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Abstract: Resolving bugs in the maintenance phase of software is a complicated task. Bug assignment is one of the main tasks for 

resolving bugs. Some Bugs cannot be fixed properly without making design decisions and have to be assigned to designers, rather than 

programmers, to avoid emerging bad smells that may cause subsequent bug reports. Hence, it is important to refer some bugs to the 

designer to check the possible design flaws. Based on our best knowledge, there are a few works that have considered reffering bugs 

to designers. Hence, this issue is considered in this work. In this paper, a dataset is created, and a CNN-based model is proposed to 

predict the need for assigning a bug to a designer by learning the peculiarities of bug reports effective in creating bad smells in the 

code. The features of each bug are extracted from CNN based on its textual features, such as a summary and description. The number 

of bad samples added to it in the fixing process using the PMD tool determines the bug tag. The summary and description of the new 

bug are given to the model and the model predicts the need to refer to the designer. The accuracy of 75% (or more) was achieved for 

datasets with a sufficient number of samples for deep learning-based model training. A model is proposed to predict bug referrals to 

the designer. The efficiency of the model in predicting referrals to the designer at the time of receiving the bug report was demonstrated 

by testing the model on 10 projects. 

Keywords: software maintenance, bug triage, deep learning, convolution neural network, word embedding, design flaw prediction, 

code smell 

_______________________________________________________________________________________ 

 

1. Introduction 

Evidence from various studies suggests that maintenance activities are among the most expensive activities in the 
software development life cycle [1]-[2]. Palomba et al. [3] reported that maintenance costs range from 2 to 100 times the 
cost of software development. Providing a way to automate the bug process is very attractive due to its impact on cost 
reduction. Bugs reports received from Bug Tracking Systems (BTS), must be triaged. Due to a large number of bugs 
received, manual triaging is very time-consuming.  

Extensive research has been done to automate the bug-triaging process. One of the main tasks in bug triaging is the 
suggestion of a good programmer to fix the bug [4]-[7]. All previous research on the bug management system has led to 
the help of a triager to assign the bug to the right programmer. However, it seems that the source of many software bugs is 
design flaws. The design flaws as a cause of software bugs have been investigated by researchers and their correctness has 
been demonstrated. Not correcting the design lead to the error-prone code. In this work, we are looking for a solution to 
decide if we need to change the design while fixing the software bug or not. If design changes are needed instead of 
assigning a bug to the programmer, we first refer it to the designer to review the design flaws.  

In this study, the need to change the software design in the bug fixing process by receiving a bug report is examined. 
To achieve this, we must first define the bad design and its criteria. For this purpose, the criteria of a code with bad design 
are determined. This type of code should be referred to a designer to examine the design and probably correct it. The version 
for fixing each bug is reviewed according to the criteria and the need to examine the design is investigated. This review 
and compliance with poor design criteria should be done before the bug is referred. A model should be provided that 
receives the new bug and poor design criteria as the input. The model predicts code changes and identifies whether or not 
to examine the design.  

Bad smell is one of the hallmarks of a bad design. To detect bad smells, some signs are defined and the code that has 
these signs may have a design flaw and this code should be examined in terms of design. In this work, we will deal with 
bad smells as signs of bad design in the software code, which forms the basis of the current research. The article on code 
smells was provided by Fowler [8]. Bad code or bad smells are a sign of poor design and implementation, which has a bad 
effect on the work of developers [9]-[10]. They remain in the software for a long time and have side effects such as 
increasing change times, making fault-prone code [11]-[12], reducing comprehension [13], and reducing the maintenance 
capability [14]-[16], [8].  

Bad smells may not directly lead to software failures. However, they may indirectly lead software to fail [17]. They 
make software changes harder, which in turn can lead to bugs. There is a lot of research that demonstrates the correlation 
between the code smell and defect-prone codes. Various works have proposed that using the code smells in the input of the 
bug prediction models increases their efficiency [18]. In [19], several projects have empirically concluded that design flaw 
correlates with software defect. Increasing the number of design flaws increases the likelihood of bugs occurring. Code 
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artifacts that suffer from bad smells due to maintenance and evolution have different characteristics than clean samples. 
This finding is consistent with the results of the history of the evolution of bad smells in [20]-[22].  

However, there are cases, especially in blob and complex class, where bad smells appear on the file after several 
changes. In such cases, files having bad smells reveal a certain tendency toward quality metrics that are completely different 
from clean files. These results encourage the development of advisors who can warn software developers in a timely 
manner. The increased worrying parameters due to the code changes lead to bad smells in the code[12].  

According to the mentioned results, it seems that the design modification in the software maintenance stage is necessary. 
However, based on our best knowledge, there are a few works that have been done to help the triager to assign a bug to the 
designer. Also, there is a high correlation between the code smells and the software bug, and codes with bad smells have 
features that can be used to predict a bad smell. Further, code changes in the bug-fixing software version are predictable 
when the bug is received. Finally, with software changes, bug-prone modules are predictable.  

This motivates us to provide a way to predict the number of bad smells by receiving a bug report. This is performed 
before making any changes in the source code and without seeing the software code. The goal is to suggest a model that 
predicts the bad smell appearance in source code in the bug fixing process. In fact, by receiving the bug report, and before 
assigning it to the programmer and making a change in the source code, we predict what bad smells it will have in the bug 
fixing process. In this way, we refer the bug to the designer to fix the design defects. This model uses information about 
previously fixed bugs such as the software bug reports’ information and bad smells that exist in the software source before 
and after fixing the bug in the training phase. The applied model uses only the reported bug information such as summary 
and description for predicting bad smells and there is no need for software source code. Based on our best knowledge, 
predicting the extent of bad smells in the bug fixing process is proposed for the first time. This is done in the first stage of 
bug triaging by receiving a bug report and before bug assignment, by seeing the bug report and without the need for software 
source code. By predicting the appearance of the bad smell in the bug fixing process, if the bad smell appearance is higher 
than a specific threshold, refer the work to a designer instead of the programmer to fix design flaws to decrease future bugs’ 
occurrence.  

The most important contributions of this research are as follows: 

 Providing a solution to predict the need to change the software design in the bug fixing process by receiving a 

bug report to help the triager to refer the bug to the designer. 

