arXiv:2101.00836v1 [cs.SE] 4 Jan 2021

Lost in Zero Space — An Empirical Comparison of
0.y.z Releases in Software Package Distributions

Alexandre Decan®*, Tom Mens?®

@Software Engineering Lab, University of Mons, Avenue Maistriau 15, Mons 7000, Belgium

Abstract

Distributions of open source software packages dedicated to specific program-
ming languages facilitate software development by allowing software projects to
depend on the functionality provided by such reusable packages. The health
of a software project can be affected by the maturity of the packages on which
it depends. The version numbers of the used package releases provide an indi-
cation of their maturity. Packages with a 0.y.z version number are commonly
assumed to be under initial development, suggesting that they are likely to be
less stable, and depending on them may be considered as less healthy.

In this paper, we empirically study, for four open source package distri-
butions (Cargo, npm, Packagist and RubyGems) to which extent 0.y.z package
releases and >1.0.0 package releases behave differently. We quantify the preva-
lence of 0.y.z releases, we explore how long packages remain in the initial de-
velopment stage, we compare the update frequency of 0.y.z and >1.0.0 package
releases, we study how often 0.y.z releases are required by other packages, we
assess whether semantic versioning is respected for dependencies towards them,
and we compare some characteristics of 0.y.z and >1.0.0 package repositories
hosted on GitHub. Among others, we observe that package distributions are
more permissive than what semantic versioning dictates for 0.y.z releases, and
that many of the 0.y.z releases can actually be regarded as mature packages. As
a consequence, the version number does not provide a good indication of the
maturity of a package release.

Keywords: software package distribution, software reuse, software library,
version management, semantic versioning, software health

1. Introduction

Open source software development embraces the principles of software reuse,
through the availability of software package distributions dedicated to specific

*Corresponding author
Email addresses: alexandre.decan@umons.ac.be (Alexandre Decan),
tom.mens@umons.ac.be (Tom Mens)

Preprint submitted to Science of Computer Programming January 5, 2021

programming languages (e.g., Cargo for Rust, npm for JavaScript, RubyGems
for Ruby, and Packagist for PHP). As is the case for any software system, the
reusable packages in such distributions can have different levels of maturity. In
order for a mature software project to be considered healthy, it should avoid
depending on unstable and immature reusable packages that are still in their
initial development phase.

A common convention for packages to reflect this maturity in their version
number major.minor.patch is to set the major version component to 1 as soon as
they reach their first stable release: “in open source, tagging the 1.0.0 release
is comparable to shipping a final product” [I], “1.0.0 indicates some degree of
production readiness” [2]. Packages that are under initial development assign
a major version number 0 to their releases, conveying that the software is still
incomplete and remains work in progress. A 0.y.z version number can there-
fore be seen as a signal to treat the package differently than a >1.0.0 version.
A JavaScript developer states this as follows: “it means that a project cannot
be trusted. It would be unwise for a business-critical application to have a de-
pendency that is young and prone to significant changes at any time. It also
indicates that the dependency project simply isn’t done and might not be ready
for use.” [1].

If we assume that this convention is followed, it would be advisable for
>1.0.0 packages to not depend on such 0.y.z packages. Similarly, it would be
advisable for 0.y.z packages to quickly reach a >1.0.0 release in order to allow
other packages to depend on a stable and mature release. As witnessed by a Rust
developer, “some reasonably mature crates are still at version 0.y.z or depend
on other crates that are at 0.y.z. This is seen as a bad thing and usually results
in a few GitHub issues pushing the authors of those crates to change the version
to 1.0.” [3] In practice, however, many packages remain stuck in zero version
space. There seems to be a psychological barrier associated to crossing the 1.0.0
version that package maintainers may associate with additional responsibilities.

Some versioning policies explicitly materialise the differences between 0.y.z
and >1.0.0 versions. Consider for example semver (semantic versioning) [4], a
common versioning policy in package distributions [5], dictating how version
numbers should be incremented w.r.t. backward compatibility. This policy
distinguishes 0.y.z from >1.0.0 versions in terms of maturity, release cycle and
stability. For example, semver enables to assess the backwards compatibility
of a >1.0.0 release based on its version number by distinguishing between in-
compatible changes (i.e., an increment in the major component of the version
number) and compatible changes (i.e., an increment in the minor or patch com-
ponent). For 0.y.z releases on the other hand, semver considers that “anything
may change at any time”. This could be problematic for developers of depen-
dent packages, since they need to find other ways to assess the compatibility
of such releases. They could also decide to stay on the safe side by preventing
their installation, implying they will not benefit from the bug and security fixes
provided by the new version.

The specific rules for 0.y.z versions are sometimes considered disruptiveﬂ
and counter—intuitiveﬂ The term magic zero reflects this different semantics for
0.y.z versions. The confusion around magic zero notably led the maintainers
of npm to recommend package developers to avoid using 0.y.z version numbers
and start from version 1.0.0 “since the semver spec is weirdly magical about
0.z.y versions, and we cannot ever hope to get everyone to believe what the
correct interpretation of 0.x versions are.”ﬂ This also gave rise to the satirical
ZeroVer versioning policy, stating that “your software’s major version should
never exceed the first and most important number in computing: zem”ﬁ

The goal of this article is to assess quantitatively to what extent package
developers in different package distributions take into account such differences
in package releases. To reach this goal, we study the following research questions
in Cargo, npm, Packagist and RubyGems, four package distributions that are
known to adhere to semver [6]:

RQ1: How prevalent are 0.y.z packages? We observe in all distributions that a
high proportion of packages did not yet reach a >1.0.0 release.

RQ2: Do packages get stuck in the zero version space? The overwhelming ma-
jority of packages never traversed the 1.0.0 barrier, and of those that did,
more than one out of five took more than a year to do so.

RQ3: Are 0.y.z releases published more frequently than >1.0.0 releases? Al-
though a statistical difference could be observed, this difference was small
to negligible in each distribution.

RQy: Are 0.y.z package releases required by other packages? This was indeed
observed as a frequent phenomenon for each package distribution.

RQs5: How permissive are the dependency constraints towards required 0.y.z
packages? Most dependency constraints towards 0.y.z packages accept
new patches, making them more permissive than what semver recom-
mends. According to semver, “Major version zero (0.y.z) is for initial
development. Anything may change at any time. The public API should
not be considered stable” [4].

RQg: Do GitHub repositories for 0.y.z packages have different characteristics?
GitHub repositories associated to 0.y.z packages were found to have slightly
less stars, forks, contributors, open issues and dependent repositories, and
to be slightly smaller than repositories for >1.0.0 packages.

This paper builds further upon previous work [7] in which we empirically
analysed the prevalence of 0.y.z releases in Cargo, npm and Packagist, and ob-
served some preliminary evidences of the (lack of) differences between 0.y.z and

Thttps://github.com/semver/semver/issues/221
%https://github.com/npm/node-semver/issues/79
Shttps://github.com/npm/init-package- json/commit/363a17bc31bf653
Ihttps://Over.org

https://github.com/semver/semver/issues/221
https://github.com/npm/node-semver/issues/79
https://github.com/npm/init-package-json/commit/363a17bc31bf653
https://0ver.org

>1.0.0 packages. The current paper extends this study by including a fourth
package distribution (namely RubyGems) and one year of extra data for the
other three distributions, accounting for more than 500K additional packages
for the empirical study. We carry out deeper analyses to complement the prelim-
inary insights we got, such as studying the activity of 0.y.z and >1.0.0 packages
(RQ1), the time it takes to cross the magic 1.0.0 barrier (RQ2), the evolution
of the release frequency of 0.y.z and >1.0.0 releases (RQ3) and the number of
dependent packages (RQ4) for 0.y.z and >1.0.0 packages, and the evolution of
dependency constraints in 0.y.z releases (RQs5). We also added an entirely novel
research question on the characteristics of 0.y.z and >1.0.0 package repositories
on GitHub (RQs). We complement our discussions with anecdotal evidence
from developers, and an analysis of the version numbers used for initial package
releases.

The remainder of this paper is structured as follows. Section [2] discusses
related work. Section [3] introduces the research methodology. Section [4] empir-
ically studies the research questions and presents the main findings. Section
discusses the results and Section[6] presents the threats to validity of the research,
and Section [7] concludes.

2. Related Work

The staged software life cycle model [8] suggests that the initial development
stage of software should be distinguished from its subsequent evolution: “During
nitial development, engineers build the first functioning version of the software
from scratch to satisfy initial requirements.” This staged model has been studied
in the context of open source software projects by Capiluppi et al. [9], who
observed that “many FLOSS projects could be argued to never have left this
[initial development] stage”. Fernandez et al. [10] observed that the software
evolution laws apply well to open source projects having achieved maturity.
They confirm, however, that “many projects do not pass the initial development
stage.” Similarly, Costa et al. [I1] observed that 44 out of 60 evolving academic
software projects (i.e., 73%) are either in initial development or closedown stage.

The typical way to distinguish initial software development releases from
stable ones is by resorting to some kind of versioning scheme. For software
libraries, the most common approach appears to be to use some variant of ma-
jor.minor.patch version numbers. The expressiveness of such a version numbering
has been accused of being too limited [12]: “Especially if component developers
need to assign version numbers to their components manually and do not have
proper instructions that define which changes in what level of contract conduct
a new version, those version numbers at most rest for marketing use and do
not ensure compatibility between different components.” The semver policy [4]
was introduced in an attempt to address such issues, and to provide a partial
solution to the “dependency hell” that developers face when reusing software
packages. It conveys a meaning to the major.minor.patch version number, assum-
ing that the reusable package has a public API: “Bug fizes not affecting the API

increment the patch version, backwards compatible API additions/changes in-
crement the minor version, and backwards incompatible API changes increment
the major version.”

