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ABSTRACT

Cyber-physical systems, such as learning robots and other autonomous systems, employ high-
integrity software in their safety-critical control. This software is developed using a range of tools
some of which need to be qualified for this purpose according to international standards. In this
article, we first evaluate the state of the art of tool qualification for proof assistants, checkers (e.g.,
model checkers), and generators (e.g., code generators, compilers) by means of a SWOT (Strengths,
Weaknesses, Opportunities, Threats) analysis. Our focus is on the qualification of tools in the three
mentioned categories. Our objective is to assess under which conditions these tools are already
fit or could be made fit for use in the practical engineering and assurance of high-integrity control
software. In a second step, we derive a viewpoint and a corresponding range of suggestions for
improved tool qualification from the results of our SWOT analysis.

Keywords Deductive verification · Model checking · Certified compilers · Cyber-physical systems · Control software
engineering

1 Introduction

High-integrity software and control engineering is about the engineering of electric, electronic, or programmable
electronic systems required to operate at high degrees of dependability. Dependability may include, for example,
highly reliable components, highly secure treatment of data and signals, and highly robust enforcement of safe machine
behaviour. The more demanding such requirements are, the more sophisticated methods, techniques, and technologies
are needed in control systems engineering [1]. Control software and systems subjected to such requirements are used
in many cyber-physical systems, such as intelligent collaborative robots or autonomous vehicles.

The most demanding trustworthiness requirements can be tackled by the paradigm of formal design and verification.
This paradigm fosters the use of formal logic and mathematics in the construction and verification of key engineering
artefacts (e.g, hardware, software, models thereof). Modern formal design and verification is highly automated, that
is, its results (e.g., proofs, verdicts, models, code, executables) are automatically or interactively produced by tools
and, thus, rely on the correctness of these tools. In this context, tools can be single points of failure with severe impact
on control system assurance and operation. For example, performance-increasing optimisations in untrustworthy
compilers [2] have to remain switched off until these compiler components are sufficiently verified.

Hence, the standards applicable to high-integrity systems development, verification and validation (V&V), and certifi-
cation agree on the fact that the trustworthiness of tools automating essential steps of the life cycle process needs to be
established in a way that is comprehensible and can be checked by independent parties, for example, the certification
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authorities [3, 4, 5, 6]. The process for establishing this trustworthiness is called tool qualification (TQ) [4] or tool
validation [5]. We use the former term (or ‘qualification’ for short) to refer to the assurance of design and verification
tools or their results. Qualification requirements in certification [4, 7, 6, 8] are justified by the fact that faulty tools
automating parts of the development process (e.g., compilers and other code generators) may directly cause erroneous
software to be deployed in the target system. Faulty tools automating parts of the V&V process (e.g., test automation
tools, model checkers, and proof assistants) may cause errors in the target software to be overlooked.

Challenges. Reinforced by certification needs, the qualification of formal design and verification tools has gained
traction in the formal methods researcher and practitioner communities [9, 10], such as with proof assistants [11],
model checkers [12], compilers [13, 14], abstract interpreters, SATisfiability/Modulo Theory (SAT/SMT) solvers [15],
and conformance testers [16, 17]. Despite these efforts, tool qualification is still not necessarily a key issue, even
in recent industry-focused surveys [18]. Where qualification is seriously considered, such as in the aforementioned
works, efforts are either new [19], limited in their scope [12], or in an early stage. Most importantly, results are hence
not yet broadly transferred into high-integrity systems practice, and important questions are still to be explored.

Research Hypothesis and Question. Motivated by the expectation that formal design and verification will become
a key enabler on the pathway to trustworthy autonomous control, we focus on the following question:

What are the key issues in getting formal design and verification tools qualified, so that certification
credit can be obtained for their generated results according to the industrial standards applicable in
high-integrity control systems and software engineering?

To limit the scope of our assessment, we focus on proof assistants, checkers, and generators as characterised below.
Hence, we decided to exclude abstract interpretation and conformance testing tools from our assessment, but take into
account SAT/SMT solvers as far as employed in the three focused categories.

The Three Tool Categories. We hope that readers will find the following characterisation of formal design and
verification tools as a useful guide to the understanding of our assessment below.

