
ar
X

iv
:2

00
1.

01
87

3v
1 

 [
cs

.L
O

] 
 7

 J
an

 2
02

0

Behavioural Theory of Reflective Algorithms I: Reflective

Sequential Algorithms⋆⋆⋆

Klaus-Dieter Schewe1, Flavio Ferrarotti2

1 Zhejiang University, UIUC Institute, Haining, China, kd.schewe@intl.zju.edu.cn, kdschewe@acm.org
2 Software Competence Center Hagenberg, agenberg, Austria, flavio.ferrarotti@gmail.com

Abstract. We develop a behavioural theory of reflective sequential algorithms (RSAs), i.e. se-
quential algorithms that can modify their own behaviour. The theory comprises a set of language-
independent postulates defining the class of RSAs, an abstract machine model, and the proof that
all RSAs are captured by this machine model. As in Gurevich’s behavioural theory for sequential
algorithms RSAs are sequential-time, bounded parallel algorithms, where the bound depends on
the algorithm only and not on the input. Different from the class of sequential algorithms every
state of an RSA includes a representation of the algorithm in that state, thus enabling linguistic
reflection. Bounded exploration is preserved using terms as values. The model of reflective se-
quential abstract state machines (rsASMs) extends sequential ASMs using extended states that
include an updatable representation of the main ASM rule to be executed by the machine in
that state. Updates to the representation of ASM signatures and rules are realised by means of
a sophisticated tree algebra.

Keywords. adaptivity; abstract state machine; linguistic reflection; behavioural theory; tree
algebra

1 Introduction

Adaptivity (or self-adaptation) refers to the ability of a system to change its own behaviour. In
the context of programming this concept, known under the term linguistic reflection, appears
already in LISP [23], where programs and data are both represented uniformly as lists, and
thus programs represented as data can be executed dynamically by means of an evaluation op-
erator. Run-time and compile-time linguistic reflection in programming and database research
have been investigated in general by Stemple, Van den Bussche and others in [24,25]. Recently,
adaptivity has attracted again a lot of interest in research, in particular in connection with
systems of (cyber-physical) systems [17].

However, this raises the question of the theoretical foundations of adaptive systems. In
this article we make a first step in this direction by means of a behavioural theory of reflective
sequential algorithms. A behavioural theory in general comprises an axiomatic definition of a
class of algorithms or systems by means of a set of characterising postulates, and an abstract
machine model together with the proof that the abstract machine model captures the given
class of algorithms or systems. The proof comprises two parts, one showing that every instance
of the abstract machine model satisfies the postulates (plausibility), and another one showing
that all algorithms stipulated by the postulates can be step-by-step simulated by an abstract
machine model instance (characterisation).

⋆ The research reported in this paper has been partially supported by the Austrian Science Fund (FWF:
[I2420-N31]) for the project Higher-Order Logics and Structure.

⋆⋆ Under review for publication in Theoretical Computer Science.

http://arxiv.org/abs/2001.01873v1


1.1 Our Contribution

In this article we investigate a behavioural theory for reflective sequential algorithms (RSAs)
extending and cleansing our previous sketch in [9]1. Our contributions are threefold:

(1) We provide an axiomatic, language-independent definition of RSAs.

(2) We define an extension of sequential ASMs to reflective sequential ASMs (rsASMs), by
means of which RSAs can be specified.

(3) We prove that RSAs are captured by rsASMs, i.e. rsASMs satisfy the postulates of our
axiomatisation, and any RSA as stipulated by the axiomatisation can be defined by a
behaviourally equivalent rsASM2.

Concerning the axiomatisation an RSA should proceed in sequential time, i.e. we should
have states, initial states and a state transition function same as for sequential algorithms.
Concerning the notion of state we argue on grounds of the behavioural theory of sequential
algorithms that we can always assume a finite representation of a sequential algorithm, no
matter how abstract this representation is. Consequently, states of an RSA can be defined by
universal algebras (aka Tarski structures). However, the difference to the abstract state pos-
tulate for sequential algorithms is that the signature over which states are formed comprises
a standard subsignature used to represent the state that is manipulated by the algorithm and
a subsignature used for the representation of the algorithm itself. Furthermore, the update
set in a state is defined by the algorithm represented in the state.

While the background operations that are needed to access the represented algorithm
can be left abstract it is nonetheless essential to postulate that terms over the standard
subsignature are used in this representation. This implies that these terms have a dual nature:
they can be interpreted in every state to give values of a base set as required in a Tarski
structure, but they are also used as values themselves thus defining extended base sets. If a
term is treated as a value, then its interpretation is the term itself, so we need a function raise
that turns a term regarded as value in an extended base set into an interpretable term. As
common in linguistic reflection this function has an inverse called drop. The existence of raise
and drop and the possibility to create new function symbols in the active signature taking
them from a reserve constitute reasonable requirements for the background structure of an
RSA.

The most tricky aspect of the axiomatisation is the generalisation of bounded exploration.
Naturally, as the represented algorithm may change in each step and this may include increas-
ing the standard subsignature, a fixed set of ground terms that determines update sets in every
state as in the bounded exploration postulate for sequential algorithms cannot exist. How-
ever, as all means of an algorithm to change itself must appear somehow in the algorithm’s
description, we argue that there is still a bounded exploration witness, i.e. a set of ground
terms that determines the update sets yielded in a state. However, a double interpretation
will be required: the first interpretation may result in terms over the standard subsignature,
which then can again be interpreted to define the values needed in the updates. Phrased

1 Actually, there is even a gap in the main proof in [9], as the final statements concerning the “self represen-
tation” of a sequential algorithms are not at all obvious, but require some sophisticated arguments.

2 The notion of behavioural equivalence will be slightly weaker than the corresponding notion for sequential
algorithms, as there is no need to require that changes to the represented algorithm are exactly the same.
Instead it suffices to postulate that the represented algorithm will produce essentially the same updates
disregarding those that are irrelevant.

2



differently, the first interpretation can be seen as resulting in a bounded exploration witness
for the represented algorithm.

Concerning our second contribution, the definition of rsASMs, this is much more straight-
forward, as only a concrete representation of a sequential ASM is required3. In each step
the rule is taken from a dedicated location self , which uses a tree structure to represent the
signature and rule, and a sophisticated tree algebra to manipulate tree values [20]. We also
exploit partial updates in the form of [21] to minimise clashes that may otherwise result from
simultaneously updating self by several parallel branches.

Concerning the plausibility and characterisation proofs the former one requires a rather
straightforward construction of a bounded exploration witness from an rsASM, for which the
representation using self is essential, while the latter one will be accomplished by a sequence
of lemmata, the key problem being that there is a theoretically unbounded number of different
algorithms that nonetheless have to be handled uniformly.

1.2 Organisation of the Article

The remainder of this article is organised as follows. In Section 2 we summarise preliminaries,
first giving a brief summary of sequential ASMs [7]. Then we introduce a tree algebra and
partial updates, by means of which bulk tree data structures can be handled in ASMs. In
Section 3 we introduce rsASMs, which are based on sequential ASMs with the differences
discussed above and a background structure capturing tree structures and tree algebra op-
erations. We use rsASMs to provide examples for reflective sequential algorithms. Section 4
is then dedicated to the first part of the behavioural theory, i.e. the axiomatic definition of
RSAs. As discussed above the key problems concern the self-representation and the extension
of bounded exploration. We also show that rsASMs satisfy our postulates, thus they define
RSAs. In Section 5 we approach the more difficult part of the theory, i.e. the proof that every
RSA as stipulated by the postulates can be modelled by a behaviourally equivalent rsASM.
In Section 6 we embed our work into other behavioural theories, and we conclude with a sum-
mary and outlook in Section 7, in particular with respect to extending the theory to cover
unbounded parallelism and concurrency as sketched in [18].

2 Preliminaries

In this section we first recall some basic definitions about sequential ASMs. Then we present
tree structures and the tree algebra adopted from [20] to manipulate trees. These will be
exploited in the next section for the self representation of sequential algorithms. We further
extend the rules of ASMs slightly using partial updates as in [21], which are particularly useful
when dealing with bulk structures such as trees.

2.1 Sequential ASMs

Fix a signature Σ, i.e. a finite set of function symbols, such that each f ∈ Σ has an arity
ar(f). A state S over Σ is given by a base set B and an interpretation of the function symbols

3 In this article we choose a self-representation by means of trees similar to syntax trees exploited in parsing
theory and compiler construction. Nonetheless, there are many other suitable ways for such a self represen-
tation, which would also lead to an abstract machine model satisfying the postulates. For the behavioural
theory only the existence of an abstract machine model capturing the class of reflective sequential algorithms
is important, while for applications that exploit the machine model for concrete specifications it is left open,
which self representation will be more handy.

3



in Σ by functions fS : Bn → B for n = ar(f). Using Σ we can define (ground) terms in the
usual way. Then we obtain an evaluation function, which defines for each term t ∈ T its value
valS(t) in a state S. A sequential ASM rule over Σ is defined as follows:

assignment. Whenever ti (i = 0, . . . , n) are terms over Σ and f ∈ Σ has arity n, then
f(t1, . . . , tn) := t0 is a rule.

branching. If r+ and r− are rules and ϕ is a Boolean term, then also IF ϕ THEN r+ ELSE r−
ENDIF is a rule.

bounded parallel composition. If r1, . . . , rk are rules, then also PAR r1 . . . rk ENDPAR is a
rule.

let. If r is a rule, x a variable and t a term, then LET x = t IN r is a rule.

The let rules are just a syntactic construct that eases specifications, but technically they
can be omitted. In particular, the proof in [14] shows that let rules can be dispensed with.

Each rule can be interpreted in a state, and doing so yields an update set. In general, a
location is a pair ℓ = (f, (a1, . . . , an)) with a function symbol f ∈ Σ of arity n and an n-tuple
of values from the base set B. An update is a pair (ℓ, a0) with a value a0 ∈ B. In a state S
the update set ∆r(S) defined by a rule r is yielded as follows:

– If r is an assignment rule f(t1, . . . , tn) := t0, then

∆r(S) = {((f, (valS(t1), . . . , valS(tn))), valS(t0))}.

– If r is a branching rule IF ϕ THEN r+ ELSE r− ENDIF, then

∆r(S) =

{
∆r+(S) if valS(ϕ) = true

∆r−(S) if valS(ϕ) = false

– If r is a parallel rule PAR r1 . . . rk ENDPAR, then ∆r(S) =
⋃k

i=1 ∆ri(S).

– If r is a let rule LET x = t IN r′, then substituting t for x in r′ defines∆r(S) = ∆{x 7→t}.r′(S).

An update set ∆ is consistent iff it does not contain clashes, i.e. whenever (ℓ, v1), (ℓ, v2) ∈
∆ hold, then we must have v1 = v2. If ∆r(S) is consistent, it defines a successor state
S′ = S +∆r(S) by

valS′(ℓ) =

{
v0 for (ℓ, v0) ∈ ∆r(S)

valS(ℓ) else

In accordance with [14] we extend this definition by S + ∆r(S) = S in case ∆r(S) is
inconsistent.

Definition 1. A sequential ASM comprises a signature Σ defining the set S of states, a set
I ⊆ S of initial states over Σ, a sequential ASM rule r over Σ and a transition function τ
on states over Σ with τ(S) = S + ∆r(S) for all states S. Both S and I are closed under
isomorphisms.

This definition of successor states gives rise to the notion of a run. A run of a sequential
ASM is a sequence S0, S1, . . . of states with S0 ∈ I and each Si+1 being a successor of Si.

4



2.2 The Background

For sequential ASMs we usually make some implicit assumptions without further mentioning
them. However, as we will see later, for our envisioned extensions these assumptions will gain
more importance. First, not all values of B are used in a state S. We therefore assume a set
reserve containing the unused values of the base set. In order to support partial functions we
further assume a value undef in every base set. To avoid conflicts with non-strict functions we
further assume that fS(v1, . . . , vn) = undef holds, whenever one of the arguments vi is undef.
Furthermore, truth values true and false are also assumed to occur in B.

