
HAL Id: cea-04258909
https://cea.hal.science/cea-04258909

Submitted on 25 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Denotational and operational semantics for interaction
languages : application to trace analysis

Erwan Mahe, Christophe Gaston, Pascale Le Gall

To cite this version:
Erwan Mahe, Christophe Gaston, Pascale Le Gall. Denotational and operational semantics for in-
teraction languages : application to trace analysis. Science of Computer Programming, 2023, 232,
pp.103034. �10.1016/j.scico.2023.103034�. �cea-04258909�

https://cea.hal.science/cea-04258909
https://hal.archives-ouvertes.fr

Denotational and Operational Semantics for Interaction
Languages : application to trace analysis

Erwan Mahe a, Christophe Gaston a, Pascale Le Gall b

aUniversité Paris-Saclay, CEA, List, F-91120, Palaiseau, France
bUniversité Paris-Saclay, CentraleSupélec, F-91192, Gif-sur-Yvette, France

Abstract

Graphical depictions of distributed systems’ behaviors in the form of Sequence
Diagrams (SD) are widely used, with formalisms such as Message Sequence
Charts (MSC) or UML-SD. Yet, only restricted subsets of these languages are
associated to formal semantics, most of which are given by translation towards
other formalisms. These translational approaches are the only ones enabling
formal verification thanks to the ecosystem and tools associated to the target
formalism. However, traceability of SD concepts is lost and the translation of
some operators, in particular the weakly sequential loop, is problematic.

In this paper, we define an Interaction Language to encode SD and ground
it formally by associating it to three different semantics which we prove to be
equivalent. A “denotational” semantics, relying on composing operators over
sets of traces (sequences of atomic actions) allows one to reason on algebraic
properties of SD. A structural “operational” semantics apprehends SD as ex-
ecutable objects which can express traces one action after the other. It also
bridges the gap between the two other semantics and enables proving their
equivalence. A functional style “execution” semantics separates two concerns
intertwined in the operational semantics that is: identifying immediately ex-
ecutable actions (frontier actions) and computing follow-up SD which specify
continuations of behaviors. The use of positions to identify frontier actions re-
solves non-determinism as every distinct occurrence of these actions have unique
positions and are associated to a unique follow-up SD. Additionally, this enables
visualizing frontier actions in SD as well as the execution of SD.

These three semantics constitute a framework which enable using SD directly
for formal verification. Traceability of SD concepts and executed actions is
preserved and the weakly sequential loops are treated as any other operator.

Keywords: interactions, sequence diagrams, distributed systems, formal
language, denotational semantics, operational semantics

1. Introduction

In this work, we use the terminology Interaction Languages to refer to
a family of languages that stem from the original Message Sequence Charts

Preprint submitted to Science of Computer Programming October 13, 2023

http://orcid.org/0000-0002-5322-4337
http://orcid.org/0000-0001-6865-5108
http://orcid.org/0000-0002-8955-6835

(MSC) [13]. It includes various offshoots of MSC such as Live Sequence Charts
(LSC) [6], and the widely used UML Sequence Diagrams (UML-SD) [34]. In-
teractions are models whose central purpose is to describe communication flow
between different actors. They are particularly adapted to describe Distributed
Systems (DS) defined here as systems composed of several sub-systems deployed
on different machines and communicating via message passing. An interaction
defines the intended behaviors of a system and its graphical counterpart allows
the visualization of these behaviors as follows: (1) each sub-system is associ-
ated with a vertical line, called a lifeline, which from top to bottom describes
the succession of events as perceived by the sub-system, (2) message passing is
depicted as arrows between lifelines and (3) high-level operators enable, among
other, the scheduling or repeating of more simple scenarios.

The intuitive aspect of the graphical representation of interactions makes
them popular for purposes such as documentation. Interaction Languages such
as MSC and UML-SD have a standardized syntax and tool support which de-
mocratized their use. However, and this is particularly the case for UML-SD,
their semantics are not necessarily formally defined (see the survey [33]). At-
tempts to formalize MSC or UML-SD have led to a rich literature. The sur-
vey [33] provides an overview of such attempts for UML-SD. Roughly speaking,
two kinds of approaches are mostly found: on the one hand, semantics de-
fined directly in relation to the syntax of the language and on the other hand,
semantics obtained by systematic translations towards formalisms which are
themselves associated with formal semantics.

Semantics derived from the syntax of formal languages can be defined in vari-
ous manners (denotational, operational with big or small steps, axiomatic, etc.).
In the literature, such semantics for interaction languages are mostly either de-
notational or operational. In [40, 29] a denotational semantics of interactions is
given using partial order sets and in [16] it relies on algebraic operators. These
denotational semantics directly manipulate behaviors specified by interactions
in the form of partial orders on events or sequences of events. As a result, they
are well adapted to reason on and prove various properties about interactions
themselves. For instance, they can be used to identify behavioral equivalence
(syntactically distinct interactions which specify the same set of behaviors) or
inclusion (an interaction which specifies a subset of the behaviors specified by
another). In [32] an operational semantics of interactions is given in the form of
production rules similar to process algebra. By contrast, an operational seman-
tics lies closer to having executable models and is better suited to implement
and prove the correctness of algorithms realizing (among others) Runtime Veri-
fication. However, to the best of our knowledge, none of these approaches were
further developed to include more expressive interactions and to exploit them
in a tooled formal setting (for instance for formal verification).

By contrast, most approaches to exploit interactions in this manner pro-
vide formal semantics by means of a translation of the interactions (with their
standard syntax but informal semantics) towards another formalism which has
a well-established formal semantics and tool support (e.g., Petri Nets [8], au-
tomata [17, 1, 39], sets of communicating automata [4] or process algebra [14]).

2

The main advantage of such approaches is that those formalisms are equipped
with tools such as model-checkers or model-based testing tools. These transla-
tions consist in associating syntactic constructs of the interaction language with
syntactic constructs of the target language. However, the target formalisms may
be defined on concepts (states, transitions, places, etc.) that are quite different
from the ones handled in interaction languages (lifelines, operators such as weak
sequencing and associated loop operators, etc.). This impairs the traceability
of concepts and limits the explainability of subsequent formal techniques which
exploit the translated objects.

Contributions about equivalent semantics and traceability of executed actions.
In this paper, we extend [30], define three semantics of interactions, and prove
their equivalence to one another. These three semantics are, for the first, a
denotational semantics in the style of [16], for the second, an operational se-
mantics in the style of [31] and, for the last, an execution semantics formulated
in the style of functional programming languages.

This third semantics is easily implementable and separates two concerns
found in structural operational semantics [36], which are determining which
actions are immediately executable and computing the term resulting from the
derivations corresponding to the execution of said actions. This enables us to
execute interactions and visualize their executions as in [29]. Moreover, by
using unique positions to distinguish distinct instances of the same action, this
approach resolves non-determinism. Indeed, for any immediately executable
action characterized by its position there is only a single follow-up interaction
which characterizes the remainder of behaviors of the initial interaction that
start with the execution of that action. Also, via this position in the term, we can
unambiguously visualize the position of the executed action in the diagrammatic
representation of the interaction.

By contrast, the denotational semantics allows us to reason and prove some
properties on interactions (for instance properties related to compositionality).
It also enables us, as we do in this paper, to characterize groups of semantically
equivalent interactions and, for each such group, to determine a unique repre-
sentative. As a result, within our framework of three equivalent semantics, we
can leverage the advantages of each and use them in combination in the spirit of
the Unified Theories of Programming (UTP) [11]. For instance, in [27] we ana-
lyze the conformity of partially observed behaviors against interactions (which
serve as specifications) using the execution semantics for re-enacting observed
parts of the behaviors and a compositionality result proved using the denota-
tional semantics to handle partial observation. In [26], we also combine these
two semantics to generate reduced Non-deterministic Finite Automata (NFA)
from interactions, where each state of the NFA corresponds to a group of se-
mantically equivalent terms and the transitions correspond to the execution of
actions identified using the execution semantics.

Contributions about weak sequencing. Formalizing interactions is not trivial [33]
and one of the major difficulties relies on dealing with operators such as weak

3

sequencing. Weak sequencing allows events taking place on different lifelines
to occur in any order while strictly ordering those that take place on the same
lifeline. Weak sequencing is, therefore, a key operator to specify distributed
system behaviors, where by default, events occurring on different subsystems
cannot be ordered temporally, as there is no global clock to refer to for that
purpose.

The manner in which weak sequencing is handled in most translational ap-
proaches is unsatisfactory as it does not allow the unrestricted handling of weak
sequential loops (i.e., unbounded repetition via weak sequencing). In [14], UML-
SD is translated to CSP but only the strict sequential loop — in which a first
instance of the repeated behavior must terminate (i.e., be entirely executed)
before another instance can start being executed — is handled (CSP sequenc-
ing is used to schedule distinct instances of loops). In [39], NFA are built from
UML-SD by composition but the UML-SD loop is matched to the Kleene star
operation on NFA which yet again corresponds to a strictly sequential loop.
In [1], graphs of basic MSCs (which is a particular kind of interaction language)
are translated to NFA. If the edges of the graph are interpreted as weak se-
quencing then it is impossible to build the NFA (undecidability under the asyn-
chronous interpretation [1]). However, if these edges are interpreted as strict
sequencing then it is possible to build the NFA but it is impossible to represent
a weak sequential loop. In [17], UML-SD are translated to specific automata in
which counters are set to record how many times lifelines in loops are executed.
This allows them to translate weak sequential loops but in a restricted manner
because these loops can only contain a basic interaction (without high-level op-
erators). In [4], UML-SD are translated into sets of communicating automata.
To handle non-determinism (caused by alternatives, loops, etc.), each automa-
ton keeps track of the region (UML-SD combined fragments) of the diagram
in which it currently is. However, with the weak sequential loop, one such au-
tomaton may need to be in several regions simultaneously, which is not handled
here.