Proof Assistants are formal verification tools that help engineers with the interactive deductive proving of theorems,
for example, about a system model or the correctness of control software. Prominent examples for such tools
include Coq [20], Isabelle [21], KeYmaera X [22], Lean [23], and PVS [24].2

Checkers are formal verification tools that allow one to automatically check whether a (model , property)-pair is
element of a particular satisfaction relation (|=) or whether a theorem can be automatically deduced from a
set of axioms given the inference rules of a certain theory or formal system. Prominent examples for such
tools include FDR4 [25], KIND 2 [26], NUXMV [27], PRISM [28], PROB [29], PROLOG [30], SPIN [31],
and UPPAAL [32].3

Generators are formal design tools allowing to automatically translate or transform artefacts of an input lan-
guage (e.g., C++, Mathworks Simulink4) into artefacts of an output language (e.g., an ARM executable,5

SPARK [33]), while provably preserving a range of correctness properties (e.g., type and memory safety).
Prominent examples for such tools include certified compilers (e.g., CompCert [14]) and model-to-code trans-
lators (e.g., the SCADE-to-X code generator [13]).

Overview. In Sec. 2, we recapitulate key requirements on tool qualification from the standards. We assess the current
situation by means of a SWOT (Strengths, Weaknesses, Opportunities, Threats) analysis in Sec. 3 and elaborate our
viewpoint with respect to the above question in Sec. 4. A summary with concluding remarks is presented in Sec. 5.

2 What Do Standards Require?

This section deals with the question:

What do certification authorities (and industries) hope for in regard to tool qualification of proof
assistants, checkers, and generators?

2Note that their code generation capabilities make these tools to be generators as well.
3As already mentioned and to limit the scope, we exclude solvers such as CVC4 and Z3.
4https://www.mathworks.com/products/simulink.html
5https://developer.arm.com/documentation/100166/0001/Programmers-Model
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There are several standards with guidance for tool qualification that apply to the three tool categories mentioned above.
According to our assessment, the guidelines in the avionic standard RTCA DO-178C [4] and its addendum RTCA DO-
330 [7] currently specify the most comprehensive and strictest qualification requirements (see Wagner et al. [12] for a
summary). The standard introduces tool qualification levels TQL-1 to TQL-5 [4, Sec. 12.2.2], [7]. A TQL corresponds
to a set of qualification requirements that depends on (a) the criticality of the target system to be developed, and (b) the
impact that tool failures could have on the software life cycle. The impact is classified according to Criteria 1: the
tool output becomes part of the target software, Criteria 2: the tool automates a verification activity, and its output is
also used to eliminate or reduce parts of other verification activities and/or parts of the development, and Criteria 3:
the tool automates a verification activity, so it can only overlook errors, but never inject errors into the target software.

Depending on the applicable TQL, the effort to be invested into the qualification of a tool varies considerably: the
lowest level TQL-5 just requires (R1) configuration management for the tool software, (R2) documentation, (R3)
verification, and (R4) validation of the tool operational requirements, and (R5) a test suite showing that these require-
ments have been adequately implemented and deployed in the production environment where the tool is used. In
contrast to that, the highest level TQL-1 requires (R6) a fully documented software life cycle and (R7) verification ac-
tivities corresponding to those applicable to target system software development for the highest design assurance level
(DAL) A [34, 4], where software errors may lead to catastrophic consequences for the aircraft and its passengers [7,
Annex A].

With rigour and detail decreasing from TQL-1 to TQL-5, (R1) to (R5) can include the following of certain more
detailed development standards. For example, (R5) may include integration tests to guarantee the correct execution
of the tool’s object code in the run-time environment. (R6) can imply the documentation of tool requirements and the
tool architecture (e.g., specifications at function or method level). Moreover, (R7) requires the verification of a tool’s
behaviour against these requirements and the tool’s robustness in error situations, so that it is ensured that run-time
errors are detected. The results from (R7) need to be checked for correctness and completeness. At the source code
level, algorithmic correctness might be shown by formally verifying the algorithms used by the tool.

Code generators producing C-code from control models, for example, need to be qualified according to TQL-1, if they
generate DAL-A code, and no additional verification measures checking the consistency between code and model are
applied. In contrast to this, model checkers and proof assistants automating a single step of the verification process
are classified according to Criteria 3. Therefore, they need to be qualified only according to TQL-5, regardless of the
criticality of the target system [4, Table 12.1].

The situation is more subtle, if Criteria 2 apply. Suppose, for example, that a code verification tool has proven that
no array boundary violations can occur in a software function. If this verification result is then used to conclude that
the robustness tests concerning illegal array index values provided as function call parameters can be omitted, the tool
would be classified according to Criteria 2, and this would result in TQL-4 if the target system code is associated
with DAL-A or B. The qualification effort needed for TQL-4 is considerably higher than that for TQL-5. It requires,
in particular, an extensively documented software life cycle which is hardly ever available for tools developed over
decades in academic communities.

