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Abstract

Thorough testing of safety-critical autonomous systems, such as self-driving
cars, autonomous robots, and drones, is essential for detecting potential fail-
ures before deployment. One crucial testing stage is model-in-the-loop test-
ing, where the system model is evaluated by executing various scenarios in
a simulator. However, the search space of possible parameters defining these
test scenarios is vast, and simulating all combinations is computationally in-
feasible. To address this challenge, we introduce AmbieGen, a search-based
test case generation framework for autonomous systems. AmbieGen uses
evolutionary search to identify the most critical scenarios for a given system,
and has a modular architecture that allows for the addition of new systems
under test, algorithms, and search operators. Currently, AmbieGen supports
test case generation for autonomous robots and autonomous car lane keep-
ing assist systems. In this paper, we provide a high-level overview of the
framework’s architecture and demonstrate its practical use cases.

Keywords: evolutionary search, autonomous systems, self driving cars,
autonomous robots, neural network testing

Metadata

The project metadata is presented in Table 1.

1. Motivation and significance

Autonomous systems, including autonomous vehicles, robots, or drones
can provide a number of benefits such as driving assistance, high-risk zone
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Nr. Code metadata description Please fill in this column
C1 Current code version v0.1.0
C2 Permanent link to code/repository

used for this code version
For example: https://github.

com/swat-lab-optimization/

AmbieGen-tool

C3 Permanent link to Reproducible
Capsule

https://codeocean.com/

capsule/1741442/tree

C4 Legal Code License MIT license (MIT)
C5 Code versioning system used git
C6 Software code languages, tools, and

services used
python

C7 Compilation requirements, operat-
ing environments and dependencies

indicated in requirements.txt

C8 If available, link to developer docu-
mentation/manual

https://github.com/

swat-lab-optimization/

AmbieGen-tool/blob/master/

README.md

C9 Support email for questions dmytro.humeniuk@polymtl.ca

Table 1: Code metadata (mandatory)

exploration, and aid in rescue operations. At the same time, these are safety-
critical systems and it is very important to ensure they are robust to unseen
environments and conditions. This can be done by thorough testing prior
to their deployment. Typically, at the initial development stages model-in-
the-loop testing is performed [1], where the system is tested in a simulation
environment. Given the complexity of autonomous systems, the number of
potential test scenarios is vast and exhaustive execution is not feasible. For
example, an autonomous vehicle scenario could involve a variety of param-
eters such as road topology, the movement and behavior of other vehicles
and pedestrians, traffic signs, weather conditions, etc. We surmise that in
order to identify the most critical scenarios for a given system, application
of search algorithms is necessary.

In this work, we propose AmbieGen, a search based framework for gen-
erating adversarial test scenarios for autonomous systems. By leveraging
evolutionary search AmbieGen allows to find challenging and diverse test
scenarios.
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The problem of identifying critical scenarios for a system has been ad-
dressed in several previous works on falsifying temporal logic requirements
of cyber-physical systems, such as S-Taliro [2], Breach [3], and ARIsTEO [4].
These works typically consider falsifying a model of the system that takes a
set of input signals and produces a set of output signals.

In our work, we focus on testing autonomous systems for which the input
signals are complex and may include data from various sensors and cameras.
Generating a valid combination of falsifying input signals (such as lidar read-
ings and RGB camera readings) directly would be challenging. Therefore,
we propose a method for generating test cases that specify a virtual environ-
ment for the autonomous system, rather than the input signals. The input
signals are generated in the virtual environment during simulation based on
the actions of the autonomous agent.

Several approaches have been proposed for generating virtual environ-
ments for testing autonomous driving and robotics systems, including As-
Fault [5], Frenetic [6], DeepJanus [7], DeepHyperion [8] and others presented
at the SBST 2021 [9] and SBST 2022 [10] tool competitions.

The tool we present in this paper, AmbieGen, is the winner of SBST 2022
tool competition. It could produce the biggest number of diverse fault reveal-
ing scenarios for an autonomous vehicle lane keeping assist system (LKAS)
given a limited time budget. More details about the search algorithm im-
plementation can be found in our research paper [11]. In our work we have
shown that the simplified model of the system can be effective in guiding the
search for producing the test scenarios for the full, simulator based, model
of the system.