As a result, our framework provides a unique take on weak sequencing, which
allows handling weak sequential loops as any other operator (it can be nested
and put anywhere above or under any other operator). Our interaction language
contains four kinds of loop. Three of these are defined using the Kleene closure
of distinct scheduling operators (strict sequencing, weak sequencing and inter-
leaving). The different iterations of the repeated behavior are joined together
using the corresponding scheduling operator. A peculiarity of weak sequencing
allows for defining an additional loop, which uses a different kind of closure.

Outline. This paper is organized as follows. After some preliminaries in Sec-
tion 2, we introduce scheduling and repetition operators on traces in Section 3.
Section 4 introduces our interaction language, its associated trace semantics in
denotational style and a rewrite system to compute “canonical forms of inter-
actions” defined as unique representatives of groups of semantically equivalent
interactions. In Section 5, a structural operational semantics is defined in the
style of process calculi and is proven equivalent to the denotational semantics.

4

Section 6 introduces the execution semantics with the addition of optimizations
brought by the use of semantically sound transformations defined in Section 4
and proves that it is equivalent to the operational one. Finally, in Sections 7
and 8 we discuss some related works and we conclude.

2. Preliminaries

In the following we present some preliminary notions and definitions that
are used in the remainder of the paper. Notions of set theory are used through-
out the paper. Behaviors specified by interaction diagrams are formalized as
sequences of atomic actions. Hence, we introduce prerequisite notions of formal
languages and words. Terms and term algebras are required for the definition
of the syntax of our interaction language and its denotational semantics. Bi-
nary relations and notions of equational logic are required to be able to relate
semantically equivalent interactions. By introducing term rewriting, we will be
able to characterize unique representative of groups of semantically equivalent
interactions. Class rewriting extends term rewriting in cases where some rewrite
rules need to be used in both directions.

Sets and words. Given a set E, P(E) is the set of all subsets of E. A word of
alphabet E is a finite sequence of elements of E. For example, w = e1e2 · · · ek
is a word of length k > 2 with ∀ i ∈ [1, k], ei ∈ E. We denote by E∗ the set of
words of alphabet E and by |w| the length of a word w ∈ E∗. We denote by
ε ∈ E∗ the empty word of length 0 and, each letter e ∈ E is considered to be a
word of length 1 i.e., E ⊂ E∗. The concatenation operator “.” is such that for
any two words w ∈ E∗ and w′ ∈ E∗, the word denoted by w.w′ is such that:

• if w′ = ε then w.ε = w

• and if w′ = ew′′ with e ∈ E and w′′ ∈ E∗ then w.ew′′ = we.w′′.

Algebras. An algebra signature is a finite set of operation symbols F =
⋃

j≥0 Fj

such that for any integer j ≥ 0, the set Fj is that of symbols of arity j. Symbols
of arity 0 are constants. A F-algebra A = (A, {fA | f ∈ F}) is defined by a set
A of values and a family of applications fA : Aj → A for each f in Fj .

Considering a set X , the term algebra TF (X) with variables in X has for set
of values (denoted simply as TF (X)) the smallest set such that:

• X ∪ F0 ⊂ TF (X)

• and for any symbol f ∈ F of arity j > 0 and terms t1, · · · , tj ∈ TF (X)j ,
f(t1, · · · , tj) ∈ TF (X).

The free term algebra TF = TF (∅) verifies that for any F-algebra A, there
exists a unique homomorphism TF → A interpreting each ground term in TF
according to A.

For any term t ∈ TF (X), we denote by var(t) ∈ P(X) its set of variables
such that:

5

• ∀ t ∈ X , var(t) = {t},

• ∀ t ∈ F0, var(t) = ∅

• and for all t ∈ F(X) of the form f(t1, · · · , tj) with j ∈ N+,
var(f(t1, · · · , tj)) =

⋃
k∈[1,j] var(tk).

For any t ∈ TF (X), we denote by pos(t) ∈ P((N+)∗) its set of positions
accordingly to the Dewey Decimal Notation [7]. Positions within terms are
defined as words on integers as follows:

• ∀ t ∈ X ∪ F0, pos(t) = {ε},

• and for all t in F(X) of the form f(t1, · · · , tj) with j ∈ N+,
pos(f(t1, · · · , tj)) = {ε} ∪

⋃
k∈[1,j]{k.p | p ∈ pos(tk)}.

For any term t, and any position p ∈ pos(t), we denote resp. by t(p) and t|p the
operation symbol and sub-term at position p within t, and, for any term s, t[s]p
denotes the term obtained by substituting t|p with s within t.

A substitution ϕ : TF (X)→ TF (X) extends a mapping ϕ† : X → TF (X) s.t.:

• ∀ t ∈ X , ϕ(t) = ϕ†(t),

• ∀ t ∈ F0, ϕ(t) = t

• and for all t in F(X) of the form f(t1, · · · , tj) with j ∈ N+,
ϕ(f(t1, · · · , tj)) = f(ϕ(t1), · · · , ϕ(tn)).

We denote by Sub(TF (X)) the set of all such substitutions.

Binary relations. A binary relation⇝ on a set A is a subset of A×A, commonly
used with an infix notation. For any two relations ⇝ and ;:

• composition is s.t. ⇝ ◦;= {(x, z) ∈ A2 | ∃ y ∈ A, (x⇝ y) and (y ; z)},

• ⇝denotes the inverse relation {(y, x)|x⇝ y},

• ↭ denotes the symmetric closure ⇝ ∪ ⇝,

• 0
⇝ denotes the identity relation {(x, x) | x ∈ A},

• 1
⇝ denotes the relation ⇝ itself,

• for any j > 1,
j
⇝ is the relation

j−1
⇝ ◦⇝

• and
∗
⇝ denotes the reflexive and transitive closure

⋃∞
j=0

j
⇝ of ⇝.

• ∗
↭ denotes its symmetric, reflexive and transitive closure (which is the
reflexive and transitive closure of its symmetric closure).

Given signature F and variables X , a binary relation ⇝ on terms of TF (X) is:

6

• stable by substitution if, ∀ (x, y) ∈ TF (X)2, ∀ ϕ ∈ Sub(TF (X)),
we have ϕ(x)⇝ ϕ(y) whenever x⇝ y

• F-compatible if ∀ f ∈ Fj with j ∈ N, for all (xk, yk)k∈[1,j] ∈ TF (X)2j ,
f(x1, · · · , xj)⇝ f(y1, · · · , yj) whenever x1 ⇝ y1, . . . and xj ⇝ yj hold.

A relation on terms that is reflexive, symmetric, transitive, stable by substitu-
tion and F-compatible is a congruence relation. Such a congruence relation ≈
partitions the set of terms into congruence classes []≈.

Equational logic and term rewriting. Given a signature F and a set of variables
X , an equation is a pair (l, r) ∈ TF (X)2 which we may denote by l ∼ r. An ax-
iom system E is a set of equations. The congruence relation ≈E is the reflexive,
symmetric, transitive, stable by substitution and F-compatible closure of E.

A rewrite rule is a pair (l, r) ∈ TF (X)2 s.t. l ̸∈ X , var(r) ⊆ var(l) and
which we may denote by l ; r. A Term Rewriting System (TRS) is a set R
of rewrite rules. The rewrite relation →R is such that x →R y holds iff there
exists (1) a rule l ; r ∈ R, (2) a position p ∈ pos(x), and (3) a substitution
ϕ ∈ Sub(TF (X)) such that x|p = ϕ(l) and y = x[ϕ(r)]p. A term t is said to be

irreducible iff there are no t′ s.t. t →R t′. We may write t →!
R t′ if t

∗→R t′

and t′ is irreducible. This defines a normalizability relation →!
R. A TRS R is

terminating if there is no infinite series (tj)j≥0 of terms such that for any j ∈ N,
tj →R tj+1. A TRS R is confluent if

∗←R ◦
∗→R⊆

∗→R ◦
∗←R. A TRS R that

is both terminating and confluent is said to be convergent. For such a rewrite
system, any term t admits exactly one normal form, which we may denote by
R(t) following the notation from [7]. R(t) is obtained using t →!

R R(t). In the
remainder of this paper, we may call this normal form the canonical form of t.

Class rewriting systems. A Class Rewriting Systems (CRS) is a pair (R, T)
denoted as R/T where R is a TRS and T is an axiom system (often called
a theory in this context1). A CRS R/T specifies a one-step rewrite relation
→R/T∈ TF (X)2 s.t. ∀ (x, z) ∈ TF (X)2:

(x→R/T z)⇔
(
∃ (l ; r) ∈ R, ∃ ϕ ∈ Sub(TF (X)),
∃ y ∈ TF (X), ∃ p ∈ pos(y)

∣∣∣∣ (x ≈T y[ϕ(l)]p)
∧ (y[ϕ(r)]p ≈T z)

)
The example on Figure 1 illustrates the use of a CRS to simplify a Boolean

expression involving the operation symbol ∨ of arity 2 used with an infix no-
tation. This CRS consists of a theory T and a TRS R given on Figure 1a.
An application of this CRS via a one-step rewriting operation is illustrated on
Figure 1b. Let us denote by x = (t1 ∨ t2) ∨ (t3 ∨ t1), y = (t1 ∨ t1) ∨ (t2 ∨ t3)
and z = t1 ∨ ((t2 ∨ t3) s.t. we have the pattern x ≈T y, y →R z and x→R/T z
from the previous definition. Here, we apply the rule l ; r = (t ∨ t) ; t with
the substitution ϕ ∈ Sub(TF (X)) s.t. ϕ(t) = t1 at position p = 1 in y.