The use of semver is quite common for package distributions [5]. Wittern
et al. [I3] studied the evolution of a subset of npm packages, analysing charac-
teristics such as their dependencies, update frequency, popularity, and version
numbering. They found that package maintainers adopt numbering schemes
that may not fully adhere to the semantic versioning principle; and that a large
number of package maintainers are reluctant to ever release a version 1.0.0. Rae-
maekers et al. [I4] investigated the semver-compliance in 22K Java libraries in
Maven over a seven-year time period. They found that breaking changes appear
in one third of all releases, including minor releases and patches, implying that
semver is not a common practice in Maven. Because of this, many packages
use strict dependency constraints and package maintainers avoid upgrading to
newer versions of dependent packages. Decan et al. [I5] studied the use of pack-
age dependency constraints in npm, CRAN and RubyGems. They observed that,
while strict dependency constraints prevent backward incompatibility issues,
they also increase the risk of having dependency conflicts, outdated dependen-
cies and missing important updates. Decan et al. [6] studied semver-compliance
in four evolving package distributions (Cargo, npm, Packagist and RubyGems).
They observed that these distributions are becoming more semver-compliant
over time, and that package distributions use specific notations, characteris-
tics, maturity and policies that play an important role in the degree of such
compliance.

Bogart et al. [I6] qualitatively compared npm, CRAN and Eclipse, to under-
stand the impact of community values, tools and policies on breaking changes.
They identified two main types of mitigation strategies to reduce the exposure
to changes in dependencies: limiting the number of dependencies, and depend-
ing only on “trusted packages”. They also found that policies and practices may
diverge when policies are perceived to be misaligned with the community values
and the platform mechanisms. They confirmed this in a follow-up qualitative
study about values and practices in 18 software package distributions, on the
basis of a survey involving more than 2,000 developers [5]. Different package
distributions were found to have different priorities and make different value
trade-offs. Their results show that relationships between values and practices
are not always straightforward.

3. Data Extraction

In previous work we studied the use of semver in four package distributions
(Cargo, npm, Packagist and RubyGems) [6] and observed that these distributions
where mostly semver-compliant. We also observed intriguing differences between
how pre-1.0.0 and post-1.0.0 dependency constraints were being used. This
triggered us to conduct the current in-depth study on the presence and use of
0.y.z package releases in these package distributions.

To analyze the considered package distributions, we rely on version 1.6.0 of
libraries.io Open Source Repository and Dependency Metadata [I7], released in
January 2020. This dataset contains, among others, the metadata of packages
in Cargo, npm, Packagist and RubyGems. These metadata include all package
releases, their version number, their release date, their dependencies including
the target package, the dependency constraint and the scope of the dependency
(e.g., runtime, test, ...). The dataset also contains various metadata for the git
repositories related to these packages, such as the address of the repository, the
number of contributors, the number of forks, stars, etc.

For each package distribution, we consider all packages and all their releases,
except for the pre-release versions (such as 2.1.3-alpha, 0.5.0-beta or 3.0.0-rc)
that are known to be “unstable and might not satisfy the intended compatibility
requirements as denoted by its associated normal version” [4]. For each package
release, we consider only dependencies to other packages within the same dis-
tribution, i.e., we ignore dependencies targeting external sources (e.g., websites
or git repositories). When declaring dependencies, a package maintainer can
specify the purpose of the dependency (e.g., it is needed to execute, develop or
test the package). We excluded dependencies that are only needed to test or
develop a package because not all considered packages make use of them, and
not every package declares a complete and reliable list of such dependencies. We
therefore consider only those dependencies that are required to install and exe-
cute the package, and hence more accurately reflect what is needed to actually
use the package. In the package distributions we analyzed, these dependencies
are either marked as “runtime” or “normal”.

To reduce noise in the dataset, we manually inspected and removed outlier
packages with clearly deviating and undesirable behaviour. For Packagist we
excluded 23 of the most active packages (and their associated 1.2K releases)
that were created and published to promote illegal download services. For npm
we excluded around 23K packages (and their associated 51K releases) that were
purposefully created by malevolent developers abusing the API of the npm pack-
age manager. These are either packages whose main purpose is to depend on
a very large number of other packages (e.g., npm-gen-all) or replications and
variations of existing packages (e.g., npmdoc-*, npmtest-*, *-cdn, etc.) Most of
them are no longer available through npm.

Table 1: Characteristics of the curated dataset.

distribution \ created language #pkg #rel #dep

Cargo 2014 Rust 35K 183K 796K
npm 2010 JavaScript 1,218K 9,383K 48,695K
Packagist 2012 PHP 180K 1.520K 4,727K
RubyGems 2004 Ruby 155K 956K 2,396K

1,688K 12,041K 56,615K

Table [T] summarises the curated dataset, reporting the number of packages
(#pkg), package releases (#rel), and dependencies (#dep) that are considered

for the empirical analysis. The data and code to replicate the analysis are
available on https://doi.org/10.5281/zenodo.4013419.

4. Research Questions

4.1. How Prevalent Are 0.y.z Packages?

Since the results of our analysis are only relevant if a sufficient number of
packages in each distribution are still in their initial development phase, we
compute for each distribution, on a monthly basis, the proportion of packages
whose latest available release is 0.y.z. Figure [I] shows the evolution of this
proportion relative to the number of packages distributed at that time.

1.0

0.8

0.6

0.4

0.29 — Cargo —— Packagist
NPM —— Rubygems

proportion of packages

0.0 T T T T T T
2013 2014 2015 2016 2017 2018 2019 2020

Figure 1: Evolution of the proportion of packages whose latest release is 0.y.z.

We observe a very high proportion of initial development packages for Cargo
(94% on average). At the last observation time (December 2019), 92.4% of its
packages were still 0.y.z packages. For RubyGems, we observe a quite stable
proportion of 0.y.z packages over time, of 77.4%. On the other side of the
spectrum we find Packagist, with 31% of 0.y.z packages on average, and 30% at
the last observation time. npm is the only one of the considered distributions to
exhibit a non stable proportion of 0.y.z packages. Indeed, we observe from April
2014 onwards that the proportion of 0.y.z packages went from 85.5% to 42.5%.
This is a consequence of npm policies aiming to reduce the use of 0.y.z releases,
notably by changing the initial version of packages created through npm init
to 1.0.0 instead of 0.1.0 “since the semver spec is weirdly magical about 0.z.y
versions, and we cannot ever hope to get everyone to believe what the correct
interpretation of 0.x versions are.”lﬂ

It could be the case that the high proportions of 0.y.z packages we observed
are due to “many open source projects [that] languish in the 0.z.x state because
the developer lost interest and stopped working on it” [1], i.e., due to packages
no longer being maintained and thus preventing them from ever reaching a
>1.0.0 release. To check whether inactive packages could have influenced the

5See https://github.com/npm/init-package-json/commit/363a17bc3

https://doi.org/10.5281/zenodo.4013419
https://github.com/npm/init-package-json/commit/363a17bc3

observations we derived from Figure[], we repeated this analysis by removing all
packages that were not active during the last year (i.e., packages that have not
released a new version during the last 12 months). Figure [2[shows the evolution
of the proportion of active 0.y.z packages (straight lines) relative to the number
of active packages. To ease the comparison, we also report the proportion of all
(i.e., both active and inactive) 0.y.z packages (dotted lines) as in Figure E|

wn

G.)

o

©

v

%)

©

Q

ey

o

c

K

B

g

© 0.24 — Cargo —— Packagist

o NPM —— Rubygems —— activeonly -+ all packages

0.0 T T T T T T
2013 2014 2015 2016 2017 2018 2019 2020

Figure 2: Evolution of the proportion of active 0.y.z packages (straight lines).

We observe that the proportions of active 0.y.z packages (straight lines)
follow closely the proportions of all 0.y.z packages (dotted lines). This is es-
pecially visible in Cargo where the difference is only of 0.8% (= 92.4 — 91.6)
in the last considered snapshot. We also observe that the difference remains
limited for for Packagist (5.2% = 28 — 22.8) and for npm (7.2% = 42.5 — 35.3),
indicating that the proportion of 0.y.z packages does not depend on whether
they are active or not. Even if the difference is more pronounced in RubyGems
(14.6% = 75.8—61.2), there are still proportionally many more 0.y.z than >1.0.0
packages amongst the active ones. We can therefore reject our hypothesis that
the high proportions of 0.y.z packages we observed in Figure [l| are due to the
presence of many 0.y.z packages being no longer maintained.

To confirm that 0.y.z packages represent a large part of the activity in the
considered distributions, we computed the monthly proportion of 0.y.z releases
relatively to the total number of new releases. Figure [3| shows the evolution
of these proportions. We observe that 0.y.z packages are responsible for the
large majority of package releases in Cargo (median 90.8%), RubyGems (median
74.3%) and npm (median 58.8%). On the other hand, “only” one out of four
releases in Packagist is due to 0.y.z packages (median 27.1%). We also observe
that these proportions are slightly decreasing over time in all package distribu-
tions. This is especially visible for npm from April 2014 onwards, a consequence
of the new npm policies about initial development releases, as mentioned above.
However, at the end of the observation period, 0.y.z packages still account for
89% of all package releases in Cargo, for 57.7% in RubyGems, for 38.6% in npm

6The proportion of >1.0.0 packages can be obtained by taking the complement of the
proportion of 0.y.z packages.

Lo M
3 0.8
%] \/\,__\—\
3
s Cargo M—W/—\N\\/W\
5 NPM
S —— Packagist
— 0.4-
g —— Rubygems
g_ M\ YV M
s 0.2

0.0 T T T T T T

2013 2014 2015 2016 2017 2018 2019 2020

Figure 3: Evolution of the monthly proportion of 0.y.z releases.

and for 21.2% in Packagist. These proportions are quite similar to the pro-
portions of active 0.y.z packages in each distribution, indicating that 0.y.z and
>1.0.0 packages do not really differ in term of release activity.

