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Highlights

• Fuzzy logic and aggregation functions are used to specify reactive systems.
• Fuzzy Reactive Switch Graphs generalize the notion of fuzzy graphs.
• Bissimulation of reactive systems is threated in this system.
• An example of a control system is provided for Fuzzy Reactive Switch Graphs.
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ABSTRACT
Fuzzy Switch Graphs (FSG) generalize the notion of Fuzzy Graphs by adding high-order arrows
and aggregation functions which update the fuzzy values of arrows whenever a zero-order arrow
is crossed. In this paper, we propose a more general structure called Reversal Fuzzy Switch
Graph (RFSG), which promotes other actions in addition to updating the fuzzy values of the
arrows, like activation and deactivation of the arrows. RFSGs are able to model dynamical
aspects of some systems which generally appear in engineering, computer science and some
other fields. The paper also provides the relationship betweenRFSGs and fuzzy graphs, a logic
to verify properties of the modelled system and closes with an application.

1. Introduction
Reactive graphs are structures whose the relations change when we move along the graph. This concept has been

introduced by Dov Gabbay in 2004 (see [12],[14]) and generalizes the static notion of a graph by incorporating high-
order edges (called high-order arrows or switches). Graphs with these characteristics are called Switch Graphs.

In [22], Santiago et al. introduce the notion of Fuzzy Switchs Graphs (FSGs). These graphs are able to model
reactive systems endowed with fuzziness and extend the notion of fuzzy graphs, in the sense that crossing an edge
(zero-order arrow) induces an update of the system using high-order arrows and aggregation functions. For systems
which require different aggregations for updating different arrows, Santiago et al. [22] introduced the Fuzzy Reactive
Graphs (FRGs).

FSGs and FRGs, however, are not sufficient to model systems in which other edges of the system are activated
or deactivated when one edge is crossing. To incorporate this, in [7] Campos, et al. propose the notion of Reversal
Fuzzy Switch Graphs (RFSGs). Also in [7], the Cartesian product of RFSGs, a logic to verify properties of such
structures and an application were presented. This paper complements reference [7] expanding its main contributions,
presents an important relation between the RFSGs and fuzzy graphs and incorporates the logic notion of simulation
and bisimulation.

The paper is organized as follows: Section 2 presents some basic concepts. Section 3 presents the notion of
RFSGs, how they can be used to model the reactivity of some fuzzy systems and presents some algebraic operations.
Section 4 provides a connection between the RFSGs and fuzzy graphs. Section 5 presents a logic and introduce
the simulation and bisimulation for RFSGs. Section 6 shows how RFSGs can be used to model a dynamic control
system. Finally, section 7 provides some final remarks.

2. Preliminaries
In this section we recall some concepts and results found in the literature in order to make this paper self-contained.

We assume that the reader has some basic knowledge in fuzzy set theory. In order to make it easier to read, we will
identify the membership function with the fuzzy set.
Definition 2.1. A fuzzy set A, defined on a non-empty set X, is characterized by a membership function 'A ∶ X →
[0, 1]. The value 'A(x) ∈ [0, 1] measures the degree of membership of x in the set A [16] [19].

∗Corresponding author
∗∗Principal corresponding author

suenecampos@ufersa.edu.br (S. Campos); regivan@dimap.ufrn.br (R. Santiago); martins@ua.pt (M.A. Martins);
daniel.figueiredo@ua.pt (D. Figueiredo)

ORCID(s): 0000-0002-4991-9603 (R. Santiago); 0000-0002-5109-8066 (M.A. Martins)

Campos S. et al.: Preprint submitted to Elsevier Page 1 of 32



Introducing to Reversal Fuzzy Switch Graphs

(a) Fuzzy graph (b) Fuzzy switch graph

Figure 1: Fuzzy graphs

Definition 2.2 (Fuzzy Graphs [16] [20]). A fuzzy graph is a structure ⟨V ,R⟩, such that V is a non-empty set called
set of vertices and R is a fuzzy set R ∶ V × V → [0, 1].

For simplicity, we assume the set of vertices is a crisp set, in contrast to what is defined as a fuzzy graph in [16].
Fig. 1(a) shows a fuzzy graph.

Dov Gabbay [4] provided graphs with high-order arrows in order to model reactive behaviors. This kind of graphs
is defined as follows.
Definition 2.3 (Switch Graphs [4] [13]). A switch graph is a pair ⟨W ,R⟩ s.t. W is a non-empty set (set of worlds)
and R ⊆ A(W ) is a set of arrows, called switches or high-order arrows, where A(W ) =

⋃

i∈ℕ
Ai(W ) with

{

A0(W ) = W ×W
Ai+1(W ) = A0(W ) × Ai(W ) (1)

Fuzzy Switch Graphs were introduced by Santiago et al. in [22].
Definition 2.4 (Fuzzy Switch Graphs [22]). LetW be a non-empty finite set (set of states or worlds) and the family
of sets S =

⋃

n∈ℕ
Sn where S0 ≠ ∅ and

{

S0 ⊆ W ×W
Sn+1 ⊆ S0 × Sn (2)

A fuzzy switch graph (FSG) is a pair  = ⟨W ,' ∶ S → [0, 1]⟩, where ' is a fuzzy set on S. The elements
a0i ∈ S

0 (i ∈ ℕ) are called zero-order arrows. The elements of Sn+1 are called high-order arrows.

Example 2.1. Fig. 1 shows a fuzzy graph and a fuzzy switch graph.

Fuzzy Logic provides many proposals for logical connectives. In what follows we review the notions of t-norms,
t-conorms, fuzzy implications and fuzzy negations. The first two cases are generalizations of the classic notion of
disjunctions and conjunctions, respectively [15].
Definition 2.5 (t-norms and t-conorms). A uninorm is a bivariate function U ∶ [0, 1] × [0, 1] → [0, 1], that is
isotonic, commutative, associative with a neutral element e ∈ [0, 1]. If e = 1, then U is called t-norm and if e = 0,
then U is called t-conorm.

Example 2.2. The functions TG(x, y) = min(x, y) and TL(x, y) = max(x + y − 1, 0) (Łukasiewicz) are t-norms. The
functions SG(x, y) = max(x, y) and SL(x, y) = min(x + y, 1) (Łukasiewicz) are t-conorms.
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Notation 1: Let T be a t-norm, f ∶ [0, 1] → [0, 1] and Jn a finite subset of [0, 1] with n elements (J0 = ∅). We
define T

a∈Jn
,

T
a∈Jn

f (a) =

⎧

⎪

⎨

⎪

⎩

1, case n = 0;
f (a), case n = 1;
T
(

f (x), T
a∈Jm

f (a)
)

, case n > 1, x ∈ Jn and Jm = Jn∖{x}.
(3)

Similarly, for S t-conorm, we define S
a∈Jn

s.t.

S
a∈Jn

f (a) =

⎧

⎪

⎨

⎪

⎩

0, case n = 0;
f (a), case n = 1;
S
(

f (x), S
a∈Jm

f (a)
)

, case n > 1, x ∈ Jn and Jm = Jn∖{x}.
(4)

Note that, since T and S are comutativy and associative, T
a∈Jm

and S
a∈Jm

are well defined. That is, it does not depend
on the way we choose x ∈ Jn to make Jn = {x} ∪ Jm.
Example 2.3. Given the t-norm T (x, y) = min(x, y), the identity function Id ∶ [0, 1] → [0, 1] and the set J3 =
{x1, x2, x3} ⊂ [0, 1], we have:

T
a∈J3

Id(a) = min
(

x1, Ta∈J2
Id(a)

)

= min
(

x1, min
(

x2, Ta∈J1
Id(a)

)

)

= min
(

x1, min
(

x2, Id(x3)
)

)

= min
(

x1, min
(

x2, x3)
)

.

Definition 2.6 (Negations [3], [21]). A unary operationN ∶ [0, 1]→ [0, 1] is a fuzzy negation ifN(0) = 1, N(1) = 0
andN is decreasing.

Example 2.4. Gödel Negation: NG ∶ [0, 1]→ [0, 1] s.t. NG(0) = 1 andNG(x) = 0, whenever x > 0.

Definition 2.7 (Implications [3]). A bivariate function I ∶ [0, 1]2 → [0, 1] is a fuzzy implication if it is decreasing
with respect to the first variable, increasing with respect to the second variable, I(0, 0) = I(0, 1) = I(1, 1) = 1 and
I(1, 0) = 0 (boundary conditions).

Example 2.5. Gödel Implication: IG ∶ [0, 1]2 → [0, 1] s.t. IG(x, y) = 1, whenever x ≤ y, and IG(x, y) = y
otherwise.

Definition 2.8 (Bi-implications [6]). A bivariate function B ∶ [0, 1]2 → [0, 1] is a fuzzy bi-implication if it is com-
mutative, B(x, x) = 1, B(0, 1) = 0 and B(w, z) ≤ B(x, y), whenever w ≤ x ≤ y ≤ z.

Example 2.6. Gödel Bi-implication: BG(x, y) = TG(IG(x, y), IG(y, x)).

Definition 2.9 (Fuzzy Semantics [9]). A structure  = {[0, 1], T , S,N, I, B, 0, 1}, s.t. T is a t-norm, S is a t-
conorm,N is a fuzzy negation, I is a fuzzy implication and B is a fuzzy bi-implication, is called a fuzzy semantics.

Example 2.7. Gödel Semantic:  = {[0, 1], TM , SM , NG, IG, BG, 0, 1}.

Aggregation functions [18], [8], [1], [2], [10] are functions with special properties which generalize the means,
like arithmetic mean, weighted mean and geometric mean.
Campos S. et al.: Preprint submitted to Elsevier Page 3 of 32
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Definition 2.10 (Aggregation Function [5]). An aggregation function is a n-ary function A ∶ [0, 1]n → [0, 1], with
A(0, 0, ..., 0) = 0, A(1, 1, ..., 1) = 1 and, for all x̄, ȳ ∈ [0, 1]n, x̄ ≤ ȳ implies A(x̄) ≤ A(ȳ).

Example 2.8. An(x̄) =
1
n
(x1 + ... + xn) (Arithmetic mean), An(x̄) = n

√

x1 ⋅ ... ⋅ xn (Geometric mean), t-norms, t-
conorms and projection functions, Πj ∶ A1 × ...×Aj × ...×An⟶ Aj , s.t. Πj(x1, ..., xj , ..., xn) = xj , are aggregation
functions.

Definition 2.11 ([5]). For every x̄ ∈ [0, 1]n, an aggregation function A is, average if min(x̄) ≤ A(x̄) ≤ max(x̄),
conjunctive if A(x̄) ≤ min(x̄) and disjunctive if A(x̄) ≥ max(x̄).

Example 2.9. t-norms are conjunctive aggregations, t-conorms are disjunctive and means (arithmetic, geometric,
weighted) are average aggregations. For example, given x, y ∈ [0, 1] we have:

xy ≤ min{x, y} ≤ x + y
2

≤ max{x, y}.

Definition 2.12. An aggregation A ∶ [0, 1]n → [0, 1] is shift-invariant if, for all � ∈ [−1, 1] and for all (x1, ..., xn) ∈
[0, 1]n,

A(x1 + �, ..., xn + �) = A(x1, ..., xn) + �

whenever (x1 + �, ..., xn + �) ∈ [0, 1]n and A(x1, ..., xn) + � ∈ [0, 1].