Our framework can be used for further research in the search algorithms,
search operator and fitness function design for autonomous systems adver-
sarial testing. We built the framework to be modular, and thus easily cus-
tomizable. By referring to project documentation as well as the example
implementations we provide, researchers can specify their own test scenario
generation problems, fitness functions, crossover and mutation operators.
This tool is developed in Python and can be easily run as a python package.
More instructions and examples are provided in the AmbieGen repository.

2. Software description

In this work, we present AmbieGen, an open-source Python framework
that utilizes evolutionary search for the generation of test scenarios for au-
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tonomous systems. Currently, AmbieGen supports the creation of test sce-
narios for lane keeping assist systems (LKAS) in autonomous vehicles and
for autonomous robots navigating a closed room with obstacles.

The test scenarios for LKAS in vehicles are designed to challenge the
system with various road topologies, while the scenarios for autonomous
robots involve navigating a closed room with obstacles. Examples of the
generated scenarios can be seen in Figure 1.

Figure 1: An example of the test case for LKAS system (a) and an autonomous robot (b).
The x-axis represents the map length in meters, and the y-axis represents the map width
in meters.

2.1. Software architecture

This subsection provides a detailed description of the software imple-
mentation of AmbieGen. The key components of AmbieGen are illustrated
in Figure 2, which are common components for implementing evolutionary
search. We use the Pymoo framework [12] to implement the search algo-
rithms. The most important modules and classes are outlined below:

• Solution - this is one of the most important classes, which contains all
the necessary attributes and functions needed to represent the candi-
date solution of the algorithm. It should contain a scenario attribute
with the list of test case parameters, function for fitness evaluation,
novelty calculation, as well as, optionally, image generation.
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Figure 2: AmbieGen architecture

• Sampling - this is the class for initial population generation. At the
output it provides N instances of the Solution class, with the initial-
ized scenario attribute, defining the test scenario. Typically the test
scenario is represented by a two dimensional array, randomly initial-
ized based on the minimum and maximum values of the test case pa-
rameters, defined in the configuration file. Each column of the array
corresponds to some part of the environment. More information about
the representation of the test scenarios that we used can be found in
the repository page as well as in our research article.

• Problem - in this class, we define the logic for evaluating the fitness
of each solution. For single-objective search (using GA), we specify
the fitness function for evaluating the scenario fault revealing power.
For two-objective search (using NSGA-II), we define two objectives:
fault revealing power and novelty calculation. The novelty objective
is calculated as the average novelty of a given test scenario relative to
the 5 solutions with the highest fault revealing power fitness. If the
problem has any constraints, such as a minimum required fitness value,
they should also be specified in this class.

• TC to environment - this is a function to transform the test case (TC)
encoded as a 2D array of parameters, to the input format suitable for
the system model. For example, for the LKAS problem, the model
input is a list of the 2D coordinates of points, defining the road topol-
ogy. The test case itself is represented as a sequence of transformations
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needed to perform to obtain the points. For the autonomous robot the
test scenario is represented as a sequence of parameters describing the
2D map with obstacles. The TC to environment module is used to
create a 2D bitmap from the given parameters. The bitmap is given
as the input to the autonomous robot model, which runs a planning
algorithm to find the shortest path between the start and goal location.

• fitness evaluation - a function to calculate the fitness i.e fault revealing
power of the scenario. It takes the output of the TC to environment
function as the input and execute the system model. It collects the
data about the model behaviour during execution and computes the
fitness score. For the LKAS system, the fitness is defined by the biggest
deviation from the lane center and for the autonomous robot - by the
length of the path to reach the goal.

• Crossover - in this class the crossover operator is defined. Currently
we are using a one point crossover, which can be applied to fixed and
variable length solutions.

• Mutation - in this class the mutation operator is implemented. We
have 2 types of mutations: exchange and change of variable. In ex-
change mutation, two randomly selected columns of the test case are
exchanged. In the case of the road topology, it would correspond to
exchanging the positions of two random road segments. In change of
variable mutation, a randomly selected parameter value in the test case
matrix is changed. In the road topology example it could correspond
to the change of the length of one of the straight road segments.