The considered package distributions contain many 0.y.z packages: more
than one out of five in Packagist, more than one out of three in npm,
more than three out of five in RubyGems, and more than nine out of
ten in Cargo. 0.y.z packages are nearly as active as >1.0.0 packages,
and are responsible for the majority of all package releases in Cargo and
RubyGems.

The release policies of Cargo and RubyGems should be adapted to incite
package maintainers to move out of the zero version space, the same
way as npm has successfully done in 2014.

4.2. Do Packages Get Stuck in the Zero Version Space?

If one assumes that 0.y.z packages are still under initial development, then
they are eventually expected to reach a >1.0.0 release reflecting their matura-
tion. However, developers are “hesitant to increment their projects to 1.0.0 and
stay in 0.x.x for a very long time, and possibly forever.” [1]

To measure how long it takes to reach a >1.0.0 release in each of the con-
sidered package distribution, we rely on the statistical technique of survival
analysis (a.k.a. event history analysis) [I8] to model the time for the event
“package reaches >1.0.0” to occur as a function of the time elapsed since the
first release of that package. Survival analysis estimates the survival rate of
a given population of subjects (packages in our case), i.e., the expected time
duration until the event of interest (from the first available release until the first
>1.0.0 release) occurs. Survival analysis takes into account the fact that some
observed subjects may be “censored”, either because the event was observed
prior to the observation period (i.e., the first considered release of the package

was already >1.0.0), or not observed during the observation period (i.e., the
package never reached a >1.0.0 release). A common non-parametric statistic
used to estimate survival function is the Kaplan-Meier estimator [19].

Survival functions define the probability of surviving past time ¢ or, equiv-
alently, the probability that the event has not occurred yet at time ¢ (i.e., a
package in the distribution has not reached a >1.0.0 release). Figure [4| shows
the Kaplan-Meier survival functions for the four considered distributions. Based
on this probability, the complement probability that a package reaches >1.0.0
within a given time can be easily computed.

1.0

o
)
)

o
)
)

o
i
L

survival probability

o
[N}
)

—— Cargo —— NPM —— Packagist —— Rubygems

o
<)

10 20 30 40 50 60
duration (in months)

o

Figure 4: Kaplan-Meier survival curves for the probability that a “package reaches >1.0.0”
as a function of the time elapsed since the first release of that package.

We observe that the survival probability over time is mainly driven by the
survival probability at time 0, i.e., by the proportion of packages being directly
released with a >1.0.0 release. While the probability to remain 0.y.z slightly
decrease over time, this decrease is rather limited (from 0.06 for Cargo to 0.10
for Packagist). On average, the survival probability decreases by less than 0.02
per year, a direct consequence of many packages having not reached yet the
1.0.0 barrier.

To confirm that most packages have not reached the 1.0.0 barrier yet, we
computed the proportion of packages whose first distributed release was already
mature (>1.0.0), packages that eventually crossed the 1.0.0 barrier, and pack-
ages remaining in their 0.y.z phase. Figure [5| shows the proportion of such
packages for each package distribution.

We observe that most packages in Cargo (92.4%) and in RubyGems (75.8%)
only have 0.y.z releases. On the other hand, the majority of Packagist packages
(62.6%) only have >1.0.0 releases. For npm, there is a more or less equal pro-
portion of packages having only 0.y.z releases and packages having only >1.0.0
releases. We also observe that, regardless of the package distribution, less than
one out of ten packages went from a 0.y.z to a >1.0.0 release. This represents
1.176 packages in Cargo (3.4%), around 103K in npm (8.4%), 17K packages in
Packagist (9.5%) and 13K packages in RubyGems (8.3%).

Focusing exclusively on packages that traversed the 1.0.0 barrier, we com-

10

1.07 s
3.4% [8.3%
S 0.8
o 27.9%
¥ 42.4%
8 0.6 1 s only >=1.0.0
k] 92.4% 75.8% 0 only 0.y.z
S04+ == both
£
[=]
s
5 0.2 1
4.2%
0.0 ==
Cargo NPM Packagist Rubygems

Figure 5: Proportion of packages having only >1.0.0 releases, only 0.y.z releases, or both.

puted the duration between their first 0.y.z release and their first >1.0.0 release.
Figure[0] presents the cumulative proportion of packages having reached the 1.0.0
barrier in function of the duration in time (left) and in terms of number of in-
termediate releases (right).

1.0 1.0
2038 0.8 1
5o
SE 06 0.6 1
=3
£ o
2w
%% 0.4 — Cargo 0.4
< —— NPM
g 021 —— Packagist 0.21
—— Rubygems
0.0 T T T T T 0.0 T T T T T
0 5 10 15 20 25 30 0 5 10 15 20 25 30
time (in months) number of releases

Figure 6: Duration (in months) and number of releases between first 0.y.z and first >1.0.0
release.

We observe that a majority of packages take only a few months and a few
release updates to reach >1.0.0. The median duration varies between 1.4 months
(for npm) and 5.8 months (for RubyGems) while the median number of release
updates is 3 for Packagist and 4 for the other package distributions. Yet there
are many packages that took much longer to reach >1.0.0. Over one out of five
packages (35.3% for RubyGems, 26.7% for Cargo, 24.3% for Packagist and 19.6%
for npm) needed more than a year to reach >1.0.0, and many packages more
than 2 years (19.9% in RubyGems, 12.3% in Cargo, 10.8% in Packagist and 8.8%
in npm). There are even 6.2% of all packages in RubyGems that needed more
than 4 years to reach >1.0.0. For comparison, they are less than 1.8% in the
other distributions.

11

Many packages get stuck in the zero version space. The probability to
reach >1.0.0 increases by less than 0.02 per year. Less than 10% of all
packages went from 0.y.z to >1.0.0 releases. While a majority of them
only took a few months and a few updates to reach >1.0.0, one out of
five of them took more than one year to cross the 1.0.0 barrier, and
many of them took even more than two years, especially in RubyGems.
Package maintainers should not be afraid of crossing the 1.0.0 barrier.
Packages that have been developed for years and that are indubitably
ready for production should receive a major version 1 or higher.

4.8. Are 0.y.z Releases Published More Frequently than >1.0.0 releases?

One would expect packages under initial development to publish new releases
more frequently than mature packages. This is notably assumed by the semver
policy that states that “major version zero is all about rapid development”. To
verify this assumption we computed the distribution of the average time per
package between consecutive releases (a.k.a. the period, corresponding to the
reciprocal of the release frequency), for 0.y.z and >1.0.0 releases respectively.
Figure El shows the boxen plots [20] for these distributions.

Cargo NPM Packagist Rubygems

S
w
w
o
L
L
L
L

300 1 1 1
250 1 1]
200 i
150 -

100 4

time between releases (in days)

0.y.z >=1.0.0 0.y.z >=1.0.0 0.y.z >=1.0.0 0.y.z >=1.0.0

Figure 7: Distributions of the average number of days between consecutive releases, for 0.y.z
and >1.0.0 releases.

We observe that for all package distributions, 0.y.z releases are more fre-
quently published than >1.0.0 releases (i.e., the average time between releases
is higher in >1.0.0 than in 0.y.z releases). For instance, for Cargo, the median
was 20.2 days for 0.y.z and 29.9 days for >1.0.0 releases. For npm the median
values were 3.4 and 4.9 days respectively, for Packagist 13.4 and 29.4 days, and
for RubyGems 8.9 and 36.2 days. To confirm the statistical significance of these
differences between the release frequencies of 0.y.z and >1.0.0 releases, we car-
ried out one-sided Mann-Whitney-U tests [2I]. The null hypothesis, stating
that there is no difference between the release frequencies of 0.y.z and >1.0.0
releases, was rejected for all four package distributions with p < 0.01 (adjusted

12

after Bonferroni-Holm method to control family-wise error rate [22]). However,
the effect size (measured using Cliff’s delta d [23]) revealed that the observed
differences were negligible for Cargo (|d| = 0.099) and npm (|d| = 0.041), and
small for Packagist (|d| = 0.179) and RubyGems (|d| = 0.240), following the
interpretation of |d| by Romano et al. [24].

We also observe that the time to release a new version is lower in npm
than in the other package distributions, i.e., npm packages seem to publish
releases more frequently. Mann-Whitney-U tests confirmed this observation
with statistically significant differences (p < 0.01), implying that releases in
npm are indeed published more frequently than releases in Cargo, Packagist
and RubyGems. However, the effect size turned out to be small in all cases:
|d| = 0.327 for Cargo, |d| = 0.325 for Packagist and |d| = 0.185 for RubyGems.
We also compared the release frequency of packages in Cargo, Packagist and
RubyGems. While we found statistically significant differences between them,
the effect size was always negligible (0.028 < |d| < 0.108).

The previous analysis compared the release frequency between all 0.y.z re-
leases and all >1.0.0 releases of a package distribution, providing insights for the
whole package distribution at once. The following analysis focuses on the evolu-
tion of the release frequency between the 0.y.z and >1.0.0 releases of individual
packages. For each package, we compared the frequency of its 0.y.z releases to
the frequency of its >1.0.0 releasesm

The boxplots in Figure [8 show the distribution of the ratio between the
release frequency of >1.0.0 and 0.y.z releases of each package. A ratio above
1 implies that the >1.0.0 releases of a package are more frequently published
than its 0.y.z releases, while a ratio below 1 means that the 0.y.z releases of
the package are more frequently published. For obvious reasons, only packages
having both 0.y.z and >1.0.0 releases were considered for this analysis.

2.00

1.75 A
1.50 A
1.25 4

faster >=1.0.0
1.00
faster 0.y.z

0.75 4
0.50 4
0.25 1
0.00

Cargo Packaglst Rubygems

release frequency ratio

Figure 8: Distributions of the ratio between the release frequencies of >1.0.0 and 0.y.z releases
for each package.