In summary, depending on the extent to which verification tools, such as model checkers or proof assistants, replace
manual verification or testing, they can either be subjected to just TQL-5 or, for example, for airborne DAL-A soft-
ware, even to TQL-4 if they automate critical parts of the V&V process.

The EN 50128 standard for railway applications [5] mandates a scheme similar to DO-178C, also with three tool
categories, T1, T2, and T3. The integrity level of the target system is, however, left implicit. According to the
supplement EN 50126 [8], T3 with most rigorous implications on qualification applies to tools, such as code generators
and compilers, that can insert errors into train system components. T2 and T1 represent less rigorous requirements
(akin to TQL-4 and 5) to be followed, for example, by tools unable to insert faults but prone to overlook faults (e.g.,
verification tools) and tools neither automatically inserting nor detecting faults (e.g., editing tools).

It should be emphasised that tool qualification is not a once-and-for-all activity [4, Sec. 12.2.1]: the standards stress
that the qualification needs to be re-assessed with every new product development undertaking, because different
target system characteristics may require different tool properties. The product-specific tool qualification, however,
can usually rely on reusable tool components applicable to every target system type, so that tool qualification kits can
be prepared as templates facilitating the target system-specific qualification.

Tool qualification according to these requirements cannot guarantee complete correctness of a tool. This, however, is
not the intention of the standards defining them. Instead, following the specified tool qualification process guarantees
accountability and liability: In case of an undetected tool malfunction leading to a severe failure in the target system,
the artefacts generated during tool qualification allow one to determine whether the tool has not been adequately ver-
ified. If this is the case, the system developers having applied and qualified the tool are liable for the consequences
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of the target system failure. Conversely, if tool qualification has been comprehensively performed according to the
requirements of the applicable standard, the developers avoid liability by arguing that all measures that can be “rea-
sonably expected” to ensure tool correctness have been performed.

3 What Has Been Done?

Following the SWOT analysis guidelines [35], we present some Strengths (Sec. 3.1), including achievements in the
qualification of proof assistants, checkers, and generators. Likewise, we summarise Weaknesses (Sec. 3.2) known
from the literature and from our academic and industrial experience. Finally, we indicate Opportunities (Sec. 3.3) and
Threats (Sec. 3.4) suggesting new research areas and possibilities for enhancing existing work. Below, we identify
each SWOT item with its initial—S, W, O, or T—and a sequence number.

3.1 Strengths

One can observe that the tools in the considered categories (e.g., checking, deduction, compilation) have become quite
powerful and some of these tools are increasingly easy to use, not only from the viewpoints of their developers but
also suggested by expert users in academia [36] and industry [37]. Hence, this section addresses the question:

What are the key achievements in the qualification of proof assistants, checkers, and generators?

Regarding the qualification of proof assistants, (S1) proof terms or objects, capturing basic inferences constituting
a mechanised proof, can be exported [38, 39] to enable the checking of proofs performed in them by additional
proof checkers [40, 41, 42, 43, 44]. (S2) Some assistants even allow one to reason about their underlying logics or
implementations, enabling self-formalisation efforts in order to raise confidence in the their correctness [45, 46, 41].
Such efforts have led, for example, to the HOL Light proof assistant, mechanically verified down to the level of
machine code [47, 48].

In the context of the qualification of checkers, (S3) Bendisposto et al. [49] report on the effort of validating the
ProB model checker as an EN 50128 class T2 tool. Bendisposto et al.’s qualification argument includes a proven-
in-use claim, extensive coverage-oriented testing, static analysis, and cross-checking with another B parser (Atelier B
bcomp [50]). In contrast, Wagner et al. [12] argue that it is sufficient for a model checker (e.g., KIND 2 [26]) to achieve
TQL-5 (similar to T1). After deriving 111 requirements for that checker and further requirements for a proof checker,
they perform corresponding (language coverage) tests and peer reviews according to DO-330 [7] (cf. Sec. 2).