Concerning the terms we assume that logical operators ∧, ¬, ∨, etc. are defined. These
as well as as equality can be used in the same way as the function symbols in Σ in the
definition of terms. We further assume that values in the base set define ground terms that
are interpreted by themselves. In this way we extend the set T of (ground) terms, and the
evaluation function valS in a state S.

All these assumptions about reserve, undef, truth values, operators on them and equality
define the minimum requirements for the background. There may be further constants and
operators, which are in general defined by a background class. According to [2] a background
class is determined by a background signature consisting of constructor and function symbols,
the latter ones associated with a fixed arity, while for constructor symbols it is also permitted
that the arity is unfixed or bounded.

Definition 2. Let D be a set of base domains and VK a background signature, then a back-
ground class K with signature VK over D comprises a universe U and an interpretation of
function symbols in VK over U . The universe is defined as U =

⋃
D′, where D′ is the smallest

set with D ⊆ D′ satisfying the following properties for each constructor symbol xy ∈ VK :

– If xy ∈ VK has unfixed arity, then xDy ∈ D′ holds for all D ∈ D′, and xa1, . . . , amy ∈ xDy

for every m ∈ N and a1, . . . , am ∈ D, and Axy ∈ D′ with Axy =
⋃

xDy∈D′xDy.
– If xy ∈ VK has bounded arity n, then xD1, . . . ,Dmy ∈ D′ for all m ≤ n and Di ∈ D′

(1 ≤ i ≤ m), and xa1, . . . , amy ∈ xD1, . . . ,Dmy for every m ∈ N and a1, . . . , am ∈ D.
– If xy ∈ VK has fixed arity n, then xD1, . . . ,Dny ∈ D′ for all Di ∈ D′ and xa1, . . . , any ∈

xD1, . . . ,Dny for all ai ∈ Di (1 ≤ i ≤ n),

Thus, a sequential ASM must contain an infinite set reserve of reserve values, truth values
and their connectives, the equality predicate, the undefinedness value undef, and a background
class K defined by a background signature VK . While the requirements for the background of
a sequential ASM are minimal and therefore usually left implicit, the background will become
important for reflective sequential ASMs.

2.3 Tree Structures

We now provide the details of the tree structures and the tree algebra. These structures will
be defined as part of the background of an rsASM in the next section.

Definition 3. An unranked tree structure is a structure (O,≺c,≺s) consisting of a finite,
non-empty set O of node identifiers, called tree domain, and irreflexive relations ≺c (child
relation) and ≺s (sibling relation) over O satisfying the following conditions:

– there exists a unique, distinguished node or ∈ O (root) such that for all o ∈ O−{or} there
is exactly one o′ ∈ O with o′ ≺c o, and

5



– whenever o1 ≺s o2 holds, then there is some o ∈ O with o ≺c oi for i = 1, 2.

For x1 ≺c x2 we say that x2 is a child of x1. For x1 ≺s x2 we say that x2 is the next
sibling of x1, and x1 is the previous sibling of x2. In order to obtain trees from this, we add
labels and assign values to the leaves. For this we fix a finite, non-empty set L of labels, and
a finite family {τi}i∈i of data types. Each data type τi is associated with a value domain
dom(τi). The corresponding universe U contains all possible values of these data types, i.e.
U =

⋃
i∈I dom(τi).

Definition 4. A tree t over the set of labels L with values in the universe U comprises an
unranked tree structure γt = (Ot,≺c,≺s), a total label function ωt : Ot → L, and a partial
value function υt : Ot → U that is defined on the leaves in γt.

Let TL denote the set of all trees with labels in L, and let root(t) denote the root node of a
tree t. A sequence t1, ..., tk of trees is called a hedge, and a multiset 〈t1, ..., tk〉 of trees is called
a forest. Let ǫ denote the empty hedge, and let HL denote the set of all hedges with labels in
L. A tree t1 is a subtree of t2 (notation t1 ⊑ t2) iff the following properties are satisfied:

(1) Ot1 ⊆ Ot2 ,

(2) o1 ≺c o2 holds in t1 iff it holds in t2,

(3) o1 ≺s o2 holds in t1 iff it holds in t2,

(4) ωt1(o
′) = ωt2(o

′) holds for all o′ ∈ Ot1 , and

(5) for all leaves o′ ∈ Ot1 we have υt1(o
′) = υt2(o

′).

t1 is the largest subtree of t2 (denoted as ô) at node o iff t1 ⊑ t2 with root(t1) = o and
there is no tree t3 with t1 6= t3 6= t2 such that t1 ⊑ t3 ⊑ t2.

Definition 5. The set of contexts CL over L is the set TL∪{ξ} of trees with labels in L ∪ {ξ}
(ξ /∈ L) such that for each tree t ∈ CL exactly one leaf node is labelled with ξ and the value
assigned to this leaf is undef .

The context with a single node labelled ξ is called trivial and is simply denoted as ξ.
Contexts allow us to define substitution operations that replace a subtree of a tree or context
by a new tree or context. This leads to the following four kinds of substitutions:

Tree-to-tree substitution. For a tree t1 ∈ TL1 , a node o ∈ Ot1 and a tree t2 ∈ TL2 the
result substtt(t1, o, t2) = t1[ô 7→ t2] of substituting t2 for the subtree rooted at o is a tree
in TL1∪L2 .

Tree-to-context substitution. For a tree t1 ∈ TL1 , a node o ∈ Ot1 the result substtc(t1, o, ξ) =
t1[ô 7→ ξ] of substituting the trivial context for the subtree rooted at o is a context in CL1 .

Context-to-context substitution. For contexts c1 ∈ CL1 and c2 ∈ CL2 the result substcc(c1, c2) =
c1[ξ 7→ c2] of substituting c2 for the leaf labelled by ξ in c1 is a context in CL1∪L2 .

Context-to-tree substitution. For a context c1 ∈ CL1 and a tree t2 ∈ TL2 the result
substct(c1, t2) = c1[ξ 7→ t2] of substituting t2 for the leaf labelled by ξ in c1 is a tree in
TL1∪L2 .

As a shortcut we also write substtc(t1, o, c2) for substcc(substtc(t1, o, ξ), c2), which is a con-
text in CL1∪L2 .

6



2.4 Tree Algebra

To provide manipulation operations over trees at a level higher than individual nodes and
edges, we need constructs to select arbitrary tree portions. For this we provide two selector
constructs, which result in subtrees and contexts, respectively. For a tree t = (γt, ωt, υt) ∈ TL

these constructs are defined as follows:

– context : Ot ×Ot → CL is a partial function on pairs (o1, o2) of nodes with o1 ≺
+
c o2 and

context(o1, o2) = subst tc(ô1, o2, ξ) = ô1[ô2 7→ ξ], where ≺+
c denotes the transitive closure

of ≺c.
– subtree : Ot → TL is a function defined by subtree(o) = ô.

The set T of tree algebra terms over L ∪ {ǫ, ξ} comprises label terms, hedge terms, and
context terms, i.e. T = L ∪ Th ∪ Tc, which are defined as follows:

– The set Th is the smallest set with TL ⊆ Th such that (1) ǫ ∈ Th, (2) a〈h〉 ∈ Th for a ∈ L
and h ∈ Th, and (3) t1 . . . tn ∈ Th for ti ∈ Th (i = 1, . . . , n).

– The set of context terms Tc is the smallest set with (1) ξ ∈ Tc and (2) a〈t1, . . . , tn〉 ∈ Tc

for a ∈ L and terms t1, . . . , tn ∈ Th ∪ Tc, such that exactly one ti is a context term in Tc.

With these we now define the operators of our tree algebra as follows:

label hedge. The operator label hedge turns a hedge into a tree with a new added root, i.e.

label hedge(a, t1 . . . tn) = a〈t1, . . . , tn〉

label context. Similarly, the operator label context turns a context into a context with a
new added root, i.e.

label context(a, c) = a〈c〉

left extend. The operator left extend integrates the trees in a hedge into a context extending
it on the left, i.e.

left extend(t1 . . . tn, a〈t
′
1, . . . , t

′
m〉) = a〈t1, . . . , tn, t

′
1, . . . , t

′
m〉

right extend. Likewise, the operator right extend integrates the trees in a hedge into a
context extending it on the right, i.e.

right extend(t1 . . . tn, a〈t
′
1, . . . , t

′
m〉) = a〈t′1, . . . , t

′
m, t1, . . . , tn〉

concat. The operator concat simply concatenates two hedges, i.e.

concat(t1 . . . tn, t
′
1 . . . t

′
m) = t1 . . . tnt

′
1 . . . t

′
m

inject hedge. The operator inject hedge turns a context into a tree by substituting a hedge
for ξ, i.e.

inject hedge(c, t1 . . . tn) = c[ξ 7→ t1 . . . tn]

inject context. The operator inject context substitutes a context for ξ, i.e.

inject context(c1, c2) = c1[ξ 7→ c2]

7



2.5 Partial Updates

The presence of a background class permits to have complex values such as sequences of
arbitrary length, trees, graphs, etc. An update may only affect a tiny part of a complex value,
but the presence of parallelism, though bounded, in sequential ASMs may cause avoidable
conflicts on locations bound to such a complex value. For instance, if two updates in parallel
affect only separate subtrees, they could be combined into a single tree update. We therefore
add the following partial assignment rule to the definition of sequential ASM rules:

partial assignment. Whenever f ∈ Σ has arity n, op ∈ VK is an operator (i.e. a function
symbol defined in the background) of arity m+ 1, ti (i = 1, . . . , n) and t′i (i = 1, . . . ,m)
are terms over Σ, then f(t1, . . . , tn) ⇔

op t′1, . . . , t
′
m is a rule.

The effect of a single partial assignment can be captured by a single update

((f, (valS(t1), . . . , valS(tn))), op(valS(f(t1, . . . , tn)), valS(t
′
1), . . . , valS(t

′
m))) .

However, updates concerning the same location ℓ produced by partial assignments are first
collected in a multiset ∆̈ℓ. More precisely, the operators op and their arguments v′1, . . . , v

′
m

(with v′i = valS(t
′
i)) will be collected in ∆̈ℓ, i.e. ∆̈ℓ takes the form

〈(ℓ, op1, (v
1
1 , . . . , v

1
m1

)), . . . , (ℓ, opk, (v
k
1 , . . . , v

k
mk

))〉 .

In [21] any member of an update multiset ∆̈ℓ of the form (ℓ, op, (v1, . . . , vm)) is called a shared
update.

If possible, i.e. if the operators and arguments are compatible with each other, this multiset
together with valS(f(t1, . . . , tn)) will be collapsed into a single update (ℓ, v0). Conditions for
compatibility and the collapse of an update multiset into an update set have been elaborated
in detail in [21].

Furthermore, with bulk values such as trees it is advisable to consider also fragments of
values in connection with sublocations, which leads to dependencies among updates. For a
tree t every node o ∈ O defines such a sublocation, i.e. a nullary function symbol. In the
next section we will make this explicit by providing functions that map values o ∈ O to such
function symbols and vice-versa. Clearly, the value associated with the root determines the
values associated with all sublocations. This is exploited in [21] for the analysis of compatibility
beyond the permutation of operators, but also on the level of sublocations. For this the notions
of subsumption and dependence between locations are decisive.

Definition 6. A location ℓ1 subsumes a location ℓ2 (notation: ℓ2 ⊑ ℓ1) iff for all states
S valS(ℓ1) uniquely determines valS(ℓ2). A location ℓ1 depends on a location ℓ2 (notation:
ℓ2 ✂ ℓ1) iff valS(ℓ2) = ⊥ implies valS(ℓ1) = ⊥ for all states S.

Clearly, for locations ℓ1, ℓ2 with ℓ2 ⊑ ℓ1 we also have ℓ1 ✂ ℓ2.

3 Reflective Sequential Abstract State Machines

In this section we define a model of rsASMs extending sequential ASMs. The ground idea
is quite simple. It uses a self representation of an ASM, i.e. its signature and rule, as a
particular tree value that is assigned to a location self . For this we exploit the tree algebra
from the previous section. Then in every step the update set will be built using the rule in
this representation, for which we exploit raise and drop as in [24]. We conclude the section
by giving examples of specifications of reflective sequential algorithms by means of rsASMs.