1The term “rewriting modulo theory” is also employed.

7

R = (x ∨ x) ; x

T =

{
(x ∨ y) ∼ (y ∨ x),

x ∨ (y ∨ z) ∼ (x ∨ y) ∨ z

}

(a) Example CRS

∨
∨

t1 t2

∨
t3 t1

≈T

∨
∨

t1 t1

∨
t2 t3

∨
∨

t1 t1

∨
t2 t3

→R

∨
t1 ∨
t2 t3

∨
∨

t1 t2

∨
t3 t1

→R/T

∨
t1 ∨
t2 t3

(b) Example application

Figure 1: Example application of a CRS

In the particular case when the theory T only contains rules relative to the
associativity or commutativity of operators (as in our example), such rewriting
is called Associative-Commutative Rewriting (AC-R). Formulating a rewrite
system as an AC-RS is advantageous as existing tools allow automated proofs
of its termination [18] and confluence [41].

3. Scheduling and repetition operators for trace handling

Interactions describe the behavior of distributed and concurrent systems
based on their internal and external communications. They are defined for a set
L of lifelines and a set M of messages, representing respectively the sending and
receiving locations and the messages exchanged between them. In the following,
we assume that a signature Ω = (L,M) is given.

The behaviors of distributed systems are characterized by sequences of events
called communication actions (actions for short) which are of two kinds: either
the emission of a message m ∈ M from a lifeline l ∈ L, denoted by l!m, or the
reception of m ∈ M by l ∈ L, denoted by l?m. AΩ denotes the set of actions
over Ω:

AΩ = {l!m | m ∈M, l ∈ L} ∪ {l?m | m ∈M, l ∈ L}

For any action a ∈ AΩ, we denote by θ(a) the lifeline on which a occurs (i.e.,
θ(a) = l if a is of the form l!m or l?m).

Sequences of actions, called traces, are words in A∗
Ω. In the following, we

denote by TΩ = A∗
Ω the set of traces over the signature Ω.

3.1. Binary composition operators

We introduce operators to compose traces, modeling different notions of
scheduling:

• the strict sequencing (;),

8

• the interleaving (||),

• and the weak sequencing (;××).

These “scheduling” operators ⋄ ∈ {; , ;×× , ||} are defined with the same profile:
⋄ : TΩ × TΩ → P(TΩ). They are canonically extended to sets of traces, i.e., to
⋄ : P(TΩ) × P(TΩ) → P(TΩ), as follows: for any two sets T1 and T2 of traces,
T1 ⋄ T2 is the union of all the sets t1 ⋄ t2 with t1 ∈ T1 and t2 ∈ T2.

The strict sequencing notation (;) extends the concatenation “.” operator.
The set t1; t2 of strict sequencing of traces t1 and t2 is defined as {t1.t2}. We
choose this notation in line with [16]. The following example illustrates its use
with elements (ak)k∈[1,8] being atomic actions of AΩ:

{
a1.a2,
a3.a4

}
;

{
a5.a6,
a7.a8

}
=


a1.a2.a5.a6,
a1.a2.a7.a8,
a3.a4.a5.a6,
a3.a4.a7.a8


The colors are used to highlight the definition of the operator “;” together with
sets. Strict sequencing is associative and admits {ε} as a neutral element i.e.,
for any sets of traces T1, T2 and T3, we have T1; (T2;T3) = (T1;T2);T3 and
T1; {ε} = T1 = {ε};T1.

Interleaving (||) allows elements of distinct traces to be reordered with regard
to one another while preserving the order that is specific to each trace. The set
t1||t2 of interleavings of traces t1 and t2 is defined by:

ε||t2 = {t2}
t1||ε = {t1}

(a1.t1)||(a2.t2) = {a1.t | t ∈ t1||(a2.t2)} ∪ {a2.t | t ∈ (a1.t1)||t2}

The following two examples illustrate the use of the interleaving operator:

{
a1.a2,
a3

}
||{a4} =


a1.a2.a4,
a1.a4.a2,
a4.a1.a2,
a3.a4,
a4.a3,

 {a1.a2}||{a3.a4} =



a1.a2.a3.a4,
a1.a3.a2.a4,
a1.a3.a4.a2,
a3.a1.a2.a4,
a3.a1.a4.a2,
a3.a4.a1.a2


Like strict sequencing, interleaving is associative and admits {ε} as a neutral
element. Moreover, it is also commutative i.e., for any sets of traces T1 and T2,
we have T1||T2 = T2||T1.

Weak sequencing is a hybrid operator between strict sequencing and inter-
leaving: it takes into account the location (lifeline) on which the actions it
schedules take place. By contrast to the interleaving operator, weak sequencing
only allows permutations of the order of actions when said actions do not occur
on the same lifeline. In a similar fashion as [16], we define a “conflict” predicate
t××l meaning that the trace t contains an action on the lifeline l:

ε××l = ⊥ and (a.t)××l = (θ(a) = l) ∨ (t××l)

9

If t××l = ⊤, we say that the trace t has conflicts with the lifeline l. This enables
us to define the set t1;×× t2 of weak sequencing of t1 and t2 as follows:

ε;×× t2 = {t2}
t1;×× ε = {t1}

(a1.t1);×× (a2.t2) = {a1.t | t ∈ t1;×× (a2.t2)}
∪ {a2.t | t ∈ (a1.t1);×× t2, ¬(a1.t1××θ(a2))}

When defining t′1;×× t
′
2, the order of the actions in each trace is preserved and

actions in t′2 can only precede those in t′1 that do not occur on the same lifeline.
This explains the two subsets constituting (a1.t1);×× (a2.t2): the first one contains
all traces whose first action is a1 and tail belongs to t1;×× (a2.t2) and the second
one is empty if lifeline of a2 occurs in a1.t1 (i.e. a1.t1×

×θ(a2)), and contains all
traces whose first action is a2 and tail belongs to (a1.t1);×× t2 otherwise.

In the following example, in order to illustrate the mechanisms of conflict
with lifelines, the contents of actions are detailed: lifelines are chosen among l1
and l2 and messages among m1, m2 and m3. Action l1!m3 can be scheduled
before l2!m2 because they occur on different lifelines but l1!m3 cannot precede
l1!m1 because they both occur on lifeline l1.

{l1!m1.l2!m2};×× {l1!m3} =
{

l1!m1.l2!m2.l1!m3,
l1!m1.l1!m3.l2!m2

}
By contrast to interleaving, weak sequencing is not commutative. However it
still is associative and admits {ε} as a neutral element.

A trace, being a sequence of actions, represents a behavior expressed by a
system. Hence a set of traces can be understood as a set of possible behaviors
and the union operation (∪) on sets can be interpreted as a choice between
behaviors. This fourth binary operator is known to be associative and commu-
tative but {∅} is not its neutral element.

3.2. Repetition operators

Scheduling operators define compositions of traces obtained from enabling
or forbidding the reordering of actions according to some scheduling policy. All
three are associative (in addition, || is commutative) and admit {ε} as a neutral
element. This allows us to define (Kleene) closures of those operators to specify
repetitions.

Definition 1 (Kleene closures). For any ⋄ ∈ {; , ;×× , ||} and any T ∈ P(TΩ),
the Kleene closure T ⋄∗ of T is defined by:

T ⋄∗ =
⋃

j∈N T ⋄j with T ⋄0 = {ε} and T ⋄j = T ⋄ T ⋄(j−1) for j > 0.

The three Kleene closures ;∗, ;××∗ and ||∗ are respectively called, strict,
weak and interleaving Kleene closures (also called K-closure for short). Within
the K-closure T ⋄∗ we can find traces obtained from the repetition (using ⋄ as a
scheduler) of any number of traces of T . Let us remark the following properties:

• {ε}⋄∗ = {ε} (i.e., {ε} is a fixed point for ⋄∗),

10

• {ε} ∪ T ⋄∗ = T ⋄∗ because ε ∈ T ⋄∗

• (T ⋄∗)⋄∗ = T ⋄∗ (idempotence)

This notion of repetition thus coincides with the notion of unbounded loop
found in various languages. Repetitions with strict sequencing corresponds to
the classical Kleene star (strictly sequential loop), while the one based on weak
sequencing can be used to formalize a certain understanding of the UML-SD [33]
loop (weakly sequential loop). By contrast, the interleaving Kleene closure
(parallel loop) is more akin to the replication !P (i.e., !P = P |!P) from process
calculus (see [35]), expressing an unbounded number of copies of P along the
parallel composition “|”.

T =

{
l1!m.l2!m1.l2!m2,
l2!m

}
T ;××0 = {ε}

T ;××1 = T

T ;××2 =



l1!m.l2!m1.l2!m2.l1!m.l2!m1.l2!m2,
l1!m.l2!m1.l1!m.l2!m2.l2!m1.l2!m2,
l1!m.l1!m.l2!m1.l2!m2.l2!m1.l2!m2,
l1!m.l2!m1.l2!m2.l2!m,
l2!m.l1!m.l2!m1.l2!m2,
l1!m.l2!m.l2!m1.l2!m2,
l2!m.l2!m


Figure 2: Example illustrating the weak Kleene closure

Figure 2 illustrates an application of the weak Kleene closure. We con-
sider a set T containing two traces l1!m.l2!m1.l2!m2 and l2!m. The first 3
powersets of T (i.e., T ;××0 ∪ T ;××1 ∪ T ;××2) are displayed. Let us remark that the
use of weak sequencing allows events occurring on l2 to be reordered w.r.t.
those occurring on l1 but not w.r.t. other events occurring on l2. As such
weakly sequential repetition is distinct from both strictly sequential repetition
(as demonstrated by l1!m.l2!m.l2!m1.l2!m2 ∈ T ;××2 \ T ;2 because l2!m cannot be
reordered in this manner using strict sequencing) and parallel repetition (by
l1!m.l2!m1.l2!m.l2!m2 ∈ T ||2 \ T ;××2 because with interleaving, nothing prevents
l2!m to be reordered between l2!m1 and .l2!m2).