Wagner et al. demonstrate the (S4) independent verification of KIND 2’s output with a simple-to-qualify proof checker
(i.e., Check-It based on the LFSC6 [51]) based on proof certificates of an SMT solver. In their study, the CVC4
solver [52] provides a k-induction-based certificate that unsafe states cannot be reached [53]. Wagner et al. then apply
their TQL-5 argument to Check-It instead. For reachability in timed automata, Wimmer and von Mutius [54] show
how proof certificates can be represented as compressed sets of abstracted symbolic states. In addition to certificates
for the class of safety properties [53, 54], liveness certificates can also be generated in SAT-based linear temporal logic
(LTL) model checkers [55] and for timed automata model checkers [56].

Furthermore, (S5) some core algorithms of a variety of model checkers have been verified using proof assistants, for
example, PRISM’s probabilistic computation tree logic checking algorithm [57], a UPPAAL-compatible formalisation
of timed automata checking [58] together with a multi-tier qualification argument [19, Sec. 4.2], and a proof of the
critical LTL-to-Büchi automaton translation [59], the three approaches using Isabelle/HOL.

Concerning the qualification of generators, (S6) the optimising, semantics-preserving C compiler CompCert, formally
verified in Coq, has been successfully qualified for use in the development and certification according to IEC 60880
of a high-integrity control system in the nuclear power domain [60].

Underlining DO-178C’s testing-driven qualification, (S7) Taft et al. [61, Sec. 5] suggest that TQL-1 for a Simulink-
to-SPARK or -MISRA C generator can be achieved by integrated unit testing with sufficient coverage of the generator
input language. Here, the language of Simulink models is covered by traversing its block grammar rules. The authors
describe how input-language coverage can drive test requirements (i.e., input equivalence classes for code units of a
generator), the creation of assertion checkers with oracles (i.e., outputs of the units expected for certain inputs to these
units), and, ultimately, test coverage (i.e., sufficiently covering the input/output behaviour of each of the units).

(S8) The commercial ANSYS SCADE Suite creates code from SCADE models and offers a TQL-1-conforming tool
qualification kit [62, 13]. Moreover, the generated object code can be verified against the generated C-code. Both

6Logical Framework with Side Conditions
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tool qualification and object code validation rely on tests achieving Modified Condition/Decision Coverage (MC/DC).
These suffice according to DO-178B to obtain TQL-1 for the tool and to verify the production object code for DAL-
A. In other cases, (S9) code generation can be certified (in class T3) when using diverse implementations with code
produced by at least two independent code generators and the resulting executables running on diverse hardware [63].

In summary, there are several efforts to reduce the code base responsible for proof construction to a minimal trusted
core of verifiable routines. Examples include the concentration of KIND 2’s qualification on the verification of
CheckIt [12] as well as the focus of qualification efforts in Isabelle on its kernel, which is orientated towards the
compact Logic-of-Computable-Functions (LCF) principle. On the side of code generators, Yuan et al. [64] follow a
refinement-based approach (proving a forward simulation relation) to certify semantics-preserving C-code generation
from a functional program previously security-verified in Coq. They establish confidence in their certification by a
careful minimisation and validation of the trusted computing base. On the other side, the approaches to qualifying
proof assistants and model checkers, desired to be more trustworthy [65], seem to focus on artefacts (e.g., validat-
ing the tool’s result by an additional checker) rather than the tools themselves (e.g., testing the tool and verifying its
algorithms).

3.2 Weaknesses

This section is centred around the question:

Why can tool qualification sometimes fail? What can go wrong when using a proof assistant,
checker, or generator in an industrial certification setting?

(W1) Arguments based on the soundness of the underlying logic of a proof assistant may be invalidated if user-defined
axioms are added [66, Sec. 3]. Some assistants allow suspension of certain proof obligations in their interactive
modes [39] or by disabling guard conditions [67]. (W2) Moreover, proof checkers developed to check proofs of the
same proof assistant they have been implemented and verified in, such as [41, 42], may not be sufficiently diverse to be
applied in the independent checking of proofs. (W3) Importantly, if proof assistants are not qualified and their proofs
are not checked by a sufficiently diverse7 proof checker—that is, if they constitute a single point of failure—then it
may be necessary to fall back to a manual (independent) repetition of these proofs [68, Sec. 2].

(W4) For formal method applications, Taft et al. [61] state that “the co-development of formal specifications, proofs,
and program code raises significant ‘common mode’ concerns”. (W5) For model checkers, Wagner et al. [12] stress
that common cause errors in an unqualified model checker and a qualified proof checker are easy to be overseen.