In [22], Santiago et al. extend the notion of FSGs for Fuzzy Reactive Graphs. In what follows, given a FSG
 = ⟨W ,' ∶ S → [0, 1]⟩, we define the set S→ = {a0i ∈ S

0; Ja0i , aK ∈ S, with a ∈ S}.
Definition 2.13 (Fuzzy Reactive Graphs). Let = ⟨W ,' ∶ S → [0, 1]⟩ be a FSG,A = {A1, ..., Ak ∶ [0, 1]3 →
[0, 1]} a set of aggregation functions and a function Ag ∶ S→ → A. The pairR = ⟨, Ag⟩ is called a fuzzy
reactive graph (FRG).

Notation 2: In order to make the presentation of the graphs and the movements on the graph more intuitive, we
will establish: Arrows that are crossed over the graph will be drawn in red. High-order arrows that act on the graph
configuration, after crossing the zero-order arrow, will be drawn in blue. The first arrow crossed will have a single
point, the second arrow crossed will have a double point, the third arrow to be crossed will have a triple point and so
on. If multiple movements are made repeatedly on the same arrow, the arrow pointer will show the order of the last
movement. For example, if the movement is made three times on the same arrow, graphically, we will see only a red
triple-headed arrow in the graph.
Example 2.10. Let be theFSG in Fig. 1(b). ConsiderS0 = {a01 = (u, v), a

0
2 = (v, v), a

0
3 = (v,w), a

0
4 = (v, z), a

0
5 =

(w, u)} and A = {aritℎ, max}. Defining the application Ag ∶ S→ → A s.t. Ag(a01) = Ag(a02) = aritℎ and
Ag(a03) = Ag(a04) = Ag(a05) = max, we have the FRG R = ⟨, Ag⟩. Fig. 2(a) contains the reconfiguration of
R after crossing a01 = (u, v) and having applied Ag(a01) = aritℎ to the fuzzy values: 0.2, 0.1, 0.7. We calculate
aritℎ(0.2, 0.1, 0.7) = (0.2 + 0.1 + 0.7)∕3 = 1∕3 and the arrow J[vw], [wu]K gets the new fuzzy value 1∕3. Fig. 2(b)
contains the reconfiguration of R after crossing a03 = (v,w) and having aplied Ag(a03) = max to the fuzzy values:
0.8, 0.7, 0.4. We calculate max(0.8, 0.7, 0.4) = 0.8 and the arrow [wu] gets the new fuzzy value 0.8.

3. Reversal Fuzzy Switch Graph
In this section we introduce the notion of Reversal Fuzzy Switch Graph, a structure which generalizes the notion

of Fuzzy Switch Graph introduced by Santiago et al. [22]. This new kind of graph has in its structure two new types of
high order-arrows, called connecting arrows and disconnecting arrows. These arrows allow to model reactive systems
in which the accessibility to the worlds may be activated or deactivated by the transitions.

In what followsW and V are non-empty finite sets.

Campos S. et al.: Preprint submitted to Elsevier Page 4 of 32
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(a) R after crossing a01 = (u, v) (b) R after crossing a03 = (v,w)

Figure 2: Reconfigurations of R.

Figure 3: Reversal fuzzy switch graph (RFSG).

Definition 3.1 (Reversal Fuzzy Switch Graphs [7]). LetW be a set whose elements are called states orworlds. Con-
sider the following family of sets defined recursively,

{

S0 ⊆ W ×W
Sn+1 ⊆ S0 × Sn × {∙, ◦} (5)

s.t. S0 ≠ ∅ and for any n ≥ 1, (a0i , a, ◦) ∉ Sn or (a0i , a, ∙) ∉ Sn. Consider S =
⋃

n∈ℕ
Sn, a reversal fuzzy switch

graph (RFSG) is a pairM = ⟨W ,� ∶ S → [0, 1] × {ON,OFF}⟩ 1. Arrows with ∙ in their third component are called
connecting arrows and arrows with ◦ in their third component are called disconnecting arrows. When the context is
clear we denote a RFSG simply by ⟨W ,�⟩.

Active arrows are drawn with a normal line whereas inactive arrows are drawn with a dashed line. Moreover,
connecting (disconnecting) arrows change the targeted arrow state for active (inactive) and are drawn with a black
(white) arrowhead.

For readability, we introduce some notation and nomenclatures:
• Arrows in Sn will be denoted by ani , for n ≥ 0 and i ∈ ℕ.
• In the following, we make an abuse of notation. When necessary and if the context is clear, we will denote in

more detail the arrows in Sn in a more expanded way. For example, a0i from x to y will be denoted by [xy],
1In this paper we assume that the membership function is valued in the complete lattice [0.1] × {ON,OFF} using the product order where

OFF ≤ ON.
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the disconnecting and connecting first-order arrows, from [xy] to [uv] will be denoted by J[xy], [uv], ◦K and
J[xy], [uv], ∙K, respectively. When referring to any high-order arrow, we write � ∈ {◦, ∙} instead of ◦ or ∙. For
example, any first-order arrow from [uv] to [xy] will be written J[uv], [xy], �K. Any second-order arrows from
[zw] to J[xy], [uv], �K will be enoted by J[zw], J[xy], [uv], �K, �′K.

• When there is no need to specify the order of the arrow belonging to set S, we will denote a ∈ S.
• Given the projection functions Π1 ∶ [0, 1] × {ON,OFF} → [0, 1] and Π2 ∶ [0, 1] × {ON,OFF} → {ON,OFF}, if
a ∈ S we write �1(a) = Π1(�(a)) and �2(a) = Π2(�(a)) to indicate the first and second components of �(a).

• Let R ⊆ S, the set of active arrows in R is denoted by
R∗� ∶=

{

a ∈ R; �2(a) = ON
}

and the set of arrows in R which is the origin of a high-order arrow in S is denoted by
R→ =

{

a0i ∈ R; Ja0i , b, �K ∈ S with b ∈ S and � ∈ {◦, ∙}} .

In the following, we will consider the RFSGsM = ⟨W ,�⟩ andM ′ = ⟨W ,�′⟩.
Definition 3.2. M is a subgraph ofM ′ if �1(a) ≤ �′1(a) and �2(a) = �

′
2(a), for all a ∈ S. M is a supergraph ofM ′

if �1(a) ≥ �′1(a) and �2(a) = �
′
2(a), for all a ∈ S.

Definition 3.3. M ′ is a translation ofM by � ∈ [−1, 1] if, for all a ∈ S s.t. �1(a) > 0, �′1(a) = �1(a) + � ∈ [0, 1]
and �′2(a) = �2(a).

3.1. Reactivity of RFSGs
Intuitively, a reactive graph is a graph that may change its configuration when a zero-order arrow is crossed. In

order to model this global dependence in aRFSG, we consider the reactivity idea presented in [22] with the necessary
adaptations: Whenever a zero-order arrow is crossed, the fuzzy value and the arrow state (active or inactive) of its
target arrows are updated.
Definition 3.4. Given a RFSG M = ⟨W ,�⟩ with aggregation function A ∶ [0, 1]3 → [0, 1], a RFSG based on A
after crossing an active zero-order arrow a0i , is the RFSG MA

a0i
= ⟨W ,�A

a0i
∶ S → [0, 1] × {ON,OFF}⟩ s.t.

�A
a0i
(a) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

A
(

�1(a0i ), �1(Ja
0
i , a, ∙K), �1(a)

)

,ON
)

, if Ja0i , a, ∙K ∈ S
∗
�;

(

A
(

�1(a0i ), �1(Ja
0
i , a, ◦K), �1(a)

)

,OFF
)

, if Ja0i , a, ◦K ∈ S
∗
�;

�(a), otℎerwise.

(6)

The RFSG MA
a0i

is called reconfiguration ofM , based on A, after crossing a0i .

Let us see how this definition works in Fig. 4 using the arithmetic mean as aggregation function after crossing a
sequence of zero-order arrows in Fig. 3. After the arrow a01 = [xu] has been crossed, Fig. 4(a), the arrow a02 = [xy]is updated due to a11 = J[xu], [xy], ◦K by the arithmetic mean between the fuzzy values �1(a01), �1(a02) and �1(a11), andby replacing the marker ON to OFF (the arrow a02 becames inactive). In a second step and in the same manner, after the
arrow a03 = [uy] has been crossed, the arrow a11 = J[xu], [xy], ◦K has its fuzzy value updated and becomes inactive,
however, the arrow a05 = [vy] has only its fuzzy value updated since it is an active arrow targered by a connecting
arrow (Fig. 4(b)).
Remark 3.1. The edges contained in S can receive a null fuzzy value. However, graphically, these arrows will be
displayed only if there is the possibility of modifying this value by some high-order arrow (Fig. 5).

From the action of an aggregation, after a reconfiguration, the value of an arrow with a non-null fuzzy value can
be modified until this value is zero.
Campos S. et al.: Preprint submitted to Elsevier Page 6 of 32
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(a) Maritℎ
[xu] (b) Maritℎ

[xu][uy]

Figure 4: Reactivity of RFSG after crossing zero-order arrows [xu] and [xu][uy].

(a) M (b) Maritℎ
[uv]

Figure 5: RFSG with a null fuzzy value.

Proposition 3.1. If A is a conjunctive (disjunctive) aggregation and
(

�A
a0i

)

2(b) = �2(b) for all b ∈ S, thenMA
a0i

is a

subgraph (supergraph) ofM .

PROOF. Given b ∈ S and denoting
(

�1(a0i ), �1(Ja
0
i , b, �K), �1(b)

)

= Ja0i , b, �K:
• Case Ja0i , b, �K ∈ S∗� :

(

�A
a0i

)

1(b) = A
(

Ja0i , b, �K
)

≤ min
(

Ja0i , b, �K
)

≤ �1(b).

• Case Ja0i , b, �K ∉ S∗�:
(

�A
a0i

)

1(b) = �1(b).

ThenMA
a0i

is subgraph ofM . The dual statement follows straightforwardly.

Proposition 3.2. LetM ′ be a translation ofM by � ∈ [−1, 1]. If A is shift-invariant, thenM ′A
a0i

is a translation of

MA
a0i

by �.

PROOF. Let b ∈ S. Denoting
(

�′1(a
0
i ), �

′
1(Ja

0
i , b, �K), �′1(b)

)

= Ja0i , b, �K and suposing that A
(

�1(a0i ), �1(Ja
0
i , b, �K),

�1(b)
)

+ � ∈ [0, 1]:
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Table 1
Differences between fuzzy graphs

zero-order
arrows

high-order
arrows

connection or disconnec-
tion high-order arrows

one aggregation associ-
ated

more than one aggrega-
tion associated

FG ✓

FSG ✓ ✓ ✓

FRG ✓ ✓ ✓

RFSG ✓ ✓ ✓

RFRG ✓ ✓ ✓

• Case Ja0i , b, �K ∈ S∗�:

(

�′Aa0i
)

1(b) = A
(

Ja0i , b, �K
)

= A
(

�1(a0i ) + �, �1(Ja
0
i , b, �K) + �, �1(b) + �

)

= A
(

�1(a0i ), �1(Ja
0
i , b, �K), �1(b)

)

+ �

=
(

�A
a0i

)

1(b) + �

• Case Ja0i , b, �K ∉ S∗�:
(

�′Aa0i
)

1(b) = �
′
1(b) = �1(b) + � =

(

�A
a0i

)

1(b) + �.

By hypoteses, �2(b) = �′2(b), then
(

�′Aa0i
)

2(b) =
(

�A
a0i

)

2(b).

Next, we will provide an extension for the notion of reactivity presented in [22]. Just as it is done for the case of
FRGs, each active zero-order arrow triggers an aggregation function.
Definition 3.5 (Reversal Fuzzy Reactive Graphs [7]). ConsiderM a RFSG, A = {A1, ..., Ak ∶ [0, 1]3 → [0, 1]} a
set of aggregation functions and a function Ag ∶ S→ → A. The pairMR = ⟨M,Ag⟩ is called reversal fuzzy reactive
graph (RFRG).