For ⋄ ∈ {; , ;×× , ||} whenever a.t ∈ T1 ⋄T2 (with a and t any action and trace
and T1 and T2 any sets of traces), the action a is taken from a trace a.t′ that
belongs to either T1 or T2. Definition 2 introduces restricted versions of the
scheduling operators so as to impose, in our example case, that action a must
be taken from T1 and not from T2.

Definition 2 (Restricted scheduling operators). For any ⋄ ∈ {; , ;×× , ||}, we
define the operator ⋄↰ such that for any sets of traces T1 and T2 we have:

T1 ⋄↰ T2 =

{
t ∈ T1 ⋄ T2

∣∣∣∣ if ∃ a ∈ AΩ, t′ ∈ TΩ s.t. t = a.t′

then ∃ t1 ∈ TΩ, (a.t1 ∈ T1) ∧ (t′ ∈ {t1} ⋄ T2)

}
In Definition 2, if the left-hand-side (t = a.t′) is true then the condition

∃ t1 ∈ TΩ, (a.t1 ∈ T1) ∧ (t′ ∈ {t1}⋄T2) applies as intended and the first action

11

a must be taken from a trace of T1 and not from T2. If the left-hand-side is
false then the only form t can take is t = ε and indeed the predicate becomes
true and we have ε ∈ T1 ⋄↰ T2 which works as intended because we also have
ε ∈ T1 ⋄ T2.

We use the restricted versions of the scheduling operators to define their
Head-First closures (abbr. HF-closure) in Def.3.

Definition 3 (Head-first closures). For any ⋄ ∈ {; , ;×× , ||}, we define the Head-

First closure of ⋄ as ⋄↰∗ i.e., the Kleene closure of the restricted ⋄↰ operator.

In the following we show that HF-closure and K-closure are equivalent for
the two operators ; and || but that this is not the case for the weak sequencing
operator ;××. Intuitively, given ⋄ ∈ {; , ||, ;×× } and a set of traces T ⊆ T, any non
empty trace t ∈ T ⋄∗ is such that there exists non-empty traces t1, · · · , tn ∈ T
s.t. t ∈ {t1}⋄· · ·⋄{tn}. If the HF closure ⋄↰∗ is equivalent to the Kleene closure
⋄∗ then we must also have t ∈ T ⋄↰∗.

• For the strict sequencing we have {t1}; · · · ; {tn} = {t1};↰ · · · ;↰ {tn} because
in any case, an action from a trace ti (i ∈ [2, n]) can only occur if all the
actions from all the traces tj with j < i have already occurred.

• For the interleaving there exists a permutation η : [1, n] → [1, n] s.t.
{t1}|| · · · ||{tn} = {tη(1)}||↰ · · · ||↰{tη(n)}. Indeed, it suffices to reorder the
traces ti (i ∈ [1, n]) depending on the position in t where the first action ai
from ti occurs. Then, because {ai.t′i}||↰{ti+1} = {ai}; ({t′i}||{ti+1}) and
because || allows any possible interleaving, the position of the ti does not
matter for the second and all the following actions. We can then conclude
because by Definition 1, we have {tη(1)}||↰ · · · ||↰{tη(n)} ⊆ T ||↰∗.

Reflecting the Coq proof [23], a first Lemma 1 is required to prove the
equivalence for ; and || in Lemma 2. Then a counter-example is produced to
handle ;××.

Lemma 1. For any ⋄ ∈ {; , ||}, T ∈ P(TΩ), t in TΩ and a ∈ AΩ we have:

(a.t ∈ T ⋄∗)⇒ (∃ t′ ∈ TΩ s.t. (a.t′ ∈ T) ∧ (t ∈ {t′} ⋄ T ⋄∗))

Proof. By definition of the K-closure, a.t ∈ T ⋄∗ implies the existence of j ≥ 0
such that a.t ∈ T ⋄j . We can then reason by induction on j. j = 0 is not possible
because T ⋄0 = {ε}. For j = 1, a.t ∈ T ⋄1 = T and t ∈ {t} ⋄ {ε} ⊂ {t} ⋄ T ⋄∗. For
j > 1 the fact that a.t ∈ T ⋄j = T ⋄ T ⋄(j−1) implies the existence of t′′ ∈ T s.t.
a.t ∈ {t′′} ⋄ T ⋄(j−1) then:

• if ⋄ =; this implies that either t′′ is of the form a.t′ and t ∈ {t′};T ;(j−1)

and therefore t ∈ {t′};T ;∗ or t′′ = ε and a.t ∈ T ;(j−1) and we can use the
induction hypothesis to conclude;

• if ⋄ = || this implies that either t′′ is of the form a.t′ and t ∈ {t′}||T ||(j−1)

and therefore t ∈ {t′}||T ||∗ or there exists a certain t′′′ s.t. we have

12

a.t′′′ ∈ T ||(j−1) and t ∈ {t′′}||{t′′′}. As a.t′′′ ∈ T ||(j−1) we can apply the
induction hypothesis to reveal t′ such that a.t′ ∈ T and t′′′ ∈ {t′}||T ||∗.
We can conclude as follows:

t ∈ {t′′}||({t′}||T ||∗) ⇒ t ∈ {t′′}||(T ||∗||{t′}) commutativity
⇒ t ∈ ({t′′}||T ||∗)||{t′} associativity
⇒ t ∈ T ||∗||{t′} property of Kleene closure
⇒ t ∈ {t′}||T ||∗ commutativity

Lemma 2 (Equivalence of HF & K closures for ; and ||). For any set of traces

T , we have T ;↰∗ = T ;∗ and T ||↰∗ = T ||∗.

Proof. Let us consider ⋄ ∈ {; , ||}. By definition, we already have T ⋄↰∗ ⊆ T ⋄∗.

To prove T ⋄∗ ⊆ T ⋄↰∗, let us reason by induction on the length of a member
trace. For length 0, by definition ε ∈ T ⋄↰∗ and ε ∈ T ⋄∗. For a trace of the form
a.t, if a.t ∈ T ⋄∗, then, as per Lemma 1 there exists a trace t′ such that a.t′ ∈ T
and t ∈ {t′} ⋄ T ⋄∗. This in turn implies that given that action a is taken from
a.t′, we have a.t ∈ {a.t′}⋄↰T ⋄∗ and there exists t′′ ∈ T ⋄∗ such that t ∈ {t′}⋄{t′′}.
Given that |t′′| ≤ |t| < |a.t|, we have t′′ ∈ T ⋄↰∗ by the induction hypothesis.

Therefore we have that a.t ∈ {a.t′} ⋄↰ T ⋄↰∗, and hence a.t ∈ T ⋄↰∗.

T1 = {l1!m1.l2?m1}

T2 = {l2!m2}

T2;×× T1 =

{
l2!m2.l1!m1.l2?m1,
l1!m1.l2!m2.l2?m1

}
T2;

↰
×× T1 =

{
l2!m2.l1!m1.l2?m1

}

(T1 ∪ T2)
;↰××2 =


l1!m1.l2?m1.l1!m1.l2?m1,
l1!m1.l1!m1.l2?m1.l2?m1,
l2!m2.l1!m1.l2?m1,
l1!m1.l2?m1.l2!m2,
l2!m2.l2!m2


(T1 ∪ T2)

;××2 = (T1 ∪ T2)
;↰××2 ∪ {l1!m1.l2!m2.l2?m1}

Figure 3: Example illustrating the weak Head-First closure

Figure 3 illustrates the use of the restricted weak sequencing operator ;↰×× and

its associated closure ;↰××2∗. The trace t = l1!m1.l2!m2.l2?m1 which is included in
T2;×× T1 is not in T2;

↰
×× T1 because the first action must be taken from T2. In the

weak Head-First closure, we therefore have t ̸∈ (T1 ∪T2)
;↰××2 because it is neither

in T2;
↰
×× T1 nor in T1;×× T2. This example demonstrates that the weak Head-First

closure ;××↰∗ is distinct from both the weak K-closure ;××∗ and (more trivially)

13

the strict K-closure ;∗ (for instance consider l1!m1.l1!m1.l2?m1.l2?m1). It is
therefore also a counter-example showing that Lemma 2 cannot be extended to
include weak sequencing. This example will be further illustrated in Section 5.3
with the help of drawn interactions and their operational semantics.

Let us compare the scheduling operators ;, ;↰××, ;×× and || according to their
strictness and permissiveness. This is formalized as follows: for any two sets T1

and T2 of traces,

T1;T2 ⊆ T1;
↰
×× T2 ⊆ T1;×× T2 ⊆ T1||T2

Let us then consider a total order < on {; , ;↰×× , ;×× , ||} such that

|| < ;×× < ;↰×× < ;

and let us denote by min(⋄1, ⋄2) the minimal (i.e., most permissive) operator
between ⋄1 and ⋄2.

It then comes that, for any ⋄1 < ⋄2, and any set T of traces, we have
T ⋄2∗ ⊆ T ⋄1∗. This then implies the following property: for any two ⋄1 and ⋄2
and any set T of traces: (T ⋄1∗)⋄2∗ = (T ⋄2∗)⋄1∗ = Tmin(⋄1,⋄2)∗.