Concerning the qualification of generators, (W6) code generated from provably correct types (i.e., specifications of
data structures and algorithms) may not be ensured to conform to those types if the generation mechanism is un-
qualified. This can be partially tackled by verified code generators such as [69] and [70] for Coq and Isabelle/HOL.
(W7) Though conforming to the qualification requirements discussed in Sec. 2, the form of generator testing sug-
gested in [61, Sec. 5], even if applied with MC/DC tests to achieve TQL-1 (see also S8), is not a valid replacement for
rigorous proofs of tool correctness or equivalence checks of generated code against models.

Furthermore, we need to acknowledge that qualification is supposed to not only provide evidence for the correctness
of the tools in isolation but also to show the suitability of these tools in regard to the requirements of the particular
development and V&V projects. Appreciating the state of the art, however, it needs to be said, that (W8) the mentioned
tools have largely been used in environments where certification is not required (e.g., in academic settings). Moreover,
certification authorities have still rarely considered formal design and verification as key activities and their results as
key artefacts in industrial assurance cases. It might thus be unsurprising that tool providers (e.g., research teams) have
only given limited attention to a comprehensive industry-strength qualification.

It is important to note that tool qualification is not about assuring that the input to a proof assistant (i.e., a type and
a theorem) or model checker (i.e., a model and a property) is actually valid. Nevertheless, the (W9) crucial issues of
translation and input validation can have a tremendous impact on tool qualification.

As observed by Cofer [71, p. 24], the risks stemming from a translation required to use a proof assistant or model
checker can in certain cases outweigh that tool’s benefits, in comparison with the often less involved default transla-
tions.

Default translations reflect what might occur in any safety-critical development and usually encompass, for exam-
ple, the necessary transformation of requirements into an implementation, the derivation of a test suite from these

7Some regulators using older versions of IEC 61508 were not even positive about the mitigation of a failure in a proof assistant
(e.g., PVS) via the use of a different tool [68, Sec. 2].
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requirements, the occasional translation of critical requirement fragments into useful but often free-style mathematical
sketches. The additional translation required to use a proof assistant or model checker usually includes (i) a careful
transcription and abstraction of the requirements and the domain description into a (model , property)-pair,8 and then
(ii) an alignment of the verified model with, or a translation into, an implementation.

The aforementioned risks may thus include, for example, issues in understanding an additional model in another lan-
guage or the costs of aligning that model with the existing descriptions by tracing backward through the corresponding
translations and abstractions.

Concerning input validation, model checkers and proof assistants do not usually help one in figuring out how much
a checked property or deduced theorem contributes to a proof obligation [66, Sec. 3.1.2]. Overall, translation- and
input-related issues threaten the essential correctness assertions that (i) the (model , property)-pair reflects the domain
and the intended requirements, and (ii) the specified property is strong enough to rule out undesirable models.

3.3 Opportunities

Based on previous studies [37, 36], we are confident that formal design and verification tools have good potential to
improve the best practices in the development and assurance of control software. Here, we focus on the question:

Building on the strengths (Sec. 3.1), which opportunities are there for getting these tools qualified?

(O1) A qualification of the Isabelle proof assistant would lead to a significant number of software products verified by
means of Isabelle to become certifiable. To provide an example, the seL4 case study applies Isabelle comprehensively
to verify an operating system kernel [72], focusing in particular on security properties such as the enforcement of strong
isolation between applications run on top of it, intending it to serve as the foundation of trustworthy systems [73]. seL4
is not yet certified [74]: As suggested in [9, Talk 3.1], tool qualification of Isabelle is the essential prerequisite to obtain
certification credit for the correctness proofs developed for the kernel. Thus, a reference qualification for Isabelle, yet
missing, could increase the motivation to qualify other proof assistants as well.

(O2) Regarding the design of proof assistants, the simplicity of the LCF approach underlying many modern proof
assistants could be further exploited [66, 18]. This approach prescribes an inference kernel as the sole soundness-
critical component, performing a limited number of primitive inference rules and operations to expand theories. From
studying this kernel, we could learn how to qualify the cores of proof assistants by sufficient unit testing and turn them
into trusted components.

(O3) Accepting potential fallbacks to manual proofs (W3) as highlighted in [68, Sec. 2], tool-informed manual proofs
could still be an improvement over entirely manually performed proofs. In low-criticality contexts, we could then
think about using proof assistants for that purpose even without qualification. (O4) Moreover, the qualification of
proof assistants could benefit from extended guidance on how to use them to address the requirements of specific
standards. For example, Bertot et al. [75, 44, Sec. 3.3] provide recommendations on how to employ Coq in the
context of the Common Criteria (CC) standard (e.g., a restricted configuration of Coq when used for the demanding
CC evaluation assurance levels EAL 6+/7).