If a0i ∈ S�0
∗, the reconfiguration of MR after crossing a0i is the RFRG M

a0i
R = ⟨Ma0i , Ag⟩, where M

a0i =

⟨W ,�
Ag
a0i
⟩ is a RFSG s.t.

�
Ag
a0i
(b) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

Ag(a0i )
(

�1(a0i ), �1(Ja
0
i , b, ∙K), �1(b)

)

,ON
)

, if Ja0i , b, ∙K ∈ S
∗
�;

(

Ag(a0i )
(

�1(a0i ), �1(Ja
0
i , b, ◦K), �1(b)

)

,OFF
)

, if Ja0i , b, ◦K ∈ S
∗
�;

�(b), otℎerwise.

(7)

Example 3.1. LetM be theRFSG at Fig. 3, S0 = {[xy], [xu], [uy], [vy], [yv], [vu]}, A = {aritℎ, max}, Ag
(

[xy]
)

=
Ag

(

[xu]
)

= Ag
(

[yv]
)

= aritℎ and Ag
(

[vy]
)

= Ag
(

[uy]
)

= Ag
(

[vu]
)

= max. Fig. 6 containsM [xu]
R andM [xu][uy]

R ,
respectively.

At this point, in order to clearly expose the differences between the different fuzzy graphs presented here, we
present the table 3.1.
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(a) M [xu]
R (b) M [xu][uy]

R

Figure 6: Reconfigurations of MR.

3.2. Product of RFSGs
In the following, we will consider the RFSGsM = ⟨W ,� ∶ S → [0, 1] × {ON,OFF}⟩ and N = ⟨V , � ∶ T →

[0, 1] × {ON,OFF}⟩ withW and V disjoint set; and the setW ⋆ V =
⋃

n∈ℕ
(W ⋆ V )n s.t.,

{

(W ⋆ V )0 ⊆ (W × V ) × (W × V )
(W ⋆ V )n+1 ⊆ (W ⋆ V )0 × (W ⋆ V )n × {∙, ◦}.

Given a0i ∈ (W ⋆ V )0, a ∈ (W ⋆ V )n and � ∈ {◦, ∙}, we will consider the subsets
• (W ⋆ V )0S =

{

[(wi, v)(wj , v)] ∈ (W ⋆ V )0 ; v ∈ V and [wiwj] ∈ S0
}

,

• (W ⋆ V )0T =
{

[(w, vi)(w, vj)] ∈ (W ⋆ V )0 ; w ∈ W and [vivj] ∈ T 0
}

,

• (W ⋆ V )n+1S =
{

Ja0i , a, �K ∈ (W ⋆ V )n+1 ; a0i ∈ (W ⋆ V )0S and a ∈ (W ⋆ V )nS
}

,

• (W ⋆ V )n+1T =
{

Ja0i , a, �K ∈ (W ⋆ V )n+1 ; a0i ∈ (W ⋆ V )0T and a ∈ (W ⋆ V )nT
}

,

and the aplication � ∶ (W ⋆ V )S∪T =
⋃

n∈ℕ

[

(W ⋆ V )nS ∪ (W ⋆ V )nT
]

→ S ∪ T s.t.

�(b) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

[wiwj] ∈ S0, if b = [(wi, v)(wj , v)] ∈ (W ⋆ V )0S ;
[vivj] ∈ T 0, if b = [(w, vi)(w, vj)] ∈ (W ⋆ V )0T ;
J�(a0i ), �(a), �K ∈ Sn+1, if b = Ja0i , a, �K ∈ (W ⋆ V )n+1S ;
J�(a0i ), �(a), �K ∈ T n+1, if b = Ja0i , a, �K ∈ (W ⋆ V )n+1T .

Definition 3.6 (Product of RFSGs). The Cartesian Product of the RFSGs M and N is the RFSG: M × N =
⟨W × V ,  ∶ (W ⋆ V )S∪T → [0, 1] × {ON,OFF}⟩ s.t.

 (b) =
{

�
(

�(b)
)

, if b ∈ (W ⋆ V )S
�
(

�(b)
)

, if b ∈ (W ⋆ V )T
(8)

Example 3.2. ConsiderM andN shown in Fig. 7. The productM ×N can be observed in Fig. 8.

In order to define the product of RFRGs, we consider :
• The RFRGsMR = ⟨M,AgM⟩ andNR = ⟨N,AgN⟩;
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Figure 7: RFSGs M and N .

Figure 8: Cartesian product M ×N .

• The functions AgM ∶ S→ → AM and AgN ∶ T→ → AN ;
• The sets of aggregations AM and AN ;
The aggregations am ∈ AM and an ∈ AN will be denoted by (M,am) ∶ [0, 1]3 → [0, 1] and (N, an) ∶ [0, 1]3 →

[0, 1].
Definition 3.7 (Product of RFRGs). Consider the RFRGs MR and NR, the set AM ⊕ AN = {(M,am) ∶ am ∈
AM} ∪ {(N, an) ∶ an ∈ AN} and the function AgM×N ∶ [(W ⋆ V )0S ∪ (W ⋆ V )0T ]→ → AM ⊕AN s.t.

AgM×N (a0i ) =

⎧

⎪

⎨

⎪

⎩

(

N,AgN
(

�(a0i )
)

)

, if a0i ∈ (W ⋆ V )0T
(

M,AgM
(

�(a0i )
)

)

, if a0i ∈ (W ⋆ V )0S
(9)

The structureMR ×NR = ⟨M ×N,AgM×N⟩ is the product of RFRGsMR andNR.

The next proposition ensures that the updated product is obtained from the updated factors.
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Proposition 3.3. Consider theRFRGsMR,NR, the productMR ×NR, a0i ∈ (W ⋆V )0S ∪ (W ⋆V )0T and a ∈ (W ⋆

V )S ∪ (W ⋆ V )T s.t.
(

 1
(

a0i
)

,  1
(

Ja0i , a, ◦K
)

,  1
(

a)
)

= Ja0i , a, ◦K and
(

 1
(

a0i
)

,  1
(

Ja0i , a, ∙K
)

,  1
(

a
)

)

= Ja0i , a, ∙K.
Then,

 AgM×N
a0i

(a) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

�
(

�(a)
)

, if C1;
�
(

�(a)
)

, if C2;
(

AgN (�(a))
(

Ja0i , a, ◦K
)

,OFF
)

, if C3;
(

AgN (�(a))
(

Ja0i , a, ∙K
)

,ON
)

, if C4;
(

AgM (�(a))
(

Ja0i , a, ◦K
)

,OFF
)

, if C5;
(

AgM (�(a))
(

Ja0i , a, ∙K
)

,ON
)

, if C6;

(10)

For:

• C1 ∶ a ∈ (W ⋆ V )T and Ja0i , a, �K ∉ [(W ⋆ V )S ∪ (W ⋆ V )T ]∗ ;

• C2 ∶ a ∈ (W ⋆ V )S and Ja0i , a, �K ∉ [(W ⋆ V )S ∪ (W ⋆ V )T ]∗ ;

• C3 ∶ a0i ∈ (W ⋆ V )0T and Ja0i , a, ◦K ∈ [(W ⋆ V )S ∪ (W ⋆ V )T ]∗ ;

• C4 ∶ a0i ∈ (W ⋆ V )0T and Ja0i , a, ∙K ∈ [(W ⋆ V )S ∪ (W ⋆ V )T ]∗ ;

• C5 ∶ a0i ∈ (W ⋆ V )0S and Ja0i , a, ◦K ∈ [(W ⋆ V )S ∪ (W ⋆ V )T ]∗ ;

• C6 ∶ a0i ∈ (W ⋆ V )0S and Ja0i , a, ∙K ∈ [(W ⋆ V )S ∪ (W ⋆ V )T ]∗ .

PROOF. Indeed,
• Case Ja0i , a, �K ∉ [(W ⋆ V )S ∪ (W ⋆ V )T ]∗ ,

Case a ∈ (W ⋆ V )T :  AgM×N
a0i

(a)
def
=  (a)

def
= �(�(a)).

Case a ∈ (W ⋆ V )S :  AgM×N
a0i

(a)
def
=  (a)

def
= �(�(a)).

• Case Ja0i , a, ◦K ∈ [(W ⋆ V )S ∪ (W ⋆ V )T ]∗ ,

Case a ∈ (W⋆V )T :  AgM×N
a0i

(a)
def
=

(

AgM×N (a0i )
(

Ja0i , a, ◦K
)

,OFF
) def
=

(

(N,AgN )(�(a))
(

Ja0i , a, ◦K
)

,OFF
) def
=

(

AgN (�(a))
(

Ja0i , a, ◦K
)

,OFF
)

.

Case a ∈ (W⋆V )S :  AgM×N
a0i

(a)
def
=

(

AgM×N
(

a0i )(Ja
0
i , a, ◦K

)

,OFF
) def
=

(

(M,AgM )(�(a))
(

Ja0i , a, ◦K
)

,OFF
) def
=

(

AgM (�(a))
(

Ja0i , a, ◦K
)

,OFF
)

.

• Case Ja0i , a, ∙K ∈ [(W ⋆ V )S ∪ (W ⋆ V )T ]∗ ,

Case a ∈ (W⋆V )T :  AgM×N
a0i

(a)
def
=

(

AgM×N
(

a0i )(Ja
0
i , a, ∙K

)

,ON
) def
=

(

(N,AgN )(�(a))
(

Ja0i , a, ∙K
)

,ON
) def
=

(

AgN (�(a))
(

Ja0i , a, ∙K
)

,ON
)

.

Campos S. et al.: Preprint submitted to Elsevier Page 11 of 32



Introducing to Reversal Fuzzy Switch Graphs

(a) � (b) �A[xz]

Figure 9: RFSGs M and MA
[xz].

Case a ∈ (W⋆V )S :  AgM×N
a0i

(a)
def
=

(

AgM×N (a0i )
(

Ja0i , a, ∙K
)

,ON
) def
=

(

(M,AgM )(�(a))
(

Ja0i , a, ∙K
)

,ON
) def
=

(

AgM (�(a))(Ja0i , a, ∙K),ON
)

.

4. RFSGs and Fuzzy Graphs
In this section, given an RFSG M = ⟨W ,� ∶ S → [0, 1] × {ON,OFF}⟩ with a ternary aggregation A, we will

present the process of constructing a fuzzy graph (with no high-order arrow) fromM based on A. In addition, we will
relate the generated fuzzy graph to a finite set of arrows associated to zero-order arrows inM .
4.1. Induced Fuzzy Graphs from RFSGs

Consider a RFSG M and an aggregation function A.
Definition 4.1. Given aRFSGM with a ternary aggregation functionA, let be the family of admissible fuzzy subsets
of S, Ω, which is the least set s.t.,

{

� ∈ Ω
�Aa0i

∈ Ω, whenever � ∈ Ω and a0i ∈ S
0
�
∗

Consider W̃ = {(w, �) ∈ W × Ω} and R̃ ∶ W̃ × W̃ → [0, 1] s.t.

R̃
(

(w, �), (w′, �′)
)

=
{

�1[ww′], if �′ = �A[ww′]
0, otherwise.

The fuzzy graph M̃ = ⟨W̃ , R̃⟩ is called the fuzzy graph induced based on A.

Arrows that have a zero fuzzy value are not represented in the induced graph since they represent paths over the
RFSG that cannot be traversed. In the next examples, this situation will be exposed.
Example 4.1. Consider the RFSG M in Fig. 9(a). We have W = {x, y, z} and considering the aggregation
A(x, y, z) = y, we have Ω =

{

�, �A[xy]
}

. Indeed, �A[xz] = � and �A[xy][xz] = �A[xy][zy] = �A[xy][xy] = �A[xy] (See Fig.
9(b) and Fig. 10 ).

