
amenable to efficient automation.

As a whole, label coverage forms the basis of a very generic and convenient1240

framework for test automation, providing a powerful specification mechanism for
test objectives and featuring efficient integration into symbolic ATG techniques.
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