 Predicting the number of bad smells that appears in the modified software code to fix the received bug report, 

using bug report information such as summary and description, as soon as the report is received before the bug 

is installed and before changes are made to the software and without the need to have a modified source code in 

the bug fixing process.  

 Providing a deep learning method and extracting textual features and classifying the bug into two classes: 1) the 

bug needs to be referred to the designer, and 2) the bug does not need to be referred to the designer. 

 Preparing a dataset for the reported bugs of 10 projects and specifying its class labels with two labels: need to 

refer bug to the designer or no need to refer. This is done by analyzing the code smells of the source code before 

and after fixing the bug using the PMD tool.  

 Carrying out an empirical study on 10 different projects and proving the efficiency of the proposed method to 

predict design flaws. 

The continuation of this research is as follows: The second section deals with related work. In the third section, the 
overall view of the proposed method is presented. Section 4 presents data preparation. Section 5 presents the prediction 
model. The sixth section analyzes the results and finally Section 7 concludes this work. 

2. Related Work 

In recent years, many research works have been reported in the bug triaging domain. Habayeb et al. [23] proposed an 
HMM-based method for classifying bugs into short and long fixation times. In their method, the activities performed in the 
bug fixing process were extracted. Based on whether the bug fixing time was longer than the average fixing time or less, 
they were divided into two categories. An HMM-based model was created for each category, and a new bug was given to 
the two models to determine their class. The model was evaluated with Firefox data and its higher efficiency has been 
demonstrated. In our previous work [24], we proposed a method based on deep LSTM and Word embedding to improve 
the work done by Habayeb et al. [23]. In the proposed method, by using word embedding, the semantic connection between 
the terms is recognized, and by using Deep LSTM, the connection between Long term and short-term is discovered. The 
results of the evaluation of the algorithm on Habayeb et al. dataset showed 15% improvement. 

In recent years, a lot of research has been done on fault localization to predict the part of the software code that causes 
the bug. The basis of most methods is to find similarities between the text of the bug report and the source of the software 
using IR-based methods [25]. Gharibi et al.[26] proposed a method for bug localization by combining a series of methods. 
Each method provides a ranked list, and the combination of these ranked lists is presented as the final ranked list. The input 
of the algorithm is source code, the previously fixed bugs, and the new bug. Token matching performs bug localization by 
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finding tokens in the text of the bug report and source code. VSM using rVMS provided in Zhou et al. [27] calculates the 
similarity between the bug and the source file and presents its ranked list. Stack trace provides a list using the stack trace 
in the bug report. The semantic similarity component fills the gap between natural language and programming language 
due to the differences between the terms in the source code and the bug report. This component also provides a ranking 
list. The fixed bug reports component provides a list based on modified files in previously fixed bugs. The final list is 
generated by combining the lists provided by the various components. The proposed method has been evaluated using data 
from 3 open-source projects and its high efficiency has been demonstrated.  

Rath et al. [6] proposed a method for bug localization by using the requirement graph and the graph of the modified 
files in the bug fixing process. The method was compared with SimiScore and CollabScore methods and showed a relative 
improvement. Zhou et al. [27] proposed the BugLocator method for finding files that caused bugs. In this method, they 
created a graph where its root is the new bug, the first level is the bug similar to the root bug, and the second level is the 
graph of the files modified in the process of fixing bugs of level 1. The similarity between the bugs is calculated using the 
modified version of VMS called rVMS. Based on this graph, a ranked list of possible files for bug locating is created. 
Another list is based on the similarity of the bug with the software source files. The final list is created by combining these 
two lists. The proposed method was tested with 3,000 open source project bugs, and its performance was improved 
compared to state-of-the-art methods. 

A comprehensive empirical study was conducted by Tufano et al. [28]. They found that most bad smells occur when a 
file is created. However, there are cases, especially in the case of Blob and Complex Class, where bad smells appear on the 
file after several changes. In this case, the files having bad smells reveal a certain tendency toward quality metrics that are 
completely different from clean files. Smells are generally created by developers when upgrading to a new feature or 
implementing a new feature. As the smells usually appear 1 month before the deadline, a significant number of them will 
appear in the first year of the project. Developers who cause bad smells are the owners of the bad smelly files that create 
bad smells when they have a lot of workloads. More than 80% of bad smells have not disappeared during the evolution of 
the system. Only 9% of bad smells are removed as a result of refactoring operations. 40% are eliminated by deleting a bad 
smelly product, and adding a new code, eliminates 15% of bad smells. 

Kessentini et al. [29] proposed a solution based on the distributed optimization problem to bad smell detection. The 
proposed method has 2 algorithms. The first one is an evolutionary algorithm based on genetic programming to generate 
rules for detecting code smells. The design parameters and some bad smelly codes are given to the algorithm as input. The 
genetic algorithm generates the number of rules equal to the number of bad smells that could be detected. The second 
algorithm that runs in parallel with the first is the genetic algorithm, which uses well-designed code samples to generate 
instances of the code smells (these are called detectors). The GP algorithm checks the coverage of the sample input code 
smells of the algorithm with the generated output rules of the algorithm. The GA algorithm evaluates the deviation of 
detectors generated by the algorithm with well-designed codes that are the input of the algorithm using global and local 
alignment techniques [30]. The two algorithms interact with each other using the second component of the target function 
called the intersection function. The function works in such a way that the intersection of code smells found by the two 
solutions is maximized. The best rules and detectors can be used to evaluate new systems, and there is no need to re-run 
the algorithm. 

Xuan et al.[7] proposed a CNN-based approach for bug localization. The main focus of the work is to train the network 
with the data of one project and test it with the data of another project. This method is used in places where the data of a 
project is not sufficient for training. The proposed method was called TRANP-CNN and it was trained using fixed bug 
reports and bug files specified in the process of fixing them in the source project. They tested the model with destination 
project data, and the performance specifying a ranked list of 1, 5, and 10 suggested files are 29.9%, 51.7%, and 61.3%, 
respectively.  

Xiao et al. [31] to use the semantic information contained in the bug report and source code, proposed the DeepLoc 
method for Bug localization. In the proposed method, the text of the bug report and the source code are converted to vector 
using word embedding. Using the CNN network, the features of these texts are extracted. An enhanced CNN is trained 
based on previous reports that have been fixed and files have been identified as bug location. This model has 10% better 
MAP than state-of-the-art methods for predicting bug files in AspectJ, Eclipse, JDT, SWT, and Tomcat bug reports. 