"The release frequency of 0.y.z (resp. >1.0.0) releases is obtained by dividing the number
of 0.y.z (resp. >1.0.0) releases by the time between the first and last 0.y.z (resp. >1.0.0)
releases.

13

We observe that in all package distributions, the large majority of packages
have a ratio below 1, indicating that 0.y.z releases are published more frequently
than >1.0.0 releases. The median ratio oscillates between 0.25 (for Cargo) and
0.33 (for Packagist), indicating that 0.y.z versions are released 3 to 4 times more
frequently than >1.0.0 releases. There are only from 22% (for RubyGems) to
26.7% (for Packagist) packages whose 0.y.z release frequency is lower or equal
to their >1.0.0 release frequency.

0.y.z releases are published more frequently than >1.0.0 releases, but
the effect is small for Packagist and RubyGems, and negligible for Cargo
and npm. The release frequency of most packages is higher for their
0.y.z releases than for their >1.0.0 releases. Regardless of their version
number, package releases are published more frequently in npm than in
the other distributions.

4.4. Are 0.y.z Package Releases Required by Other Packages?

If one assumes that 0.y.z packages are still under initial development, it
could be considered unsafe to rely on them since they are expected to be less
complete and less stable than production-ready packages. This is confirmed by
the semver policy []: “If your software is being used in production, it should
probably already be 1.0.0.” Moreover, such 0.y.z packages are likely to require
extra effort from maintainers of packages depending on them. Indeed, since
“anything may change at any time [and] the public API should not be considered
stable”, dependent packages are more likely to face breaking changes with 0.y.z
packages than with >1.0.0 packages. semver even recommends that “If you have
a stable API on which users have come to depend, you should be 1.0.0”.

This research question therefore studies the extent to which packages rely
on such 0.y.z packages. Since the dependencies of a package can evolve over
time, we consider the dependencies expressed in the latest available release of
each package, hence reflecting the state of the latest snapshot in the package
distributions. Table[2|reports the proportion of dependent packages (% sources)
relying on at least one 0.y.z package, and the proportion of required packages
(% targets) being used by at least one >1.0.0 package. We distinguish between
0.y.z and >1.0.0 sources and targets.

The reported proportions vary greatly from one package distribution to an-
other. For instance, a large majority (88.8% = 82 + 6.8) of the dependent
packages in Cargo rely on at least one 0.y.z release. 82% of these dependent
packages are 0.y.z while only 6.8% are >1.0.0. For Packagist and RubyGems, the
inverse is true: a large majority of dependent packages (86.6% = 20.3 + 66.3
for Packagist, and 77.6% = 56.7+ 20.9 for RubyGems) rely exclusively on >1.0.0
package releases. npm falls somewhere in the middle of both extremes, with
43.5% (= 23.7+ 19.8) dependent packages relying on at least one 0.y.z package
release, and the remaining 56.5% (= 21.3 + 35.2) relying exclusively on >1.0.0

14

Table 2: Proportion of source and target packages, depending on or required by 0.y.z and
>1.0.0 packages.

package target
distribution source | 0.y.z >1.0.0 \ 0.y.z >1.0.0
Cargo 0.y.z 82.0 9.9 | 76.9 5.9
& >1.0.0 | 6.8 14| 115 5.8
nom 0.y.z 23.7 21.3 23.9 10.4
P >1.0.0 19.8 35.2 14.6 51.1
. 0.y.z 7.9 20.3 13.1 10.4
Packagist ~10.0| 55 663| 61 704
0.y.z 17.4 56.7 20.9 34.7
RubyGems — ~1%0.0 | 5.0 209 | 8.6 35.8

proportionally to % sources | % targets

package releases. Nevertheless, in all four package distributions there is still a
large number of dependent packages relying on at least one 0.y.z package release.

When considering these numbers proportionally to the set of required pack-
ages (i.e., % targets), we observe that 88.4% (= 76.9 4+ 11.5) of the required
packages in Cargo are 0.y.z packages. This is in stark contrast with Packag-
ist where this proportion is only 19.2% (= 13.1 + 6.1). npm and RubyGems
fall somewhere in between, with 38.5% (= 23.9 + 14.6) of the required npm
packages being 0.y.z packages, and 29.5% (= 20.9 + 8.6) for RubyGems. This
indicates that in all four package distributions, at varying degrees, many 0.y.z
packages are still being used by other packages, including >1.0.0 ones. This is
rather counter-intuitive: even though common wisdom says that 0.y.z packages
are more likely to be unstable because they are still under inital development,
package maintainers frequently depend on them.

To determine to which extent 0.y.z and >1.0.0 packages are required, we
computed for each package distribution their number of dependent packages
(i.e., reverse dependencies). If a package has both 0.y.z and >1.0.0 releases
being required, we distinguish between packages depending on its 0.y.z releases
from packages depending on its >1.0.0 releases. We do so by looking at whether
the highest release accepted by the dependency constraint is a 0.y.z or a >1.0.0
release, complying with the default behaviour of the package managers used in
the considered package distributions. Figure [9] shows the boxen plots of the
distribution of the number of dependent packages for required packages, distin-
guising between packages depending on their 0.y.z or on their >1.0.0 releases,
respectively.

Regardless of the considered package distribution, we only observe small
differences between the number of dependent packages for required 0.y.z and
>1.0.0 packages. On average, the number of dependent packages for 0.y.z pack-
ages oscillates between 2.1 (for Packagist) and 4.6 (for Cargo), while for >1.0.0
packages it is comprised between 6.9 (for Packagist) and 10.7 (for Cargo). In all
cases, the median number of dependent packages is 1. We statistically compared

15

55 Cargo NPM Packagist Rubygems

20 1 . . .

101 1 1 1

number of dependents

| o e e |
0.y.z >=1.0.0 0.y.z >=1.0.0 0.y.z >=1.0.0 0.y.z >=1.0.0

Figure 9: Distributions of the number of dependent packages for required 0.y.z and >1.0.0
packages.

for each package distribution the number of dependent packages for 0.y.z and
>1.0.0 packages using a Mann-Whitney-U test to find evidence of a statistical
difference. The null hypothesis was rejected for all four package distributions
(p < 0.01 after Bonferroni-Holm correction), indicating that >1.0.0 packages are
required more often. However, the effect size was negligible for all four package
distributions (0.066 < |d| < 0.108).

Many packages are depending on 0.y.z packages, ranging from 13.4% of
all dependent packages in Packagist to 88.8% in Cargo. Many 0.y.z pack-
ages are required by other packages, ranging from 19.2% of all required
packages in Packagist to 88.4% in Cargo. There is no practical differ-
ence between the number of packages depending on 0.y.z and >1.0.0
packages.

Maintainers of 0.y.z packages should strive to make their packages cross
the 1.0.0 barrier if they are used by other production-ready packages.

4.5. How Permissive Are Dependency Constraints Towards Required 0.y.z Pack-
ages?

This research question focuses on a variation on the theme of unstable ini-
tial development packages. Under the premise that 0.y.z packages are unstable,
the semver policy assumes that any update of such a package could introduce
backward incompatible changes: “Major version zero (0.y.z) is for initial de-
velopment. Anything may change at any time. The public API should not be
considered stable.” [4]

When specifying package dependencies, package maintainers make use of
dependency constraints to specify which releases of the required package are
allowed to be installed. To ease the definition of such constraints in combi-
nation with semver, package distributions provide specific notations to accept

16

patches (e.g., ~1.2.3) or minor releases (e.g., *1.2.3). However, these notations
are not the only way to specify dependency constraints (e.g., >=1.2.3,<2.0.0
is equivalent to ”1.2.3), and their interpretation is not always consistent across
package distributionsﬂ To take these differences into account, we wrote a de-
pendency constraint parselﬂ to convert the constraints using specific notations
provided by each package distribution into a generic version range notation
based on intervals [25]. For example, ~1.2 is converted to the right-open inter-
val [1.2.0,1.3.0) for Cargo and npm, and to the right-open interval [1.2.0,2.0.0) in
Packagist. Based on this version range notation, we can easily identify whether
a dependency constraint allows new patches, new minor and/or new major re-
leases of the required package to be automatically installed. For example, range
[1.2.0,1.3.0) accepts new patches because it contains version 1.2.z for z > 0,
and does not accept new minor releases because it does not contain version 1.z.0
for x > 2.

For each considered package distribution we computed the monthly pro-
portion of dependency constraints targeting 0.y.z releases that accept at least
patches or minor releases. These proportions are shown in Figure relative
to the total number of constraints targeting 0.y.z releases defined in newly dis-
tributed releases for each month. To avoid the analysis to be biased by packages
having many releases during the month, only the latest available release of each
package was considered for each month.

1.0
—— Cargo

w
€08+ Neme WYY Y
g —— Packagist */ ~————————
2 —— Rubygems
S 0.6 vo
o
-
g accepting e
6049, —— patch -7
I FER LR minor
5 g
QT T e

0.0 ey T T R T T

2013 2014 2015 2016 201 2018 2019 2020

Figure 10: Evolution of the monthly proportion of dependency constraints accepting at least
patches or minor 0.y.z releases.

We observe that in all four distributions a large proportion of dependency
constraints is accepting at least patches, from around 73% for npm to 94.2%
for Cargo. This proportion remains mostly stable over time. The proportion of
dependency constraints accepting minor releases as well depends on the consid-
ered package distribution: it is close to zero for Cargo and npm while, on the
other hand, it fluctuates around 40% in RubyGems. Packagist sits in the middle
of these extremes, with a steadily decreasing proportion of constraints accepting

8The reader is invited to consult Table 2 of [6] for more details.
9See https://doi.org/10.5281/zenodo.4013419

17

https://doi.org/10.5281/zenodo.4013419

minor releases since mid-2015, from 33.1% to around 10% in 2019.