3.3. Summary of algebraic properties

property operators equation
associativity ⋄ ∈ {∪, ; , ;×× , ||} x ⋄ (y ⋄ z) = (x ⋄ y) ⋄ z
commutativity ⋄ ∈ {∪, ||} x ⋄ y = y ⋄ x
{ε}-neutrality ⋄ ∈ {; , ;×× , ||} {ε} ⋄ x = x = x ⋄ {ε}
binary idempotence ∪ x ∪ x = x
{ε}-fixpoint ⋄ ∈ {; , ;↰×× , ;×× , ||} {ε}⋄∗ = {ε}
{ε}-inclusion ⋄ ∈ {; , ;↰×× , ;×× , ||} {ε} ∪ x⋄∗ = x⋄∗

repetition nesting ⋄1, ⋄2 ∈ {; , ;↰×× , ;×× , ||} (x⋄1∗)⋄2∗ = xmin(⋄1,⋄2)∗

Figure 4: Algebraic properties of operators on sets of traces

In Section 3.1 and 3.2, we have defined a set of binary and unary operators
over sets of traces. Those operators may then be used to define the semantics
of an interaction diagram i as a set of accepted traces by mapping them to the
corresponding syntactic elements i.

We have also characterized these operators by identifying some of their alge-
braic properties (which are summarized on Figure 4). This will then allow us to
identify groups of semantically equivalent interactions and to compute normal
forms of interactions (i.e., unique representatives of these groups).

4. Interaction language

In this section, we formalize our interaction language as a term algebra and
associate it with a denotational-style trace semantics based on the previously

14

defined composition operators on traces. We then characterize groups of seman-
tically equivalent interactions via a set of equations and describe a process to
compute canonical forms of interactions which are defined as unique represen-
tatives of classes of semantically equivalent interactions.

4.1. Syntax and denotational semantics

As sketched out so far, interactions will be defined as terms using compo-
sition and loop operators over traces. Basic building blocks include the empty
interaction ∅, which specifies the empty behavior ε (observation of no action)
and any atomic action a of AΩ, which specifies the single-element trace a. More
complex behaviors can then be defined inductively using the binary constructors
strict, seq, par and alt and the unary constructors loopS (strict loop), loopH
(head loop up to ;××), loopW (weak loop) and loopP (parallel loop).

Definition 4 (Interaction Language). We denote by IΩ the set of ground terms
TF defined for the signature F = F0 ∪ F1 ∪ F2 s.t.:

• symbols of arity 0 (constants) are F0 = {∅} ∪ AΩ

• symbols of arity 1 are F1 = {loopS , loopH , loopW , loopP }

• symbols of arity 2 are F2 = {strict, seq, par, alt}

In Definition 4, we define our interaction language as a set of terms IΩ
inductively defined from the set of symbols F with arity in N. In the following
we will exclusively use the notation F to designate the specific set of operation
symbols from Definition 4.

The set P(TΩ) of sets of traces admits the structure of a F-algebra using
composition and loop operators previously introduced. The denotational seman-
tics of interactions is then given in Definition 5 using the initial homomorphism
associated with this F-algebra.

Definition 5 (Denotational semantics). A = (P(TΩ), {fA | f ∈ F}) is the
F-algebra defined by the following interpretations of the operation symbols in F :

∅A = {ε}
aA = {a}

strictA = ;
seqA = ;××

parA = ||
altA = ∪

loopAS = ;∗

loopAH = ;↰××∗

loopAW = ;××∗

loopAP = ||∗

The denotational semantics σd of IΩ is the unique F-homomorphism σd : IΩ →
P(TΩ) between the free term F-algebra TF and A.

Let us remark that our interaction language contains two kinds of loop as-
sociated to seq (loopH and loopW), whereas the other two scheduling operators
(strict and par) are each only associated to one loop (resp. loopS and loopP).
This is a direct consequence of Lemma 2 stating that Head-First closure and
Kleene closure associated to resp. strict and par are equivalent. By contrast,
this is not the case for seq, as demonstrated by the example from Figure 3.

15

4.2. A first example of interaction

An example of interaction is given on the left of Figure 5. Lifelines l1, l2
and l3 are drawn as vertical lines. Emission and reception actions are drawn as
horizontal arrows carrying the transmitted messages m1, m2, m3 and m4, which
exit the emitting lifeline or point towards the receiving lifeline. For example,
in Figure 5, there is an emission (l1!m4) from the lifeline l1 with the message
m4.

When a direct emission-reception causality occurs, we draw both actions as
a single arrow from the emitter towards the receiver. We encode such direct
causal relationships using strict sequencing, denoted by the keyword strict. For
instance, in Figure 5, the arrow carrying m1 and specifying its passing between
l1 and l3 is modelled by the interaction strict(l1!m1, l3?m1). Using the strict
operator here obliges l3?m1 to occur after l1!m1, which reflects the causal order
related to the passing of message m1 between l1 and l3.

=

(
({l1!m1}; {l3?m1})
;×× ({l1!m2}; {l2?m2})

)
∪
(

({l1!m3}; {l2?m3})
||{l1!m4}

)

=

(
{l1!m1.l3?m1}
;×× {l1!m2.l2?m2}

)
∪
(
{l1!m3.l2?m3}
||{l1!m4}

)

=

 l1!m1.l3?m1.l1!m2.l2?m2,
l1!m1.l1!m2.l3?m1.l2?m2,
l1!m1.l1!m2.l2?m2.l3?m1

l1!m3.l2?m3.l1!m4,
l1!m3.l1!m4.l2?m3,
l1!m4.l1!m3.l2?m3


Figure 5: Example of a basic interaction & its trace semantics

The top to bottom direction relates to the passing of time. An action (ar-
row) drawn above another one generally occurs beforehand. This scheduling of
actions corresponds to the weak sequencing operator, for which we use the seq
keyword. This operator enforces precedence relations between actions occurring
on the same lifeline. However, by contrast to strict sequencing, weak sequenc-
ing does not enforce precedence relations between actions occurring on different
lifelines. In Figure 5, the term seq(strict(l1!m1, l3?m1), strict(l1!m2, l2?m2))
corresponds to the fact that the arrow carrying m1 is drawn above that car-
rying m2. Using seq here instead of strict allows for instance l2?m2 to occur
before l3?m1 even though the latter is drawn above. However l1!m2 cannot
occur before l1!m1 because they both occur on l1. In contrast to strict, the seq
operator has no graphical representation in diagrams, as it corresponds to the
default scheduling operator.

Interleaving (also known as parallel) and alternative compositions can also
be used to specify more complex behaviors. Those two operators correspond
respectively to the par and alt keywords (displayed in Figure 5 in the top left
corner of a box).

In Figure 5, the passing of m3 and the emission of m4 are scheduled using

16

parallel composition. In the diagram representation, this corresponds to the
box labelled with “par”, modelled by the term par(strict(l1!m3, l2?m3), l1!m4).
Actions scheduled with par can occur in any order. Here, l1!m4 can occur before
l1!m3, after l2?m3 or in between those two actions.

Alternative composition is an exclusive non-deterministic choice between
behaviors. Like par, alt is drawn as a box labelled with “alt”. The global term
describing the left of Figure 5 is given by:

alt(seq(strict(l1!m1, l3?m1), strict(l1!m2, l2?m2)), par(strict(l1!m3, l2?m3), l1!m4))

Here, either messages m1 and m2 are exchanged or (exclusively) messages m3

and m4 are exchanged.

The semantics of constants ∅ and a ∈ AΩ are sets containing a single element
being respectively {ε} and {a}. The strict, seq, par and alt symbols are respec-
tively associated to the ;, ;××, || and union ∪ operators on sets of traces. Their
use is illustrated on the right of Figure 5 to compute the semantics of the inter-
action example given on the left of Figure 5. For instance, from the second line
to the third line, using distinct colors for better visualization, weak sequencing
{l1!m1.l3?m1};×× {l1!m2.l2?m2} allows l1!m2 to be reordered before l3?m1 but
not before l1!m1 while interleaving {l1!m3.l2?m3}||{l1!m4} allows l1!m4 to be
placed anywhere before, after or in-between l1!m3 and l2?m3. The resulting set
of traces, which constitutes the semantics of the interaction drawn on the left,
is given on the bottom right of Figure 5.

4.3. Some comments on the loop operators

From a system designer perspective, using loopS , loopW or loopP applied to
an arbitrary interaction i is motivated by different goals:

• With loopS(i), each instance of a repeatable behavior must be executed
entirely before any other can start. Hence, we can use loopS to specify
some repeatable critical behavior of which at most a single instance can
exist at any time.

• With loopP (i), all existing instances can be executed concurrently with
each other, and, at any given moment, new instances can be created.
loopP can specify protocols in which any new sessions can be created and
run in parallel.

• With loopW , new instances can be created whenever the action triggering
the instantiation occurs on a lifeline which is not occulted by previous
instances. Roughly speaking, this is because:

– even though on each lifeline, the lifeline must terminate the behavior
assigned to it as part of the current instance of the loop before being
able to start executing behaviors from a second instance,

17

– for any such instance, a lifeline might terminate before the others.
Then it is allowed to start another instance while some other lifelines
may not have yet finished the execution of the previous instance of
the loop.

As a result, loopW can be used to specify repeatable behaviors that are se-
quential but that have no enforced synchronization mechanisms in-between
lifelines.

The head loop loopH is associated with the weak HF-closure operator ;↰××∗,
which is an ad-hoc algebraic artefact and not a K-closure. We include it in our
IL because it might correspond to a more intuitive understanding of sequential
loops than loopW , as illustrated in Section 5.3 and the survey [33].

4.4. Identifying classes of semantically equivalent interactions

From the algebraic properties of the ;, ;××, ||, ∪, ;∗, ;↰××∗, ;××∗ and ||∗ operators
given in Section 3 and summarized on Figure 4, one can infer the set of equa-
tions E from Definition 6. E induces a congruence relation ≈E on interaction
terms, which, by construction, is sound (see Lemma 3) i.e., for any two terms
i1 and i2, i1 ≈E i2 implies that σd(i1) = σd(i2). Thus, ≈E enables us to relate
semantically equivalent but syntactically distinct interactions.