• post processing - The post-processing module of our framework includes
several functions for handling the test suite and its metadata. The
function get test suite() retrieves the test suite, get stats() retrieves
metadata such as fitness and novelty scores, and save tcs images()
saves the images of the test cases. The size of the test suite, denoted
as T , can be specified in the configuration file. In our experiments, T
was typically set to 30, representing the best solutions found by the
algorithm.

Metadata for the test suite includes the fitness of the top T solutions,
their novelty (calculated as the average novelty between all pairs of
scenarios in the test suite), and the convergence (best solution fitness
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found at each epoch). The post-processing module also includes a
compare.py script for comparing the results of different algorithms,
using the collected metadata to generate convergence plots and fitness
and diversity boxplots.

• configuration file - finally we have a configuration file, where the pa-
rameters of the algorithm, such as: the population size, the number
of generations, crossover/mutation rate, and the test suite size are de-
fined. Users should also specify the allowable ranges for the test case
parameters and the paths for saving the resulting test suite and its
metadata.

Currently, when adding a new problem, one should provide the implemen-
tation of each of the modules as well as the TC to environment and fitness
evaluation functions. We are working on reducing the number of additional
implementations needed. Our framework includes the implementation of all
the modules for the LKAS and autonomous robot test case generation prob-
lems.

2.2. Software functionalities

AmbieGen public version 0.1.0 as presented in this paper offers the fol-
lowing major functionalities:

• Autonomous vehicle LKAS system testing : generating scenarios, rep-
resented as a list of 2D coordinates defining the road topology.

• Autonomous robot testing : generating scenarios, represented as the 2D
bitmap, defining obstacle locations in a fixed sized map.

• Search-based generation: our framework provides options for search-
based test suite generation, including random search, single-objective
genetic algorithm (GA), and two-objective genetic algorithm (NSGA-
II). The search algorithms are implemented using the Pymoo frame-
work [12], and can be easily extended to support additional algorithms
supported by Pymoo with minor modifications.

The single-objective GA optimizes the test suite for scenario fault re-
vealing power, while the two-objective NSGA-II optimizes for both
fault revealing power and diversity. As demonstrated in our previ-
ous work [11], the two-objective algorithm allows to produce a more
diverse set of test scenarios compared to the single-objective search.
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• Experiment data tracking : AmbieGen tracks the results of each ex-
periment and saves them in a user-defined location. The saved data
includes the T (as determined by the user) best test scenarios identified
based on their fitness or crowding distance, as well as their associated
metadata such as fitness, average diversity, and visualizations. This
allows for easy analysis and comparison of the results of different ex-
periments.

2.3. Use cases of the software

In this subsection we provide an illustrative example of how to use Am-
bieGen to generate test cases for an autonomous robot planning algorithm
testing. Suppose we want to perform 30 runs of the NSGA-II algorithm with
150 individuals and 200 generations to evaluate this configuration. We want
to save the generated test cases, their illustrations as well as their metadata,
such as fitness and diversity. Below you can see the configuration file entries
with the parameters we chose for the genetic algorithm and well as the path
to save the experiment results:
ga = {" pop_size ": 150, "n_gen ": 200, "mut_rate ": 0.4, "cross_rate ": 0.9,
"test_suite_size ": 30 }
files = {" stats_path ": "stats", "tcs_path ": "tcs", "images_path ": images "}

Now we are ready to start the test case generation. We can launch Am-
bieGen with the following command and parameters:
python optimize.py --problem ="robot" --algo="nsga2" --runs =30 \\
--save_results=True

The search will start and you could see some printouts, such as in Fig. 3 with
the current number of generation (n gen), number of evaluations (n eval),
constraint violation (cv min), number of non-dominant solution for NSGA-
II algorithm (n nds) and the best solution found (f opt) for GA algorithm.
More details about the printed information can be found on the Pymoo page
(https://pymoo.org/interface/display.html).

After a successful run, you will see the confirmation about the run exe-
cution time, saved test cases, their metadata and the images, as in Fig. 4

In Fig. 5 you can see examples of the metadata saved, such as the algo-
rithm convergence 5a (the best fitness value at each generation in the format
”evaluation number”: best fitness found), the fitness of the test cases in the
test suite as well as their average diversity i.e., novelty 5b. Novelty is cal-
culated as the average diversity of all of the pairs of the test cases in the
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Figure 3: Printouts during the search

Figure 4: Successful run confirmation

test suite. In Fig. 6 we show an example of the test case images saved for a
particular run.