Concerning the qualification of checkers and in the context of TQL-5 qualification, (O5) Wagner et al. [12] spread
optimism by stating that “the guidance of DO-330 does not require any activities that are especially difficult or costly
for qualification of a model checker.” So, there is an opportunity for other model checkers to follow their approach.

In regard to the qualification of generators, (O6) certified compilers, such as CompCert, can confidently raise the level
of abstraction of proof efforts, given the supported language fragment fits the practical needs. For instance, if it can
be certified that a compiler preserves the semantics of a given program between source code and compiled code, then
it becomes possible to analyse the source code and soundly transfer the results to the compiled code. This reduces
the need for additional analysis of the compiled code and costly reviews on whether the compiled code corresponds to
the source code [76]. A nearby opportunity would be to try to achieve TQL-1 of the trusted computing base of code
generators using semantically-integrated refinement proofs as, for example, shown in [64]. An alternative solution to
dealing with simpler generators could be to use a complete testing approach [17].

(O7) Here, the code generation capabilities of proof assistants constitute a particularly motivating target for tool
qualification. If they could be qualified to generate code from specifications developed in proof assistants so that
the generated code retains properties established over the specifications via the proof assistant, this would foster
the qualification of a large number of already existing tools developed via proof assistants, including LTL model

8For the sake of simplicity, we consider a (model , property )-pair for a model checker to be the dual of a (type, theorem)-pair
for a proof assistant.
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checkers [77], SAT solvers [15], and compilers [60, 70]. For instance, Bendisposto et al.’s [49] aim is to achieve a
validation of the ProB generation facilities as an EN 50128 class T3 tool.

Following the idea of artefact-based qualification, (O8) we could improve the support of redoing interactive proofs or
automatic checks in diverse proof assistants [78, 79, 80] and model checkers.

We could further (O9) mitigate the risk of a poor cost-benefit ratio from using formal design and verification tools.
Regarding the required additional translations (W9), two types of benefits are important to be considered: a short-
term benefit from early fault detection and a long-term benefit from having reusable domain models and theories.
These benefits could be strengthened by methodologies aiding in the translation between requirements or assurance
documents and the input languages of model checkers and proof assistants. See the two recent examples in [81, 82].

Part of the input validation problem has been addressed by coverage metrics and sanity checks [83], for example,
the automatic identification of easily breakable preconditions leading to vacuously true implications, warnings about
problematic proof directives (cf. W1), as reported, for example, to Isabelle users [39], and model-in-the-loop testing,
for example, to make sure that the model captures domain phenomena in such a way that useful properties can be
specified. Along with these measures, tool-specific debugging techniques can help us to increase the confidence and
trust in formal design and verification tools. Furthermore, informal-to-formal translations and input validation could
be controlled with frameworks such as Isabelle/DOF [84], demonstrating direct support of requirements traceability
within proof environments.

Finally, (O10) we expect that proof assistants, checkers, and generators will increasingly be used in high-integrity
system assurance, so that their qualification will gain increasing attention.

3.4 Threats

In this section, we focus on the following question:

Which obstacles to the qualification of formal design and verification tools are to be expected?

Weaknesses refer to problems observed or known with the existing state of the art. Threats focus on challenges to cope
with and risks to reoccur or to be faced, in particular, when trying to pursue the opportunities listed in Sec. 3.3.

Concerning the qualification of proof assistants, two threats may limit the benefits of tool qualification guidelines (O4):
(T1) First, the code bases of even the cores of Isabelle and Coq exceed 10,000 lines of code, and future versions of
both tools could exhibit soundness flaws, as detailed for earlier versions in [66, Sec. 3.2]. (T2) Moreover, components
outside of these cores may still need to be qualified to ensure that a proof assistant checks the proofs the user expects
it to check. This qualification, in particular, includes printing and parsing capabilities, where many assistants allow
(i) syntactic manipulations that could mislead users about what theorems they are actually proving [85] or (ii) to print
theorems in ways that, when parsed again, result in different theorems. This aspect has been addressed explicitly only
by a few tools, such as HOL Zero [86], which has been developed for this very purpose.