Definition 6. Given signature F as introduced in Definition 4 and a set of
variables X which includes {x, y, z}, let us consider the following axiom system
E on the set TF (X) of interaction terms with variables:

E =

{
f(f(x, y), z) ≈ f(x, f(y, z)) | f ∈ {strict, seq, par, alt}

}
∪

{
f(x, y) ≈ f(y, x) | f ∈ {par, alt}

}
∪

{
f(∅, x) ≈ x, f(x,∅) ≈ x | f ∈ {strict, seq, par}

}
∪ {alt(x, x) ≈ x}

∪
⋃

k∈{S,H,W,P}

{
loopk(∅) ≈ ∅,
alt(∅, loopk(x)) ≈ loopk(x)

}
∪

⋃
(k1,k2)∈{S,H,W,P}2{loopk1(loopk2(x)) ≈ loopmin(k1,k2)(x)}

With min(k1, k2) being defined2 given P < W < H < S.

Lemma 3. E is sound w.r.t. the F-algebra A i.e., for any two terms t1 and
t2 from TF , if we have t1 ≈E t2 then they have the same image tA1 = tA2 (this
implies interactions — i.e., ground terms — related by ≈E have the same σd

semantics).

Proof. The constituting equations are sound thanks to (in order): (1) the asso-
ciativity of ;, ;××, || and ∪, (2) the commutativity of || and ∪, (3) {ε} being a neu-
tral element for the scheduling operators, (4) the idempotence of ∪, (5) proper-
ties of repetition operators including (T ⋄1∗)⋄2∗ = (T ⋄2∗)⋄1∗ = Tmin(⋄1,⋄2)∗. See
Figure 4 for a summary of the algebraic properties and [22] for a Coq mechani-
sation.

2reflecting the “repetition nesting” property of Figure 4

18

E being sound implies that the associated congruence ≈E puts in rela-
tion terms that are semantically equivalent. Let us remark however that E
is not complete, which signifies that not all semantically equivalent interac-
tions are related by ≈E . Indeed, it suffices to consider that seq(l!m1, l!m2) and
strict(l!m1, l!m2) have the same semantics but are not related by ≈E . For the
sake of simplicity and in order to limit the scope of this paper, we consider this
simple axiom system E. Additional equations might be added to have a broader
characterization of semantically equivalent interactions.

4.5. A rewrite system to characterize canonical interactions

Let us consider the following equational theory T , in which we gather all
equations related to AC properties of our language.

T =

{
f(f(x, y), z) ≈ f(x, f(y, z)) | f ∈ {strict, seq, par, alt}

}⋃ {
f(x, y) ≈ f(y, x) | f ∈ {par, alt}

}
Using AC-R allows us to eliminate issues related to the directionality of rules

related to associative and commutative properties. As a result, we define our
rewrite system as the CRS →R/T with the following rules:

R =

{
f(∅, x) ; x, f(x,∅) ; x | f ∈ {strict, seq, par}

}
∪ {alt(x, x) ; x}

∪
⋃

k∈{S,H,W,P}

{
loopk(∅) ; ∅,
alt(∅, loopk(x)) ; loopk(x)

}
∪

⋃
(k1,k2)∈{S,H,W,P}2{loopk1

(loopk2
(x)) ; loopmin(k1,k2)(x)}

(VAR x y z)
(THEORY (AC alt) (AC par) (A strict) (A seq))
(RULES

strict(x ,∅∅∅) → x seq(x ,∅∅∅) → x par(x ,∅∅∅) → x
strict(∅∅∅,x) → x seq(∅∅∅,x) → x par(∅∅∅,x) → x

alt(x ,x) → x

loopS(∅∅∅) →∅∅∅ loopH(∅∅∅) →∅∅∅ loopW(∅∅∅) →∅∅∅ loopP(∅∅∅) →∅∅∅

alt(∅∅∅,loopS(x)) → loopS(x)
...
alt(∅∅∅,loopP(x)) → loopP(x)

loopS(loopS(x)) → loopS(x)
loopS(loopH(x)) → loopH(x)
...
loopP(loopP(x)) → loopP(x)

)

Figure 6: Encoding (partial) of the CRS in WST format

The WST3 format (international WorkShop on Termination) has been used
to encode such rewrite systems, allowing verification of their properties to be

3termination-portal.org/wiki/WST

19

termination-portal.org/wiki/WST

conducted automatically. On Figure 6, the encoding of our CRS is illustrated
(with the · · · representing similar rules for the various loops). We used the TTT2
[18] tool to prove its termination and the CSI [41] tool to prove its confluence
(see [24] for details).

Thus, we can define, for any interaction i ∈ IΩ, a unique form R(i) s.t.

i→!
R/T R(i). It is also self-evident that

∗→R/T=≈E . Hence, the R form repre-

sents uniquely equivalence classes of []≈E
.

5. A structural operational semantics

In this section, we present a structural operational semantics for interactions
in the style of process calculus [2]. It relies on the definition (by structural
induction) of two predicates:

• i ↓ (the termination predicate), which indicates that the interaction i
accepts the empty trace

• and i
a−→ i′ (the execution relation) which indicates that traces a.t such

that t is accepted by i′ are accepted by i.

The relation→ allows the determination, for any interaction i, of which actions
a can be immediately executed, and of potential follow-up interactions i′ which
express continuations t of traces a.t accepted by i. Defining an execution relation
→ is a staple of process calculus [2]. We will pay particular attention to the
weak sequencing operator in Section 5.2 before defining → in Section 5.3.

5.1. Characterizing the termination of interactions

By reasoning on the structure of an interaction term i, we can determine
whether or not the empty trace ε belongs to its semantics. When this holds, we
say that i terminates and use the notation i ↓ as in [2, 32].

Definition 7 (Termination). The predicate ↓⊂ IΩ is such that for any i1 and
i2 from IΩ, any f ∈ {strict, seq, par} and any k ∈ {S,H,W,P} we have:

∅ ↓
i1 ↓

alt(i1, i2) ↓
i2 ↓

alt(i1, i2) ↓
i1 ↓ i2 ↓
f(i1, i2) ↓ loopk(i1) ↓

Rules of Definition 7 are mostly trivial. The empty interaction ∅ only ac-
cepts ε and thus terminates. An interaction with a loop at its root terminates
because it is possible to repeat zero times its content. As alt(i1, i2) specifies a
choice, it terminates iff either i1 or i2 terminates. An interaction of the form
f(i1, i2), with f being a scheduling constructor, terminates iff both i1 and i2
terminate. The rules are consistent with the denotational semantics as stated
by Lemma 4.

Lemma 4. For any i ∈ IΩ, (i ↓)⇔ (ε ∈ σd(i))

Proof. By induction on the term structure of interactions. See Appendix A.

20

In summary, i ↓ signifies that i may terminate immediately, but because of
non-determinism, depending on the nature of i, i can admit both empty and
non-empty traces.

5.2. Dealing with weak-sequencing using evasion and pruning

Weak sequencing only allows interleavings between actions that occur on
different lifelines. As a result, within an interaction of the form i = seq(i1, i2),
some actions a that can be executed in i2 (i.e., such that there exists a i′2 satis-

fying i2
a−→ i′2) may also be executed in seq(i1, i2) (i.e., such that we would have

a i′ satisfying seq(i1, i2)
a−→ i′). In other words, given a trace a.t ∈ σd(i), action

a might correspond to an action expressed by i2. This is however conditioned
by the ability of i1 to express traces that have no conflict with θ(a) so that a
can be placed in front of what is expressed by i1 when recomposing a.t.

We define the evasion predicate ↓×
×
as a weaker notion than the termination

predicate ↓, which corresponds to a form of local termination (up to a specific
lifeline). For a lifeline l, we say that i evades l, denoted by i ↓×

×
l if i accepts at

least one trace that does not contain actions occurring on l.

Definition 8 (Evasion). The predicate ↓××⊂ IΩ×L is such that for i1 and i2 in
IΩ, l ∈ L, a ∈ AΩ, f ∈ {strict, seq, par} and k ∈ {S,H,W,P} we have:

∅ ↓×× l
θ(a) ̸= l

a ↓×× l

i1 ↓×
×
l

alt(i1, i2) ↓×
×
l

i2 ↓×
×
l

alt(i1, i2) ↓×
×
l

i1 ↓×
×
l i2 ↓×

×
l

f(i1, i2) ↓×
×
l loopk(i1) ↓×

×
l

The empty interaction ∅ evades any lifeline as ε contains no action. An
interaction reduced to a single action a evades l iff a does not occur on l. As for
termination, an interaction with a loop at its root evades any lifeline because it
accepts ε. Choice and scheduling operators are also handled in the same manner
as for the termination predicate ↓ in Section 5.1.

Lemma 5. For any l ∈ L and i ∈ IΩ,(i ↓×
×
l)⇔ (∃ t ∈ σd(i),¬(t××l))

Proof. By induction on the term structure of interactions. See Appendix A.

Let us remark that, for any i ∈ IΩ, if i ↓ then for all l in L, i ↓×
×
l. Indeed, if

i ↓, then i can express the empty trace ε and ε has conflicts with no lifelines. The
opposite does not hold: it suffices to consider i = alt(l1!m, l2!m) and observe
that for l in {l1, l2}, i ↓×

×
l holds while i ↓ does not.

Moreover, for ease of definitions and proofs in the following, we consider the
collision predicate ̸ ↓ ×

×
by considering dual structural rules w.r.t. those defining

the evasion predicate ↓×
×
. Intuitively, i ̸ ↓ ×

×
l signifies that all traces of i have at

least an action occurring on the lifeline l.