Focusing on the latest snapshot of each package distribution, Figure [L1] re-
ports the proportion of dependency constraints accepting at most patches, minor
or major releases, separating between dependencies targeting 0.y.z releases and
>1.0.0 releases, respectively.

targetis 0.y.z target is >=1.0.0
107 1 -
yé 0.8% 5.1% 3.1%
' 0.8 1 0.4% 17.1% _ [9.3%
Jg 39.39
S 0.6 ° |
-
o 0, 0, 0
S04 962% [735% [51% | ke [R
g
§. 0.2 46.9% 23.7%
S 0o 23% 46% 123% 103%
' Cargo NPM Packagist Rubygems Cargo NPM Packagist Rubygems

[patch minor W major

Figure 11: Proportion of dependency constraints accepting at most patches, minor or major
releases, grouped by target releases.

In order to be semver-compliant, only strict constraints (i.e., constraints that
only accept a single version) to 0.y.z package releases should be allowed to avoid
the risk of introducing breaking changes. However, we observe that the large
majority of the dependencies targeting 0.y.z releases are more permissive: they
allow patches to be automatically installed, from 73.9% (=73.5+0.4) in npm to
97% (=96.240.8) in Cargo. Packagist and RubyGems are even more permissive,
since a non-negligible proportion of dependency constraints to 0.y.z package
releases accept minor release updates as well (17.1% of all constraints targeting
0.y.z releases in Packagist, and 39.3% in RubyGems).

For comparison, we carried out the same analysis for dependencies targeting
>1.0.0 releases. For those cases, the semver policy considers it safe to accept mi-
nor release updates (since minor releases are expected to contain only backward
compatible changes). We indeed observe that the large majority of dependen-
cies towards >1.0.0 releases accept minor releases as well. For instance, we
found 92.5% (= 92 + 0.5) of such dependencies in Cargo, 78.1% (= 77.8 + 0.3)
in npm, and 78.9% (= 69.7 + 9.2) in Packagist. For RubyGems, we found 82.7%
(= 23.7+ 59) of such dependencies, a consequence of the presence of 59% of
dependencies accepting major releases as well. For RubyGems, the high propor-
tion of dependencies accepting minor 0.y.z releases and major >1.0.0 releases
indicates that its packages are not semver-compliant, not even for >1.0.0 re-
leases [6].

18

Most dependencies towards 0.y.z releases accept new patches, indicat-
ing that these patches are expected to be backwards compatible. As
such, the considered package distributions adopt a policy that is more
permissive than semver for 0.y.z releases. Packagist and RubyGems are
even more permissive, since more than one dependency constraint out
of six also accepts minor releases.

This relaxation w.r.t. semver should be made explicit, or the semver
policy should be loosened to allow package maintainers to specify back-
wards compatible updates for 0.y.z releases.

4.6. Do GitHub Repositories for 0.y.z Packages Have Different Characteristics?

So far, we have not really been able to discern any difference between 0.y.z
and >1.0.0 packages. If we assume that >1.0.0 packages are more production-
ready, stable and mature than 0.y.z packages, we can expect their git repositories
to have more stars, more forks, more contributors or less open issues than the
git repositories of 0.y.z packages. In this research question, we aim to compare
0.y.z and >1.0.0 packages based on the characteristics of their git repository,
focusing on the ones being hosted on GitHub, the most popular distributed
collaborative development platform.

Since not all packages have an associated repository on GitHub, Table
reports only the proportion of 0.y.z and >1.0.0 packages that have a known
GitHub repository in our dataset.

Table 3: Proportion of packages with a known GitHub repository.

distribution | 0.y.z packages >1.0.0 packages ‘ all packages

Cargo 72.1% 85.9% 73.1%
npm 62.5% 59.8% 61.0%
Packagist 94.8% 94.3% 94.4%
RubyGems 65.3% 70.9% 66.7%

‘We observe that a large majority of all packages have an associated repository
on GitHub, from 61% for npm to 94.4% for Packagist. This higher proportion
for Packagist is a consequence of the way packages are made available. Indeed,
to submit a new package on Packagist, one has to provide the URL of a public
repository. We also observe a slight difference between the proportion of 0.y.z
and >1.0.0 packages having a repository on GitHub: there are proportionally
more repositories for >1.0.0 packages in Cargo (85.9% versus 72.1%) and in
RubyGems (70.9% versus 65.3%) while there are proportionally more repositories
for 0.y.z packages in npm (62.5% versus 59.8%) and in Packagist (94.8% versus
94.3%).

For the GitHub repository associated to each package, we used our dataset
to extract the number of stars, forks, contributors, open issues and the size of

19

the git repository (expressed in megabytes). We also extracted the number of
dependent repositories, i.e., software projects developed in GitHub repositories
and that depend on the given package. Figure [I2] shows the boxen plots of the
distributions of these characteristics for each package distribution, distinguish-
ing between repositories hosting 0.y.z and >1.0.0 packages.

Cargo NPM Packagist Rubygems

contributors

dependent
repositories

open issues

SEEs

L
SRSSs:
SESsas

0.y.z >=1.0.0 0.y.z >=1.0.0 0.y.z >=1.0.0 0.y.z >=1.0.0

Figure 12: Distributions of the number of stars, forks, contributors, dependent repositories,
open issues and git repository size (in MB) for 0.y.z and >1.0.0 packages.

We observe a slight difference between 0.y.z and >1.0.0 repositories for all
characteristics and for all package distributions. The differences are especially
visible in RubyGems. We carried out Mann-Whitney-U tests between 0.y.z
and >1.0.0 package repositories for each characteristic to confirm these dif-
ferences. The null hypothesis stating that there is no difference between 0.y.z
and >1.0.0 package repositories was consistently rejected in all cases (p < 0.01
after Bonferroni-Holm correction), with the notable exception of open issues in
Cargo. This confirms that >1.0.0 package repositories have more stars, forks,
contributors, dependent projects, and open issues (except in Cargo). More-

20

over, they are larger than 0.y.z package repositories. Nevertheless, the effect
size turned out to be negligible for all comparisons in Cargo, npm and Packagist
(0.006 < |d| < 0.132) and small in RubyGems (0.156 < |d| < 0.258).

A large majority of 0.y.z and >1.0.0 packages have an associated repos-
itory on GitHub. Repositories for >1.0.0 packages have slightly more
stars, forks, contributors, dependent projects and open issues (except in
Cargo), but the differences are negligible for Cargo, npm and Packagist,
and small for RubyGems.

5. Discussion

This section aims to discuss about the lessons learned from the empirical
analysis, as well as the recommendations that could be made to package main-
tainers and managers of package distributions based on these findings.

5.1. Qualitative evidence

The results reported in this paper were based on quantitative evidence
relying on historical analysis of package management data. To complement
this quantitative analysis, we conducted a single question poll on Twitter and
LinkedIn in December 2020. The poll aimed to obtain insights in whether practi-
tioners effectively consider it risky to depend on packages that are still in version
0.y.z. The single multiple-choice question was:

“As a software developer, you need to depend on an open source
package distributed through some package manager (like npm, Maven,
Cargo, Packagist, RubyGems). Would you trust depending on a
package with major version 0 (e.g., version 0.5.1)%”

Table 4: Number of answers for each of the 4 possible responses to the multiple-choice question.

response \ # answers
No 7
Only if there is no alternative 21
Only after checking 45
Sure 37
Total 102

We received 102 responses in total, of which 58 on LinkedIn and 44 on Twit-
ter. The results are summarised in Table @ From these results we conclude that
the large majority of respondents considers it risky to depend on 0.y.z package
releases. This corresponds to the common convention that 0.y.z packages are
assumed to be under initial development and therefore potentially less stable
than >1.0.0 releases.

21

Lessons learned. Common belief suggests that 0.y.z package releases
are less stable than >1.0.0 ones. 64% of respondents perceive depending
on 0.y.z package releases as risky: they would prefer not to depend on
0.y.z packages, or only if there is no alternative or after doing additional
checks on that package.

5.2. The 1.0.0 barrier

The results we obtained from the quantitative analysis in this paper seem to
be in shrill contrast with the common wisdom that was confirmed by the qual-
itative analysis presented in Section .1} We observed little difference between
0.y.z and >1.0.0 packages, implying that many 0.y.z packages can be assumed
to be production ready and safe to use. Given this little difference, a kind
of psychological barrier related to version 1.0.0 could perhaps explain why so
few packages reach a >1.0.0 release. A major version 1 is usually associated
with the promise of a stable API and a mature library. For npm, a developer
witnesses that “/he/ tends to associate 1.0.0 with a finished project, including
tests, documentation, a nice landing page, and a lot of sample code.”. How-
ever, he agrees that “while all of that is certainly important in its own right,
these extra components of a project actually have nothing to do with the version
number” [1].

We believe that most developers of packages in the 0 version space avoid
to cross the 1.0.0 barrier in order to keep the freedom to make API (breaking)
changes, and to not have to commit to the (overly optimistic and unrealistic)
bug-free nature of >1.0.0 releases, even if their package already reached this
degree of maturity. Because of this, developers have to rely on other ways to
assess the maturity of 0.y.z packages, as witnessed by another Rust developer
who “/has] to go read the code to see if this is a ‘0.1.0” package which is basically
finished, or a ‘0.1.0° full of partially implemented functionality” [2].