(a) Scenario fitness convergence (b) Final test suite fitness and diversity

Figure 5: Metadata for the generated scenarios

Finally, let us suppose we also want to run a random search with the same
evaluation budget to be able to compare the performance of our configuration
of NSGA-II algorithm to some baseline. We can run the random search by
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Figure 6: Images of the generated scenarios

executing the following command:
python optimize.py --problem ="robot" --algo=" random" --runs =30 \\
--save_results=True

The random search will be run and the metadata saved, as in the previous
case. Now we can compare the results produced by the two different search
algorithms via executing the following command:
python compare.py --stats_path =" stats_nsga2" "stats_random" \\
--stats_names "NSGA -II" "Random"

In the stats path argument we specify the paths of the metadata for the
runs we wish to compare and in the stats names the names we assign for the
runs.

In Fig.7 and Fig. 8 we can see examples of the outputs produced by the
compare.py script. Fig. 7a shows the fitness and Fig. 7b the diversity of the
scenarios in the test suites produced over the specified number of runs. Fig.
8 shows the best values found by the compared search algorithms over the
generations.

3. Illustrative examples

In this section, we present the summarized results of several test genera-
tion case studies using the AmbieGen tool. The full results can be found in
our research paper [11] and the SBST 2022 competition report [10].

We conducted a case study on an autonomous robot with an obstacle
avoidance algorithm based on nearness diagrams [13]. The robot model was
a Pioneer 3-AT equipped with a SICK LMS200 laser with a sensing range
of 10 meters. The simulations were run in the Player/Stage simulator [14].
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(a) Scenario fitness (b) Scenario diversity

Figure 7: Evaluating the NSGA-II algorithm for autonomous robot test case generation

Figure 8: Comparing the convergence of NSGA-II and random search for autonomous
robot case study

You can see an illustration of the simulation environment in Fig. 9a. We
used AmbieGen to generate diverse maps with obstacles to test the robot’s
performance. We identified several scenarios in which the robot became stuck
and failed to reach its goal location. An example of such a scenario can be
found in the following video: Video.

To evaluate the effectiveness of our tool, we allocated a two-hour budget
for AmbieGen to generate test scenarios. The generated scenarios were then
passed to the simulator and executed. We repeated the experiment 30 times,
using both the NSGA-II and random search configurations of AmbieGen.
The average number of failures detected is shown in Fig. 9b. On average,
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AmbieGen detected 9 failures in two hours, compared to 2 failures for random
search

(a) Executing autonomous robot scenario in the Play-
er/Stage simulator

(b) The number of failures revealed by AmbieGen for
the robot case study

Figure 9: Using AmbieGen for testing autonomous robot navigation algorithm

In the second case study, we evaluated the performance of our test gener-
ation tool on an autonomous vehicle lane keeping assist system (LKAS) using
the BeamNg simulator [15]. We used the AmbieGen tool to generate diverse,
fault-revealing road topologies, which were then simulated in the BeamNg
environment (shown in Fig. 10a). During the simulations, we identified a
number of scenarios in which the vehicle left its lane (an example of which
can be seen in the video at Video).

We ran our tool for a time budget of 2 hours, using the SBST22 compe-
tition code pipeline. The failure criterion for the LKAS system was defined
as more than 85% of the car’s area leaving the lane. The driving agent had
a maximum speed of 70 Km/h. We compared the results of AmbieGen’s
NSGA-II configuration, Random Search configuration, and the Frenetic tool
[6], which was also given a 2-hour time budget for test generation.

As shown in Fig. 10b, out of 30 runs, AmbieGen and Frenetic on average
produced almost the same number of failures (14), while Random Search
produced an average of 9 failures.

The obtained results suggest that AmbieGen could effectively identify
failures in the autonomous systems under test.

4. Impact

Autonomous systems testing is an important area of research, and finding
test scenarios that reveal a diverse range of system failures within a limited
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(a) Executing the LKAS scenario in the BeamNg sim-
ulator (b) The number of failures revealed by AmbieGen for

the LKAS case study

Figure 10: Using AmbieGen to test autonomous vehicle LKAS model

time and evaluation budget is a significant challenge [16]. One of the common
solutions is to use evolutionary search to guide the sampling towards more
challenging scenarios [5, 7]. These search based techniques allow to identify
potential failures and improve the overall reliability of the system.