Definition 9 (Collision). The predicate ̸ ↓ ×× ⊂ IΩ ×L is such that for i1 and i2
in IΩ, l ∈ L, a ∈ AΩ and f ∈ {strict, seq, par} we have:

21

θ(a) = l

a ̸ ↓ ××l
i1 ̸ ↓ ×

×
l i2 ̸ ↓ ×

×
l

alt(i1, i2) ̸ ↓ ×
×
l

i1 ̸ ↓ ×
×
l

f(i1, i2) ̸ ↓ ×
×
l

i2 ̸ ↓ ×
×
l

f(i1, i2) ̸ ↓ ×
×
l

As the rules defining the predicate ̸ ↓ ×
×
are defined by duality with respect

to the ones defining the predicate ↓×
×
, we have directly: i ̸ ↓ ×

×
l iff ¬(i ↓×

×
l)).

�

�

�

(a) On diagram

alt�

strict�

l1!m1�l2?m1�

seq�

strict�

l3!m2�l1?m2�

loopS�

strict�

l1!m3�l2?m3�

(b) On term

Figure 7: Illustration of the evasion predicate (here w.r.t. lifeline l2)

The application of the evasion predicate (w.r.t. lifeline l2) is illustrated in
Figure 7. On the right is represented the syntactic structure of an interaction
i, and on the left, the corresponding drawing as a sequence diagram. On the
syntax tree, the nodes are decorated with symbols � (resp. �) to signify that the
sub-interaction underneath that node evades (resp. collides with) l2. Starting
from the leaves, we can decorate all nodes and conclude once the root is reached.
By taking the right branch of the alternative and choosing not to instantiate the
loop, we can see that i accepts some traces that have no conflict with lifeline l2
(in our case, only the trace l3!m2.l1?m2). As a result, the interaction i verifies
i ↓×

×
l2. On the diagram representation of Figure 7, evasion is illustrated by

drawing a line over l2 which is the lifeline of interest. This line is decomposed
into several areas that are colored either green or red. The coloration depends
on whether the sub-interaction corresponding to the operand evades or collides
with l2.

Provided that i1 ↓×
×
θ(a), an action a that is executable in i2 i.e., s.t. i2

a−→ i′2
is also executable in i = seq(i1, i2). This is only possible if the behavior of i1
under consideration avoids the lifeline θ(a). As a consequence, to define a rule

seq(i1, i2)
a−→ i′ compatible with the semantics σd, i

′ must specify continuations
t s.t. a.t ∈ σd(i). Continuation traces t are built from traces t1 ∈ σd(i1) and t2
such that ¬(t1××θ(a)) and a.t2 ∈ σd(i2). By defining i′1 as the interaction that

expresses exactly traces t1 s.t. ¬(t1××θ(a)) we may produce a rule seq(i1, i2)
a−→

seq(i′1, i
′
2). The computation of i′1 is called pruning and is defined as an inductive

relation ≃×
×
s.t. i ≃×

×

l i′ indicates that the pruning of i ∈ IΩ w.r.t. l in L yields
i′ ∈ IΩ. Pruning is defined so that σd(i

′) ⊆ σd(i) is the maximum subset of
σd(i) that contains no trace conflicting with l (see Lemma 7).

22

Definition 10 (Pruning). The pruning relation ≃×× ⊂ IΩ × L × IΩ is s.t. for
any l ∈ L, any f ∈ {strict, seq, par} and any k ∈ {S,H,W,P}:

∅ ≃××l ∅
θ(a) ̸= l

a ≃××l a

i1 ≃×
×

l i′1 i2 ≃×
×

l i′2

f(i1, i2) ≃×
×

l f(i′1, i
′
2)

i1 ≃×
×

l i′1 i2 ≃×
×

l i′2

alt(i1, i2) ≃×
×

l alt(i′1, i
′
2)

i1 ≃×
×

l i′1
i2 ̸ ↓ ×

×
l

alt(i1, i2) ≃×
×

l i′1

i2 ≃×
×

l i′2
i1 ̸ ↓ ×

×
l

alt(i1, i2) ≃×
×

l i′2

i1 ≃×
×

l i′1

loopk(i1) ≃×
×

l loopk(i
′
1)

i1 ̸ ↓ ×
×
l

loopk(i1) ≃×
×

l ∅

Evasion (and its dual, collision) and pruning are intertwined notions. Indeed,
as per Lemma 6 evasion is equivalent to the existence and unicity of a pruned
interaction.

Lemma 6. For any i ∈ IΩ and any l ∈ L, (i ↓×× l)⇔ (∃! i′ ∈ IΩ s.t. i ≃××l i′)

Proof. By induction on the term structure of interactions. See Appendix A.

Let us comment on the rules defining the pruning relation.

• We have ∅ ≃×
×

l ∅ because the semantics of ∅ being {ε}, there are no
conflicts with l;

• Any action a ∈ AΩ has conflicts with a lifeline l iff θ(a) = l. If this is not
the case, then a needs not be eliminated and thus a ≃×

×

l a;

• For i = alt(i1, i2) to be prunable we must have either or both of i1 ↓×
×
l

or i2 ↓×
×
l. If both branches evade l they can be pruned and kept as

alternatives in the new interaction term. If only a single one does, we only
keep the pruned version of this single branch.

• For any scheduling constructor f , if i = f(i1, i2), in order to have i ↓×
×
l

we must have both i1 ↓×
×
l and i2 ↓×

×
l. In that case the unique interaction

i′ such that i ≃×
×

l i′ is defined as the scheduling, using f , of the pruned
versions of i1 and i2;

• For loops i = loopk(i1) with k ∈ {S,H,W,P}, we distinguish two cases:
(a) if i1 ̸↓×

×
l, then any execution of i1 will yield a trace conflicting l and

repetitions should be forbidden; (b) if i1 ↓×
×
l, repetitions are kept, given

that i1 can be pruned as i1 ≃×
×

l i′1. This being the modification which
preserves a maximum amount of traces, we have loopk(i1) ≃×

×

l loopk(i
′
1).

We have seen that the interaction i of Figure 7 satisfies i ↓×
×
l2. Therefore

Lemma 6 implies the existence of a unique i′ s.t. i ≃×
×

l2
i′. Figure 8 illustrates

the computation of i′. The blue lines represent the modifications in the syntax
of i that occur during its pruning into i′. On Figure 7 we decorated sub-
interactions of i with � whenever they did not evade l2. During pruning, those
sub-interactions must be eliminated given that the resulting term must not

23

(a) Before pruning

alt

strict

l1!m1 l2?m1

seq

strict

l3!m2 l1?m2

loopS

strict

l1!m3 l2?m3

∅

(b) Pruning w.r.t. l2 (c) After pruning

Figure 8: Illustration of pruning

express actions occurring on l2. Hence, in Figure 8, we have crossed in blue the
problematic sub-interactions. The root node is an alt. Let us note i = alt(i1, i2).
On Figure 7 we have seen that we have i1 ̸ ↓ ×

×
l2 and i2 ↓×

×
l2. Therefore we have

i ≃×
×

l2
i′2 with i′2 being such that i2 ≃×

×

l2
i′2. This selection of the right branch of

the alt is illustrated in Figure 8 by the curved arrow, which replaces the alt by
the seq on its bottom right. There remains to determine i′2 s.t. i2 ≃×

×

l2
i′2. At the

root of i2, we have a seq. Let us note i2 = seq(iA, iB). As per Figure 7 we have
both iA ↓×

×
l2 and iB ↓×

×
l2 and therefore i′2 = seq(i′A, i

′
B) such that iA ≃×

×

l2
i′A

and iB ≃×
×

l2
i′B . Underneath iA, no actions occur on l2 and hence i′A = iA. At

the root of iB , we have a loopS . Let us note iB = loopS(iC). As per Figure 7 we
have iC ̸ ↓ ×

×
l2 and therefore i′B = ∅ which is illustrated on Figure 8 by the ← ∅

in blue, which replaces the loopS by ∅. Finally there remains i′ = seq(iA,∅),
which is drawn on the right of Figure 8.

Lemma 7 states that given i ≃×
×

l i′, the pruned interaction i′ exactly specifies
all the executions of i that do not involve l.

Lemma 7. For any l ∈ L and any i and i′ from IΩ verifying i ≃××l i′:

σd(i
′) = {t ∈ σd(i) | ¬(t××l)}

Proof. By induction on the term structure of interactions. See Appendix A.

5.3. Definition of the operational semantics

A structural operational semantics in the style of Plotkin [36] allows deter-
mining traces t = a1. · · · .an belonging to the set of traces of an interaction

through the assertion of a succession of predicates of the form ij
aj−→ ij+1 rep-

resenting the evolution of the interaction. By expressing action aj , the system
goes from being modelled by ij to being modelled by ij+1.

Definition 11. Given i1, i2, i
′
1 and i′2 interactions in IΩ and a an action in

AΩ, the execution relation →⊂ IΩ × AΩ × IΩ is s.t.:

a
a−→ ∅

i1
a−→ i′1

alt(i1, i2)
a−→ i′1

i2
a−→ i′2

alt(i1, i2)
a−→ i′2

24

i1
a−→ i′1

par(i1, i2)
a−→ par(i′1, i2)

i2
a−→ i′2

par(i1, i2)
a−→ par(i1, i

′
2)

i1
a−→ i′1

strict(i1, i2)
a−→ strict(i′1, i2)

i2
a−→ i′2 i1 ↓

strict(i1, i2)
a−→ i′2

i1
a−→ i′1

seq(i1, i2)
a−→ seq(i′1, i2)

i1 ≃×
×

θ(a) i
′
1 i2

a−→ i′2

seq(i1, i2)
a−→ seq(i′1, i

′
2)

i1
a−→ i′1

loopS(i1)
a−→ strict(i′1, loopS(i1))

i1
a−→ i′1

loopH(i1)
a−→ seq(i′1, loopH(i1))

i1
a−→ i′1 loopW (i1) ≃×

×

θ(a) i
′

loopW (i1)
a−→ seq(i′, seq(i′1, loopW (i1)))

i1
a−→ i′1

loopP (i1)
a−→ par(i′1, loopP (i1))

Most of these rules are similar to those found in the structural operational
semantics of process algebras. Let us start by commenting on these relatively
standard rules below. As the weak sequential loop loopW is a more original
operator specific to interactions, the rule relating to loopW will be discussed in
more detail later.