8



3.1 Self Representation Using Trees

For the dedicated location storing the self-representation of a sequential ASM it is sufficient
to use a single function symbol self of arity 0. Then in every state S the value valS(self ) is
a complex tree comprising two subtrees for the representation of the signature and the rule,
respectively. The signature is just a list of function symbols, each having a name and an arity.
The rule can be represented by a syntax tree.

In detail, in the tree structure we have a root node o labelled by self with exactly two
successor nodes, say o0 and o1, labelled by signature and rule, respectively. So we have
o ≺c o0, o0 ≺s o1 and o ≺c o1. The subtree rooted at o0 has as many children o00, . . . , o0k
as there are function symbols in the signature, each labelled by func. Each of the subtrees
rooted at ooi takes the form func〈name〈f〉 arity〈n〉〉 with a function name f and a natural
number n. The subtree rooted at o1 represents the rule of a sequential ASM as a tree. Trees
representing rules are inductively defined as follows:

– An assignment rule f(t1, . . . , tn) = t0 is represented by a tree of the form

label hedge(update, func〈f〉term〈t1 . . . tn〉term〈t0〉) .

– A branching rule IF ϕ THEN r1 ELSE r2 ENDIF is represented by a tree of the form

label hedge(if, bool〈ϕ〉rule〈t1〉rule〈t2〉) ,

where ti (for i = 1, 2) is the tree representing the rule ri.
– A parallel rule PAR r1 . . . rk ENDPAR is represented by a tree of the form

label hedge(par, rule〈t1〉 . . . rule〈tk〉) ,

where ti (for i = 1, . . . , k) is the tree representing the rule ri.
– A let rule LET x = t IN r is represented by a tree of the form

label hedge(let, term〈x〉term〈t〉rule〈t′〉) ,

where t′ is the tree representing the rule r.
– A partial assignment rule f(t1, . . . , tn) ⇔

op t′1, . . . , t
′
m is represented by a tree of the form

label hedge(partial, func〈f〉func〈op〉term〈t1 . . . tn〉term〈t
′
1 . . . t

′
m〉) .

3.2 The Background of an rsASM

Let us draw some consequences from this tree representation. As function names in the sig-
nature appear in the tree representation, these are values. Furthermore, we may in every
step enlarge the signature, so there must be an infinite reserve Σres of such function names.
Likewise we require natural numbers in the background for the arity assigned to function
symbols, though operations on natural numbers are optional. Terms built over the signature
and a base set B must also become values. Concerning the subtree capturing the rule, the
keywords for the different rules become labels, so we obtain the set of labels

L = {self, signature, rule, func, name, arity, update, term, if,

bool, par, let, partial}.

Consequently, we must extend a base set B by such terms, i.e. terms will become values.

9



Definition 7. Let B be a base set. An extended base set is the smallest set Bext containing B
that is closed under adding function symbols in the reserve Σres , natural numbers, the terms
T with respect to B and Σres , and terms of the tree algebra defined over Σres with labels in
L as defined above.

In an extended base set terms are treated as values that can appear as values of some
locations in a state. This implies that terms now have a dual character. When appearing in
an ASM rule, e.g. on the right-hand side of an assignment, they are interpreted in the current
state to determine an update. However, if they are to be treated as a value, they have to
be interpreted by themselves. Therefore, we require a function drop turning a term into a
value, and inversely a function raise turning a value into a term. On constants in a base set
B both functions are just the identity. Note that functions drop and raise capture the essence
of linguistic reflection4 [24].

For instance, when evaluating self in a state S the result should be a tree value, to which
we may apply some tree operators to extract a rule associated with some subtree. As this is
a value in Bext we may apply raise to it to obtain the ASM rule, which could be executed to
determine an update set and to update the state. Analogously, when assigning a new term
(e.g. a Boolean term in a branching rule) to a subtree of self the value on the right-hand side
must be the result of the function drop, otherwise the term would be evaluated and a Boolean
value would be assigned instead.

The functions drop and raise can be applied to function names as well, so they can be
used as values stored within self and used as function symbols in rules. In particular, if O
denotes the set of nodes of a tree, then each o ∈ O is a value in the base set, but raise(o)
denotes a nullary function symbol that is bound in a state to the subtree ô. However, as it
is always clear from the context, when a function name f is used as a value, i.e. as drop(f),
this subtle distinction can be blurred.

Finally, the self-representation as defined above involves several non-logical constants such
as the keywords for the rules, i.e. labels in L. For theoretical analysis it is important to extract
from the representation the decisive terms defined over Σ and B. That is, we further require
an extraction function5 β : Text →

⋃
n∈N T

n, which assigns to each term defined over the
extended signature Σext and the extended base set Bext a tuple of terms in T defined over Σ
and B. We will see that such an extraction function can actually be derived using the tree
algebra.

The following definition summarises all requirements for the background of an rsASM.

Definition 8. The background of an rsASM is defined by a background class K over a back-
ground signature VK . It must contain an infinite set reserve of reserve values and an infinite
set Σres of reserve function symbols, the equality predicate, the undefinedness value undef,
and a set of labels

L = {self, signature, rule, func, name, arity, update, term, if,

bool, par, let, partial} .

4 In a remark in [14, p.87] Gurevich wrote that for “algorithms which change their programs during the
computation . . . the so-called program is just a part of the data. The real program changes that part of the
data, and the real program does not change”. This is only partially correct, as the “real program” still has
to provide the means to interpret data as executable programs and vice versa, which is exactly what raise
and drop enable, but these are not covered by sequential algorithms.

5 This extraction function β will be used in the formulation of the (reflective) bounded exploration postulate.

10



The background class must further define truth values and their connectives, tuples and
projection operations on them, natural numbers and operations on them, trees in TL and tree
operations, and the function I, where Ix.ϕ denotes the unique x satisfying condition ϕ.

The background must further provide functions: drop : T̂ext → Bext and raise : Bext →
T̂ext for each base set B and extended base set Bext, and a derived extraction function β :
Text →

⋃
n∈N T

n, which assigns to each term defined over the extended signature Σext and
the extended base set Bext a tuple of terms in T defined over Σ and B.

In the definition we use T̂ext to denote the union of the set Text of terms with Σext and
the set of rules. The extraction function β on rule terms is easily defined as follows:

β(label hedge(update, func〈f〉term〈t1 . . . tn〉term〈t0〉)) = (t0, t1, . . . , tn)

β(label hedge(if, bool〈ϕ〉rule〈t1〉rule〈t2〉)) = (ϕ, t11, . . . , t
n1
1 , t12, . . . , t

n2
2 )

for β(t1) = (t11, . . . , t
n1
1 ) and β(t2) = (t12, . . . , t

n2
2 )

β(label hedge(par, rule〈t1〉 . . . rule〈tk〉)) = (t11, . . . , t
n1
1 , . . . , t1k, . . . , t

nk

k )

for β(ti) = (t1i , . . . , t
ni

i ), i = 1, . . . , k

β(label hedge(let, term〈x〉term〈t〉rule〈t′〉)) = (t, t1, . . . , tn)

for β(t′[x 7→ t]) = (t1, . . . , tn)

β(label hedge(partial, func〈f〉func〈op〉term〈t1 . . . tn〉term〈t
′
1 . . . t

′
m〉)) =

(t1, . . . , tn, op(f(t1, . . . , tn), t
′
1, . . . , t

′
m))

Definition 8 allows us to define rsASMs realising the ideas for reflective computing.

Definition 9. A reflective sequential ASM (rsASM) M comprises an (initial) signature Σ
containing a 0-ary function symbol self , a background as defined in Definition 8, and a set I
of initial states over Σ closed under isomorphisms such that any two states I1, I2 ∈ I coincide
on self . Furthermore, M comprises a state transition function τ on states over extended
signature ΣS with τ(S) = S +∆rS (S), where the rule rS is defined as raise(rule(valS(self )))
over the signature ΣS = raise(signature(valS(self ))) .

In this definition we use extraction functions rule and signature defined on the tree rep-
resentation of a sequential ASM in self . These are simply defined as

signature(t) = subtree(Io.root(t) ≺c o ∧ label (o) = signature and

rule(t) = subtree(Io.root(t) ≺c o ∧ label(o) = rule

3.3 Difference of Trees

We know that for every state S there is a well-defined, consistent update set ∆(S) such that
S′ = S + ∆(S) is the successor state of S. Actually, ∆(S) arises as the difference between
S and S′. If the states contain locations with bulk values assigned to them, then it becomes
also important to provide means for the expression of the difference of such values.

Here we concentrate only on the tree values assigned to self . Let TL be the set of trees
with labels in L and values in a universe U as used in Definition 8.

Proposition 1. For trees t, t′ ∈ TL we can write t′ = θ(t) with a tree algebra term θ.

11



Proof. First consider the subtrees tsig and t′sig representing the signatures in S and τ(S),
respectively. As we assume that only new function symbols are added, we obtain immediately

t′sig = right extend(tsig, label hedge(func, 〈f1〉 〈a1〉) . . . label hedge(func, 〈fk〉 〈ak〉)).

Concerning the subtrees trule and t′rule representing the rules in τ(S) and τ(S), respectively,
we proceed by structural induction from the leaves to the root, for which it is sufficient to
consider the following four cases:

(1) If o is a node in t′rule representing an assignment rule that does not appear in t, then
subtree(o) takes the form

subtree(o) = label hedge(update, func〈f〉term〈t1 . . . tn〉term〈t0〉).

(2) If o is a node in t′rule representing a partial assignment rule that does not appear in t,
then subtree(o) takes the form

subtree(o) = label hedge(partial, func〈f〉func〈op〉term〈t1 . . . tn〉term〈t
′
1 . . . t

′
m〉).

(3) Let okl denote the node in t with root (t) ≺k okl such that there are nodes o1, . . . , ol with
o1 ≺s o2 ≺s · · · ≺s ol ≺s okl, but no node o0 with o0 ≺s o1. If subtree(okl appears as a
subtree in t′, say at node o′, we simple have subtree(o′) = subtree(okl).

(4) If o is a node in t′rule with children o1, . . . , ol and we can write subtree(oi) = θi(t), then we
obtain

subtree(o) = label hedge(a, θ1(t) . . . θl(t))

with a label a ∈ {if, par, let}.

Using cases (1), (2) and (3) with a maximum tree associated with o′ that already appears
as a subtree of t gives our induction base. Using case (4) defines the induction step.

Corollary 1. For trees t, t′ ∈ TL there exists a compatible update multiset ∆̈ defined by
updates and shared updates on the nodes of t′ such that ∆̈ collapses to ∆ = {(root (t′), t′)}.

Proof. For the subtree representing the signature we obtain a rule of the form let o′ be the
unique successor node of the root of t′ labelled by signature. This gives rise to the rule

o′ := right extend(tsig, label hedge(func, 〈f1〉 〈a1〉) . . . label hedge(func, 〈fk〉 〈ak〉)),

where the subtree tsig represents the signatures in S.
For the subtree representing the rule we simply define rules for the four cases used in the

proof of Proposition 1:

(1) If o is a node in t′rule representing an assignment rule that does not appear in t, the rule
takes the form

o := label hedge(update, func〈f〉term〈t1 . . . tn〉term〈t0〉).

(2) If o is a node in t′rule representing a partial assignment rule that does not appear in t,
then the rule takes the form

o := label hedge(partial, func〈f〉func〈op〉term〈t1 . . . tn〉term〈t
′
1 . . . t

′
m〉).

12



(3) In case o is a node in t′rule such that subtree(o) occurs as a subtree of t, the rule takes the
form

LET okl = Io′.root (t) ≺k
c o′ ∧ ∃o1, . . . , ol.o1 ≺s o2 ≺s · · · ≺s ol ≺s o

′∧

¬∃o0.o0 ≺s o1 IN o := subtree(okl)

(4) For all other nodes o the rule takes the form o := label hedge(a, t1 . . . tl) with a label
a ∈ {if, par, let} and terms t1, . . . , tl that are used in the assignment rules for the
children of o.