AmbieGen is a test generation tool that uses evolutionary search to gen-
erate test scenarios for autonomous systems. Its modular design allows for
customization of the initial population generation function, fitness evaluation
function, search operators (such as crossover and mutation), and the search
algorithm itself. Out of the box, AmbieGen supports testing of autonomous
robots and vehicle LKAS systems, and additional systems can be added using
the provided implementations as examples.

AmbieGen is a valuable resource for research on search-based test case
generation for autonomous systems. Its built-in modules enable easy com-
parison of different search algorithms and their modifications, based on the
quality and diversity of the generated solutions, as well as the convergence
of the algorithm over time.

AmbieGen can help answer research questions that are not frequently
discussed in the literature, such as:

• To what extent the diversity preservation technique A helps improve
the diversity of the test suite? The importance of the diversity in test
case generation is extensively discussed in the work of Klikovits et al.
[17].

• To what extent does the search operator A helps improve the conver-
gence over the operator B? To what extent the algorithm A outperforms
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the algorithm B for the test case generation? Improvements to the base-
line genetic algorithms implementations can lead to better results, as
discussed by Abdessalem et al. [18], where multi-objective population-
based search algorithms and decision tree classification were combined.

• What fitness criteria are more relevant for guiding the system towards
fault revealing scenarios? This question includes the comparison of the
single, multi-objective based search as well surrogate model assisted
search.

AmbieGen can also be useful in the pursuit of actively studied research ques-
tions, where the fault revealing test case generation is required, such as:
transferability of failures from simulation to the real world [19], autonomous
system failure prediction [20], test case prioritization [21] and others.

AmbieGen has proven its effectiveness in fault revealing by winning this
year’s edition of the SBST 2022 cyber-physical testing tool competition. Our
submission is described in the following article [22] and is available at the fol-
lowing link https://github.com/dgumenyuk/tool-competition-av. We
have always kept our tool open sourced and we expect more people to start
using it. We welcome all the contributions for expanding our framework.

5. Conclusions

In this paper, we present the AmbieGen framework for search based test
case generation for autonomous systems, in its public version 0.1.0. We
briefly outline the motivation for developing this framework, its workflow and
main functionalities. We also provide illustrative examples for using the tool
for autonomous vehicle lane keeping assist system testing and autonomous
robot obstacle avoiding algorithm testing. The main features of our tool
include:

• modular architecture, which allows researchers to easily modify the
existing modules, such as initial population generation, crossover, mu-
tation, fitness function as well as introduce new problems and run ex-
periments;

• we provide implementations of test case generation for two systems
under test: autonomous vehicle LKAS system and autonomous robot;
this implementation includes three search algorithms: random search,
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single objective genetic algorithm and a two-objective NSGA-II genetic
algorithm;

• our framework is built to be compatible with Pymoo framework [12],
allowing to fully benefit from the Pymoo framework features, such as
high number of implemented algorithms in Pymoo.

6. Future Plans

Our framework currently includes the implementation of two test case
generation problems, as well as three algorithms (random search, GA, NSGA-
II) for generating test cases. The fitness function is calculated based on a
simplified model of the system, and test scenarios are represented as 2D
arrays, with each column describing a discrete aspect of the scenario. In the
future, we plan to expand the capabilities of our framework to include:

• new algorithms, especially the ones based on the quality-diversity search
[23]

• new test case generation problems, for instance more complex test sce-
narios that include moving pedestrians, other vehicles and traffic signs;

• new fitness functions e.g based on surrogate models of the system under
test, as in the work of Ramakrishna et al. [24], functions based on
neuron coverage [25] and surprise adequacy [26] dedicated to testing
systems containing neural networks;

• add new problem representations, supporting popular scenario specifi-
cation languages such as SCENIC [27];

• add an integration with popular simulators, for instance CARLA [28]
or LGSVL [29]. This will allow to directly evaluate the system model
with the generated scenarios. Also the feedback from the simulators
could be incorporated in fitness functions for guiding the test scenario
sampling.
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