Ruan et al. [32] proposed a deep learning method to recover links between commits and bug reports when not done 
manually. In the proposed method, using word embedding, the source code and the bug report are independently converted 
into two vectors, and their features are extracted in this way. A deep LSTM network is created and trained with previously 
fixed bugs and their corresponding commits. This model is used to recover links between the bug report and the source 
code corresponding to its fixation. The performance of this method compared to FRLink shows an improvement of 18.3%.   

Xi et al. [33] Proposed a sequence-to-sequence model, called iTriage for developer assignment. The method was 
developed to simultaneously use the text of the bug report, metadata, and tossing graph. During the bug fixing process, 
developers communicate with each other by exchanging comments. In addition, they can assign the fixing task to another, 
which is called the tossing graph sequence. The reason for this could be a mistake in the initial assignment or using the 
experience of more experienced people to fix the bug. The iTrige method considers the connection between the fixers 
specified in the graph tossing. The iTriage consists of two models: a model for extracting features and a model for proposing 
the fixer. The first model includes an encoder for representing the text of the bug report using bidirectional RNNs and a 
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decoder for tossing Sequence modeling using RNN. The Fixer Suggestion Model is a strap class that is the appropriate 
class for the developer bug to fix it. Evaluation results show that iTriage improves state-of-the-art methods. 

3. The Proposed Method 

In this section, we describe the proposed method for predicting the need to refer a new bug to the designer. Figure 1 
explains the general structure of the proposed method. As shown in the figure, the method has two main phases:  

1) Data preparation which contains data collection and labeling steps. 

2) Proposign a prediction model and its track to predict whether the bug should be referred to the designer or not.  

Based on our best knowledge, there are a few works that considered referring the bug report to the designer. Hence, we 
need to prepare a dataset to evaluate the proposed model. For this purpose, the required features of the model are extracted 
from the BTS system and the corresponding label from the bug is extracted from the Configuration Management System 
(CMS). The details of preparing the dataset are given in Section 4. 

By preparing the dataset, we are ready to design a prediction model. Here, a CNN-based model is trained with this data, 
and its efficiency is proven by testing it. The extraction, training, and testing methods are discussed in detail in Section 5. 

 

 

Figure 1. The overall structure of the proposed method 

 

4. Dataset Preparation 

The preparation of the dataset to evaluate the prediction model consists of two parts. The first part is to extract the 
features and the other is to specify the label for each bug. This information is extracted from previously fixed bugs in ITS 
and software versions related to their fixing in the GitHub system. To generate the dataset, we developed a tool. Figure 2 
shows the general structure of the developed tool for dataset preparation. 

 

 
Figure 2. The developed tool for dataset preparation 

4.1 Data Collection 
In this section, we describe how to collect bug data from ITS and SCM systems and store them in a database. This 

information is used to extract the features and apply them to the predictor model. The ITS system is provided to manage 
the report and fix the bug. This system allows the user to send the report of the observed bug. The user enters information 
such as the date of creation of the report, the name of the reporter, the priority of the reported bug, the severity, a summary 
text about the bug, and a descriptive text about it. The reported bug received by the triager, is prioritized and assigned to 
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the relevant programmer. Some information such as the date of the assignment, the assigned programmer, and the date of 
fixation in this process are recorded in the ITS. The programmer that the bug is assigned to may assign the bug to someone 
else, exchanging files or comments with others, and all of these activities and their history are recorded in the ITS system.  

The information stored in this system is accessible through interfaces such as the REST API. Another system is the 
configuration management system (CMS) which maintains the software changes. Each version of the software is provided 
with a unique commit hash. In the commit provided to handle an issue, the number of this issue is recorded in the system. 
So, a commit hash with an issue ID are identifiers that specify the software version corresponding to fixing the bug.  

SCMs such as GitHub, allow you to download different versions knowing it as commit hash. They also allow you to 
download modified files belonging to that version. To build a database, from the data provided by Rath et al. [6] we use 
and receive the required additional information from SCM and ITS and customize it according to our needs. The tables are 
prepared in such a way that the information about the bug is obtained from ITS and combined with the information related 
to the software version used to fix the bug used by SCM. With this information, more comprehensive information about 
the bug can be obtained and better analysis can be done.  

The basic database of Rath et al. received and software in python language has been developed to manage the database. 
This software is used to perform various queries and apply different ACIDs to the database. In addition, the software 
receives the required data from ITS and stores it in the database. SCMs have a user interface that manages different versions 
and receives the required information. Because for each bug in all 10 projects, we need to extract the software version 
related to it to analyze its changes, and due to a large number of bugs and projects, it is very time-consuming to do it 
manually. A module has been added to the python application to automatically execute GitHub commands for each bug 
and extract software versions and changes made to fix the bug. Finally, in addition to storing information in the database, 
for each bug, the modified files in the software version provided for fixing it are stored in a folder called that bug.  

As shown in Figure 2, the created database contains a set of tables. Table 1 describes the information in these tables. 
The most important of these tables is Issue. This table stores the information about the reported Issue. The information in 
this table is extracted from ITS. The next table is the code_change table. This table stores information about different 
versions of the software. The ID number of each version is Commit_id, which is the key to this table. Other information, 
such as files modified in the version, along with the lines of code added and subtracted in the software version, is available 
in this table. The next table is the change_set_link table. This table is created to make the connection between the two 
previous tables and to make it possible to collect data related to bugs. The information in this table is extracted from SCM. 
It has two fields, one is the Commit_Hash version ID number and the other is the Issue_id field of the bug ID, which is 
provided to fix that bug. 