It is not unusual that the decision to cross the 1.0.0 barrier is based on
other factors, such as providing more functionalities or polishing the package.
For example, Tom Augspurger from the pandas developer team testifies that
“pandas has been ‘production ready’ for a while now, in the sense that it’s used
in production at many institutions. But we still had a few major items we
wanted to iron out before calling 1 .0”@ Similarly, Piotr Solnica, maintainer
of dry-validation, one of the most used packages in RubyGems, explains “/they]
have got a long backlog in the issue tracker and [he] would like to address all of
those issues ASAP and make the codebase simpler AND add features that are
even more powerful than what we have already. The final goal is to turn this
into 1.0.0 in a couple months from now.” [T

10htt:ps ://jaxenter.com/python-pandas-1-0-0-tom-augspurger-167593.html
Uhttps://discourse.dry-rb.org/t/plans-for-dry-validation-dry-schema/215

22

https://jaxenter.com/python-pandas-1-0-0-tom-augspurger-167593.html
https://discourse.dry-rb.org/t/plans-for-dry-validation-dry-schema/215

There are plenty examples of popular 0.y.z packages being developed for
years, known for their stability and maturity and being used in production by
thousands of users. One such example is style-loader, one of the most famous
libraries on npm. Despite its widespread use (it has more than 10K dependent
packages, and several millions weekly downloads), it only reached its first >1.0.0
release in August 2019, after more than 7 years of development and 54 releases.
Another example is the syn package in Cargo. Its first >1.0.0 release was reached
after 3 years of development and 122 releases. At that time, it was already used
by one third of all packages in Cargo. For its developers, the decision to release
a 1.0.0 version “signifies that Syn is a polished and stable library and that it
offers a user experience we can stand behind as the way we recommend for all
Rustaceans to write procedural macros”[7]

It is not surprising that we did not observe any fundamental difference be-
tween 0.y.z packages and >1.0.0 packages, both in terms of update frequency and
usage by other packages, even if the common belief suggests such a difference
holds. This belief is reinforced by how package distributions and versioning
policies treat both types of packages. Indeed, we found that npm, Packagist
and Cargo make an explicit distinction between how dependency constraints are
treated for 0.y.z and >1.0.0 releases, based on the presumed degree of maturity.

An alternative approach consists of not associating a different versioning
policy to 0.y.z and >1.0.0 releases. This is the case for Haskell packages, for
which the official versioning policy explicitly states that “packages with a zero
major version provide the same contractual guarantees as versions released with
a MON-zero major versz'on”H This does not seem to be a perfect solution either,
since in practice it does not encourage maintainers to cross the 1.0.0 barrier
either: “an easily spottable plague of an absolute majority of Haskell packages is
that they get stuck in the 0.x.x version space, thus forever retaining that ‘beta’
feeling even if the package’s API remains stable for years and has dependencies
counted by thousands”]

12https://github.com/dtolnay/syn/issues/687
Bhttps://pvp.haskell.org/faq/
14nttps://www.reddit.com/r/haskell/comments/31e3jj/

23

https://github.com/dtolnay/syn/issues/687
https://pvp.haskell.org/faq/
https://www.reddit.com/r/haskell/comments/31e3jj/

Lessons learned. Most packages remain stuck in the zero version
space. There seems to be a psychological barrier associated to version
1.0.0. The use of different rules and versioning policies for 0.y.z and
>1.0.0 releases by the package distributions only seems to reinforce this
barrier.

Recommendations. There is no fundamental reason why 0.y.z re-
leases should not fulfil the same contracts and promises as >1.0.0 re-
leases, especially as soon as a package is being distributed and used
by others. Package maintainers should strive to cross the 1.0.0 bar-
rier, especially if their packages have been developed for years and are
indubitably ready for production.

5.8. Maturity of distributed packages

Our analysis found little difference between 0.y.z and >1.0.0 packages, im-
plying that many 0.y.z packages can be assumed to be production-ready and
safe to use. This could be explained by the fact that, as mentioned by a Rust
developer, “publishing already implies some degree of production readiness” [2].
Although it is probably true that packages being available in package distri-
butions are at least functional and offer a minimum of features, none of the
four consider package distributions actually require their distributed packages
to achieve some degree of production readiness.

We have not found any guidelines in the documentation of these package
distributions specifying or suggesting the minimal requirements a package must
or should fulfil for its distribution. At most, the documentation of RubyGems
mentions that “testing your gem is extremely important” and that “developers
tend to view a solid test suite (or lack thereof) as one of the main reasons for
trusting that piece of code. ’1E|

We are convinced that package distributions and package developers would
greatly benefit from guidelines defining the minimum requirements for a package
to be distributed. For example, CRAN, the official package distribution for the R
programming language, states that “CRAN hosts packages of publication quality
and is not a development platform. A package’s contribution has to be mon-
trivial.” Tt imposes several requirements with the respect to the quality and
maturity a package must have in order to be accepted for distributionE

The lack of guidelines in the considered package distributions means that
anyone can basically publish anything in these package distributions, including
immature, unstable, incomplete or even non-working packages. This explains
why we found packages with clearly deviating and undesirable behaviour in our
dataset, as explained in Section [3]

15https://guides.rubygems.org/make-your-own-gem/
16See https://cran.r-project.org/web/packages/policies.html|for more details.

24

https://guides.rubygems.org/make-your-own-gem/
https://cran.r-project.org/web/packages/policies.html

Imposing requirements and/or responsibilities on the packages that can be
distributed in a package distribution could prevent many packages from being
“officially distributed”. For example, a maintainer may not be willing or able to
meet these requirements, or may not be willing to commit to certain responsibil-
ities, especially if they are not limited in time. However, just because a package
cannot or is not distributed on a package distribution does not prevent other
packages or users from making use of it. Indeed, the package manager tools of
the considered package distributions all provide an easy way to install or depend
on packages from another source (e.g., from a private package distribution, from
a git repository, etc.).

Lessons learned. None of the considered package distributions pro-
vide guidelines on the minimal requirements that a package should fulfil
to be distributed.

Recommendations. Package distributions should clarify the expecta-
tions and responsibilities associated with distributing a package through
the package manager.

5.4. Version policies of package distributions

We found in Section [£.1] that npm is the only one of the considered distri-
butions that exhibits a clearly decreasing proportion of 0.y.z packages, starting
from April 2014. At that time, npm changed the initial version of packages
created through npm init to 1.0.0 instead of 0.1.0@

Based on this observation, we conjecture that policies and tools impact the
proportions of 0.y.z packages in package distributions. For instance, the cargo
init command to create new packages for Cargo sets the initial version of a
new package to 0.1.0. Similarly, while gem, the official package manager for
RubyGems, does not allow to create new packages, bundler, its recommended
alternativeE sets the initial version of a newly created package to 0.1.0. On
the other hand, composer, the official package manager for Packagist, does not
specify a default initial version for newly created packages for Packagist since
version numbers in Packagist are deduced from git tags@

To understand to which extent the default initial version affects the consid-
ered package distributions, we looked at the version numbers adopted by the
first public release of new packages. Table [5| reports about these version num-
bers and the proportion of packages created in 2019 that adopted them for their
first public release.

We observe that Cargo and RubyGems, the two distributions that set the
default initial version of a package to 0.1.0, have a much higher proportion

17See https://github.com/npm/init-package- json/commit/363a17bc3
18See https://guides.rubygems.org/make-your-own-gem/
19Gee https://getcomposer.org/doc/articles/versions.md

25

https://github.com/npm/init-package-json/commit/363a17bc3
https://guides.rubygems.org/make-your-own-gem/
https://getcomposer.org/doc/articles/versions.md

Table 5: Proportion of packages created in 2019 in function of the version number adopted
for their first public release.

other
distribution | 1.0.0 0.1.0 0.0.1 0.0.0 | O.y.z >1.0.0
Cargo 2.9% 55.3% 75% 13.5% | 19.6% 1.3%
RubyGems 11.6% 47.1% 13.6% 4.7% | 14.3% 8.8%
npm 40.8% 11.5% 18.0% 2.9% | 10.7% 16.1%

Packagist 48.5% 13.3% 122% 0.6% | 7.5% 18.0%

of packages being released with a 0.1.0 initial version number. On the other
hand, npm and Packagist have a much higher proportion of packages being
released with a 1.0.0 initial version number. Specifically for npm, we computed
the proportions for packages having been first distributed in 2013, the year
preceding the adoption of 1.0.0 as the default initial version. We found that
only 6.9% of packages were first released with 1.0.0, while 24% were released
with 0.1.0, and 37.2% with 0.0.1. This seems to confirm that the adoption by
npm of a new default value for the initial version of a package impacted the
version number used by newly created packages.

However, while the adoption of this policy seems to have pushed maintain-
ers to select a >1.0.0 version number for the initial version of their packages,
nothing indicates that these packages are more mature or more stable than
0.y.z packages. Even if nothing in this policy prevents a package maintainer to
choose a 0.y.z version number for the initial version of a package, a maintainer
may also opt for a >1.0.0 version regardless of the maturity and stability of
the package. Pushing developers to adopt a >1.0.0 version without clarifying
the expectations and responsibilities associated with such versions is not an ac-
ceptable solution. It may prevent developers from communicating to dependent
packages that their packages are, in fact, immature and unstable.

Lessons learned. Different package distributions adopt different ver-
sioning policies, explaining the observed differences for the proportion
of 0.y.z packages.

Recommendations. Cargo and RubyGems should adapt their version-
ing policies to incite package maintainers to move out of the zero version
space, the same way as npm has successfully done in 2014. However,
package distributions should first clarify the expectations and respons-
abilities associated with a 1.0.0 version.

5.5. Semantic Versioning

Our findings revealed that the semver policy does not correspond to how
Cargo, npm and Packagist deal with 0.y.z package releases in practice. This dif-
ference can be quite confusing for practitioners. Firstly, while semver considers

26

that “major version zero is all about rapid development”, we found no conclu-
sive evidence of this. Indeed, only a small proportion of packages crossed the
1.0.0 barrier, even after years of development. Moreover, we observed that 0.y.z
releases are not updated considerably more frequently than >1.0.0 releases.