The parallel composition of these rules for all nodes of t′ defines a rule r that yields the
required update multiset and update set.

3.4 Examples

We first show an example for the use of the tree algebra, then several examples of reflective
sequential algorithms, specified by rsASMs. Example 2 addresses the well known example of
a natural join, where reflection is required to compute the type of the result, and Example 3
shows how parity of sets can be addressed by means of reflection6.

Example 1. To illustrate the tree algebra operations consider a tree t with a root labelled
by self. Let there be two direct children of the root labelled with signature and rule,
respectively, and let the subtree labelled by signature have the form label hedge(signature, h),
where the hedge h is a sequence of trees of the form label hedge(func, 〈f〉 〈a〉), where f is the
name of a function symbol in Σ and a denotes the arity of f . Then the ASM rule

LET sign = Io.root(t) ≺c o ∧ label(o) = signature IN

LET h = Ihs.subtree(o) = label hedge(signature, hs) IN

t := inject hedge(context(root (t), sign),

label hedge(signature, concat(h, label hedge(func, 〈f〉〈a〉))))

inserts a new function symbol f with arity a into the tree representation. We used the
notation Ix.ϕ to denote the unique x satisfying ϕ. We might use this rule as a definition for
NewFunction(f ,a).

Example 2. For the background let us assume the presence of a finite set D of domain values
and a finite set A of attributes. In an initial state S0 we assume k relational function sym-
bols R1, . . . , Rk with arities n1, . . . , nk in the signature, i.e. we have valS0(Ri, (v1, . . . , ni)) ∈
{true, false}, if vi ∈ D holds for all i = 1, . . . , ni, and valS0(Ri, (v1, . . . , ni)) = undef other-
wise.

The attributes A ∈ A are linked to the function symbols Ri using a binary function symbol
index that is initially defined on {drop(Ri) | 1 ≤ i ≤ k} × A, i.e. on pairs comprising the
name of a function symbol and attribute, such that index (drop(Ri), A) ∈ {1, . . . , ni}. Further
assume that for all i index is injective on {drop(Ri)} × A, and that for each j ∈ {1, . . . , ni}
there exists some A ∈ A with index (drop(Ri), A) = j.

6 As the algorithms investigated in this paper are sequential, we only deal with the parity of subsets of a fixed
finite set.

13



With this we also obtain (derived) “projection” functions R̂i of arity ni+1 (for 1 ≤ i ≤ k).
We have valS0(R̂i, (A, v1, . . . , vni

)) = vj , if index (drop(Ri), A) = j and valS0(Ri, (v1, . . . , vni
)) =

true hold, otherwise we obtain undef .

This gives rise to valS0(self ) = t0 with a tree value t0 = label hedge(self, tsig0 trule0 ) with

tsig0 = label hedge(signature, t00 t
1
0 t̂

1
0, . . . , t

k
0 t̂

k
0) with

t00 = label hedge(func, name〈index 〉 arity〈2〉),

ti0 = label hedge(func, name〈Ri〉 arity〈ni〉), and

t̂i0 = label hedge(func, name〈R̂i〉 arity〈ni + 1〉).

We further have trule0 = label hedge(rule, tr) with a tree tr representing a rule r that
we define as PAR rinit rjoin ENDPAR. For the definition of the rules rinit and rjoin we use an
additional control-state variable mode, i.e. a function symbol of arity 0 in the signature. The
rule rinit can be defined as follows7:

IF mode = init
THEN LET Jij = NewFunc,

Ĵij = NewFunc IN
LET ti = {A ∈ A | index (drop(Ri), A) 6= undef } ,

tj = {A ∈ A | index (drop(Rj), A) 6= undef } IN

PAR LET n = card(ti ∪ tj) IN
Io.(root (self ) ≺c o ∧ label(o) = signature) ⇔right extend

label hedge(func, name〈Jij〉 arity〈n〉) ,

label hedge(func, name〈Ĵij〉 arity〈n+ 1〉)
. . .new index (Jij , A) . . . % for all A ∈ A
mode := join

ENDPAR

ENDIF

where the rule new index (Jij , A) for A ∈ A is defined as8

IF A ∈ ti
THEN index (Jij , A) := index (drop(Ri), A)
ELSE IF A ∈ tj − ti

THEN index (Jij , A) := ni + index (drop(Rj), A)−
card({B ∈ ti ∩ tj | index (drop(Rj), B) < index (drop(Rj), A)})

ENDIF

ENDIF

The rule rjoin can be defined as PAR . . . join(x1, . . . , xn) . . . (for all (x1, . . . , xn) ∈ Dn)
mode := halt ENDPAR, where the rules join(x1, . . . , xn) are defined as follows:

7 Note that the set comprehension assigned to ti and tj can be avoided using a PAR-rule combining rules that
parameterised by the fixed set A.

8 Note that we use here ni, i.e. the arity of the function symbol Ri. This can be defined using a LET-construct
and I, by means of which the value is extracted from the subtree representing the signature. We omit the
details how to write this term.

14



IF mode = join
THEN LET ti = {A ∈ A | index (drop(Ri), A) 6= undef } ,

tj = {A ∈ A | index (drop(Rj), A) 6= undef } IN

LET n = card(ti ∪ tj) IN
LET . . .% for all k with 1 ≤ k ≤ ni + nj − n %

x̂k = Ix.
∧

1≤l≤ni
∃A.index (drop(Rj), A) = k∧

index (drop(Ri), A) = l ⇒ x = xl . . . IN
IF Ri(x1, . . . , xni

) = true∧
Rj(x̂1, . . . , x̂ni+nj−n, xni+1, . . . , xn) = true

THEN PAR Jij(x1, . . . , xn) := true
. . . join ′(A, x1, . . . , xn) . . . % for all A ∈ A %

ENDPAR

ENDIF

ENDIF

where the rule join ′(A, x1, . . . , xn) (for A ∈ A and x1, . . . , xn ∈ D) is defined as IF

index (Jij , A) = j THEN Ĵij(A, x1, . . . , xn) := xj ENDIF.

Note that in this example we merely used reflection to introduce new function symbols.
Reflection is required to determine the “type”, i.e. the set of attributes, of the join relation.
Of course, the example makes more sense, if it is embedded into a full specification of “type-
safe” relational algebra, where it is known that only the natural join cannot be expressed by
parametric polymorphism.

Example 3. Let us assume a fixed finite set D, defined in the background. Besides self the
signature comprises 0-ary functions symbols card , parity and mode—the latter one set to init
in an initial state—and a unary function symbol set . In an initial state we require set(x) ∈
{true, false} for all x ∈ D and set(x) = undef for all x /∈ D. Locations with function symbol
set will never be altered. The rule represented in self in an initial state takes the following
form:

IF mode = init
THEN PAR card := 0

. . . count(x) . . . % for all x ∈ D
mode := count

ENDPAR

ELSE IF mode = count
THEN PAR mode := eval ENDPAR
ELSE IF mode = eval

THEN PAR parity := card mod 2
mode := halt

ENDPAR

ENDIF

ENDIF

ENDIF

Here the rules count(x) for x ∈ D are defined as follows9

9 Note that in this rule we use a partial assignment to o, though o is only a logical variable defined by the
LET-construct. So, stricly speaking this is not correct. However, in the previous section we remarked that

15



IF set(x) = true
THEN LET o = Io32.∃o1, o2, o31.root (self ) ≺c o1 ≺c o2 ≺c o31 ≺s o32∧

label(o1) = rule ∧ label(o31) = bool

IN o ⇔
right extend label hedge(partial,

func〈card 〉, func〈+〉, term〈ǫ〉, term〈1〉)
ENDIF

Thus, in an initial state the reflective algorithm initialises card and creates the rule—
addition of 1 to card for every element in the input set—that will be applied next, when the
control-state variable mode takes the value count. Hence, the cardinality of the input set is
computed, and in the final step the parity is derived from it.

Note that in this example the same result could also be achieved by using directly partial
updates on card . In general, however, creating rules for all elements of a set may involve more
complex operations. We merely used Example 3 to illustrate reflection without claiming that
the problem at hand can only be solved in this way.

Note also that Example 3 could be easily extended to compute the parity of an arbitrary
finite set with elements in a non-necesaarily finite domain D, if we drop the restriction to
sequential algorithms10. Alternatively, the problem could also have been approched using
non-deterministic ASMs with CHOOSE-rules.

4 Axiomatisation of Reflective Sequential Algorithms

The celebrated sequential ASM thesis needs only three simple, intuitive postulates to define
sequential algorithms (for details see the deep discussion in [14]):

Sequential time. Each sequential algorithm proceeds in sequential time using states, initial
states and transitions from states to successor states, i.e. there is a set S of states, a subset
I ⊆ S of initial states, and a transition function τ : S → S, which maps a state S ∈ S to
its successor state τ(S).

Abstract state. States S ∈ S are universal algebras (aka Tarski structures), i.e. functions
resulting from the interpretation of a signature Σ, i.e. a set of function symbols, over
a base set. The sets S and I of states and initial states, respectively, are closed under
isomorphisms. States S and successor states τ(S) have the same base set, and if σ is an
isomorphism defined on S, then also τ(σ(S)) = σ(τ(S)) holds.

Bounded exploration. There exists a finite set W of ground terms (called bounded explo-
ration witness) such that the difference between a state and its successor state (called
update set) is uniquely determined by the values of these terms in the state.

In this section we discuss how to modify these postulates in order to define reflective
sequentials algorithms (RSAs).

the nodes of a tree are values that define nullary function symbols and consequently sublocations—i.e. o is
actually raise(o)—but we wanted to drop this subtle distinction.

10 This would require to use unbounded parallelism, which in ASMs is supported through FORALL-rules [7].

16



4.1 Sequential Time

In principle, also reflective sequential algorithms proceed in sequential time. However, the
crucial feature of reflection is that in every step the algorithm may change. So the question
is, whether this impacts on the postulate. We argue that it is always possible to have a finite
representation of a sequential algorithm, which can therefore be subsumed in the notion of
state, while the sequential time postulate can remain unchanged.

Our argument is grounded in the axiomatisation of sequential algorithms and the proof
of the sequential ASM thesis in [14]. According to the postulates it suffices to represent a
sequential algorithm P by a set of pairs (S,∆P (S)) comprising states S and the update set
of P in that state. A consequence of the proof of the sequential ASM thesis is that update
sets ∆P (Si) (i = 1, 2) are equal, if the states S1 and S2 are W -equivalent for a fixed bounded
exploration witness W . We have S1 ∼W S2 iff ES1 = ES2 , where ES is the equivalence relation
on W defined by ES(t1, t2) ≡ valS(t1) = valS(t2), where valS(t) denotes the interpretation
of a ground term t as a value in the base set of a state S. It is therefore sufficient to replace
the state S by a condition ϕS , which evaluates to true on states that are W -equivalent to
S. As there can only be finitely many W -equivalence classes, we obtain an abstract finite
representation by a finite set of pairs (ϕi,∆i) (i = 1, . . . , k).

Postulate 1 (Sequential Time Postulate). A reflective sequential algorithm A comprises
a set S of states, a subset I ⊆ S of initial states, and a one-step transition relation τ ⊆ S×S.
Whenever τ(S) = S′ holds, the state S′ is called the successor state of the state S.

A run of an RSA A is then given by a sequence S0, S1, . . . of states Si ∈ S with an initial
state S0 ∈ I and Si+1 = τ(Si).

4.2 Abstract States

Our argumentation above further justifies to postulate states S of RSAs to be defined by
structures over a signature ΣS . First recall some basic definitions.

A signature Σ is a finite set of function symbols, and each f ∈ Σ is associated with an arity
ar(f) ∈ N. A structure over Σ comprises a base set B and an interpretation of the function
symbols f ∈ Σ by functions fS : Bar(f) → B. An isomorphism σ between two structures
is given by a bijective mapping σ : B → B′ between the base sets that is extended to the
functions by σ(fB)(σ(a1), . . . , σ(an)) = σ(fB(a1, . . . , an)) for all ai ∈ B and n = ar(f). For
convenience to capture partial functions we may assume that base sets contain a constant
undef and that each isomorphism σ maps undef to itself.