Table 1: Database information of each project 
Field Sample Fields Description Field Table Description Table name 

edf26b4b2b755648296e1a930

4859399d10b7c8c 

The ID of the commit  Commit_Hash The information of files 

that changed in software 

commits  

code_change 
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tedRangePartitioner.java 

The path of the file File_path 

55 Number of lines added to 
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Sum_added_lines 

116 Number of lines removed 

from file in current commit 

Sum_removed_lines 

efc1198d80215a05e33b8a88a

0f4612d401aae45 

The hash of commit Commit_Hash Table for saving date of 

commits 

change_set 

2010-07-29T21:02:29Z The date of commit Committed Date 

PIG-733 The id of the bug Issue_id Table for connecting bug 

and version of the 

software that fixed it  

change_set_link  

edf26b4b2b755648296e1a930

4859399d10b7c8c 

The commit of the 

software version that fixed 

the bug 

Commit_Hash 

PIG-733 The ID of Issue Issue_id Bug information  

extracted from ITS 

Issues 

Bug The type of Issue: Bug, 

New feature 

Issue_type 

2009-03-25T19:04:22Z The issue creation date Create_date 

2009-04-10T02:36:14Z The issue fixed date Fixed_date 

pig 733 order sampl dump 
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4.2 Labeling 
In this section, we show how to assign a class label to each bug. The class label shows whether a new bug needs to be 

referred to a designer to improve the design or not. To do this, the modified files in the fixing process are checked and 
analyzed for the presence of bad smells, and the label is determined according to the result of the analysis. Different types 
of code smells have been studied by presenting various signs of them, to facilitate their detection [30] and different solutions 
have been provided to improve their detection. The process of identifying a smelly code involves finding pieces of code 
that violate the properties of a structure or semantics, such as those related to coupling or complexity. In this process, the 
internal attributes required to define these properties are defined through software criteria, and the property is expressed 
through valid values for these criteria [34]. The most widely used criteria are theories defined by Chidamber and Kemerer 
[34]. These parameters are highly correlated with software bugs in most empirical studies. This refers to the general belief 
of the software development community that writing modules with large code and high complexity are a bad practice. We 
used bad smells to create a label for each bug. The bad smells used in this study for specifying labels for bugs are listed in 
Table 2. 

We used the PMD tool to determine the bad smells [35]. The label of each sample is determined using the extracted 
bad smells. In the database, the change_set_link table described in Table 1, the CommitHash version of the software is 
extracted according to the bug. Information about the bad smells of each version is stored in a table. The fields in this table 
and their descriptions are described in Table 2. This table is extracted using the PMD tool on the modified files in the 
process of fixing each bug. The label for each bug is extracted using the information in this table.  

Table 2: Table for storing bad-smell values for changed files in each commit 

Description Field  

A commit hash identifies a commit. At the same time, it serves as a checksum to verify the 

integrity of the stored software object. A commit hash is 40 characters long. 

Commit_Hash 1 

The date for the committer field Commit_Date 2 

It points to the location of the file. File_Path 3 

The unique identifier of the reported bug Bug_ID 4 

Abstract classes which do not have any methods are like simple data containers. Maybe it is 

better to don’t make the class abstract and use a private or protected constructor. 

AbstractClassWithoutAnyMet

hod 

5 

The number of unique attributes, local variables, and return types within an object is counted 

by this rule. If the result number is higher than the specified threshold, it means the degree of 

coupling is high. 

CouplingBetweenObjects 6 

This rule counts the number of decision points in a method (plus one for the method entry) 

to determine the complexity of a method. 

CyclomaticComplexity 7 

Data Classes have no complex functionality, they just hold data. This can demonstrate that 

their functionality is defined elsewhere. 

DataClass 8 

This indicates that classes have excessive responsibilities. These responsibilities can break 

apart into other classes or functions.  

ExcessiveClassLength 9 

In this rule, the number of unique imports is counted and if the count is above the specific 

threshold, a violation is reported. 

ExcessiveImports 10 

This rule illustrates that methods have excessive responsibilities. Methods should do what 

their name suggests not more than it, because readers may lose their focus. 

ExcessiveMethodLength 11 

Methods that have many parameters, especially methods that share the same datatype show 

the wrong situation. It can be solved by wrapping these parameters into new objects.   

ExcessiveParameterList 12 

This rule counts classes that have large numbers of public methods and attributes. Such 

classes cause combinational side effects and decrease testability.   

ExcessivePublicCount 13 

God classes are very big and have lots of functionality. This rule detects these classes so they 

can be separated. 

GodClass 14 

This rule shows the violation of using classes from the configured package hierarchy outside 

of the package hierarchy. 

LoosePackageCoupling 15 

This rule counts the number of lines of code in a constructor, method, or class. This 

enumeration is done by using the NCSS (Non-Commenting Source Statements) metric. 

NcssCount 16 

The number of full paths from the beginning to the end of the block of the method is counted 

by NPath. The number of acyclic execution paths within a method is shown by NPath 

complexity. 

NPathComplexity 17 

A switch statement is overloaded if it has a high ratio of statements to labels. The statements 

can be moved to new methods or some subclasses can be created based on the switch variable. 

SwitchDensity 18 

This rule counts classes that have Too many fields. Such classes can have fewer fields by 

wrapping related fields in new objects. 

TooManyFields 19 

Too many methods in a class are a sign of high complexity and a way should be found to 

have more fine-grained objects to reduce its complexity. 

TooManyMethods 20 

Row 1 of table CommitHash specifies the version number. Changed files in each version are specified with row 3 
(File_Path). The fourth row specifies the name of the identifier of the related bug to CommitHash version. These files are 
checked for 16 types of bad smells. Lines 5 to 20 of this table are the names of the fields that indicate the existence of a 
specified bad smell. For example, line 14 is the GodClass field, and if the file with the path specified in File_Path (the third 
row of the table) in the commit_Hash version(the first line field) has God Class, this field has saved 1. Similarly, 16 bad 
smells are stored for each file in each commit. The fields specified in lines 7 and 17, respectively, CyclomaticComplexity 
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and NPathComplexity, have numerical values, which are converted to 0 and 1 by comparing them with the threshold level 
of 40, and thus have 0 or 1 value in the calculations of all fields. The fields for bad smells are also checked in the previous 
version. The previous version was identified using the change_set table, which is described in Table 1. If a file in a version 
has a specific bad smell and this bad smell does not exist in the previous version - added in the current version - it will be 
registered as the added bad smells.  