Secondly, semver has no specific rule dictating how to increment the ver-
sion number of a 0.y.z release to indicate a compatible update. The policy is
overly restrictive by assuming that “anything may change at any time” and that
“the public API should not be considered stable”. Because of this, developers of
packages adhering to semver cannot convey the backwards compatibility of 0.y.z
releases through their version numbers. As a consequence, there is no way for a
developer of a dependent package to declare a dependency constraint such that
backwards compatible releases are allowed while at the same time preventing
incompatible ones to be adopted. This means they have to decide either to
face the risk of breaking changes, or to stay on the safe side by preventing the
automatic installation of new 0.y.z releases and not being able to benefit from
the bug and security fixes of these releases. Package distributions have therefore
introduced notations and guidelines to circumvent this restriction. For example,
Cargo defines caret requirements (i.e., "x.y.z) as a way to “allow semver com-
patible updates to a specified version” but its implementation accepts patches
for 0.y.z releases@ The same notation also exists in npm and Packagist and,
although their semantics complies with semver for >1.0.0 releases, it does not
for 0.y.z releases as it allows patches. Another example stems from the doc-
umentation of npm that recommends “starting your package version at 1.0.0
to help developers who rely on your code”E and even explicitly mentions that
“many authors treat a 0.z version as if the x were the “breaking-change” indica-
tor” E RubyGems is even more permissive since, while its official documentation
“urges gem developers to follow the Semantic Versioning standar ”@ it makes
no difference between 0.y.z and >1.0.0 when detailing how to increment version
numbers with respect to backwards compatibility. This is a likely explanation
for the findings in Section that most dependencies towards 0.y.z releases
accept new patches.

20nttps://doc.rust-lang.org/cargo/reference/specifying-dependencies.html
2Ihttps://docs.npmjs.com/about-semantic-versioning
2?https://docs.npmjs.com/misc/semver
23nhttps://guides.rubygems.org/patterns/#semantic-versioning

27

https://doc.rust-lang.org/cargo/reference/specifying-dependencies.html
https://docs.npmjs.com/about-semantic-versioning
https://docs.npmjs.com/misc/semver
https://guides.rubygems.org/patterns/#semantic-versioning

Lessons learned. Package maintainers in the considered package dis-
tributions do not strictly follow semver for 0.y.z releases, and adopt a
more permissive policy.

Recommendations. To fully benefit from semver, maintainers of ma-
ture packages should use >1.0.0 version numbers. Package distributions
should explicitly document and communicate any deviation from the
semver policy, or the semver policy should be adapted to allow main-
tainers to specify backwards compatible updates for 0.y.z releases.

5.6. Wisdom of the crowds

The semver policy also considers that “if you have a stable API on which
users have come to depend, you should be 1.0.0” and that “if your software is
being used in production, it should probably already be 1.0.0”. This is especially
relevant in package distributions such as Cargo in which it is usual to have public
dependencies as part of the API, as witnessed by a Rust developer: “You may
be ready to release 1.0 but if your crate reexports items from another and that
crate hasn’t released its 1.0 yet, then you're talking about entering a new level of
dependency hell where you can’t even upgrade dependencies without publishing
a new major release” [2].

However, our quantitative evidence reveals this semver guideline is not strictly
followed in practice. Many 0.y.z packages are heavily used by other packages,
including by “production-ready” (i.e., >1.0.0) packages. For example, the axios
package on npm has not yet reached a >1.0.0 release, even though it is directly
required by 30K other npm packages, and it exceeds 5M weekly downloads. A
similar example for Cargo is the rand package. It has more than 25M downloads
and more than 3K direct dependent packages, despite still being in 0.y.z since
2015 and having released more than 60 versions.

The fact that so many packages depend on 0.y.z packages suggests that these
0.y.z packages are more stable or more mature than what their version number
suggests, hence reducing the risk of depending on them. The wisdom of the
crowds principle has already been proposed to assess the backwards compat-
ibility of packages based on the permissiveness of their (reverse) dependency
constraints [6]. In a similar vein, developers desiring to depend on a 0.y.z pack-
age could rely on the number of existing dependents to assess the perceived
maturity of that package. Package distribution managers could even go one
step further, and provide automated support to suggest maintainers of such
packages to upgrade their package version number to >1.0.0 based on this per-
ceived maturity.

28

Lessons learned. Many 0.y.z packages are heavily used by other pack-
ages, even if semver signals it is risky to do so. This suggests that those
packages are more mature than what their version number reflects.

Recommendations. Developers desiring to depend on 0.y.z packages
could rely on wisdom of the crowds to assess the risk of doing so. Pack-
age distributions could use the same principle to provide automated
support for recommending package maintainers to cross the 1.0.0 bar-
rier.

6. Threats to Validity

We discuss the main threats that may affect the validity of our findings,
following the structure recommended by Wohlin et al. [26].

Threats to construct validity concern the relation between the theory behind
the experiment and the observed findings. The accuracy of our findings assumes
that the package dependency metadata extracted from libraries.io is correct. We
checked this assumption in previous work that relied on the same dataset [27, @],
by manually looking at hundreds of examples, as well as by comparing a subset of
this dataset with the data available from the official package distributions (e.g.,
the npm package registry) or from GitHub. Our findings may also be influenced
by the “noise” present in the original data provided by the package distributions.
As explained in Section [3] we removed such noise by excluding package releases
from npm and Packagist that did not correspond to real development. Another
source of imprecision is caused by the preparatory step to convert dependency
constraints to more generic version range notations, as explained in Section [£.5]
This is unlikely to affect our results since the large majority of constraints
(98.2%) could be parsed.

Threats to internal validity concern choices and factors internal to the study
that could influence the observations we made. We did not find any such threats
in our work.

Threats to conclusion validity concern the degree to which the conclusions
we derived from our data analysis are reasonable. Given that our findings are
based on empirical observations and on statistical tests with a high confidence
level (o = 0.01 adjusted after Bonferroni-Holm method to control family-wise
error rate [22]), they are not affected by such threats.

The threats to external validity concern whether the results can be gen-
eralized outside the scope of this study. The proposed approach is certainly
generalizable to other package distributions since it is mainly observational, as
witnessed by the addition of RubyGems compared to our previous work [7]. The
observed findings themselves, however, are specific to the considered package dis-
tributions, since they are highly dependent on their policies, practices and tools.
We already found important differences among the four package distributions
we analysed, and we expect to see more such differences in other distributions,

29

especially the ones relying on other versioning schemes (e.g., Hackage for Haskell
or PyPI for Python).

7. Conclusion

In order for a mature software project to be considered healthy, it should
avoid depending on unstable and immature reusable packages that are still in
their initial development phase. A popular convention is to assume that 0.y.z
package releases are more likely to be less complete, mature and stable than
>1.0.0 package releases. This common belief is supported by anecdotal qualita-
tive evidence that 0.y.z releases are perceived more risky and should be used with
care. This belief is reflected in the versioning policies of package distributions
that define different rules for 0.y.z and >1.0.0 package releases.

This paper aimed at finding quantitative evidence of how 0.y.z and >1.0.0
package releases behave in the Cargo, npm, Packagist and RubyGems package
distributions. We observed that 0.y.z packages are prevalent in all four distri-
butions, even contributing to more than 90% of all packages in Cargo. 0.y.z
packages are as active as >1.0.0 packages, and they represent a large propor-
tion of all package updates. We found that only a small proportion of packages
went from a 0.y.z to a >1.0.0 release. While the majority of them took a few
months and a few updates to do so, more than one out of five packages needed
more than a year to reach a >1.0.0 release. We observed that 0.y.z releases are
published slightly more frequently than >1.0.0 packages, but the difference is
small in Packagist and RubyGems, and even negligible in Cargo and npm. We
also found that the release frequency of most packages is higher for their 0.y.z
releases than for their >1.0.0 releases.

We found that many 0.y.z packages are already used by other packages, and
that many >1.0.0 packages are relying on 0.y.z packages. We studied how often
0.y.z and >1.0.0 releases are required by other packages but found no practical
difference between them. We assessed whether 0.y.z releases comply with the
semver policy by analysing dependency constraints towards 0.y.z releases. We
found that the considered package distributions adopt a policy that is more
permissive than semver, since most of these dependencies accept new patches.
Finally, we found that a large majority of 0.y.z and >1.0.0 packages have an
associated repository on GitHub. Repositories related to >1.0.0 packages tend
to have slightly more stars, more forks, more contributors, more open issues,
more dependent projects and are slightly larger than the ones related to 0.y.z
packages, especially for RubyGems.

These quantitative findings go against the common wisdom that 0.y.z pack-
age releases should be used differently from >1.0.0 releases, as they are more
likely to correspond to packages with a lower degree of maturity and stability
usually associated to the initial development phase. This observed discrepancy
seems to come from the fact that many mature and production-ready packages
remain stuck in the zero space. To fully benefit from semver they should be in-
cited to upgrade to a >1.0.0 release. This can be done by package distribution
managers, by adopting their versioning policies and by relying on wisdom of the

30

crowds to detect which 0.y.z releases are likely to be stable and ready to move
out of the zero space. Of course, the release number by itself is not sufficient to
assess package maturity: there is a need for package distributions to clarify the
expectations and responsibilities associated with distributing a package through
the package manager.

The presented research can be extended in many ways. For example, one
could rely on the development history of a package to assess at a fine level
of granularity whether 0.y.z releases actually correspond to rapid development
(e.g., based on the number and size of commits and code changes), contain
less or less stable features (e.g., based on the number of feature and pull re-
quests), or are more prone to bugs and security vulnerabilities (e.g., based on
the number of reported issues). The presented quantitative analysis could be
complemented by a full-fledged qualitative analysis based on in-depth interviews
with package maintainers and users of these packages. Such interviews can help
to understand why package maintainers are reluctant to cross the 1.0.0 barrier,
how they perceive 0.y.z releases, and if they consider them different from >1.0.0
releases.

Acknowledgments

This work was supported by the Fonds de la Recherche Scientifique — FNRS
under Grants number T.0017.18, O.0157.18F-RG43 and J.0151.20.