In order to capture reflection the following changes to the abstract state postulate for
sequential algorithms must be taken into account:

(1) As the algorithm that is to be applied in state S is represented in S, there must exist a
subsignature Σalg ⊆ ΣS for this, and we can assume a function that maps the restriction
of S to Σalg to a sequential algorithm A(S) that operates on states defined over ΣS .

(2) As only a single RSA is to be considered, it does not make sense to permit arbitrary
sequential algorithms A(S0) in initial state S0 ∈ I. We should therefore require A(S0) =
A(S′

0) for all initial states S0, S
′
0 ∈ I. This unique A(S0) is then the initial sequential

algorithm.

17



(3) As A(S) manipulates also locations over Σalg we have in general A(τ(S)) 6= A(S). In
particular, the signature may have changed, i.e. Στ(S) 6= ΣS. Without loss of generality
we can assume that only new function symbols will be added, i.e. ΣS ⊆ Στ(S).

(4) As states comprise representations of sequential algorithms, we cannot simply assume
arbitrary base sets B, though the restriction of S to ΣS −Σalg should still be a structure
with a base set B, while for S as a whole we need an extension Bext. This extension must
at least contain terms over ΣS and B. Let us reserve the notation (standard) base set for
the arbitrary B, and call Bext an extended base set.

(5) As for the sequential ASM thesis it follows that there is a unique minimal consistent
update set ∆(S) capturing the difference between the state S and its successor τ(S),
and τ(S) results from applying ∆(S) to S (denoted as τ(S) = S +∆(S)). However, the
algorithm yielding ∆(S) is A(S), i.e. we have τ(S) = S +∆A(S)(S).

In the last condition we make use of the unique consistent update set ∆(S) defined by
the algorithm in state S. This requires some explanation. As for sequential ASMs a location
ℓ in state S is a pair (f, (v1, . . . , vn)) with a function symbol f ∈ ΣS of arity n and values
v1, . . . , vn in the (extended) base set. If the interpretation defines fS(v1, . . . , vn) = v0, then
the value v0 ∈ Bext is called the value of location ℓ in S, which we denote as valS(ℓ). An
update is a pair (ℓ, v) comprising a location and a value. An update set is a set ∆ of updates.
An update set is consistent iff (ℓ, v1) ∈ ∆ and (ℓ, v2) ∈ ∆ imply v1 = v2. As for sequential
ASMs we define the state S′ = S +∆ resulting from the application of ∆ to S by

valS′(ℓ) =

{
v if (ℓ, v) ∈ ∆

valS(ℓ) else

provided ∆ is consistent, otherwise we set S + ∆ = S. Concerning a state S and its
successor τ(S) we obtain a set Diff = {ℓ | valτ(S)(ℓ) 6= valS(ℓ)} of those locations, where the
states differ11. Then ∆(S) = {(ℓ, v) | ℓ ∈ Diff ∧ v = valτ(S)(ℓ)} is a consistent update set with
S +∆(S) = τ(S) and furthermore, ∆(S) is minimal with this property.

Our considerations above lead us to the following modified abstract state postulate for
reflective sequential algorithms.

Postulate 2 (Abstract State Postulate). States of a reflective sequential algorithm must
satisfy the following conditions:

(1) Each state S ∈ S of an RSA A is a structure over some signature ΣS , and an extended
base set Bext. The extended base set Bext contains at least a standard base set B and all
terms defined over ΣS and B.

(2) The sets S and I of states and initial states, respectively, are closed under isomorphisms.

(3) Whenever τ(S) = S′ holds, then ΣS ⊆ Στ(S), the states S and S′ have the same standard
base set, and if σ is an isomorphism defined on S, then also τ(σ(S)) = σ(τ(S)) holds.

(4) There exists a fixed subsignature Σalg ⊆ ΣS for all S and a function that maps the
restriction of S to Σalg to a sequential algorithm A(S) with signature ΣS , such that
τ(S) = S +∆A(S)(S) holds for the successor state τ(S).

(5) For all initial states S0, S
′
0 ∈ I we have A(S0) = A(S′

0).

11 Note that Diff contains also all locations with new function symbols taken from the reserve.

18



4.3 Background

Same as in for sequential algorithms we need some to formulate minimum requirements for the
background, but this time the requirements are too elaborate to leave them implicit. Similar
to Definition 8 these requirements concern the reserve, truth values, tuples, raise and drop,
but it leaves open how sequential algorithms are represented by structures over Σalg. In view
of our discussion in the previous subsection the following postulate is thus straightforward.

Postulate 3 (Background Postulate). The background of an RSA is defined by a back-
ground class K over a background signature VK . It must contain an infinite set reserve of
reserve values and an infinite set Σres of reserve function symbols, the equality predicate, the
undefinedness value undef, truth values and their connectives, tuples and projection opera-
tions on them, natural numbers and operations on them, and constructors and operators that
permit the representation and update of sequential algorithms.

The background must further provide functions: drop : TS → Bext and raise : Bext → TS

for each base set B and extended base set Bext, and an extraction function β : TS →
⋃

n∈N T
n,

which assigns to each term defined over a signature ΣS and the extended base set Bext a tuple
of terms in T defined over ΣS −Σalg and B.

4.4 Bounded Exploration

Let us finally discuss a generalisation of the bounded exploration postulate. In principle, an
RSA may increase its signature in every step, so a priori it is impossible to find a fixed finite
bounded exploration witness that determines update sets in every state. However, in every
state S we have a representation of the actual sequential algorithm A(S) as requested by the
abstract state postulate 2. As a sequential algorithm A(S) possesses a bounded exploration
witness WS , i.e. a finite set of terms such that ∆A(S)(S1) = ∆A(S)(S2) holds, whenever states
S1 and S2 coincide on WS. We can always assume that WS just contains terms that must
be evaluated in a state to determine the update set in that state. Thus, though WS is not
unique we may assume that WS is somehow contained in the finite representation of A(S).
This implies that the terms in WS result by interpretation from terms that appear in this
representation, i.e. WS can be obtained using the extraction function β that exists by the
background postulate 3. Consequently, there must exist a finite set of terms W such that its
interpretation in a state yields both values and terms, and the latter ones represent WS . We
will continue to call W a bounded exploration witness. Then the interpretation of W and the
interpretation of the extracted terms in any state suffice to determine the update set in that
state. This leads to our bounded exploration postulate for RSAs.

Definition 10. Let S and S′ be states of an RSA, and let W be a set of ground terms. We
say that S and S′ strongly coincide over W iff the following holds:

– For every t ∈ W we have valS(t) = valS′(t).
– For every t ∈ W with valS(t) ∈ TS and valS′(t) ∈ TS′ we have

valS(β(t)) = valS′(β(t)).

Furthermore, we have to take a subtlety into account, which was not needed to be han-
dled in the sequential ASM thesis. According to the background postulate the background
structure must provide constructors and operators that permit the representation of sequen-
tial algorithms. While this leaves open, how such algorithms shall be represented by values,

19



we can assume that bulk structures will be required. For instance, for rsASMs as defined in
Section 3 we exploited trees, but according to our motivation at the beginning of Section
4 we could have used sets and tuples as well. We may further assume that the bulk values
representing an algorithm are updated by several operations in one step, i.e. shared updates
as defined in [21] defined by an operator and arguments may be used to define updates. If
operators are compatible12, such shared updates are merged into a single update of a bulk
value. In order to capture this merging we extend the bounded exploration witness W as
follows.

A term indicating a shared update takes the form op(f(t1, . . . , tn), t
′
1, . . . , t

′
m). Here op is

the operator that is to be applied, f(t1, . . . , tn) evaluates in every state S to a value valS(ℓ) of
some location ℓ = (f, (valS(t1), . . . , valS(tn))), and t′1, . . . , t

′
m evaluate to the other arguments

of the shared update.

Definition 11. If op1(f(t1, . . . , tn), t
′
11, . . . , t

′
1m1

), . . . , opk(f(t1, . . . , tn), t
′
k1, . . . , t

′
kmk

) are sev-
eral terms of this form occurring in W or in β(W ), then the term

t̂ = op1(op2(. . . (opk(f(t1, . . . , tn), t
′
k1, . . . , t

′
kmk

)), . . . , t′21, . . . , t
′
2m2

), t′11, . . . , t
′
1m1

)

will be called an aggregation term over f(t1, . . . , tn), and the tuple (valS(t̂), valS(t1), . . . , valS(tn))
will be called an aggregation tuple.

Then we can always assume that the update set ∆A(S) is the result of collapsing an
update multiset ∆̈A(S).

Postulate 4 (Bounded Exploration Postulate). For every RSA A there is a finite set W
of ground terms such that ∆̈A(S) = ∆̈A(S

′) holds (and consequently also ∆A(S) = ∆A(S
′))

whenever the states S and S′ strongly coincide over W . Furthermore, ∆̈A(res(S,Σalg)) =
∆̈A(res(S

′, Σalg)) holds (and consequently also ∆A(res(S,Σalg)) = ∆A(res(S
′, Σalg))) when-

ever the states S and S′ coincide over W . Here, res(S,Σalg) is the structure resulting from S
by restriction of the signature to Σalg.

Any set W of ground terms as in the bounded exploration postulate 4 will be called
a (reflective) bounded exploration witness (R-witness) for A. The four postulates capturing
sequential time, abstract states, background and bounded exploration together provide an
language-independent axiomatisation of the notion of a reflective sequential algorithm.

Definition 12. A reflective sequential algorithm (RSA) is defined by the sequential time
postulate 1, the abstract state postulate 2, the background postulate 3, and the bounded
exploration postulate 4.

4.5 Behavioural Equivalence

According to Gurevich’s definition in [14] two sequential algorithms are behaviourally equiva-
lent iff they have the same sets of states and initial states and the same transition function τ .
Consequently, behaviourally equivalent sequential algorithms have the same runs. This may
be weakened requesting directly that two sequential algorithms are behaviourally equivalent
iff they have the same runs, e.g. one of the algorithms may have additional states that never
appear in a run.

12 Conditions for the compatibility of shared updates have been discussed intensively in [21].

20



While for sequential algorithms this distinction is a mere subtlety without further con-
sequences, it gains importance for RSAs. If we adopted without change the definition of
behavioural equivalence from [14], then the “self-representation”, i.e. the substructure over
Σalg would be required to be exactly the same in corresponding states. However, the way how
to realise such a representation was deliberately left open in the axiomatisation. For instance,
rsASMs use a single 0-ary function symbol and sophisticated tree structures, whereas at the
beginning of this section we outlined that it is likewise possible to use sets of pairs comprising
a Boolean condition and an update set. Therefore, instead of claiming identical states it suf-
fices to only require identity for the restriction to ΣS −Σalg, while structures over Σalg only
need to define behaviourally equivalent algorithms. However, this is still too restrictive, as
behavioural equivalence of A(S) and A(S′) (even, if these are considered merely as sequential,
non-reflective algorithms) would still imply identical changes to the self-representation.

Therefore, we can also restrict our attention to the behaviour of the algorithms A(S)
on states over ΣS − Σalg. If A(S) and A(S′) produce significantly different changes to the
represented algorithm, the next state in a run of the reflective algorithm will reveal this. This
leads to the following definition of behavioural equivalence for RSAs.

Definition 13. Two RSAs A and A′ are behaviourally equivalent iff there exists a bijection
Φ between runs of A and those of A′ such that for every run S0, S1, . . . of A we have that for
all states Si and Φ(Si)

(1) their restrictions to ΣSi
−Σalg coincide, and

(2) the restrictions of A(Si) and A′(Φ(Si)) to ΣSi
−Σalg are behaviourally equivalent sequen-

tial algorithms.

Note that in our preliminary work in [9] we did not request that states are closed under iso-
morphisms. Instead we permitted that the representations of sequential algorithms restricted
to ΣS −Σalg are just behaviourally equivalent in states that are otherwise isomorphic. This
would permit significantly different updates to the self representation to be subsumed in a
single reflective algorithm. However, for the behavioural theory this is not plausible. We need
Definition 13 in the construction of a behaviourally equivalent rsASM for an arbitrary RSA,
for which no assumption on a specific self representation can be made.