(T3) The well-structured qualification case in [19, Sec. 4.2] for a timed automaton checker code base contains the
clause “it is widely accepted within the community that Isabelle/HOL only admits valid theorems (at least on the user
level).” As a proven-in-use argument, even a well-justified observation like this needs to be underpinned by detailed
evidence for a certification authority, as indicated by Adams [66, Sec. 3.1.2]: According to the applicable standards, a
proven-in-use argument requires a comprehensive documentation of its service history [4, 12.3.4]. This documentation
comprises a complete history of configuration management and product failure tracking. Such a history will not usually
be available for verification tools developed in the academic communities. Moreover, obtaining certification credit for
such a tool in a particular V&V campaign requires that the tool has been used extensively in the past and in domains
that are similar to the actual system to be verified. Providing a history of successful use will hardly be feasible for
tools developed in academia, since the tool applications—though extensive—are usually on examples stemming from
open-source developments or significant academic challenges that were not directly based on V&V campaigns for
safety-critical industrial systems.

Regarding the qualification of checkers, in particular when pursuing TQL-5 (O5) or proof replay (O8), (T4) it can be
challenging to explain the indirect approach to assurance with additional proof checkers to certification authorities [12].
(T5) The effort of qualifying a proof checker for TQL-5 can, although not difficult (W5), be nearly as high as the effort
for qualifying the model checker itself for TQL-5 [12]. Similar efforts could raise two questions: Depending on the
capabilities of the proof checker, could the latter be used as the model checker in the first place? And, relating to (O3),
if a tool is only used to double-check manual proofs, do we need tool qualification at all? On the one hand, Wagner
et al. [12, Sec. 6] discuss how TQL-4 might require a much higher effort than TQL-5. On the other hand, it remains
to be seen how often TQL-4 applies to tools for verifying DAL-A code if these tools do not replace large parts of the
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DAL-A verification procedure. (T6) In addition, the format and size of proof objects and certificates for large systems
could make their validation difficult.

Regarding the qualification of generators, (T7) as indicated by Yang et al. [87], even compilers having undergone seri-
ous certification efforts [14] might still have critical flaws, threatening the preservation of the semantics (O6). Hence,
it is crucial that a tool qualification case makes explicit the exact circumstances and the code for which certification
credit was obtained.

The following threats pertain to any kind of tool. (T8) As an organisational aspect and human factor, there could be a
lack of trust on the side of certification assessors into V&V approaches based on formal methods and supporting tools.
This lack of trust could hinder qualification. (T9) Moreover, tools from the three categories discussed in this article
face the usual risk of their code bases getting too complex to be qualified for a targeted TQL. Similarly, discontinuities
in tool maintenance (e.g., missing or new developers) could hinder re-qualification. Additionally, changes of both,
tools or standards (e.g., DO-178C), could trigger costly re-qualification.

4 Our Viewpoint: What Could Be Done Next?

This section is an attempt to suggest answers to the following three questions:

How can we handle the weaknesses (Sec. 3.2)? How can we use the opportunities (Sec. 3.3) to the
maximum benefit? What could we do to mitigate the threats (Sec. 3.4)?

Our viewpoint is that a repetitive and exhaustive formal verification of tools (e.g., Isabelle beyond its core or the
collection of PRISM’s algorithms) is likely to remain difficult if not infeasible, both economically and organisationally.
Some tools have just grown too complex and might naturally remain black-boxes, even to their expert users.

In the context of artefact-based tool qualification, our SWOT analysis in Sec. 3 and our experiences with the state of
the art suggest several tasks to be considered for a successful qualification of formal design and verification tools.

(V1) Based on the widely accepted de Bruijn criterion for checkers [88]9 and on Pnueli’s idea of generator output val-
idation [89, 90], we advocate the enhancement or replacement of tool verification by artefact-based tool qualification.
Successfully qualified artefacts could replace the qualification of the tools producing these artefacts. The conditions
stated in DO-178C [4, Sec. 12.2] will then be imposed on the artefact validation tools, ranging from utilities for com-
puting “checksums” (and other properties indicative of the validity of the output) to preferably simple proof checkers
or proof certificate analysers certifying the validity of the output. This form of qualification is not only increasingly
supported by the research community, as discussed in Sec. 3, but would also address the principle of Explainability in
the Manifesto for Applicable Formal Methods [91].

(V2) The comprehensive testing according to DO-178B/C for the qualification of a complete model checker or proof
assistant might also be infeasible. As discussed in Sec. 3.4, a proven-in-use argument will not be acceptable from
the standards’ perspective. Hence, following the suggestion in [4, Sec. 12.3.2.4/5], we again stress the achievement
of redundancy of proof results through the use of diverse tools, as also suggested by Fantechi and Gnesi [92] and
successfully applied, for example, by Parillaud et al. [93].