Denote �A[xy] = � and define W̃ =
{

(x, �), (y, �), (z, �), (x, �), (y, �), (z, �)
}

. The fuzzy graph induced based on A
is presented in Fig. 11.

Example 4.2. Consider the same RFSGM in Fig.8(a) with the aggregation A(x, y, z) = (x+ y+ z)∕3. In this case,
we have Ω =

{

�, �A[xy], �
A
[xy][xy], �

A
[xy][xy][xy], ... , �

A
[xy]n ; n ∈ ℕ

}

2 with �A[xz] = � and �A[xy]n[xz] = �A[xy]n[zy] = �A[xy]n
for n ∈ ℕ, as can be seen Fig. 9, Fig. 12 and Fig. 13.

Fig.14 shows the fuzzy graph induced based on A. We will denote � = �A[xy], � = �
A
[xy][xy] and so on.

2If the arrow [xy] is crossed n times, repeatedly, we denote [xy]n
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(a) �A[xy] (b) �A[xy][xz] (c) �A[xy][zy] (d) �A[xy][xy]

Figure 10: MA
[xy], M

A
[xy][xz], M

A
[xy][zy] and M

A
[xy][xy]

.

Figure 11: Fuzzy graph induced based on A.

From the examples above, we can see that the induced fuzzy graph remains finite for the second projection whereas
becomes infinite for the arithmetic mean. This fact illustrates that, the aggregation properties influence the type of
induced graph resulting and, for some cases, infinite fuzzy graphs can be represented by finite RFSG. The process
of reducing infinite fuzzy graph to a finite reactive fuzzy graph (RFSG or FSG) is expected to be studied in future
works.
4.2. Induced Fuzzy Graph Like a Generated Algebra

The next theorem presents the process of setting up an induced fuzzy graph from a finite set X. This process is
important since it points to a recursive process for building fuzzy graphs (finite or infinite) from a finite set of arrows.
Theorem 4.1. Given a RFSG M = ⟨W ,�⟩, a ternary aggregation A and the fuzzy induced graph based on A,
M̃ = ⟨W̃ , R̃⟩. Consider the set X ⊆ W̃ × W̃ × [0, 1] s.t.

X =
{(

(w, �), (w′, �), R̃
(

(w, �), (w′, �)
)

)

; [ww′] ∈ S0
}

.

and the building rule X0 = X and
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(a) �A[xy] (b) �A[xy][xz] (c) �A[xy][zy]

Figure 12: MA
[xy],M

A
[xy][xz] and M

A
[xy][zy]

(a) �A[xy][xy] (b) �A[xy][xy][xz] (c) �A[xy][xy][zy]

Figure 13: MA
[xy][xy],M

A
[xy][xy][xz] and M

A
[xy][xy][zy]

Xj+1 = Xj ∪

{

{

⋃

a∈S→

fa
(

Xj
)

}

−
{

(

(w, s), (w′, s′), d
)

∈
{

⋃

a∈S→
fa
(

Xj
)

}

;
(

s′
)

2[ww
′] = OFF

}

}

for fa ∶ W̃ × W̃ × [0, 1]→ W̃ × W̃ × [0, 1] with a ∈ S→ s.t.

fa
(

(w,�), (w′, �′), d
)

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

(w,�′), (w′, �′Aa ),
(

�′Aa
)

1[ww
′]
)

, if �′Aa ∈ Ω and [ww′] = a
(

(w,�′Aa ), (w
′, �′Aa ),

(

�′Aa
)

1[ww
′]
)

, if �′Aa ∈ Ω and [ww′] ≠ a.
(

(w,�), (w′, �′), d
)

, if �′Aa ∉ Ω.

Then M̃ = ⟨X⟩ =
⋃

j∈ℕXj .

PROOF. Indeed,
i) ⟨X⟩ ⊆ M̃ : We prove this result by induction.

Note that, by definition, X ∈ M̃ . Consider f� ∈  =
{

f� ∶ W̃ × W̃ × [0, 1]→ W̃ × W̃ × [0, 1]; � ∈ S→

}

and
(

(w, s), (w′, s′), R̃
(

(w, s), (w′, s′)
)

)

∈ M̃ , then:

If � = [ww′] and s′A� ∈ Ω:
f�
(

(w, s), (w′, s′), R̃
(

(w, s), (w′, s′)
)

)

=
(

(w, s′), (w′, s′A� ),
(

s′A�
)

1[ww
′]
)

=
(

(w, s′), (w′, s′A� ), R̃
(

(w, s′A� ), (w
′, s′A�[ww′])

)

)

∈ M̃
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Figure 14: M̃

If � ≠ [ww′] and s′A� ∈ Ω:

f�
(

(w, s), (w′, s′), R̃
(

(w, s), (w′, s′)
)

)

=
(

(w, s′A� ), (w
′, s′A� ),

(

s′A�
)

1[ww
′]
)

=
(

(w, s′A� ), (w
′, s′A� ), R̃

(

(w, s′A� ), (w
′, s′A�[ww′])

)

)

∈ M̃

If s′A� ∉ Ω:

f�
(

(w, s), (w′, s′), R̃
(

(w, s), (w′, s′)
)

)

=
(

(w, s), (w′, s′), R̃
(

(w, s), (w′, s′)
)

)

∈ M̃

Therefore, M̃ is closed in relation to the functions in  . Suposing Xj ⊆ M̃ , for j ∈ ℕ. Then,
Xj+1 = Xj ∪

{{

⋃

a∈S→ fa
(

Xj
)

}

−
{

(

(w, s), (w′, s′), d
)

∈
{

⋃

a∈S→fa
(

Xj
)

}

;
(

s′
)

2[ww
′] = OFF

}}

⊆

M̃ . Therefore, ⟨X⟩ ⊆ M̃ .
ii) M̃ ⊆ ⟨X⟩:

Indeed, consider �, � ∈ S∗ s.t. � ∈ S→ and
(

(w, �A� ), (w
′, �A� ),

(

�A�
)

1[ww
′]
)

∈ M̃ .

If �A� = �A�[ww′] ≠ �A� , there are j ∈ ℕ and
(

(w, �), (w′, �A� ),
(

�A�
)

1[ww
′]
)

∈ Xj−1 s.t.

f�
(

(w, �), (w′, �A� ),
(

�A�
)

1[ww
′]
)

=
(

(w, �A� ), (w
′, �A�[ww′]),

(

�A�[ww′]
)

1[ww
′]
)

∈ Xj

=
(

(w, �A� ), (w
′, �A� ),

(

�A�
)

1[ww
′]
)

∈ Xj
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If �A� = �A�[ww′] = �A� , there are j ∈ ℕ and
(

(w, �A� ), (w
′, �A� ),

(

�A�
)

1[ww
′]
)

∈ Xj−1 s.t.

f�
(

(w, �A� ), (w
′, �A� ),

(

�A�
)

1[ww
′]
)

=
(

(w, �A�[ww′]), (w
′, �A�[ww′]),

(

�A�[ww′]
)

1[ww
′]
)

∈ Xj

=
(

(w, �A� ), (w
′, �A� ),

(

�A�
)

1[ww
′]
)

∈ Xj

Therefore, if
(

(w, �A� ), (w
′, �A� ),

(

�A�
)

1[ww
′]
)

∈ M̃ , there is j ∈ ℕ s.t.
(

(w, �A� ), (w
′, �A� ),

(

�A�
)

1[ww
′]
)

∈ Xj ⊆ ⟨X⟩.
Due the items (i) and (ii), M̃ = ⟨X⟩.
In the following, we will present two examples of how a fuzzy induced graph (finite and infinite) can be written as

algebra generated by a finite set of arrows.
Example 4.3. Given the RFSG in Fig.18(a) and its induced fuzzy graph in Fig.11 (Example 4.1). In this case, we
have S→ = {[xy]} and

X =
{(

(x, �), (y, �), R̃
(

(x, �), (y, �)
)

)

,
(

(x, �), (z, �), R̃
(

(x, �), (z, �)
)

)

,
(

(z, �), (y, �), R̃
(

(z, �), (y, �)
)

)}

=
{(

(x, �), (y, �), 0
)

,
(

(x, �), (z, �), 0.1
)

,
(

(z, �), (y, �), 0
)}

.

Let be

f[xy]
(

(w,�), (w′, �′), d
)

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

(w,�′), (w′, �′A[xy]),
(

�′A[xy]
)

1
[ww′]

)

, if �′A[xy] ∈ Ω and [ww′] = [xy]
(

(w,�′A[xy]), (w
′, �′A[xy]),

(

�′A[xy]
)

1[ww
′]
)

, if �′A[xy] ∈ Ω and [ww′] ≠ [xy].
(

(w,�), (w′, �′), d
)

, if �′A[xy] ∉ Ω.

and X0 = X, we calculate:

- f[xy]
(

(x, �), (y, �), 0
)

=
(

(x, �), (y, �A[xy]), 0.2
)

due �A[xy] ∈ Ω and [xy] = [xy];

- f[xy]
(

(x, �), (z, �), 0.1
)

=
(

(x, �A[xy]), (z, �
A
[xy]), 0.1

)

due �A[xy] ∈ Ω and [xz] ≠ [xy];

- f[xy]
(

(z, �), (y, �), 0
)

=
(

(z, �A[xy]), (y, �
A
[xy]), 0.8

)

due �A[xy] ∈ Ω and [zy] ≠ [xy].

Observe that f[xy]
(

X0
)

=
{(

(x, �), (y, �A[xy]), 0.2
)

,
(

(x, �A[xy]), (z, �
A
[xy]), 0.1

)

,
(

(z, �A[xy]), (y, �
A
[xy]), 0.8

)}

and
{(

(w, s), (w′, s′), d
)

∈ f[xy]
(

X0
)

;
(

s′
)

2[ww
′] = OFF

}

= ∅. Then,

X1 = X0 ∪ f[xy]
(

X0
)

=
{(

(x, �), (y, �), 0
)

,
(

(x, �), (z, �), 0.1
)

,
(

(z, �), (y, �), 0
)

,
(

(x, �), (y, �A[xy]), 0.2
)

,
(

(x, �A[xy]), (z, �
A
[xy]), 0.1

)

,
(

(z, �A[xy]), (y, �
A
[xy]), 0.8

)}

Fig.15(a) and Fig.15(b) show the setsX0 andX1. Continuing the process, we will calculateX2 showing the images
of the arrows in f[xy](X0):

- f[xy]
(

(x, �), (y, �A[xy]), 0.2
)

=
(

(x, �A[xy]), (y, �
A
[xy][xy]), 0.2

)

=
(

(x, �A[xy]), (y, �
A
[xy]), 0.2

)

due�A[xy][xy] = �
A
[xy] ∈

Ω and [xy] = [xy];
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(a) X0 (b) X1
Figure 15: Sets of arrows that make up the induced fuzzy graph M̃

- f[xy]
(

(x, �), (z, �), 0.1
)

=
(

(x, �A[xy][xy]), (z, �
A
[xy][xy]), 0.1

)

=
(

(x, �A[xy]), (z, �
A
[xy]), 0.1

)

due�A[xy][xy] = �
A
[xy] ∈

Ω and [xz] ≠ [xy];

- f[xy]
(

(z, �), (y, �), 0
)

=
(

(z, �A[xy][xy]), (y, �
A
[xy][xy]), 0.8

)

=
(

(z, �A[xy]), (y, �
A
[xy]), 0.8

)

due �A[xy][xy] = �A[xy] ∈
Ω and [zy] ≠ [xy].