4.6 RSAs Defined by rsASMs

We now show that rsASM satisfy the defining postulates, i.e. each rsASM defines an RSA.
This constitutes the plausibility part of our reflective sequential ASM thesis.

Theorem 1. Every reflective ASM M is a RSA.

Proof. First consider sequential time. According to Definition 9 the rsASM M comprises a
set I of initial states defined over an (initial) signature Σ. Other states are defined through
reachability by finitely many applications of the state transition function τ . This gives rise to
the set of states S, where each state is defined over a signature ΣS with Σ ⊆ ΣS . This state
transition function τ is explicitly defined in Definition 9. Furthermore, in every initial state
S0 ∈ I we have a unique rule rS0 = raise(rule(valS0(self ))) using the rule extraction function
rule defined in Subsection 3.1.

Concerning the abstract state postulate the required properties (1) and (5) are explicitly
built into Definition 9 together with Definition 7. Definition 9 further contains that the set

21



I is closed under isomorphism. This extends to the set S of all states due to the definition
of the state transition function τ . This gives the required properties (2) and (3). Concerning
property (4) we have Σalg = {self }, so the restriction of a state S is simply given by valS(self ).
Applying the functions rule and signature from Subsection 3.1 to this tree value give the rule
rS and the signature ΣS , which define the algorithm A(S) with the desired property.

The requirements for the background postulate are built into Definitions 9 and 8. The
extraction function β has been defined explicitly in Subsection 3.1.

Finally, concerning the bounded exploration postulate take W = {self }. Let S and S′ be
two states that strongly coincide on W . Then according to Definition 10 we have valS(self ) =
valS′(self ). As we have rS = raise(rule(valS(self ))), we obtain rS = rS′ with signature ΣS =
raise(signature(valS(self ))) = ΣS′ . Furthermore, applying the extraction function β gives
β(valS(self )) = β(valS′(self )). Let this tuple of terms be (t1, . . . , tn). Then the ti are all the
terms over ΣS and the base set B that appear in rS (and rS′). In particular, {t1, . . . , tn} is a
bounded exploration witness for the sequential ASM defined by ΣS and rS .

Definition 10 further implies valS(raise(β(self ))) = valS′(raise(β(self ))), hence valS(raise(ti)) =
valS′(raise(ti)) holds for all i = 1, . . . , n, i.e. the states S and S′ coincide on a bounded ex-
ploration witness. Thus, we get ∆̈A(S) = ∆̈rS(S) = ∆̈rS′

(S′) = ∆̈A(S
′), which shows the

satisfaction of the bounded exploration postulate and completes the proof.

5 The Reflective Sequential ASM Thesis

This section provides the mathematical proofs that rsASMs capture all RSAs, regardless how
algorithms are represented by terms. We show the converse of Theorem 1, i.e. that every RSA
A can be step-by-step simulated by a behaviourally equivalent rsASM M.

5.1 Critical Values

Let A be given, and fix a bounded exploration witness W . Let Wst be the subset of W
containing “standard” terms, i.e. those terms that do not contain function symbols in Σalg,
and let Wpt = W −Wst be the complement containing “program terms”.

According to the bounded exploration postulate the update set ∆A(S) in a state S is
determined by values valS(t) resulting from the interpretation of terms t ∈ W and t =
πi(β(valS(t

′))) with t′ ∈ Wpt and some projection function πi. However, according to the
abstract state postulate the successor state τ(S) is already determined by the sequential
algorithm A(S) represented in the state S, i.e. ∆A(S) = ∆A(S)(S) and therefore, instead
of valS(t) with t ∈ W it suffices to consider t ∈ Wst—values valS(t) with t ∈ Wpt must
already be covered by the values valS(πi(β(valS(t

′)))) with t′ ∈ Wpt. We use the notation
Wβ = {β(valS(t)) | t ∈ Wpt} and WS = Wst ∪Wβ. Without loss of generality we can assume
that WS is closed under subterms.

Definition 14. For a state S the terms in WS are called critical terms in S. The value valS(t)
of a critical term t ∈ WS is called a critical value in S.

In the following we proceed analogously to the proof of the main theorem in [14] concerning
the capture of sequential algorithms by sequential ASMs, i.e. we start from a single state S
and the update set ∆A(S) in that state. We can first show that all values appearing in
updates in an update set ∆A(S) are critical in S. The proof of this lemma is analogous to the

22



corresponding proof for sequential ASMs (see [14, Lemma 6.2]), but it has to be extended to
capture also updates that result from aggregation of shared updates.

Lemma 1. If ((f, (v1, . . . vn), v0)) is an update in ∆A(S), then either v0, v1, . . . , vn are critical
values in S or (v0, v1, . . . , vn) is an aggregation tuple (as defined in Definition 11) built from
critical values.

Proof. The update ((f, (v1, . . . vn)), v0) may be the result of merging several shared updates
or not. In the latter case assume that one value vi is not critical. Then choose a structure S1

by replacing vi by a fresh value b without changing anything else. Then S1 is isomorphic to
S and thus a state by the abstract state postulate.

Let t ∈ WS be a critical term. Then we must have valS(t) = valS1(t), so S and S1

coincide on WS, so they strongly coincide on W . The bounded exploration postulate implies
∆A(S) = ∆A(S1) and hence (f(v1, . . . , vn), v0) ∈ ∆A(S1). However, vi does not appear in the
structure S1 and thus cannot appear in ∆A(S1), which gives a contradiction.

In case the update ((f, (v1, . . . vn)), v0) is the result of merging several shared updates we
have shared updates ((f, (v1, . . . vn)), opi, v

′
i1, . . . , v

′
imi

) (i = 1, . . . , k), and

v0 = op1(op2(. . . (opk(fS(v1, . . . , vn), v
′
k1, . . . , v

′
kmk

)), . . . , v′21, . . . , v
′
2m2

), v′11, . . . , v
′
1m1

)

Applying the same argument as in the first case (using ∆̈A(S) = ∆̈A(S1)) we conclude
that (v0, v1, . . . , vn) is an aggregation tuple.

Lemma 1 implies that every update in ∆A(S) can be produced by an ASM rule, which is
either an assignment or the parallel composition of partial updates. This can be generalised
to obtain a rule rS producing the whole update set ∆A(S). The lemma further implies that
update sets (and update multisets) in a state S are always finite.

Lemma 2. For every state S of the RSA A there is a rule rS using only terms in WS =
Wst ∪Wβ such that ∆rS (S) = ∆A(S) holds.

Proof. If ((f, (v1, . . . vn)), v0) ∈ ∆A(S) is not the result of merging several shared updates,
then take critical terms ti ∈ WS with valS(ti) = vi that are guaranteed by Lemma 1. Then
the update is produced by the assignment rule f(t1, . . . , tn) := t0.

If ((f, (v1, . . . vn)), v0) ∈ ∆A(S) is the result of merging several shared updates, then
take critical terms t1, . . . , tn and tij ∈ WS with valS(tij) = vij and operators opi that are
guaranteed by Lemma 1. Then the update is produced by a parallel combination of partial
assignment rules:

PARf(t1, . . . , tn) ⇔
op1 t′11, . . . , t

′
1m1

. . . f(t1, . . . , tn) ⇔
opk t′k1, . . . , t

′
kmk

ENDPAR

The parallel combination of all these rules for the individual updates in ∆A(S) gives the
rule rS . As ∆A(S) and WS are finite, this rule is well-defined.

5.2 Relative W -Similarity

As in the corresponding proof of the sequential ASM thesis the following lemmata aim first to
extend Lemma 2 to other states S′, i.e. to obtain ∆rS (S

′) = ∆A(S
′), and to combine different

rules rS such that the behaviour of A can be modelled by a combination of such rules on all
states.

23



Lemma 3. If two states S and S′ of A strongly coincide on W , then ∆rS(S
′) = ∆A(S

′)
holds.

Proof. As S and S′ strongly coincide on W we also have WS = WS′ , and furthermore, S and
S′ coincide on WS. As the rule rS only uses terms in WS , it follows that ∆rS (S) = ∆rS(S

′)
holds. Lemma 2 also states ∆rS (S) = ∆A(S), and the bounded exploration postulate gives
∆A(S) = ∆A(S

′), which imply ∆rS(S
′) = ∆A(S

′) as claimed.

For the extensions to Lemma 2 mentioned above we are naturally interested in states
S′, in which A(S′) is behaviourally equivalent to A(S). For this we introduce the notion of
WS-equivalence.

Definition 15. A state S′ is WS-equivalent to the state S iff β(valS′(t)) = β(valS(t)) holds
for all t ∈ Wpt.

Keeping in mind that the “self-representation”, i.e. the restriction of a state S to Σalg

that is to represent a sequential algorithm A(S), is de facto only relevant for the behaviour on
“standard” locations, i.e. we are interested in the restrictions res(S,ΣS−Σalg) of states—this
is already reflected in Definition 13 concerning behavioural equivalence.

We therefore use the notation ∆st
A(S) = res(∆A(S), ΣS − Σalg) and similarly ∆st

rS
(S) =

res(∆rS(S), ΣS−Σalg). Then the following lemma is a straightforward consequence of Lemma
3.

Lemma 4. If the states S and S′ are WS-equivalent and coincide over Wst ∪Wβ, then we
have ∆st

rS
(S′) = ∆st

A(S
′).

Proof. WS-equivalence implies that WS′ = WS. As S and S′ coincide on WS, they strongly
coincide on W , which gives ∆rS(S

′) = ∆A(S
′) by Lemma 3 and thus the claimed equality of

the restricted update sets.

Definition 16. Let C be a class of states. Two states S1, S2 ∈ C are called W -similar relative
to C iff ∼S1=∼S2 , where the equivalence relation ∼Si

on W is defined by t ∼Si
t′ iff valSi

(t) =
valSi

(t′).

Naturally, we are mainly interested in classes C that are defined by WS-equivalence.
We use the notation [S] for the WS-equivalence class of the state S, i.e. [S] = {S′ |
S′ is WS-equivalent to S}. The following two lemmata extend Lemma 2 to relative W -similar
states.

Lemma 5. If states S1, S2 are isomorphic, and for state S we have ∆st
rS
(S2) = ∆st

A(S2), then
we also get ∆st

rS
(S1) = ∆st

A(S1).

Proof. Let σ denote the isomorphism from S1 to S2, i.e. S2 = σS1. Then ∆st
rS
(S2) = σ∆st

rS
(S1)

and likewise ∆st
A(S2) = σ∆st

A(S1). This implies σ∆st
rS
(S1) = σ∆st

A(S1) and further ∆st
rS
(S1) =

∆st
A(S1) by applying σ−1 to both sides.

Lemma 6. If states S1 and S2 are W -similar relative to [S], then ∆st
rS1

(S2) = ∆st
A(S2).

Proof. If we replace every element in the base set of S2 that also belongs to the base set of
S1 by a fresh element, we obtain a structure S′ isomorphic to S2 and disjoint from S1. By the

24



abstract state postulate S′ is a state of A. Furthermore, by construction S′ and S2 are also
W -similar relative to [S]. Due to Lemma 5 it suffices to show ∆st

rS1
(S′) = ∆st

A(S
′), so without

loss of generality we may assume that the base sets of S1 and S2 are disjoint.

Define a new structure Ŝ by replacing in S2 all values valS2(t) with a critical term t ∈ WS

by the corresponding value valS1(t). As S2 ∈ [S] holds, we have WS2 = WS , and due to
W -similarity relative to [S] we have valS1(t) = valS1(t

′) iff valS2(t) = valS2(t
′) holds, so the

structure Ŝ is well-defined. Furthermore, Ŝ is isomorphic to S2 and thus a state by the abstract
state postulate. We get Ŝ ∈ [S] by construction. Furthermore, S1 and Ŝ coincide on WS , so
Lemma 4 implies that ∆st

rS1
(Ŝ) = ∆st

A(Ŝ) holds. Using again Lemma 5 completes the proof.