References

[1] J. Kahn, The Fear of 1.0.0| (2013).
URL http://jeremyckahn.github.io/blog/2013/12/29/the-fear-of-
1-dot-0-0/

[2] Reddit, Don’t fear 1.0.0! (2018).
URL https://www.reddit.com/r/rust/comments/9j6x9c/
dont_fear_100/

[3] Reddit, The meaning of version 1.0.0 (2017).
URL https://www.reddit.com/r/rust/comments/7hr6ib/
the meaning of version_100/

[4] T. Preston-Werner, |Semantic versioning 2.0.0 (June 2013).
URL https://semver.org

[5] C. Bogart, A. Filippova, C. Késtner, J. Herbsleb, F. Thung, [Values and
practices in 18 software ecosystems (2017).
URL http://breakingapis.org/survey/

[6] A. Decan, T. Mens, What do package dependencies tell us about semantic
versioning?, IEEE Transactions on Software Engineering (2019) 1-1doi:
10.1109/TSE.2019.2918315.

31

http://jeremyckahn.github.io/blog/2013/12/29/the-fear-of-1-dot-0-0/
http://jeremyckahn.github.io/blog/2013/12/29/the-fear-of-1-dot-0-0/
http://jeremyckahn.github.io/blog/2013/12/29/the-fear-of-1-dot-0-0/
https://www.reddit.com/r/rust/comments/9j6x9c/dont_fear_100/
https://www.reddit.com/r/rust/comments/9j6x9c/dont_fear_100/
https://www.reddit.com/r/rust/comments/9j6x9c/dont_fear_100/
https://www.reddit.com/r/rust/comments/7hr6ib/the_meaning_of_version_100/
https://www.reddit.com/r/rust/comments/7hr6ib/the_meaning_of_version_100/
https://www.reddit.com/r/rust/comments/7hr6ib/the_meaning_of_version_100/
https://semver.org
https://semver.org
http://breakingapis.org/survey/
http://breakingapis.org/survey/
http://breakingapis.org/survey/
https://doi.org/10.1109/TSE.2019.2918315
https://doi.org/10.1109/TSE.2019.2918315

[7]

[12]

[13]

[15]

[16]

A. Decan, T. Mens, How magic is zero? an empirical analysis of initial de-
velopment releases in three software package distributions, in: ICSE Work-
shop on Software Health (SoHeal), 2020. doi:10.1145/3387940.3392205.

V. T. Rajlich, K. H. Bennett, A staged model for the software lifecycle,
IEEE Computer 33 (7) (2000) 66-71. doi:https://doi.org/10.1109/
2.869374.

A. Capiluppi, J. Gonzales-Barahona, I. Herraiz, G. Robles, Adapting the
“staged model for software evolution” to free/libre/open source software,
in: Int’l Workshop on Principles of Software Evolution, ACM, 2007, pp.
79-82. doi:https://doi.org/10.1145/1294948.1294968.

J. Fernandez-Ramil, A. Lozano, M. Wermelinger, A. Capiluppi, Empirical
studies of open source evolution, in: Software evolution, Springer, 2008,
pPp- 263-288. |[doi:10.1007/978-3-540-76440-3_11.

J. Costa, C. Chavez, P. Meirelles, On the sustainability of academic soft-
ware: The case of static analysis tools, in: Brazilian Symposium on
Software Engineering, ACM, 2018, pp. 202-207. doi:https://doi.org/
10.1145/3266237.3266243.

A. Stuckenholz, Component evolution and versioning state of the art, SIG-
SOFT Softw. Eng. Notes 30 (1) (2005) 7. doi:10.1145/1039174.1039197.
URL https://doi.org/10.1145/1039174.1039197

E. Wittern, P. Suter, S. Rajagopalan, A look at the dynamics of the Java-
Script package ecosystem, in: Int’l Conf. Mining Software Repositories,
ACM, 2016, pp. 351-361. doi:10.1145/2901739.2901743.

S. Raemaekers, A. van Deursen, J. Visser, Semantic versioning and im-
pact of breaking changes in the Maven repository, Journal of Systems
and Software 129 (2017) 140 — 158. |doi:https://doi.org/10.1016/
3.355.2016.04.008!

A. Decan, T. Mens, M. Claes, An empirical comparison of depen-
dency issues in OSS packaging ecosystems, in: Int’l Conf. Software
Analysis, Evolution, and Reengineering, 2017, pp. 2-12. |doi:10.1109/
SANER.2017.7884604.

C. Bogart, C. Kastner, J. Herbsleb, F. Thung, How to break an api: cost
negotiation and community values in three software ecosystems, in: Inter-
national Symposium on Foundations of Software Engineering, ACM, 2016,
pp. 109-120. doi:https://doi.org/10.1145/2950290.2950325.

J. Katz, Libraries.io open source repository and dependency metadata (ver-
sion 1.6.0) (2020). doi:10.5281/zenodo.2536573.
URL https://doi.org/10.56281/zenodo.25636573

32

https://doi.org/10.1145/3387940.3392205
https://doi.org/https://doi.org/10.1109/2.869374
https://doi.org/https://doi.org/10.1109/2.869374
https://doi.org/https://doi.org/10.1145/1294948.1294968
https://doi.org/10.1007/978-3-540-76440-3_11
https://doi.org/https://doi.org/10.1145/3266237.3266243
https://doi.org/https://doi.org/10.1145/3266237.3266243
https://doi.org/10.1145/1039174.1039197
https://doi.org/10.1145/1039174.1039197
https://doi.org/10.1145/1039174.1039197
https://doi.org/10.1145/2901739.2901743
https://doi.org/https://doi.org/10.1016/j.jss.2016.04.008
https://doi.org/https://doi.org/10.1016/j.jss.2016.04.008
https://doi.org/10.1109/SANER.2017.7884604
https://doi.org/10.1109/SANER.2017.7884604
https://doi.org/https://doi.org/10.1145/2950290.2950325
https://doi.org/10.5281/zenodo.2536573
https://doi.org/10.5281/zenodo.2536573
https://doi.org/10.5281/zenodo.2536573
https://doi.org/10.5281/zenodo.2536573

[18]

[19]

[25]

[26]

O. Aalen, O. Borgan, H. Gjessing, Survival and Event History Analysis: A
Process Point of View, Springer, 2008. doi:10.1007/978-0-387-68560-1.

E. L. Kaplan, P. Meier, Nonparametric estimation from incomplete obser-
vations, Journal of the American Statistical Association 53 (282) (1958)
pp. 457 481.

URL http://www.jstor.org/stable/2281868

H. Hofmann, H. Wickham, K. Kafadar, Letter-value plots: Boxplots for
large data, Journal of Computational and Graphical Statistics 26 (3) (2017)
469-477. doi:10.1080/10618600.2017.1305277.

H. B. Mann, D. R. Whitney, On a test of whether one of two random
variables is stochastically larger than the other, Ann. Math. Statist. 18 (1)
(1947) 50-60. doi:10.1214/aoms/1177730491.

URL https://doi.org/10.1214/aoms/1177730491

S. Holm, |A simple sequentially rejective multiple test procedure, Scandi-
navian Journal of Statistics 6 (2) (1979) 65-70.
URL http://www.jstor.org/stable/4615733

N. CIliff, Dominance statistics: Ordinal analyses to answer ordinal ques-
tions, Psychological bulletin 114 (3) (1993) 494. |doi:10.1037/0033-
2909.114.3.494.

J. Romano, J. D. Kromrey, J. Coraggio, J. Skowronek, L. Devine, Exploring
methods for evaluating group differences on the NSSE and other surveys:
Are the t-test and Cohen’s d indices the most appropriate choices?, in:
Annual Meeting of the Southern Association for Institutional Research,
2006.

A. Decan, portion — python data structure and operations for intervals
(2018).
URL https://github.com/AlexandreDecan/portion

C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell, A. Wesslén,
Experimentation in software engineering, Springer Science & Business Me-
dia, 2012. |[doi:10.1007/978-1-4615-4625-2.

A. Decan, T. Mens, P. Grosjean, An empirical comparison of dependency
network evolution in seven software packaging ecosystems, Empirical Soft-
ware Engineering (2018). |doi:https://doi.org/10.1007/s10664-017~
9589-y.

33

https://doi.org/10.1007/978-0-387-68560-1
http://www.jstor.org/stable/2281868
http://www.jstor.org/stable/2281868
http://www.jstor.org/stable/2281868
https://doi.org/10.1080/10618600.2017.1305277
https://doi.org/10.1214/aoms/1177730491
https://doi.org/10.1214/aoms/1177730491
https://doi.org/10.1214/aoms/1177730491
https://doi.org/10.1214/aoms/1177730491
http://www.jstor.org/stable/4615733
http://www.jstor.org/stable/4615733
https://doi.org/10.1037/0033-2909.114.3.494
https://doi.org/10.1037/0033-2909.114.3.494
https://github.com/AlexandreDecan/portion
https://github.com/AlexandreDecan/portion
https://doi.org/10.1007/978-1-4615-4625-2
https://doi.org/https://doi.org/10.1007/s10664-017-9589-y
https://doi.org/https://doi.org/10.1007/s10664-017-9589-y

	1 Introduction
	2 Related Work
	3 Data Extraction
	4 Research Questions
	4.1 How Prevalent Are 0.y.z Packages?
	4.2 Do Packages Get Stuck in the Zero Version Space?
	4.3 Are 0.y.z Releases Published More Frequently than 1.0.0 releases?
	4.4 Are 0.y.z Package Releases Required by Other Packages?
	4.5 How Permissive Are Dependency Constraints Towards Required 0.y.z Packages?
	4.6 Do GitHub Repositories for 0.y.z Packages Have Different Characteristics?

	5 Discussion
	5.1 Qualitative evidence
	5.2 The 1.0.0 barrier
	5.3 Maturity of distributed packages
	5.4 Version policies of package distributions
	5.5 Semantic Versioning
	5.6 Wisdom of the crowds

	6 Threats to Validity
	7 Conclusion