Then, f[xy]
(

X1
)

= f[xy]
(

X0
)

∪
{(

(x, �A[xy]), (y, �
A
[xy]), 0.2

)

,
(

(x, �A[xy]), (z, �
A
[xy]), 0.1

)

,
(

(z, �A[xy]), (y, �
A
[xy]),

0.8
)}

and
{(

(w, s), (w′, s′), d
)

∈ f[xy]
(

X1
)

;
(

s′
)

2[ww
′] = OFF

}

= ∅.

Follow that,

X2 = X1 ∪ f[xy]
(

X1
)

=
{(

(x, �), (y, �), 0
)

,
(

(x, �), (z, �), 0.1
)

,
(

(z, �), (y, �), 0
)

,
(

(x, �), (y, �A[xy]), 0.2
)

,
(

(x, �A[xy]), (z, �
A
[xy]), 0.1

)

,
(

(z, �A[xy]), (y, �
A
[xy]), 0.8

)

,
(

(x, �A[xy]), (y, �
A
[xy]), 0.2

)}

Due to the aggregation used, when crossing n times (n ∈ ℕ) the arrow [xy], the update application �A[xy]n will be
overlaid on the set Ω by the application �A[xy]. Thus, the sets X3, X4, ..., Xn = X2 and the induced fuzzy graph based
on A fromM will be generated, like an algebra, by the finite set X. Fig.11 shows the set X2.

Example 4.4. Given the RFSG M in Fig.16. The induced fuzzy graph based in product can be viewed in Fig.17.
Consider the base setX =

{(

(x, �), (y, �), 0
)

,
(

(x, �), (z, �), 0
)

,
(

(z, �), (y, �), 0
)}

and the setS→ =
{

[xy], [xz]
}

.
We get X0 = X ( See Fig.18 (a) ) and calculating:
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Figure 16: RFSG M .

Figure 17: Fuzzy induced graph M̃ .

- f[xy]
(

(x, �), (y, �), 0
)

=
(

(x, �), (y, �A[xy]), 0.2
)

;

- f[xy]
(

(x, �), (z, �), 0
)

=
(

(x, �A[xy]), (z, �
A
[xy]), 0.1

)

;

- f[xy]
(

(z, �), (y, �), 0
)

=
(

(z, �A[xy]), (y, �
A
[xy]), 0.048

)

;
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- f[xz]
(

(x, �), (y, �), 0
)

=
(

(x, �A[xz]), (y, �
A
[xz]), 0.016

)

;

- f[xz]
(

(x, �), (z, �), 0
)

=
(

(x, �), (z, �A[xz]), 0.1
)

;

- f[xz]
(

(z, �), (y, �), 0
)

=
(

(z, �A[xz]), (y, �
A
[xz]), 0.3

)

.

We get
{

f[xy]
(

X0
)

, f[xz]
(

X0
)}

=
{(

(x, �), (y, �A[xy]), 0.2
)

,
(

(x, �A[xy]), (z, �
A
[xy]), 0.1

)

,
(

(z, �A[xy]), (y, �
A
[xy]), 0.048

)

,
(

(x, �A[xz]), (y, �
A
[xz]), 0.016

)

,
(

(x, �), (z, �A[xz]), 0.1
)

,
(

(z, �A[xz]), (y, �
A
[xz]), 0.3

)

,
}

and
{(

(w, s), (w′, s′), d
)

∈
{

f[xy]
(

X0
)

, f[xz]
(

X0
)}

;
(

s′
)

2[ww
′] = OFF

}

=
{(

(x, �A[xz]), (y, �
A
[xz]), 0.016

)

,
(

(z, �A[xz]), (y, �
A
[xz]), 0.3

)}

. Therefore, as can be seen in Fig.18 (b),

X1 = X0 ∪
{

{

f[xy](X0), f[xz](X0)
}

−
{(

(x, �A[xz]), (y, �
A
[xz]), 0.016

)}}

= X0 ∪
{(

(x, �), (y, �A[xy]), 0.2
)

,
(

(x, �A[xy]), (z, �
A
[xy]), 0.1

)

,
(

(z, �A[xy]), (y, �
A
[xy]), 0.048

)

,
(

(x, �), (z, �A[xz]), 0.1
)}

To calculate X2, we have:

- f[xy]
(

(x, �), (y, �A[xy]), 0.2
)

=
(

(x, �A[xy]), (y, �
A
[xy][xy]), 0.2

)

;

- f[xy]
(

(x, �A[xy]), (z, �
A
[xy]), 0.1

)

=
(

(x, �A[xy][xy]), (z, �
A
[xy][xy]), 0.1

)

;

- f[xy]
(

(z, �A[xy]), (y, �
A
[xy]), 0.048

)

=
(

(z, �A[xy][xy]), (y, �
A
[xy][xy]), 0, 00768

)

;

- f[xy]
(

(x, �), (z, �A[xz]), 0.1
)

=
(

(x, �), (z, �A[xz]), 0.1
)

due �A[xz][xy] ∉ Ω.

and

- f[xz]
(

(x, �), (y, �A[xy]), 0.2
)

=
(

(x, �A[xy][xz]), (y, �
A
[xy][xz]), 0.016

)

;

- f[xz]
(

(x, �A[xy]), (z, �
A
[xy]), 0.1

)

=
(

(x, �A[xy][xz]), (z, �
A
[xy][xz]), 0.1

)

;

- f[xz]
(

(z, �A[xy]), (y, �
A
[xy]), 0.048

)

=
(

(z, �A[xy][xz]), (y, �
A
[xy][xz]), 0.048

)

;

- f[xz]
(

(x, �), (z, �A[xz]), 0.1
)

=
(

(x, �A[xz][xz]), (z, �
A
[xz][xz]), 0.1

)

.

We get
{

f[xy]
(

X1
)

, f[xz]
(

X1
)}

=
{(

(x, �A[xy]), (y, �
A
[xy][xy]), 0.2

)

,
(

(x, �A[xy][xy]), (z, �
A
[xy][xy]), 0.1

)

,
(

(z, �A[xy][xy]), (y, �
A
[xy][xy]), 0, 00768

)

,
(

(x, �A[xy][xz]), (y, �
A
[xy][xz]), 0.016

)

,
(

(x, �A[xy][xz]), (z, �
A
[xy][xz]), 0.1

)

,
(

(z, �A[xy][xz]), (y, �
A
[xy][xz]), 0.048

)

,
(

(x, �A[xz][xz]), (z, �
A
[xz][xz]), 0.1

)}

and
{(

(w, s), (w′, s′), d
)

∈
{

f[xy]
(

X1
)

, f[xz]
(

X1
)}

;
(

s′
)

2[ww
′] = OFF

}

=
{(

(x, �A[xy][xz]), (y, �
A
[xy][xz]), 0.016

)}

.

Therefore, as can be seen in Fig.16,

X2 = X1 ∪
{(

(x, �A[xy]), (y, �
A
[xy][xy]), 0.2

)

,
(

(x, �A[xy][xy]), (z, �
A
[xy][xy]), 0.1

)

,
(

(z, �A[xy][xy]), (y, �
A
[xy][xy]), 0, 00768

)

,
(

(x, �A[xy][xz]), (z, �
A
[xy][xz]), 0.1

)

,
(

(z, �A[xy][xz]), (y, �
A
[xy][xz]), 0.048

)

,
(

(x, �A[xz][xz]), (z, �
A
[xz][xz]), 0.1

)}

.
The process goes on to determine Xn, n ≥ 3. The graph M̃ is built from these sets and is an infinite graph.

Campos S. et al.: Preprint submitted to Elsevier Page 19 of 32



Introducing to Reversal Fuzzy Switch Graphs

(a) X0 (b) X1
Figure 18: Sets of arrows that make up the induced fuzzy graph M̃

5. A Logic for RFSGs
In order to verify a system described by aRFSG, we provide a formal language and a fuzzy semantics. Also in this

section, we will present the definition of simulation and bisimulation for RFSGs. In what follows, for any w ∈ W ,
we use the set S0∗[w] = {w′ ∈ W ; [ww′] ∈ S0}.
5.1. Syntax and Semantics

In [7] was present a formal logic for RFSGs which enables the verification of properties. This section expose this
logic with more details and introduce new concepts.
Definition 5.1 (Syntax [7]). Consider AtomProp a set of symbols (called atomic propositions) and p ∈ AtomProp.
The set of formulas is generated by the following grammar: ' ∶∶= p | true | false | (¬') | (' ∧ ') | (' ∨ ') | (' →
') | ('↔ ') | (SNext(')) | (ANext(')).

Given the formulas ' and  , we classically interpret:
(¬') : ' is not true;
(' ∧  ) : ' and  are true;
(' ∨  ) : ' or  is true;
('→  ) : If ' is true, then  is true;
('↔  ) : ' is true if and only if  is true;
(SNext(')) : ' is true in some next state;
(ANext(')) : ' is true in all next states.
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Table 2
Truth values of propositions on each state.

x y u v
H 0.2 0.8 0.3 0.01
L 0.1 0.9 0.15 0.2

A formula that only contains the operators ∧,∨ and SNext(') is called positive formula.
Definition 5.2. A model [7] over the set AtomProp is a pair ℳ = (M,VM ), s.t. M = ⟨W ,�⟩ is a RFSG and
VM ∶ W × AtomProp→ [0, 1] is a function called fuzzy valuation.

Definition 5.3. Given a modelℳ = (M,VM ) andN a subgraph ofM , the structure N = (N,VN ) is a submodel of
ℳ whenever VN (w, p) ≤ VM (w, p) for all w ∈ W and p ∈ AtomProp.

Definition 5.4 (Semantics [7]). Consider ℳ = (M,VM ) a model, A the aggregation function associated with M ,
 = ⟨[0, 1], T , S,N, I, B, 0, 1⟩ a fuzzy semantics and w ∈ W a state. The notation, Jℳ, w ⊧A 'K represents the
grade of uncertainty of a given formula ', at state w, taking into accountℳ, and A. The grade of uncertainty of
Jℳ, w ⊧A 'K is defined in the following way:

• Jℳ, w ⊧A pK = VM (w, p), for p ∈ AtomProp.

• Jℳ, w ⊧A trueK = 1.

• Jℳ, w ⊧A falseK = 0.

• Jℳ, w ⊧A (' ∧  )K = T(Jℳ, w ⊧A 'K, Jℳ, w ⊧A  K).

• Jℳ, w ⊧A (' ∨  )K = S(Jℳ, w ⊧A 'K, Jℳ, w ⊧A  K).

• Jℳ, w ⊧A ('→  )K = I(Jℳ, w ⊧A 'K, Jℳ, w ⊧A  K).

• Jℳ, w ⊧A ('↔  )K = B(Jℳ, w ⊧A 'K, Jℳ, w ⊧A  K).

• Jℳ, w ⊧A ¬')K = N(Jℳ, w ⊧A 'K).

• Jℳ, w ⊧A ANext(')K = T
w′∈S0∗[w]

(

I
(

�([ww′]), JℳA
[ww′], w

′ ⊧A 'K
))

sinceℳA
[ww′] means

(

MA
[ww′], VM

)

.

• Jℳ, w ⊧A SNext(')K = S
w′∈S0∗[w]

(

T
(

�([ww′]), JℳA
[ww′], w

′ ⊧A 'K
))

.