Next we define a rule r[S] for a whole WS-equivalence class [S]. For S1 ∈ [S] let ϕS1 be
the following Boolean term:

∧

ti,tj∈Wst ∪Wβ

valS1
(ti)=valS1

(tj)

ti = tj ∧
∧

ti,tj∈Wst ∪Wβ

valS1
(ti)6=valS1

(tj )

¬(ti = tj).

Clearly, a state S2 ∈ [S] satisfies ϕS1 iff S1 and S2 are W -similar relative to [S]. As W
is finite, we obtain a partition of [S] into classes [S]1, . . . , [S]n such that two states belong to
the same class [S]i iff they are W -similar relative to [S]. We choose representatives S1, . . . , Sn

for these classes and define the rule r[S] by

PAR (IF ϕS1 THEN rS1 ENDIF) . . . (IF ϕSn THEN rSn ENDIF) ENDPAR

Using this rule we obtain the following lemma, which is a straightforward consequence of
the previous lemmata.

Lemma 7. For every state S and every state S′ ∈ [S] we have ∆st
r[S]

(S′) = ∆st
A(S

′).

Proof. There is exactly one class [S]i with representing state Si such that S′ ∈ [S]i holds.
Then valS′(ϕj) is true iff j = i. Then we get ∆st

r[S]
(S′) = ∆st

rSi
(S′) = ∆st

A(S
′) using the

definition of r[S] and Lemma 6.

5.3 Tree Updates

We need to combine the partial results obtained so far into the construction of a rsASM M
that is behaviourally equivalent to the given RSA A. Lemma 2 shows that each state transition
can be expressed by a rule, i.e. for each state S we have a rule rS with ∆rS(S) = ∆A(S), hence
τ(S) = S+∆rS(S). Lemma 7 gives a single rule r[S] for each class [S] with ∆st

r[S]
(S′) = ∆st

A(S
′)

for all S′ ∈ [S], hence res(τ(S′), Στ(S′)−Σalg) = res(S′+∆r[S]
(S′), Στ(S′)−Σalg). The latter

result already captures the updates on the “standard” part of the state by an ASM rule, but
the whole rule r[S] updates also locations with function symbols in Σalg instead of self .

What we need is a different representation of a rule in a state extending the restriction to
ΣS−Σalg and using a location self . For any state S of the RSA A let Φ(S) denote a structure
over (ΣS − Σalg) ∪ {self }, in which the location self captures this intended representation.
The structure Φ(S) should be built as follows:

(1) We must have res(Φ(S), ΣS −Σalg) = res(S,ΣS −Σalg).

25



(2) The value valS(self) must be a tree composing a signature subtree and a rule subtree, i.e.
valS(self) =

label hedge(self, label hedge(signature, s0s1 . . . sk), label hedge(rule, r).

(3) The signature subtree simply lists the signature ΣΦ(S) = (ΣS − Σalg) ∪ {self }, so with
f0 = self , {f1, . . . , fk} = ΣS −Σalg, n0 = 0, and ar(fi) = ni for all i each of the subtrees
si takes the form

label hedge(func, name〈fi〉 arity〈ni〉).

(4) The rule subtree captures a representation of a rule rΦ(S), which must be a parallel com-
position of two parts: (a) a rule capturing the updates to res(Φ(S), ΣS −Σalg), (b) a rule
capturing updates to self .

Concerning the updates to res(Φ(S), ΣS − Σalg) we know from Lemma 7 that these are
captured by the rule r[S] restricted to ΣS − Σalg, so the representation as a tree is done in
the standard way. Let tr[S]

denote this tree.
The remaining problem is to find a rule capturing the updates to the tree assigned to self

in any state Φ(S). For this we will proceed analogously to Lemmata 2-7 focusing on finitely
many changes to trees. In particular, it will turn out that a fixed tree representing a rule rself

will be sufficient for all states S.
We start with a tree t̂S satisfying the requirements from (2), (3) and (4)(a) above, but

ignoring updates to self . This tree is defined as

label hedge(self, label hedge(signature, s0s1 . . . sk), label hedge(rule, tr[S]
).

Furthermore, we let Φ̂(S) denote the structure defined by res(Φ̂(S), ΣS−Σalg) = res(S,ΣS−
Σalg) and val

Φ̂(S)(self ) = t̂S .

Lemma 8. There exists a rule rselfS with ∆
r
self
S

(Φ̂(S)) = {(self , t̂τ(S))}. The rule uses only the

operators of the tree algebra and terms of the form raise(t) with t appearing in val
Φ̂(S)(self ).

Proof. Concerning the signature finitely many new function symbols are added to ΣS by the
transition of A to τ(S). So we can define a rule rsig

Φ̂(S)
as a finite parallel composition of rules

NewFunc(fi, ni) (i = 1, . . . , k), where NewFunc(f, n) is defined as13

LET sign = Io.(root (self ) ≺c o ∧ label(o) = signature) IN

sign ⇔
right extend label hedge(func, 〈f〉 〈n〉)

According to Lemma 2 we have τ(S) = S + ∆rS(S), so every new function symbol fi
must be taken from the reserve Σres and its arity ni must be the value of a term used in
rS . Such terms also occur in r[S], hence they must have the form raise(t) with t appearing in
val

Φ̂(S)(self ).

13 Note that sign is a logical variable bound to a node in the tree. As such it cannot appear on the left-hand
side of an assignment or a partial assignment, but the sublocation corresponding to this node can. This
sublocation is raise(sign), and we wrote in Section 3 that we will blur the syntactic distinction between
values denoting function symbols and the function symbols themselves, as there is no risk of confusion. The
collapse of the update multiset containing the shared updates defined in this way give rise to the explicit
construction as used in Example 1.

26



Concerning the subtrees representing the rule represented in self the rules r[S] and r[τ(S)]
take the form

PAR IF ϕ1 THEN r1 ENDIF . . . IF ϕl THEN rl ENDIF ENDPAR ,

in which the rules ri are parallel compositions of assignment rules f(t1, . . . , tn) := t0 with
f ∈ ΣS −Σalg and partial update rules f(t1, . . . , tn) ⇔

op t′1, . . . , t
′
m. These are represented by

trees of the form

label hedge(update, func〈f〉 term〈t1 . . . tn〉 term〈t0〉)

and
label hedge(partial, func〈f〉 func〈op〉 term〈t1 . . . tn〉 term〈t

′
1 . . . t

′
m〉),

respectively. According to Proposition 1 tr[τ(S)]
can be defined by a tree algebra expression

on tr[S]
with values of the form drop(t) for t appearing in r[S]. Again, these terms must have

the form raise(t) with t appearing in val
Φ̂(S)(self ). Corollary 1 defines a rule rrule

Φ̂(S)
, and rselfS

is then the parallel composition of rsig
Φ̂(S)

and rrule
Φ̂(S)

.

Lemma 8 shows that we can always find a rule that transforms one tree representation
into another one. If we had chosen a different self-representation, we would need similarly
powerful manipulation operators that ensure an analogous result. For our proof here it will
be essential to show that only finitely many such rules are needed. We will show this by the
following sequence of lemmata, by means of which we extend the applicability of the rule rselfS

to trees Φ̂(S′) for other states S′.

Lemma 9. If states S and S′ coincide on W , then ∆
r
self
S

(Φ̂(S′)) = {(self , t̂τ(S′))}.

Proof. The updates fromA(S) toA(τ(S)) are defined by res(∆A(S), Σalg): we have res(S,Σalg)+
res(∆A(S), Σalg) = res(τ(S), Σalg). Analogously, the changes from A(S′) to A(τ(S′)) are de-
fined by res(∆A(S

′), Σalg): we have res(S′, Σalg) + res(∆A(S
′), Σalg) = res(τ(S′), Σalg). Then

this also applies to the restrictions of A(S) and A(S′) to the states defined over ΣS − Σalg

and ΣS′ −Σalg, respectively. These restricted algorithms are behaviourally equivalent to r[S]
and r[τ(S)].

Thus, the updates from r[S′] to r[τ(S′)] are defined by res(∆A(S
′), Σalg). As S and S′ coin-

cide onW the bounded exploration postulate implies that res(∆A(S
′), Σalg) = res(∆A(S), Σalg)

holds. As the updates from r[S] to r[τ(S)] using their tree representations are equivalently ex-

pressed by rselfS , we conclude that the updates from the tree representation of r[S′] to the tree

representation of r[τ(S′)] are also defined by rselfS as claimed.

Lemma 10. If states S1, S2 are isomorphic, and for a state S we have ∆
r
self
S

(Φ̂(S2)) =

{(self , t̂S2)}, then we also get ∆
r
self
S

(Φ̂(S1)) = {(self , t̂S1)}.

Proof. Let σ denote the isomorphism from S1 to S2, i.e. S2 = σS1. Then ∆
r
self
S

(Φ̂(S2)) =

σ∆
r
self
S

(Φ̂(S1)) and likewise t̂S2 = σt̂S1 .

This implies σ∆
r
self
S

(Φ̂(S1)) = σ{(self , t̂S1)} and further ∆
r
self
S

(Φ̂(S1)) = {(self , t̂S1)} by

applying σ−1 to both sides.

27



5.4 W -Similarity

For Lemma 6 we exploited relative W -similarity, which exploits terms in classes [S] defined
by the evaluation of the bounded exploration witness W . As the class [S] depends on the
evaluation of the terms in Wpt, also relative equivalence implicitly depends on Wpt. Now we
require a notion of W -similarity that is grounded only on W .

Definition 17. Two states S1, S2 are called W -similar iff ∼S1=∼S2 holds, where the equiv-
alence relation ∼Si

on W is defined by t ∼Si
t′ iff valSi

(t) = valSi
(t′).

The proof of the following lemma will be quite analogous to the proof of Lemma 6.

Lemma 11. If states S and S′ are W -similar, then ∆
r
self
S

(Φ̂(S′)) = {(self , t̂τ(S′))}.

Proof. If we replace every element in the base set of S′ that also belongs to the base set of
S by a fresh element, we obtain a structure S′′ isomorphic to S′ and disjoint from S. By the
abstract state postulate S′′ is also a state of A. Furthermore, by construction S′ and S′′ are
also W -similar to S. Lemma 5 already covers equality on the “standard part” of the signature,
so it suffices to show ∆

r
self
S

(Φ̂(S′′)) = {(self , t̂τ(S′′))}, so without loss of generality we may

assume that the base sets of S and S′ are disjoint.

Define a new structure Ŝ by replacing in S′ all values valS′(t) with a critical term t ∈
W by the corresponding value valS(t). Due to W -similarity we have valS(t) = valS(t

′) iff
valS′(t) = valS′(t′) holds, so the structure Ŝ is well-defined. Furthermore, Ŝ is isomorphic to
S′ and thus a state by the abstract state postulate. Furthermore, S and Ŝ coincide on W , so
Lemma 9 implies that ∆

r
self
S

(Φ̂(Ŝ)) = {(self , t̂
τ(Ŝ))} holds. Using again Lemma 10 completes

the proof.

Using Lemma 11 we can exploit that there are only finitely many W -similarity classes to
define a single rule rself for all states. Let ϕS be the following Boolean term:

∧

ti,tj∈W
valS(ti)=valS(tj)

ti = tj ∧
∧

ti,tj∈W
valS(ti)6=valS(tj )

¬(ti = tj).

Clearly, a state S′ satisfies ϕS iff S and S′ are W -similar. As W is finite, we obtain a
partition of S into classes [S1], . . . , [Sn] with representatives Si (i = 1, . . . , n) such that a
state S belongs to the class [Si] iff S and Si are W -similar. We define the rule rself by

PAR (IF ϕS1 THEN rselfS1
ENDIF) . . . (IF ϕSn THEN rselfSn

ENDIF) ENDPAR

Using this rule we obtain the following lemma, which is a straightforward consequence of
the previous lemmata.

Lemma 12. For all states S we have ∆rself (Φ̂(S)) = {(self , t̂τ(S))}.