𝐻𝑎𝑠𝐵𝑎𝑑𝑆𝑚𝑒𝑙𝑙(CurCommit) = 𝑏𝑜𝑜𝑙( ∑ (∑(𝐹𝑖𝑒𝑙𝑑(𝑗. 𝐶𝑢𝑟𝐻𝑎𝑠ℎ) − (𝐹𝑖𝑒𝑙𝑑(𝑗. 𝑃𝑟𝑒𝑣𝐻𝑎𝑠ℎ))

20

𝑗=5

)

 𝑐ℎ𝑎𝑛𝑔𝑒𝑑 𝐹𝑖𝑙𝑒 𝑖𝑛 𝐶𝑢𝑟 𝐶𝑜𝑚𝑚𝑖𝑡

𝑛=1

  

 

(1) 

The bad smells added in the current version are added together for all the modified files. If the sum of the bad smells 
of a version is more than zero, it is predicted that the fixing of that bug will lead to a bad smell, and as a result, a change in 
design is necessary and should be referred to the designer. So label 1 is assigned to the bug. Other examples are labeled 0. 
The formula (1) shows the class calculation for a version. 𝐹𝑖𝑒𝑙𝑑(𝑗. 𝐶𝑢𝑟𝐻𝑎𝑠ℎ) returns the value of field number j of Table 
2 in version 𝐶𝑢𝑟𝐻𝑎𝑠ℎ. For example, Field(5.00458580c62abe7b2c1bffd1bcfaf834e5722c51) return the value of 
AbstractClassWithoutAnyMethod in version 00458580c62abe7b2c1bffd1bcfaf834e5722c51. Figure 2 illustrates the 
pseudo-code for specifying a label for each bug. 

__________________________________________________________________________________________________________________________ 

For each of the 10 different projects: 

 For each bug: 

 a) Extract the relevant commit number from the table 

 b) Extract the relevant source code from GitHub 

c) Extract the modified files in the mentioned commit d) extraction bad smells for the files in the current and previous versions using the PMD 
tool 

e) Assign a label for each bug according to formula 1. Analyzing bad smells and determining the design or implementation class for the sample 
data (each commit is assigned a label 1 if each bad smell is added to any of its modified files) if it has a bad smell and this bad Smell also exists 
in the previous version, it is not considered. Only bad names are considered that have been added due to changes in this version. 

______________________________________________________________________________________________________________________ 
Figure 2: the pseudo-code for specifying the label for each bug 

5. The Prediction Model 
After preparing the dataset, the prediction model is designed and applied to the data. The aim is to predict whether we 

need need to refer a new bug to the designer or not. Figure 3 shows the main steps of the proposed prediction model. The 
goal of this model is to find the best mapping function that captures the description and summary text attached and returns 
1 on the need to refer to the designer and 0 otherwise. Formula (2) illustrates the mapping function. This model uses the 
required fields from the prepared dataset. For training the model, we must first extract the features of each bug. To extract 
features, a feature vector is extracted using text fields such as Description and Summary. The text data must be converted 
to number vectors and fed to the CNN-based network.  

𝑓(𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛 + 𝑆𝑢𝑚𝑚𝑎𝑟𝑦) = {
1               𝑖𝑓 𝑏𝑢𝑔 𝑛𝑒𝑒𝑑 𝑟𝑒𝑓𝑓𝑒𝑟𝑖𝑛𝑔 𝑡𝑜 𝑑𝑒𝑠𝑖𝑔𝑛𝑒𝑟
0                                                           𝑒𝑙𝑠𝑒                  

                                                      (2) 

5.1 Text to Vector Using Word Embedding 
In extracting textual features using CNN, since there are textual values in the input, the text must be converted to a 

vector. Keras library allows you to use word embedding. The embedding module is a supervised method that prepares the 
facility to train a neural network to convert words to a specific vector for text classification. The input of this network is 
different texts and the class related to them, and the output of the network is a vector that matches the words. Since the 
embedding and Keras input is in the form of numerical vectors, a vector is first created for each document. The Doc2Indices 
module does this. This module creates a dictionary from the words in the input text. It then extracts its unique words from 
the text of each input sample. From these unique words, a vector is created, and instead of the word, its index is inserted in 
the resulting vector dictionary. The formula (3) shows the process of the function. The text attached to the description and 
summary of bug i is called Di.  

Doc2Indices (𝐷𝑖) = (𝑎1. . 𝑎𝑘): 𝑘: 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑢𝑛𝑖𝑞𝑢𝑒 𝑤𝑜𝑟𝑑𝑠 𝑖𝑛 𝐷𝑖 .                                                                               (3) 

The numeric vector corresponding to each document is given to the embedding layer. The other input of the embedding 
layer is the class label corresponding to each bug that is provided in the Y vector of this input. The embedding layer is a 
neural network itself, and the output of this layer is a matrix. The rows of this matrix are equal to the number of unique 
words in the document. Each row of the matrix is a vector corresponding to the mapping of the word dictionary index in 
the q dimension space. q is equal to the dimensions of the space to which we want to map the word. Here we consider the 
number of dimensions equal to q = 128. Assuming that the number of unique words is equal to the word p, then the output 
of the Embedding step is the Xp×q matrix. 
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(4) 

 
𝑀 =  Embedding (Doc2Indices (𝐷𝑖)) =  [

w1.1 … w1.128

… … …
wp.128 … wp.128

] 

 

 

Figure 3: The proposed prediction model 

5.2 Feature extraction using word embedding and CNN and bug classification 
In ITS, we choose the features that are most relevant despite the design flaws. The text of the bug report has been used 

in many studies in various fields, such as predicting the time of fixing the bug, predicting the location of the bug, selecting 
the programmer, and proving its efficiency. So the bug report text is selected as the most important feature in bug-related 
studies. A CNN-based model is used to extract text features from the bug description and summary fields. Using 
Word2Index and word embedding, the text of the report is converted to a vector of numbers. This vector is given to a deep 
CNN. The network has two stages of convolution and Pooling, one phase of Flatten and Dropout to prevent overfitting, 
and finally an activation function for two-class classification. Formula (5) shows the process. 

𝑝𝑟𝑒𝑑(𝑀) = 𝑠𝑖𝑔(𝐷𝑟𝑜𝑝𝑂𝑢𝑡(𝐹𝑙𝑎𝑡𝑡𝑒𝑛(𝑃𝑜𝑜𝑙 (𝐶𝑜𝑛𝑣(𝑃𝑜𝑜𝑙(𝐶𝑜𝑛𝑣(𝑀)))))))                                                                     (5) 

6. Performance Study 

In this section, we analyze the dataset and the performance of the prediction model. Data from 10 open source projects 
are used to evaluate the model. We will first analyze the dataset. The effect of the changing K in K-Fold validation is 
evaluated, and at the end, the efficiency of the method is evaluated on 10 different datasets. 