The uncertainty degree that “SNext(')" is true at the state w is computed by using the uncertainty degree that '
is true at some state with active relationship to w. On the other hand, the uncertainty degree that “ANext(')" is true
at state w is computed by using the uncertainty degree that ' is true at every state with active relationship to w. The
expression: JℳA

[w,w′], w
′ ⊧ 'K, in this case, represents the uncertainty degree of the statement: “' is true" at state w′

after the active zero-order arrow a0i = [w,w
′] has been crossed and the RFSG M has been updated toMA

a0i
.

Remark 5.1. According to Notation 1, the aplication f in the definition ofANext(') is a fuzzy implication I. Similarly,
in the definition of SNext('), the aplication f is a t-norm T.
Example 5.1. Consider Fig.1(b) and take the atomic propositions: High risk of contagion and Low risk of contagion,
according to the Table 1.

What is the uncertainty degree at state x for the proposition: “In some next state we have a low risk of contagion
with a next state which has a higher risk of contagion?" The assertion can be expressed as: SNext(L ∧ SNext(H)).

Assuming the arithmetic mean as the unique aggregation function, the Gödel Semantic G and ' = L∧SNext(H),
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Jℳ, x ⊧AG SNext(')K
def
= SM

(

TM
(

0.3, JℳA
[xu], u ⊧

A
G
'K

)

,TM
(

0.4, JℳA
[xy], y ⊧

A
G
'K

)

)

def
= SM

(

TM (0.3, 0.15),TM (0.4, 0.01)
)

= 0.15

Since,

a) JℳA
[xu], u ⊧

A
G

'K
def
= TM

(

JℳA
[xu], u ⊧

A
G

SNext(H)K, JℳA
[xu], u ⊧

A
G

LK
)

= TM (0.6, 0.15) = 0.15 due to

JℳA
[xu], u ⊧

A
G
SNext(H)K

def
= SM

(

TM
(

�A[xu]([uy]), Jℳ
A
[xu][uy], y ⊧

A
G
HK

)

)

= SM
(

TM
(

0.6, 0.8
)

)

= 0.6;

b) JℳA
[xy], y ⊧

A
G

'K
def
= TM

(

JℳA
[xy], y ⊧

A
G

SNext(H)K, JℳA
[xy], y ⊧

A
G

LK
)

= TM (0.01, 0.9) = 0.01. due to

JℳA
[xy], y ⊧

A
G
SNext(H)K

def
= SM

(

TM
(

�[xy]A ([yv]), JℳA
[xy][yv], v ⊧

A
G
HK

)

)

= SM
(

TM
(

0.02, 0.01
)

)

= 0.01

In this case, in order to calculate the uncertainty degree at state v for the same proposition, we should note that
the state v has only one next state y (the inactive arrow [vu] is not considered). Therefore,

Jℳ, v ⊧AG SNext(')K
def
= SM

(

TM
(

0.03, JℳA
[vy], y ⊧

A
G
'K

)

)

= 0.01.

since JℳA
[vy], y ⊧

A
G
'K

def
= TM

(

JℳA
[vy], y ⊧

A
G
SNext(H)K, JℳA

[vy], y ⊧
A
G
LK

)

= TM (0.01, 0.9) = 0.01 due to

JℳA
[vy], y ⊧

A
G
SNext(H)K

def
= SM

(

TM
(

�A[vy]([yv]), Jℳ
A
[vy][yv], v ⊧

A
G
HK

)

)

= SM
(

TM
(

0.02, 0.01
)

)

= 0.01.

Proposition 5.1. Consider N = (N,VN ) a submodel ofℳ = (M,VM ), then

JN , w ⊧A  K ≤ Jℳ, w ⊧A  K

for all positive formula  .

PROOF. We prove this result by induction over the structure of formulas.
- It holds for atomic propositions by definition and trivially for true and false.
- Jℳ, w ⊧A ('∨ )K = T(Jℳ, w ⊧A 'K, Jℳ, w ⊧A  K) ≥ T(JN , w ⊧A 'K, JN , w ⊧A  K) = JN , w ⊧A ('∨ )K.
- Jℳ, w ⊧A ('∧ )K = S(Jℳ, w ⊧A 'K, Jℳ, w ⊧A  K) ≥ S(JN , w ⊧A 'K, JN , w ⊧A  K) = JN , w ⊧A ('∧ )K.
- Jℳ, w ⊧A SNext(')K = S

w′∈S0∗[w]

(

T
(

�M 1([ww′]), JℳA
[ww′], w

′ ⊧A 'K
))

≥ S
w′∈S0∗[w]

(

T
(

�N 1([ww′]),

JN A
[ww′], w

′ ⊧A 'K
))

= JN , w ⊧A SNext(')K

Definition 5.5. Given a RFSG M = ⟨W ,� ∶ S → [0, 1] × {ON,OFF}⟩ with an aggregation A and a modelℳ =
(M,VM ), the structure

ℳ̃ =
(

⟨W̃ , R̃⟩, Ṽ = V
⟨W̃ ,R̃⟩

)

s.t.
Ṽ ∶ W̃ × AtomProp → [0, 1]

Ṽ
(

(w, �), p
)

= VM (w, p)

is called the induced fuzzy model of M for A.
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Theorem 5.1. Given a RFSG M = ⟨W ,� ∶ S → [0, 1] × {ON,OFF}⟩ with an aggregation A and a model ℳ =
(M,VM ), then

Jℳ, w ⊧A 'K = Jℳ̃, (w, �) ⊧ 'K

PROOF. We prove this result by induction over the structure of formulas.
- It holds for atomic propositions by definition and trivially for true and false.
- Jℳ, w ⊧A (' ∨  )K = T(Jℳ, w ⊧A 'K, Jℳ, w ⊧A  K) = T(Jℳ̃, (w, �) ⊧ 'K, Jℳ̃, (w, �) ⊧  K) =

Jℳ̃, (w, �) ⊧ (' ∨  )K.
- Jℳ, w ⊧A (' ∧  )K = S(Jℳ, w ⊧A 'K, Jℳ, w ⊧A  K) = S(Jℳ̃, (w, �) ⊧ 'K, Jℳ̃, (w, �) ⊧  K) =

Jℳ̃, (w, �) ⊧ (' ∧  )K.
- Jℳ, w ⊧A (' →  )K = I(Jℳ, w ⊧A 'K, Jℳ, w ⊧A  K) = I(Jℳ̃, (w, �) ⊧ 'K, Jℳ̃, (w, �) ⊧  K) =

Jℳ̃, (w, �) ⊧ ('→  )K

- Jℳ, w ⊧A (' ↔  )K = B(Jℳ, w ⊧A 'K, Jℳ, w ⊧A  K) = B(Jℳ̃, (w, �) ⊧ 'K, Jℳ̃, (w, �) ⊧  K) =
Jℳ̃, (w, �) ⊧ ('↔  )K

- Jℳ, w ⊧A (¬')K = N(Jℳ, w ⊧A 'K) = N(Jℳ̃, (w, �) ⊧ 'K) = Jℳ̃, (w, �) ⊧ (¬')K

- Jℳ, w ⊧A SNext(')K = S
w′∈S0∗[w]

(

T
(

�1([ww′]), JℳA
[ww′], w

′ ⊧A 'K
))

= S
w′∈S0∗[w]

(

T
(

�1([ww′]),

Jℳ̃A
[ww′], (w

′, �A[ww′]) ⊧ 'K
))

= S
w′∈S0∗[w]

(

T
(

�1([ww′]), Jℳ̃, (w′, �A[ww′]) ⊧ 'K
))

= Jℳ̃, (w, �) ⊧

SNext(')K

- Jℳ, w ⊧A ANext(')K = T
w′∈S0∗[w]

(

I
(

�1([ww′]), JℳA
[ww′], w

′ ⊧A 'K
))

= T
w′∈S0∗[w]

(

I
(

�1([ww′]),

Jℳ̃A
[ww′], (w

′, �A[ww′]) ⊧ 'K
))

= T
w′∈S0∗[w]

(

I
(

�1([ww′]), Jℳ̃, (w′, �A[ww′]) ⊧ 'K
))

= Jℳ̃, (w, �) ⊧

ANext(')K.
5.2. Simulation and Bisimulation

Based on the notion of bisimulation for FSGs present in [22], we introduce the notion of simulation and bisimu-
lation for RFSGs.
Definition 5.6. [17] A fuzzy model over the set AtomProp is a pairℳℱ =

(

⟨W ,R⟩, V
⟨W ,R⟩

)

s.t. ⟨W ,R⟩ is a fuzzy
graph and V

⟨W ,R⟩ ∶ W × AtomProp→ [0, 1] is a fuzzy valuation function.

Considerℳℱ a fuzzy model,  = ⟨[0, 1], T , S,N, I, B, 0, 1⟩ a fuzzy semantics andw ∈ W a state. The notation,
Jℳℱ , w ⊧ 'K represents the grade of uncertainty of a given formula ', at state w, taking into account ℳℱ
and  . The grade of uncertainty of Jℳℱ , w ⊧ 'K is defined similarly in the way for a model.
Notation 3: Given a relation E ⊂ W ×W ′ and w ∈ W , we define:

a) E[w] = {w′ ∈ W ′; (w,w′) ∈ E};

b) E−1[w′] = {w ∈ W ; (w,w′) ∈ E}.
Definition 5.7 (Simulation [17]). Let ℳℱ =

(

⟨W ,R⟩, V
⟨W ,R⟩

)

and ℳℱ ′ =
(

⟨W ′, R′⟩, V
⟨W ′,R′⟩⟩ be two fuzzy

models. A relation E ⊂ W ×W ′ is said to be a simulation fromℳℱ toℳℱ ′ if, for every (w,w′) ∈ E:

1. V
⟨W ,R⟩(w, p) ≤ V

⟨W ′,R′⟩(w′, p), for all p ∈ AtomProp.

2. For all u ∈ W ; R(w, u) ≤ sup
u′∈E[u]

R′(w′, u′).
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Example 5.2. Consider the fuzzy models (ℳℱ )1 =
(

⟨W1, R1⟩, V1 = V
⟨W1,R1⟩

)

and (ℳℱ )2 =
(

⟨W2, R2⟩, V2 =
V
⟨W2,R2⟩

)

in Fig.19 s.t. W1 =
{

w1, w2
}

,W2 =
{

w′1, w
′
2, w

′
3, w

′
4, w

′
5
}

andE =
{

(w1, w′1), (w1, w
′
5), (w2, w

′
2), (w2, w

′
3),

(w2, w′4)
}

. For all p ∈ AtomProp, consider V1(w1, p) ≤ V2(w′1, p), V1(w1, p) ≤ V2(w′5, p), V1(w2, p) ≤ V2(w′2, p),
V1(w2, p) ≤ V2(w′3, p), V1(w2, p) ≤ V2(w′4, p).

The relation E ⊂ W1 ×W2 is represented by the color of the nodes. If (w,w′) ∈ E, then w and w′ have the same
color in the graph.

E is a simulation from (ℳℱ )1 to (ℳℱ )2. In fact, the condition 1 hold by assumption. To check the condition 2,
we have to check for each pair in E.

Consider w = w1 ∈ W1. Therefore u = w2 and E[w2] = {w′2, w
′
3, w

′
4}. We calculate,

• R1([w1w1]) = 0 ≤ sup
u′∈E[w1]

R2[w′1u
′] = sup

{

R2[w′1w
′
1], R2[w

′
1w

′
5]
}

= 0,

• R1([w1w1]) = 0 ≤ sup
u′∈E[w1]

R2[w′5u
′] = sup

{

R2[w′5w
′
1], R2[w

′
5w

′
5]
}

= 0,

• R1([w1w2]) = 0 ≤ sup
u′∈E[w2]

R2[w′1u
′] = sup

{

R2[w′1w
′
2], R2[w

′
1w

′
3], R2[w

′
1w

′
4]
}

= 0,

• R1([w1w2]) = 0 ≤ sup
u′∈E[w2]

R2[w′5u
′] = sup

{

R2[w′5w
′
2], R2[w

′
5w

′
3], R2[w

′
5w

′
4]
}

= 0.