(V3) More specifically, trust in tools could be increased by improving proof certificates. In particular, the application
of diverse tools to the same problems could be facilitated by developing and adopting shared formats analogous to the
TPTP10 family of exchange formats [94]. At the conceptual level, Chihani et al. [11] characterise core elements of
proof certificates to be defined and shared among provers and solvers. For model checkers, Beyer et al. [95] explore a
graph-based shared format for correctness witnesses11 produced by these tools.

(V4) We think that, for further industries to gain trust in the mentioned tools, early qualification cases should be
open-source rather than undisclosed and only shown to certification authorities (e.g., the undisclosed case of the DO-
178C/TQL-1-certified SCADE code generator [13]). Generally, we should build up lasting trust in new technologies
of any kind by making reference cases open-source (e.g., the seL4 proofs [73, 74])

(V5) Specific guidance for the auditing of mechanised proofs could be developed in order to simplify and regulate
this process. This could include both tool-specific guidance such as the need to check for the suspension of proof

9“A mathematical assistant satisfying the possibility of independent checking by a small program is said to satisfy the de Bruijn
criterion.” [88]

10Thousands of Problems for Theorem Provers
11In model checking, counterexamples witness the violation of a specification (e.g., a temporal logic formula) and witnesses

are models of a specification. In contrast, correctness witnesses compactly represent complete sets of witnesses, that is, invariants
certifying safety of a model.
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obligations or disabling of guards, which may affect soundness, as well as general guidelines for the examination of
theorems and their dependencies as suggested in [66, Sec. 3]. Analogously, guidelines for the use of proof assistants
such as [44] for Coq could be extended to other tools and checked against in proof audits. Considering the possibility
of tool-informed manual proofs, proof auditing could thus foster the use of mechanised proofs in qualification efforts
instead of only relying on proof assistants themselves. Hence, we would like to advocate tool-informed over fully
manual proofs. Human-friendly proof languages such as Isabelle/Isar [39] can enable such a form of interaction.12

Generally, an improved tool support for input validation of and translation between artefacts (W9, O9) would devitalise
the occasional “garbage-in/garbage-out” argument against formal design and verification tools.

(V6) To prevent us from constructing circular qualification arguments,13 an alternative would be to strive for suffi-
ciently diverse and independent proof checkers, for example, one for Isabelle/HOL verified and implemented in Coq
and vice versa.

(V7) Given a verified model checker (e.g., as shown in [58, 57]) or a simple proof checker, and apart from the issues
of an additional translation (as described in Sec. 3.2 and to be addressed by, e.g., model-in-the-loop simulation), we
think that there are no hard-to-overcome obstacles to getting a model checker qualified up to TQL-5.

Moreover, (V8) proof certificates could complement certified compilers with certifying compilers [65].

In a survey of benefits and limits of tool qualification according to DO-330 and DO-178, Ibrahim and Durak [96]
allude to the trend “of not qualifying development tools [but rather] qualifying verification tools”. To avoid costly
re-qualification (T9), they suggest (V9) the definition of use cases within which a tool can be transferred from one
project to another. This idea could perhaps be adopted in the qualification of formal verification and design tools.

5 Summary

In this work, we have assessed some key issues for getting proof assistants, checkers, and generators qualified ac-
cording to the applicable standards. Table 1 provides a summary of our findings from the SWOT analysis as well
as the suggestions accompanied with our viewpoint. We hope that our discussion contributes to the next generation
of qualified formal design and verification tools in order for them to be used in the development and certification of
control software used in cyber-physical systems, such as intelligent robots and autonomous systems [1]. Finally, a
wider assessment of the field under discussion could include (i) tools for abstract interpretation, further solvers and
checkers, and (ii) proof-carrying code could be similarly discussed as a form of proof certificates.
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S. Götz, L. Linsbauer, I. Schaefer, and A. Wortmann, editors, Software Engineering (SE) Satellite Events, volume
2814 of LNI, CEUR Workshop Proceedings, pages 1–22. 2021.

14


	1 Introduction
	2 What Do Standards Require?
	3 What Has Been Done?
	3.1 Strengths
	3.2 Weaknesses
	3.3 Opportunities
	3.4 Threats

	4 Our Viewpoint: What Could Be Done Next?
	5 Summary