6.1 Dataset analysis 

As described in Section 5, for the description and summary of each bug, its features are extracted using a CNN-based 
model. To each bug, a label is extracted. After assigning the label to each bug, which is assigned to that label 1 if referring 
the bug to the designer is needed and 0 otherwise. The frequency of need for referral to a designer is on average 30%. Table 
3 illustrates the frequency of different classes for different projects. In this table, for each project, the total number of 
samples, the number of samples required to be referred to the designer with label 1, and the number of samples to be 
referred to the implementer with label 0 is specified. The percentage of samples that need to be referred to the designer is 
also specified in the last column. This percentage averages 36.7 in 10 projects. 

As can be seen, the number of samples with label 1 is much lower than the number of samples with label 0 and the data 
is imbalanced. Since machine-learning algorithms have been developed and optimized to train with balance data, the use 
of imbalanced data leads to their bias towards more frequent classes and ultimately causes model overfitting. To solve this 
problem, the data should be balanced. Data balancing is done in two ways: Up sampling and Down Sampling. In the 
downsampling method, some samples with a class label with greater frequency are removed to equal the number of samples 
with different classes. This method leads to the loss of suitable samples for training and the reduction of training data. In 

SQLite Database 

Extract Description + 

Summary of Bugs 

Word2Indwex 

Embedding 

Up Sampling with SMOTE 

Matrix Representing Bug 

Reports 

Conv2D 

Conv2D 

Pooling 

Pooling 

Flatten DropOut 

Activation Design/Implement 

Extract Bug Labels 
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the Up Sampling method, fewer class samples are created synthetically to balance the number of positive and negative 
samples.  

Table 3: samples with label 0 and 1 
Class 1 

Percent 

Total sample Num. of class 1 

Samples 

Project # 

23 4789 1101 Derby 1 

27 3977 1071 Infinispan 2 

23 3797 888 Teeid 3 

29 1165 342 Log4j2 4 

55 1121 622 Drools 5 

37 1039 382 HornetQ 6 

35 1025 355 Seam2 7 

31 696 217 Railo 8 

25 844 209 Izpack 9 

82 220 181 Wildfly 10 

In this study, we used the Up Sampling method and updated the data using the Synthetic Minority Oversampling 
Technique (SMOTE) method proposed by Chawla et al. [36]. It is still an effective method in this regard. This method is 
also used in text classification [37]-[40]. This method is still very popular and its variants are offered [41]-[42]. This method 
is applied to data with continuous numerical values. After converting the text to a vector, it has these properties and this 
method can be applied to them. In this method, one of the samples is selected with less class frequency so that new samples 
can be made from them. For each sample, its K neighbor is selected. One of these samples is randomly selected. Multiplying 
a random number between 0 and 1 in this vector creates a new vector that is added to the data set as a new instance. This 
process continues until the data is balanced.  

To evaluate the proposed model, it must be trained with part of the dataset and tested with the rest of the data. We used 
the K Fold validation method to evaluate. K determines the percentage of data for testing. For example, in 10 folds, we 
divide the data into 10 parts, and each time we select one part for testing and train the model with the remaining 9 parts. 
This method is repeated 10 times and the average of parameters is reported as a result of the evaluation. To choose the best 
K, the model must be evaluated with different K. Since it takes time to train deep learning-based models, to select the 
appropriate K, a project with the number of suitable samples for deep learning (models based on deep learning require a 
lot of data for proper training) is selected and the model with Ks rated 10, 5, 3 and 2 are evaluated. For higher K, the number 
of training samples is higher and the model is better trained, and on the other hand, the number of test samples is less and 
the stability of the results should be checked. Table 4 shows the results of the implementation of the Infinispan project. 
Given that there are some proper samples in this project, changing K does not have such an effect on performance. Given 
that the number of samples in other projects is small, and to prevent the impact of the reduction of samples on model 
training in these projects, we use 5 Fold as a reference for all projects. 

Table 4: the effect of different k on the model performance 
recall f1 Prec. Acc. loss Acc. 

train 

Test 

perc

ent 

Sampling Ep

och 

 Alg. 

79 78 76 78 13 92 10 SMOTE /All 20 Infinispan CNN 

76 76 77 77 11 93 20 SMOTE /All 30 Infinispan CNN 

79 76 74 76 12 93 30 SMOTE /All 20 Infinispan CNN 

76 77 78 78 12 94 40 SMOTE/ All 20 Infinispan CNN 

 

6.2 Performance Evaluation 
In this section, we analyze the results of the model. Given that this is the first research in predicting the need to refer a 

bug to a designer, and there is no model in this area, it is not possible to compare it with previous research. Only the 
performance of the model can be tested using different datasets and its generality can be concluded. Precision, recall, and 
accuracy are used for performance evaluation. The confusion matrix is given in Table 5.  

Table 6 illustrates the evaluation results. Each row of the table shows the training and test results of the model with a 
dataset. The results are evaluated using Accuracy, Precision, Recall, and F-Score parameters. As can be seen in the table, 
first of all, given that the data are balanced, the values of the different evaluation parameters for each data variance are not 
large. The efficiency of the algorithm varies from 55% to 78% in different datasets. In 8 out of 10 projects, precision, 
Recall, and F1-Score are above 75% and the variance between different parameters in each dataset is less than 2%, which 
is proof of the efficiency of the proposed method from data preparation to the learning model. It is noteworthy that in all 
projects with samples above 3000, efficiency is above 75%. In other words, if there is enough data to train the model based 
on deep learning, the reliable performance of the model will be proven. 

 

 



10 

 

Table 5: confusion matrix for the proposed classifier 
 Real occurrence 

Report Need 

Designer 

No Need for 

Designer 

 

 

Prediction 

Report Need 

Designer 

True 

positive(TP) 

False 

Positive(FP) 

No Need for 

Designer 

False 

Negative(FN) 

True 

negative(TN) 

  
Table 6: performance evaluation of the proposed model 

recall
 

f1
 P
rec.

 

A
cc.