Proof. There is exactly one class [Si] with representing state Si such that S ∈ [Si] holds.
Then valS(ϕj) is true iff j = i. Then we get ∆rself (Φ̂(S)) = ∆

r
self
Si

(Φ̂(S)) = {(self , t̂τ(S))}

using the definition of rself and Lemma 11.

28



We now extend the tree t̂S to a definition of a tree tS satisfying all the requirements from
(2), (3) and (4) above including now the updates to self . This tree is defined as

label hedge(self, label hedge(signature, s0s1 . . . sk),

label hedge(rule, label hedge(par, tr[S]
trself )),

where trself is the tree representation of the rule rself . Furthermore, we let Φ(S) denote
the structure defined by res(Φ(S), ΣS −Σalg) = res(S,ΣS −Σalg) and valΦ(S)(self ) = tS. We
use this to define an rsASM M.

Lemma 13. For each RSA A we obtain an rsASM M with the set SM = {Φ(S) | S ∈ S}
of states, the set IM = {Φ(S) | S ∈ I} of initial states, and the state transition function τM
with τM(Φ(S)) = Φ(τ(S)).

Proof. According to the abstract state postulate all initial states S0, S
′
0 ∈ I are defined over

the same signature Σ0 ∪Σalg. As I is closed under isomorphisms, this also holds for IM. As
A(S0) = A(S′

0) holds, the states Φ(S0) and Φ(S′
0) coincide on self .

We have raise(rule(valΦ(S)(self ))) = PAR r[S] r
self ENDPAR. Denoting this rule as rΦ(S) we

obtain
∆rΦ(S)

(Φ(S)) = ∆st
r[S]

(S) ∪ {(self , tτ(S))},

which implies Φ(S)+∆rΦ(S)
(Φ(S)) = Φ(τ(S)) using Lemmata 7 and 12. Thus, all require-

ments from Definition 9 are satisfied.

With this construction of an rsASM M from an RSA A we can state and prove the main
result of this section.

Theorem 2. For every RSA A there is a behaviourally equivalent rsASM M.

Proof. Given the RSA A we define the rsASM M as in Lemma 13. It remains to show that
A and M are behaviourally equivalent in the sense of Definition 13.

For this let S0, S1, . . . be an arbitrary run ofA. Then according to Lemma 13 Φ(S0), Φ(S1), . . .
is a run of M, which defines the required bijection between runs of A and M.

Due to our construction of the states Φ(S) we further have res(A, ΣS−Σalg) = res(M, ΣS−
Σalg), which implies property (1) of Definition 13.

The restriction of the sequential algorithm A(S) to ΣS−Σalg is expressed by the rule r[S].

The sequential algorithm represented in Φ(S) is expressed by the rule PAR r[S] r
self ENDPAR,

and its restriction to ΣS −Σalg is also expressed by the rule r[S], which implies property (2)
of Definition 13.

6 Related Work

The ur-instance of a behavioural theory is Gurevich’s celebrated sequential ASM thesis [14],
which states and proves that sequential algorithms are captured by sequential ASMs. A key
contribution of this thesis is the language-independent definition of a sequential algorithm
by a small set of intuitively understandable postulates on an arbitrary level of abstraction.
As the sequential ASM thesis shows, the notion of sequential algorithm includes a form of
bounded parallelism, which is a priori defined by the algorithm and does not depend on the
actual state. However, parallel algorithms, e.g. for graph inversion or leader election, require

29



unbounded parallelism. A behavioural theory of synchronous parallel algorithms has been first
approached by Blass and Gurevich [1,3], but different from the sequential thesis the theory
was not accepted, not even by the ASM community despite its inherent proof that ASMs [7]
capture parallel algorithms. One reason is that the axiomatic definition exploits non-logical
concepts such as mailbox, display and ken, whereas the sequential thesis only used logical
concepts such as structures and sets of terms. Even the background, that is left implicit in
the sequential thesis, only refers to truth values and operations on them.

In [10] an alternative behavioural theory of synchronous parallel algorithms (aka “simpli-
fied parallel ASM thesis”) was developed. It was inspired by previous research on a behavioural
theory for non-deterministic database transformations [19]. Largely following the careful mo-
tivation in [1] it was first conjectured in [22] that it should be sufficient to generalise bounded
exploration witnesses to sets of multiset comprehension terms. The rationale behind this con-
jecture is that in a particular state the multiset comprehension terms give rise to multisets,
and selecting one value out each of these multisets defines the proclets used by Blass and
Gurevich. The formal proof of the simplified ASM thesis in [10] requires among others an
investigation in finite model theory. At the same time another behavioural theory of parallel
algorithms was developed in [8], which is independent from the simplified parallel ASM the-
sis, but refers also to previous work by Blass and Gurevich. A thorough comparison with the
simplified parallel ASM thesis has not yet been conducted.

There have been many attempts to capture asynchronous parallelism as marked in the-
ories of concurrency as well as distribution (see [16] for a collection of many distributed or
concurrent algorithms). Gurevich’s axiomatic definition of partially ordered runs [13] tries
to reduce the problem to families of sequential algorithms, but the theory is too strict. As
shown in [5] it is easy to find concurrent algorithms that satisfy sequential consistency [15],
where runs are not partially ordered. One problem is that the requirements for partially or-
dered runs always lead to linearisability. The lack of a convincing definition of asynchronous
parallel algorithms was overcome by the work on concurrent algorithms in [5], in which a con-
current algorithm is defined by a family of agents, each equipped with a sequential algorithm
with shared locations. While each individual sequential algorithm in the family is defined by
the postulates for sequential algorithms14, the family as a whole is subject to a concurrency
postulate requiring that a successor state of the global state of the concurrent algorithm re-
sults from simultaneously applying update sets of finitely many agents that have been built
on some previous (not necessarily the latest) states. The theory shows that concurrent algo-
rithms are captured by concurrent ASMs. As in concurrent algorithms, in particular in case
of distribution, message passing between agents is more common than shared locations, it
has further been shown in [6] that message passing can be captured by regarding mailboxes
as shared locations, which leads to communicating concurrent ASMs capturing concurrent
algorithms with message passing.

7 Conclusion

In this article we investigated a behavioural theory for reflective sequential algorithms (RSAs)
following our sketch in [9]. Grounded in related work concerning behavioural theories for
sequential algorithms [14], (synchronous) parallel algorithms [10], and concurrent algorithms

14 A remark in [5] states that the restriction to sequential algorithms is not really needed. An extension to
concurrent algorithms covering families of parallel algorithms is sketched in [18].

30



[5] we developed a set of abstract postulates defining RSAs, extended ASMs to reflective
sequential abstract state machines (rsASMs), and proved that any RSA as stipulated by
the postulates can be step-by-step simulated by an rsASM. The key contributions are the
axiomatic definition of RSAa and the proof that RSAs are captured by rsASMs.

With this behavioural theory we lay the foundations for rigorous development of reflective
algorithms and thus adaptive systems. However, the theory in this article covers only reflec-
tive sequential algorithms, so in view of the behavioural theories for unbounded parallel and
concurrent algorithms the next steps of the research are to extend these theories to capture
also reflection. We envision a part II addressing reflective parallel algorithms and a part III
on reflective concurrent algorithms. The latter one would then lay the foundations for the
specification of distributed adaptive systems in general.

Furthermore, for rigorous development extensions to the refinement method for ASMs [4]
and to the logic used for verification [11,12] will be necessary. These will also be addressed in
follow-on research.

References

1. A. Blass and Y. Gurevich. Abstract State Machines capture parallel algorithms. ACM Trans. Computa-
tional Logic, 4(4):578–651, 2003.

2. A. Blass and Y. Gurevich. Background of computation. Bulletin of the EATCS, 92:82–114, 2007.
3. A. Blass and Y. Gurevich. Abstract State Machines capture parallel algorithms: Correction and extension.

ACM Trans. Comp. Logic, 9(3), 2008.
4. E. Börger. The ASM refinement method. Formal Aspects of Computing, 15:237–257, 2003.
5. E. Börger and K.-D. Schewe. Concurrent Abstract State Machines. Acta Informatica, 53(5):469–492, 2016.
6. E. Börger and K.-D. Schewe. Communication in Abstract State Machines. J. Univ. Comp. Sci., 23(2):129–

145, 2017.
7. E. Börger and R. Stärk. Abstract State Machines. Springer-Verlag, Berlin Heidelberg New York, 2003.
8. N. Dershowitz and E. Falkovich-Derzhavetz. On the parallel computation thesis. Logic Journal of the

IGPL, 24(3):346–374, 2016.
9. F. Ferrarotti, K.-D. Schewe, and L. Tec. A behavioural theory for reflective sequential algorithms. In

A. K. Petrenko and A. Voronkov, editors, Perspectives of System Informatics – 11th International Andrei
P. Ershov Informatics Conference (PSI 2017), volume 10742 of LNCS, pages 117–131. Springer, 2017.

10. F. Ferrarotti, K.-D. Schewe, L. Tec, and Q. Wang. A new thesis concerning synchronised parallel computing
– simplified parallel ASM thesis. Theor. Comp. Sci., 649:25–53, 2016.

11. F. Ferrarotti, K.-D. Schewe, L. Tec, and Q. Wang. A complete logic for Database Abstract State Machines.
The Logic Journal of the IGPL, 25(5):700–740, 2017.

12. F. Ferrarotti, K.-D. Schewe, L. Tec, and Q. Wang. A unifying logic for non-deterministic, parallel and
concurrent Abstract State Machines. Ann. Math. Artif. Intell., 83(3-4):321–349, 2018.

13. Y. Gurevich. Evolving algebras 1993: Lipari Guide. In Specification and Validation Methods, pages 9–36.
Oxford University Press, 1995.

14. Y. Gurevich. Sequential abstract-state machines capture sequential algorithms. ACM Trans. Comp. Logic,
1(1):77–111, 2000.

15. L. Lamport. How to make a multiprocessor computer that correctly executes multiprocess programs. IEEE
Trans. Computers, 28(9):690–691, 1979.

16. N. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.
17. E. Riccobene and P. Scandurra. Towards ASM-based formal specification of self-adaptive systems. In

Y. A. Ameur and K.-D. Schewe, editors, Abstract State Machines, Alloy, B, TLA, VDM, and Z - 4th
International Conference (ABZ 2014), volume 8477 of Lecture Notes in Computer Science, pages 204–209.
Springer, 2014.

18. K.-D. Schewe, F. Ferrarotti, L. Tec, Q. Wang, and W. An. Evolving concurrent systems: behavioural
theory and logic. In Proceedings of the Australasian Computer Science Week Multiconference, (ACSW
2017), pages 77:1–77:10. ACM, 2017.

19. K.-D. Schewe and Q. Wang. A customised ASM thesis for database transformations. Acta Cybernetica,
19(4):765–805, 2010.

31



20. K.-D. Schewe and Q. Wang. XML database transformations. J. UCS, 16(20):3043–3072, 2010.
21. K.-D. Schewe and Q. Wang. Partial updates in complex-value databases. In A. Heimbürger et al., editors,

Information and Knowledge Bases XXII, volume 225 of Frontiers in Artificial Intelligence and Applications,
pages 37–56. IOS Press, 2011.

22. K.-D. Schewe and Q. Wang. A simplified parallel ASM thesis. In J. Derrick et al., editors, Abstract State
Machines, Alloy, B, VDM, and Z (ABZ 2012), volume 7316 of LNCS, pages 341–344. Springer, 2012.

23. B. C. Smith. Reflection and semantics in LISP. In Proceedings of the 11th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages, POPL ’84, pages 23–35. ACM, 1984.

24. D. Stemple, L. Fegaras, R. Stanton, T. Sheard, P. Philbrow, R. Cooper, M. Atkinson, R. Morrison, G. Kirby,
R. Connor, and S. Alagic. Type-safe linguistic reflection: A generator technology. In M. Atkinson and
R. Welland, editors, Fully Integrated Data Environments, Esprit Basic Research Series, pages 158–188.
Springer Berlin Heidelberg, 2000.

25. J. Van den Bussche, D. Van Gucht, and G. Vossen. Reflective programming in the relational algebra. J.
Comput. Syst. Sci., 52(3):537–549, 1996.

32