Consider w = w2 ∈ W1. Therefore u = w1 and E[w2] = {w′1, w
′
5}. We calculate,

• R1([w2w2]) = 0 ≤ sup
u′∈E[w2]

R2[w′2u
′] = sup

{

R2[w′2w
′
2], {R2[w

′
2w

′
3], R2[w

′
2w

′
4]
}

= 0,

• R1([w2w2]) = 0 ≤ sup
u′∈E[w2]

R2[w′3u
′] = sup

{

R2[w′3w
′
2], {R2[w

′
3w

′
3], R2[w

′
3w

′
4]
}

= 0,

• R1([w2w2]) = 0 ≤ sup
u′∈E[w2]

R2[w′4u
′] = sup

{

R2[w′4w
′
2], {R2[w

′
4w

′
3], R2[w

′
4w

′
4]
}

= 0,

• R1([w2w1]) = 0.5 ≤ sup
u′∈E[w1]

R2[w′2u
′] = sup

{

R2[w′2w
′
1], R2[w

′
2w

′
5]
}

= 0.6,

• R1([w2w1]) = 0.5 ≤ sup
u′∈E[w1]

R2[w′3u
′] = sup

{

R2[w′3w
′
1], R2[w

′
3w

′
5]
}

= 0.8,

• R1([w2w1]) = 0.5 ≤ sup
u′∈E[w1]

R2[w′4u
′] = sup

{

R2[w′4w
′
1], R2[w

′
4w

′
5]
}

= 0.7.

(ℳℱ )2 simulates (ℳℱ )1.

Definition 5.8 (Bisimulation [17]). Let ℳℱ =
(

⟨W ,R⟩, V
⟨W ,R⟩

)

and ℳℱ ′ =
(

⟨W ′, R′⟩, V
⟨W ′,R′⟩

)

be two fuzzy
models. A relation E ⊂ W ×W ′ is said to be a bisimulation fromℳℱ andℳℱ ′ if, for every (w,w′) ∈ E:

1. V
⟨W ,R⟩(w, p) = V⟨W ′,R′⟩(w′, p), for all p ∈ AtomProp.

2. For all u ∈ W ; R(w, u) ≤ sup
u′∈E[u]

R′(w′, u′).

3. For all u′ ∈ W ′; R′(w′, u′) ≤ sup
u∈E−1[u′]

R(w, u).

Example 5.3. Consider the fuzzy models (ℳℱ )1 =
(

⟨W1, R1⟩, V1 = V
⟨W1,R1⟩

)

and (ℳℱ )2 =
(

⟨W2, R2⟩, V2 =
V
⟨W2,R2⟩

)

in Fig. 20 s.t. W1 = {w0, w1, w2},W2 = {w′1, w
′
2, w

′
3, w

′
4, w

′
5} andE = {(w0, w′1), (w0, w

′
5), (w1, w

′
1), (w1, w

′
5),

(w2, w′2), (w2, w
′
3), (w2, w

′
4)}.

For all p ∈ AtomProp, considerV1(w0, p) = V2(w′1, p);V1(w0, p) = V2(w
′
5, p);V1(w1, p) = V2(w

′
1, p);V1(w1, p) =

V2(w′5, p);V1(w2, p) = V2(w
′
2, p);V1(w2, p) = V2(w

′
3, p);V1(w2, p) = V2(w

′
4, p).
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(a) (ℳℱ )1 (b) (ℳℱ )2

Figure 19: (ℳℱ )2 simulates (ℳℱ )1.

As was done in the example 5.2, the relationE ⊂ W1×W2 is represented by the color of the nodes. If (w,w′) ∈ E,
then w and w′ have the same color in the graph.

In fact, the condition 1 hold by assumption.
To check the condition 2, once E[w0] = E[w1] = {w′1, w

′
5} and E[w2] = {w

′
2, w

′
3, w

′
4}:

• R1([w0w0]) = 0 ≤ sup
u′∈E[w0]

R2[w′1u
′] = sup

{

R2[w′1w
′
1], R2[w

′
1w

′
5]
}

= 0,

• R1([w0w0]) = 0 ≤ sup
u′∈E[w0]

R2[w′5u
′] = sup

{

R2[w′5w
′
1], R2[w

′
5w

′
5]
}

= 0,

• R1([w0w1]) = 0 ≤ sup
u′∈E[w1]

R2[w′1u
′] = sup

{

R2[w′1w
′
1], R2[w

′
1w

′
5]
}

= 0,

• R1([w0w1]) = 0 ≤ sup
u′∈E[w1]

R2[w′5u
′] = sup

{

R2[w′5w
′
1], R2[w

′
5w

′
5]
}

= 0,

• R1([w0w2]) = 0 ≤ sup
u′∈E[w2]

R2[w′1u
′] = sup

{

R2[w′1w
′
2], R2[w

′
1w

′
3], R2[w

′
1w

′
4]
}

= 0,

• R1([w0w2]) = 0 ≤ sup
u′∈E[w2]

R2[w′5u
′] = sup

{

R2[w′5w
′
2], R2[w

′
5w

′
3], R2[w

′
5w

′
4]
}

= 0,

• R1([w1w0]) = 0 ≤ sup
u′∈E[w0]

R2[w′1u
′] = sup

{

R2[w′1w
′
1], R2[w

′
1w

′
5]
}

= 0,

• R1([w1w0]) = 0 ≤ sup
u′∈E[w0]

R2[w′5u
′] = sup

{

R2[w′5w
′
1], R2[w

′
5w

′
5]
}

= 0,

• R1([w1w1]) = 0 ≤ sup
u′∈E[w1]

R2[w′1u
′] = sup

{

R2[w′1w
′
1], R2[w

′
1w

′
5]
}

= 0,

• R1([w1w1]) = 0 ≤ sup
u′∈E[w1]

R2[w′5u
′] = sup

{

R2[w′5w
′
1], R2[w

′
5w

′
5]
}

= 0,

• R1([w1w2]) = 0 ≤ sup
u′∈E[w2]

R2[w′1u
′] = sup

{

R2[w′1w
′
2], R2[w

′
1w

′
3], R2[w

′
1w

′
4]
}

= 0,

• R1([w1w2]) = 0 ≤ sup
u′∈E[w2]

R2[w′5u
′] = sup

{

R2[w′5w
′
2], R2[w

′
5w

′
3], R2[w

′
5w

′
4]
}

= 0,
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• R1([w2w0]) = 0.8 ≤ sup
u′∈E[w0]

R2[w′2u
′] = sup

{

R2[w′2w
′
1], R2[w

′
2w

′
5]
}

= 0.8,

• R1([w2w0]) = 0.8 ≤ sup
u′∈E[w0]

R2[w′3u
′] = sup

{

R2[w′3w
′
1], R2[w

′
3w

′
5]
}

= 0.8,

• R1([w2w0]) = 0.8 ≤ sup
u′∈E[w0]

R2[w′4u
′] = sup

{

R2[w′4w
′
1], R2[w

′
4w

′
5]
}

= 0.8,

• R1([w2w1]) = 0.5 ≤ sup
u′∈E[w1]

R2[w′4u
′] = sup

{

R2[w′4w
′
1], R2[w

′
4w

′
5]
}

= 0.8,

• R1([w2w1]) = 0.5 ≤ sup
u′∈E[w1]

R2[w′2u
′] = sup

{

R2[w′2w
′
1], R2[w

′
2w

′
5]
}

= 0.8,

• R1([w2w1]) = 0.5 ≤ sup
u′∈E[w1]

R2[w′3u
′] = sup

{

R2[w′3w
′
1], R2[w

′
3w

′
5]
}

= 0.8,

• R1([w2w2]) = 0 ≤ sup
u′∈E[w2]

R2[w′2u
′] = sup

{

R2[w′2w
′
2], R2[w

′
2w

′
3], R2[w

′
2w

′
4]
}

= 0,

• R1([w2w2]) = 0 ≤ sup
u′∈E[w2]

R2[w′3u
′] = sup

{

R2[w′3w
′
2], R2[w

′
3w

′
3], R2[w

′
3w

′
4]
}

= 0,

• R1([w2w2]) = 0 ≤ sup
u′∈E[w2]

R2[w′4u
′] = sup

{

R2[w′4w
′
2], R2[w

′
4w

′
3], R2[w

′
4w

′
4]
}

= 0.

In order to check the condition 3, once E−1[w′1] = E
−1[w′5] = {w1, w0} and E

−1[w′2] = E
−1[w′3] = E

−1[w′4] =
{w2}:

• R2([w′1w
′
1]) = 0 ≤ sup

u′∈E−1[w′1]
R1[w1u′] = sup

{

R1[w1w1], R1[w1w0]
}

= 0,

• R2([w′1w
′
1]) = 0 ≤ sup

u′∈E−1[w′1]
R1[w0u′] = sup

{

R1[w0w1], R1[w0w0]
}

= 0,

• R2([w′1w
′
2]) = 0 ≤ sup

u′∈E−1[w′2]
R1[w0u′] = sup

{

R1[w0w2]
}

= 0,

• R2([w′1w
′
2]) = 0 ≤ sup

u′∈E−1[w′2]
R1[w1u′] = sup

{

R1[w1w2]
}

= 0,

• R2([w′1w
′
3]) = 0 ≤ sup

u′∈E−1[w′3]
R1[w0u′] = sup

{

R1[w0w2]
}

= 0,

• R2([w′1w
′
3]) = 0 ≤ sup

u′∈E−1[w′3]
R1[w1u′] = sup

{

R1[w1w2]
}

= 0,

• R2([w′1w
′
4]) = 0 ≤ sup

u′∈E−1[w′4]
R1[w0u′] = sup

{

R1[w0w2]
}

= 0,

• R2([w′1w
′
4]) = 0 ≤ sup

u′∈E−1[w′4]
R1[w1u′] = sup

{

R1[w1w2]
}

= 0,

• R2([w′1w
′
5]) = 0 ≤ sup

u′∈E−1[w′5]
R1[w1u′] = sup

{

R1[w1w1], R1[w1w0]
}

= 0,

• R2([w′1w
′
5]) = 0 ≤ sup

u′∈E−1[w′5]
R1[w0u′] = sup

{

R1[w0w1], R1[w0w0]
}

= 0,

• R2([w′2w
′
1]) = 0.8 ≤ sup

u′∈E−1[w′1]
R1[w2u′] = sup

{

R1[w2w1], R1[w2w0]
}

= 0.8,
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• R2([w′2w
′
2]) = 0 ≤ sup