 

L
o
ss train

 

A
cc. train

 

T
est 

 
p

ercen
t

 

   
S

am
p

lin
g

 

C
lass 1

 

P
ercen

t
 

T
o
tal sam

p
le

 

N
u

m
. o

f 

class 1
 

S
am

p
les

 

P
ro

ject
 A

lg
.

 

 

73 75 77 76 25 91 20 SMOTE/ All 23 4789 1101 Derby CNN 1 

76 76 77 77 11 93 20 SMOTE /All 27 3977 1071 Infinispan CNN 2 

82 80 78 80 18 91 20 SMOTE/ All 23 3797 888 Teeid CNN 3 

64 72 81 75 41 83 20 SMOTE /All 29 1165 342 Log4j2 CNN 4 

46 50 55 55 51 84 20 SMOTE/ All 55 1121 622 Drools CNN 5 

68 63 58 61 65 78 20 SMOTE/ All 37 1039 382 HornetQ CNN 6 

75 74 74 75 32 90 20 SMOTE/ All 35 1025 355 Seam2 CNN 7 

62 68 76 70 34 90 20 SMOTE/ All 31 696 217 Railo CNN 8 

67 75 85 78 28 89 20 SMOTE /All 25 844 209 Izpack CNN 9 

72 75 79 77 62 97 20 SMOTE/ All 82 220 181 Wildfly CNN 10 

7. Conclusion 

In this study, the issue of bug triaging was investigated from a new perspective. Before this research, various models 
have been proposed to refer the processed bug to a suitable programmer based on different parameters. In this study, due 
to the importance of design change compared to code changes, the need to refer the bug to the designer was investigated. 
A CNN-based model was proposed to predict the need for a bug referral to the designer. The proposed model predicts the 
number of bad smells that appear in the modified software code to fix the received bug report. It uses bug report information 
such as summary and description, as soon as the report is received before the bug is installed and before changes are made 
to the software and without the need to have a modified source code in the bug fixing process. To train and test the model, 
10 datasets were created using data from 10 open-source projects. The class associated with each bug report was determined 
using files modified in the version corresponding to that bug. The modified files in each version were checked for 16 
different bad smells using the PMD tool. If a bad smell is added to the project, label “1” will be assigned to the process of 
fixing a bug. Label “1” means the need to refer the bug to the designer to modify the design. The model was trained and 
tested using these datasets. Efficiency above 75% was achieved in projects with sufficient samples and an average of 70% 
in all projects using this model. 

8. Data availability 
The data underlying this article will be shared upon reasonable request to the corresponding author.  

References 

[1] M. Polo, M. Piattini, F. Ruiz, Advances in software maintenance management: technologies and solutions. IGI Global, 2003.  

[2] K. Sharanpreet, S. Singh, Influence of Anti-Patterns on Software Maintenance: A Review, International Journal of Computer 
Applications (0975 – 8887)(2015). 

[3] F. Palomba, G. Bavota, M. Di Penta, et al. Detecting bad smells in source code using change history information. In Proceedings of 
28th IEEE/ACM International Conference on Automated Software Engineerin (ASE’13),2013, pp. 268–278,. 

[4] J. Anvik, L. Hiew, G. Murphy, Who should fix this bug?, ICSE '06 Proceedings of the 28th international conference on Software 
engineering, Shanghai, China, 2006.  

[5] D. Čubranić, Automatic bug triage using text categorization, Proceedings o the Sixteenth International Conference on 
Software(SEKE), Banff, Alberta, Canada 2004.  

[6] M. Rath, D. Lo, P. Mader, Analyzing Requirements and Traceability Information to Improve Bug Localization, Published in the 
Proceedings of the 15th IEEE/ACM Working Conference on Mining Software Repositories, (MSR) 2018, Gothenburg, Sweden.  

[7] H. Xuan, T. Ferdian, L. Ming, et al., Deep Transfer Bug Localization, IEEE Transactions on Software Engineering, 2019, 
doi:10.1109/TSE.2019.2920771.  



11 

 

[8] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, Refactoring:Improving the Design of Existing Code. Addison-
Wesley,1999.  

[9] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, and A. De Lucia, “Do they really smell bad? A study on developers’ perception of 
bad code smells,” in 30th IEEE International Conference on Software Maintenance and Evolution, Canada, 2014, pp. 101–110.  

[10] A. Yamashita and L. Moonen, Do developers care about code smells? An exploratory survey, 2013 20th Working Conference on 
Reverse Engineering (WCRE), 2013, pp. 242-251, doi: 10.1109/WCRE.2013.6671299.  

[11] F. Khomh, M. Di Penta, and Y.-G. Gueheneuc, An exploratory study of the impact of code smells on software changeproneness, in 
Proceedings of the 16th Working Conference on Reverse Engineering. Lille, France: IEEE CS Press, 2009, pp. 75–84.  

[12] F. Khomh, M. Di Penta, Y.-G. Gu´eh´eneuc, and G. Antoniol, An exploratory study of the impact of antipatterns on class changeand 
fault-proneness,Empirical Software Engineering, vol. 17, no. 3, pp. 243–275, 2012.  

[13] M. Abbes, F. Khomh, Y.-G. Gu´eh´eneuc, and G. Antoniol, An empirical study of the impact of two antipatterns, Blob and Spaghetti 
Code, on program comprehension, in 15th European Conference on Software Maintenance and Reengineering, CSMR 2011.  

[14] D. I. K. Sjøberg, A. F. Yamashita, B. C. D. Anda, A. Mockus, and T. Dyb°a, Quantifying the effect of code smells on maintenance 
effort, IEEE Trans. Software Eng., vol. 39, no. 8, pp. 1144–1156, 2013.  

[15] A. F. Yamashita and L. Moonen, Do code smells reflect important maintainability aspects? in 28th IEEE International Conference 
on Software Maintenance, ICSM 2012, Trento, Italy, September 23-28, 2012. IEEE Computer Society, 2012, pp. 306–315.  

[16] A. Yamashita and L. Moonen, “Exploring the impact of intersmell relations on software maintainability: An empirical study,” in 
International Conference on Software Engineering (ICSE). IEEE, 2013, pp. 682–691..  

[17] W. J. Brown, R. C. Malveau, W. H. Brown, and T. J. Mowbray, Anti Patterns: Refactoring Software, Architectures, and Projects in 
Crisis. Hoboken, NJ, USA: Wiley, 1998.  

[18] P. Piotrowski, L. Madeyski, Software Defect Prediction Using Bad Code Smells: A Systematic Literature Review. In: Data-Centric 
Business and Applications. Lecture Notes on Data Engineering and Communications Technologies, vol 40. Springer(2020).  

[19] M. D'Ambros, A. Bacchelli and M. Lanza, "On the Impact of Design Flaws on Software Defects," 2010 10th International 
Conference on Quality Software, Zhangjiajie, 2010, pp. 23-31.  

[20] A. Lozano, M. Wermelinger, and B. Nuseibeh, Assessing the impact of bad smells using historical information, in Ninth 
international workshop on Principles of software evolution: in conjunction with the 6th ESEC/FSE joint meeting, ser. IWPSE ’07. 
New Yor.  

[21] D. Ratiu, S. Ducasse, T. Gˆırba, R. Marinescu, Using history information to improve design flaws detection,” in 8th European 
Conference on Software Maintenance and Reengineering (CSMR 2004), Finland, Proceeding. IEEE Computer Society, 2004, pp. 
223–232.  

[22] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, A. De Lucia,D. Poshyvanyk, Detecting bad smells in source code using change 
history information, Automated Software Engineering (ASE), 2013 IEEE/ACM 28th International Conference on, Nov 2013, pp. 
268–278.  

[23] M. Habayeb, S. Murtaza, A. Miranskyy, On the Use of Hidden Markov Model to Predict the Time to Fix Bugs, ieee Transactin on 
software engineering, 2018, 44, 12, pp. 1224-1244.  

[24] R. sepahvand, R. Akbari, S. Hashemi, Predicting the Bug Fixing Time Using Word Embedding and deep LSTM, apatial issue on 
knowledge discovery from software repositories, IET Software, 2020.  

[25] "M. Rath, P. Mäder, Influence of Structured Information in Bug Report Descriptions on IR-based Bug Localization, 2018 44th 
Euromicro Conference on Software Engineering and Advanced Applications (SEAA)".  

[26] R. Gharibi, A. H. Rasekh, M. H. Sadreddini, S. M. Fakhrahmad, Leveraging textual properties of bug reports to localize relevant 
source files, Information Processing and Management 54 (2018) 1058–1076.  

[27] J. Zhou, H. Zhang, and D. Lo, “Where should the bugs be fixed? more accurate information retrieval-based bug localization based 
on bug reports,” in 34th Int. Conf. on Software Engineering, ICSE 2012, 2012.  

[28] M. Tufano et al., When and Why Your Code Starts to Smell Bad (and Whether the Smells Go Away), in IEEE Transactions on 
Software Engineering, vol. 43, no. 11, pp. 1063-1088, 1 Nov. 2017.  

[29] W. Kessentini, M. Kessentini, H. Sahraoui, S. Bechikh and A. Ouni, A Cooperative Parallel Search-Based Software Engineering 
Approach for Code-Smells Detection, in IEEE Transactions on Software Engineering, vol. 40, no. 9, pp. 841-861, 1 Sept. 2014..  

[30] W. H. Kruskal and W. A. Wallis, Use of ranks in one-criterion variance analysis, J. Amer. Statist. Assoc., vol. 47, no. 260, pp. 583–
621, 1952.  

[31] Y. Xiao, J. Keung, K. E. Bennin, et al., Improving bug localization with word embedding and enhanced convolutional neural 
networks, Inf. Softw. Technol.,105, 2019, pp. 17-29. 

[32] H. Ruan, B. Chen, X. Peng, et al., DeepLink: Recovering issue-commit links based on deep learning, Journal of Systems and 
Software, 2019, 158, 110406.  

[33] S. Xi, Y. Yao, X. Xiao, et al. Bug Triaging Based on Tossing Sequence Modeling. J. Comput. Sci. Technol. 34, 942–956 (2019). 



12 

 

[34] S. R. Chidamber and C. F. Kemerer, A metrics suite for object-oriented design,IEEE Trans. Softw. Eng., vol. 20, no. 6,pp. 293–
318, Jun. 1994.  

[35] F. Fontana, M. Zanoni, A. Marino, M. Mantyla, Code Smell Detection: Towards a Machine Learning-based Approach. In 
Proceedings of the 29th International Conference on Software Maintenance (ICSM), pp. 396-399, 2013. 

[36] N. V. Chawla, K. W. Bowyer, L. O. Hall, W. P. Kegelmeyer, SMOTE: Synthetic minority over–sampling technique. ournal of 
Artificial Intelligent Research, 16, 2002, 321- 357.  

[37] E.L. Iglesias, A.S. Vieira, L. Borrajo, An HMM-based over-sampling technique to improve text classification. Expert Systems with 
Applications, 40 (18), 2013184-7192..  

[38] H. Han, WY. Wang, BH. Mao, Borderline-SMOTE: A New Over-Sampling Method in Imbalanced Data Sets Learning. In: Huang 
DS., Zhang XP., Huang GB. (eds) Advances in Intelligent Computing. ICIC 2005. Lecture Notes in Computer Science, vol 3644. 
Springer Berlin.  

[39] H. Al Majzoub, I. Elgedawy, Ö. Akaydın, et al. HCAB-SMOTE: A Hybrid Clustered Affinitive Borderline SMOTE Approach for 
Imbalanced Data Binary Classification. Arab J Sci Eng 45, 3205–3222 (2020). https://doi.org/10.1007/s13369-019-04336-1.  

[40] Z.M. Ibrahim, M. Bader-El-Den, M. Cocea, Improving Imbalanced Students’ Text Feedback Classification Using Re-sampling 
Based Approach. In: Advances in Computational Intelligence Systems. UKCI 2019, vol 1043, Springer, Cham.  

[41] A. Gosain, S. Sardana, Farthest SMOTE: A Modified SMOTE Approach. In: Behera H., Nayak J., Naik B., Abraham A. (eds) 
Computational Intelligence in Data Mining. Advances in Intelligent Systems and Computing, vol 711. Springer, Singapore, 2019.  

[42] X.W. Lianga, A.P. Jianga, T.Lia, Y.Y. Xuea, G.T. Wangab, LR-SMOTE — An improved unbalanced data set oversampling based 
on K-means and SVM, Knowledge-Based Systems, Volume 196, 21 May 2020, 105845. 