u′∈E−1[w′2]
R1[w2u′] = sup

{

R1[w2w2]
}

= 0,

• R2([w′2w
′
3]) = 0 ≤ sup

u′∈E−1[w′3]
R1[w2u′] = sup

{

R1[w2w2]
}

= 0,

• R2([w′2w
′
4]) = 0 ≤ sup

u′∈E−1[w′4]
R1[w2u′] = sup

{

R1[w2w2]
}

= 0,

• R2([w′2w
′
5]) = 0 ≤ sup

u′∈E−1[w′5]
R1[w2u′] = sup

{

R1[w2w1], R1[w2w0]
}

= 0.8,

• R2([w′3w
′
1]) = 0.8 ≤ sup

u′∈E−1[w′1]
R1[w2u′] = sup

{

R1[w2w1], R1[w2w0]
}

= 0.8,

• R2([w′3w
′
2]) = 0 ≤ sup

u′∈E−1[w′2]
R1[w2u′] = sup

{

R1[w2w2]
}

= 0,

• R2([w′3w
′
3]) = 0 ≤ sup

u′∈E−1[w′3]
R1[w2u′] = sup

{

R1[w2w2]
}

= 0,

• R2([w′3w
′
4]) = 0 ≤ sup

u′∈E−1[w′4]
R1[w2u′] = sup

{

R1[w2w2]
}

= 0,

• R2([w′3w
′
5]) = 0.7 ≤ sup

u′∈E−1[w′5]
R1[w2u′] = sup

{

R1[w2w1], R1[w2w0]
}

= 0.8,

• R2([w′4w
′
1]) = 0.8 ≤ sup

u′∈E−1[w′1]
R1[w2u′] = sup

{

R1[w2w1], R1[w2w0]
}

= 0.8,

• R2([w′4w
′
2]) = 0 ≤ sup

u′∈E−1[w′2]
R1[w2u′] = sup

{

R1[w2w2]
}

= 0,

• R2([w′4w
′
3]) = 0 ≤ sup

u′∈E−1[w′3]
R1[w2u′] = sup

{

R1[w2w2]
}

= 0,

• R2([w′4w
′
4]) = 0 ≤ sup

u′∈E−1[w′4]
R1[w2u′] = sup

{

R1[w2w2]
}

= 0,

• R2([w′4w
′
5]) = 0 ≤ sup

u′∈E−1[w′5]
R1[w2u′] = sup

{

R1[w2w1], R1[w2w0]
}

= 0.8,

• R2([w′5w
′
1]) = 0 ≤ sup

u′∈E−1[w′1]
R1[w1u′] = sup

{

R1[w1w1], R1[w1w0]
}

= 0,

• R2([w′5w
′
1]) = 0 ≤ sup

u′∈E−1[w′1]
R1[w0u′] = sup

{

R1[w0w1], R1[w0w0]
}

= 0,

• R2([w′5w
′
2]) = 0 ≤ sup

u′∈E−1[w′2]
R1[w0u′] = sup

{

R1[w0w2]
}

= 0,

• R2([w′5w
′
2]) = 0 ≤ sup

u′∈E−1[w′2]
R1[w1u′] = sup

{

R1[w1w2]
}

= 0,

• R2([w′5w
′
3]) = 0 ≤ sup

u′∈E−1[w′3]
R1[w0u′] = sup

{

R1[w0w2]
}

= 0,

• R2([w′5w
′
3]) = 0 ≤ sup

u′∈E−1[w′3]
R1[w1u′] = sup

{

R1[w1w2]
}

= 0,
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(a) (ℳℱ )1 (b) (ℳℱ )2

Figure 20: There is a bisimulate between (ℳℱ )1 and (ℳℱ )2.

• R2([w′5w
′
4]) = 0 ≤ sup

u′∈E−1[w′4]
R1[w0u′] = sup

{

R1[w0w2]
}

= 0,

• R2([w′5w
′
4]) = 0 ≤ sup

u′∈E−1[w′4]
R1[w1u′] = sup

{

R1[w1w2]
}

= 0,

• R2([w′5w
′
5]) = 0 ≤ sup

u′∈E−1[w′5]
R1[w1u′] = sup

{

R1[w1w1], R1[w1w0]
}

= 0,

• R2([w′5w
′
5]) = 0 ≤ sup

u′∈E−1[w′5]
R1[w0u′] = sup

{

R1[w0w1], R1[w0w0]
}

= 0.

There is a bisimulation between (ℳℱ )1 and (ℳℱ )2.

In order to define the bisimulation for RFSGs, we will present a sequence of results presented in [22].
Lema 5.1. [17] Given fuzzy models ℳℱ =

(

⟨W ,R⟩, V
⟨W ,R⟩

)

and ℳℱ ′ =
(

⟨W ′, R′⟩, V
⟨W ′,R′⟩

)

with the Gödel
semantics and a bisimulation E ⊂ W ×W ′ s.t. (w,w′) ∈ E. Then

Jℳℱ , w ⊧ 'K = Jℳℱ ′, w′ ⊧ 'K

for every formula.

Definition 5.9. Let us consider the modelsℳ = (M,VM ) andℳ′ = (M ′, VM ′ ) (M = ⟨W ,�⟩ andM ′ = ⟨W ′, �′⟩
are RFSGs) and the relation E ⊂ W ×W ′. Given the induced fuzzy models M̃ =

(

⟨W̃ , R̃⟩, V
⟨W̃ ,R̃⟩

)

and M̃ ′ =
(

⟨W̃ ′, R̃′⟩, V
⟨W̃ ′,R̃′⟩

)

, the relation Ẽ ⊂ W̃ × W̃ ′ is an extension of E if
(

(w, �), (w′, �′)
)

∈ Ẽ whenever (w,w′) ∈ E.

Definition 5.10. Given two RFSGsM = ⟨W ,�⟩ andM ′ = ⟨W ′, �′⟩, a relation E ⊆ W ×W ′ is a bisimulation
between the modelsℳ = (M,VM ) andℳ′ = (M ′, VM ′ ), if there is an extension Ẽ which is a bisimulation between
the induced fuzzy models ̃ℳℱ and ̃ℳℱ ′.

Theorem 5.2. Given the RFSGsM = ⟨W ,�⟩ andM ′ = ⟨W ,�⟩ with the aggregation A and a bisimulation E ⊂
W ×W ′. If (w,w′) ∈ E, considering the modelsℳ = (M,VM ),ℳ′ = (M ′, VM ′ ) and the Gödel Semantic , then

Jℳ, w ⊧A 'K = Jℳ′, w′ ⊧A 'K

for every formula ' ∈ AtomProp.

PROOF. By definition 5.10, there is a bisimulation Ẽ between the induced fuzzy models ̃ℳℱ =
(

⟨W ,R⟩, V
⟨W ,R⟩

)

and ̃ℳℱ ′ =
(

⟨W ′, R′⟩, V
⟨W ′,R′⟩

). By the Lema 5.1 and the Theorem 5.1,
Jℳ, w ⊧A 'K = J ̃ℳℱ , (w, �) ⊧ 'K = J ̃ℳℱ ′, (w′, �′) ⊧ 'K = Jℳ′, w′ ⊧A 'K
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(a) Tank Scheme (b) RFRG MR

Figure 21: Model of tank tontrol system.

6. Modeling a Tank Level Control System
In industrial processes that use tanks, the control of the fluid level is a common practice. Even with a relatively

simple structure, logic controllers are often used. The study and the modeling of tank plants and logic controllers are
important because they provide the understanding of the current scenario of the system, causing benefits such as: the
increase of productivity and the prevention of accidents [11].

Fig.21 (a) shows a scheme where a tank control system is built with three signal transmitters {ST1, ST2, ST3}, twopumps {P1, P2} and a channel for fluid inlet called START . The dynamics of the system works as follows:
• Fluid level rising: At START the fluid starts to be inserted into the tank while pumps P1 and P2 are on standbyreceiving a minimum electric current. When the fluid level triggers ST2, P1 receives an increment of electric

current and is activated. If the fluid level continues to rise and trigger ST3, the pump P2 receives an increment
of electric current and is also actived.

• Fluid level decreasing: When the fluid level is maximum, the pumps P1 and P2 are active. When the fluid level
decreases, the ST3 is triggered and P2 goes to standby with a decrease in its electric current. If the fluid level
continues to decrease, ST2 is triggered and P1 goes to standby with a decreasing in its electric current.

The signal transmitter receives the difference pressure of two points with different weights and converts it into a
proportional electrical signal. This electric signal is sent to pumps [11].

Consider in Fig.21(b):
• The set of arrows S;
• The set of worldsW = {ST1, ST2, ST3, P1, P2, START };
• The membership function � ∶ S → [0, 1] × {ON,OFF} which assign to each arrow in S, the electric signal

generated when they are crossing;
• The function Ag ∶ S→ → A, where A = {TL, SL}.
TheRFRGMR = ⟨M,Ag⟩models the system of tank control above. These systems could also be model by using

a FSG in which all arrows are active and all high-order arrows are connecting. However, in this case, there would be
no possibility of working on deactivation of the pumps.

The reconfiguration ofR, after crossing the arrows sequence [ST1 ST2], [ST1 ST2][ST2 ST3] and [ST1 ST2]
[ST2 ST3][ST3 ST2], can be observed in Fig. 22. Assuming:
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(a) (b) (c)

Figure 22: MR configuration after: (a) [ST1 ST2], (b) [ST1 ST2][ST2 ST3] and (c) [ST1 ST2][ST2 ST3][ST3 ST2].

• �(a0i ) = 1, for all a0i ∈ S0 − {[ST1 P1], [ST2 P2]};
• Ag([ST1 ST2]) = Ag([ST2 ST3]) = SL;
• Ag([ST2 ST1]) = Ag([ST3 ST2]) = TL.
The fuzzy value and the status of the arrow [ST1 P1] after the arrow [ST1 ST2] has been crossed is calculate in

the follow way:

�Ag[ST1 ST2]([ST1 P1]) =
(

SL
(

1, 0.5, 0.5
)

,ON
)

=
(

SL
(

1, SL
(

0.5, 0.5
)

)

,ON
)

=
(

SL(1, 1),ON
)

=
(

1,ON
)

Consider the propositions
p:“P1 is active" and q:“P2 is active"

for the model ℳR = ⟨MR, V ⟩, with V (ST1, p) = 0.05, V (ST2, p) = 0.08, V (ST3, p) = 0.6, V (ST1, q) = 0.01,
V (ST2, q) = 0.5 and V (ST3, q) = 0.7. Using the Gödel semantics, we are able to compute the grade of incertainty of
the formula SNext(p ∧ q) to the states ST2 and ST3:

JℳR, ST2 ⊧
Ag
G

SNext(p ∧ q)K = SM
(

TM
(

1, Jℳ[ST2 ST1]
R , ST1 ⊧

Ag
G

(p ∧ q)K
)

,TM
(

1, Jℳ[ST2 ST3]
R , ST3 ⊧

Ag
G

(p ∧ q)K
)

)

= 0.6 and JℳR, ST3 ⊧
Ag
G
SNext(p ∧ q)K = SM

(

TM
(

1, Jℳ[ST3 ST2]
R , ST2 ⊧

Ag
G
(p ∧ q)K

)

)

= 0.08.
So, the degree of the sentence,

“There is a next state in which the pumps P1 and P2 are working"
at the state ST2 is 0.6 and at the state ST3 is 0.08.
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7. Final Remarks
Reversal Fuzzy Switch Graphs (RFSG) are structures designed to model reactive systems which provide the

activation and deactivation of resources. This paper presents, with more details, the RFSGs as well as the operations
presented in [7].

The valuation of the membership function can occur on any lattice, however, depending on this choice, the resulting
formal logic must be adjusted. For example, if we consider the lattice of intervals with the Kulish-Miranker order,
considering correctness, then the modal logic associated with the graph will have a non-residual implication [23].

As a first new contribution in relation to [7], we present the concept of fuzzy induced graph from a RFSG. It is
a connection between RFSGs and fuzzy graphs which allows a finite representation for infinite fuzzy graphs. The
attribution of aggregations in this relationship, however, has not been explored and will be the subject of further studies.
Still on this topic, it was presented a recursive method for constructing, from a finite base set, an induced graph. In
future works, we intend to relate the base set of a induced fuzzy graph to this original RFSG.

Another new concept presented in this paper was the simulation and bisimulation of RFSGs. These notions,
however, were established from the concept of model. Other types of logics and other notions of certainty that allow
to define the bisimulation between RFSGs more directly will be subject of future works.
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