• In an interaction reduced to an action a, a can be executed, with ∅ as
remaining interaction.

• If within i = alt(i1, i2), action a can be executed in either i1 or i2 with

either i1
a−→ i′1 or i2

a−→ i′2 then it may be executed in i and the resulting
interaction is either i′1 or i′2.

• For i = par(i1, i2), if we have either i1
a−→ i′1 or i2

a−→ i′2 then a can
also be executed in i and the resulting interaction is either par(i′1, i2) or
par(i1, i

′
2).

• Executing actions on the left of either a strict or a seq follows the same
rule as in the case of a par because no precedence relations are enforced
on the left-hand-side. However, an action a can only be executed on the
right of i = strict(i1, i2) if i1 terminates. Indeed, in that case, i1 may
express the empty trace ε as per Lemma 4, and nothing prevents a from
being the first action to be executed. The resulting interaction is then i′2
given that we force i1 to express ε.

• Likewise, within i = seq(i1, i2), there is a condition for executing an ac-
tion a on the right. But this rule has no direct analogue in the domain
of process algebras. The condition is specific to interactions, without a
counterpart in the context of process algebras. This condition is that i1
evades the lifeline θ(a), i.e., i1 ↓×

×
θ(a), which, as per Lemma 7 is implied

by the condition i1 ≃×
×

θ(a) i
′
1. Finally, we obtain i

a−→ seq(i′1, i
′
2) given that

25

i2
a−→ i′2 and that the pruning of i1 up θ(a) yields i′1. Let us point out that

this rule is sound since i′1 precisely characterizes all traces of i1 that avoid
the lifeline θ(a).

• The rules for the loop operators loopS , loopH and loopP are similar,
i.e., loopk(i)

a−→ f(i′, loopk(i)) under the condition i
a−→ i′ and using

the notation (k, ⋄, f) ∈ {(S, ; , strict), (H, ;×× , seq), (P, ||, par)}. Any t ∈
σd(f(i

′, loopk(i))) verifies t ∈ {t1} ⋄ σd(loopk(i)) for a certain t1 ∈ σd(i
′).

If action a comes from the first iteration of the loop i.e., a.t ∈ {a.t1} ⋄↰
σd(loopk(i)) ⊂ σd(i) ⋄↰ σd(loopk(i)), it coincides with using the restricted
operator ⋄↰ as a scheduler. It turns out that loopH is explicitly associated
with ;↰××∗, and thus, the formulation of its rule is self-evident. In the case
of loopS and loopP , the HF and K-closures of ; and || are equivalent (as
per Lemma 2) which enables their respective rules to be formulated in this
manner.

In the following, we discuss the rule for loopW and give an intuition of its
meaning from two perspectives, one operational, and one denotational.

Operational perspective on loopW . A trace specified by loopW (i1) is
specified by the weak sequencing of a finite number n ≥ 0 of iterations of the loop
so that it belongs to the semantics of a certain seq(x1, seq(· · · , seq(xn−1, xn))),
where each xk = i1 with k ∈ [1, n] corresponds to one iteration. For any iteration
xk with k ∈ [1, n], let us call “ealier” iterations the xj with j < k and “later”
iterations the xj with j > k. Weak sequencing may allow the first action a that
is executed to be taken from an iteration that is not the first iteration x1. Let
us suppose it is a certain xk so that we have xk a−→ i′1. Then, the follow-up is
defined by:

seq(x1, seq(· · · , seq(xk, seq(· · · , xn))))
a−→

seq(y1, seq(· · · , seq(yk−1, seq(i′1, seq(x
k+1, seq(· · · , xn))))))

where ∀ j ∈ [1, k − 1], xj ≃×
×

θ(a) yj . Indeed, it suffices to apply the right-
hand-side rule for operator seq k − 1 times and the left-hand-side rule once.
Because the seq operator is associative, we can therefore rewrite this follow-up
as seq(Y, seq(i′1, X)) where:

Y = seq(y1, seq(. . . , yk−1))
X = seq(xk+1, seq(. . . , xn))

This structural pattern seq(Y, seq(i′1, X)) matches that of seq(i′, seq(i′1, loopW (i1))),
the follow-up defined in the rule for loopW . Moreover, we can see that X corre-
sponds to the weak sequencing of a number of i1 and therefore, its semantic is
included in that of loopW (i). Similarly, because of the inductive definition of the
≃×
×
relation, we have seq(x1, seq(. . . , xk−1)) ≃×

×

θ(a) Y and therefore, the seman-

tics of Y is included, by construction, in that of i′ defined by loopW (i1) ≃×
×

θ(a) i
′.

Now that we have provided an intuition of the reasoning behind the struc-
ture of the rule, let us discuss it from the perspective of the actions that are

26

successively executed. In the rule for loopW , we prepend (via seq) the pruned
version i′ of the loop loopW (i1) (i.e., defined by loopW (i1) ≃×

×

θ(a) i
′) so that the

transition is
loopW (i1)

a−→ seq(i′, seq(i′1, loopW (i1)))

rather than loopH(i1)
a−→ seq(i′1, loopH(i1)), which distinguishes it from the

rule for loopH . By doing so, we allow the first action executed after a (so
the second action in total) to be taken from seq(i′, seq(i′1, loopW (i))) instead
of being limited to seq(i′1, loopW (i)). This allows the second action (after a)
to be taken from earlier iterations of the loop (earlier w.r.t. that which has
yielded i′1), thus revealing traces that would not otherwise be reachable paths
using the rule for loopH . The example from Figure 10 illustrates this. Let
us consider the path starting from the interaction denoted with C○. The first
action l1!m1 is taken from a particular iteration of the loop (not necessarily the
first). What remains to be executed in that iteration of the loop corresponds to
the reception l2?m1. We can see that the pruned version of the loop i′ drawn
as loopW (l2!m2) is prepended (above) that remaining l2?m1. This allows the
second action executed in that path to be l2!m2, which is not possible using
the rule for loopH (as demonstrated with the path starting from the interaction
denoted with B○). In summary, prepending the pruned version of the loop
enables us to delay the determination of the iteration of the loop to which
the first executed action belongs. In our example, if the trace is l1!m1.l2?m1

then necessarily l1!m1 belongs to the first iteration. By contrast if the trace
is l1!m1.l2!m2.l2?m1, this implies that l1!m1 is taken from the second iteration
and if it is l1!m1.l2!m2.l2!m2.l2?m1, this entails that l1!m1 is taken from the
third iteration and so on. The use of the pruned version i′ of the loop as the
artifact that we prepend is justified by weak sequencing. In our example, from
the perspective of lifeline l1, the first action that is executed is l1!m1, so we
cannot have another action occurring on l1 and corresponding to an earlier
iteration of the loop. As a result, we may only allow iterations of the loop
that do not involve any action occurring on l1, i.e., the lifeline θ(a) on which
the action a is executed. Hence, because via loopW (i1) ≃×

×

θ(a) i′, the pruning

relation characterizes an interaction i′ in which only these possible iterations
remain, the artifact that we must prepend indeed corresponds to i′.

Denotational perspective on loopW . Recalling results from Section 3, we
can reason as follows. Let us consider i = loopW (i1) and a.t ∈ σd(i). The rule

is formulated such that t ∈ σd(seq(i
′, seq(i′1, i))) with i ≃×

×

θ(a) i′ and i1
a−→ i′1.

Given that i is a loop, it is always prunable (Lemma 6), so there exists i′

s.t. i ≃×
×

θ(a) i′. The fact that t ∈ σd(seq(i
′, seq(i′1, i))) translates into having

t ∈ σd(i
′);×× σd(i

′
1);×× σd(i). Then, if a is taken from the first iteration of the

loop, then, given that ε ∈ σd(i
′) (Lemma 7), we have t ∈ {ε};×× {t′1};×× σd(i) with

t1 = a.t′1 ∈ σd(i1). If a is taken from the second iteration of the loop, let us
consider t1 ∈ σd(i1) the first iteration and t2 = a.t′2 ∈ σd(i1) the second one
(from which a is taken and hence t′2 ∈ σd(i

′
1)). We have t ∈ {t1};×× {t′2};×× σd(i)

and the condition ¬(t1××θ(a)). This condition implies, as per Lemma 7 that
{t1} ⊂ σd(i

′). The reasoning is the same when a is taken from later in-

27

stances. Let us consider a.t ∈ {t1};×× · · · ;×× {tn−1};×× {t′n};×× σd(i). We then have
{t1};×× · · · ;×× {tn−1} ⊂ σd(i

′) because i′ is either a loop (and therefore absorbing)
or ∅ (all the tj are then ε). Hence, the rule indeed allows a to be taken from
any iteration (and not only the first, which is enforced by the rule for loopH).

(a) Before execution

(b) After execution

seq

alt

strict

l1!m1 l2?m1

seq

strict

l3!m2 l1?m2

loopS

strict

l1!m3 l2?m3

loopH

strict

l2!m4 l1?m4∅ ∅

seq

loopH

strict

l2!m4 l1?m4

■ pruning

■ execution

(c) Executing l2!m4

seq

seq

strict

l3!m2 l1?m2

∅

seq

strict

∅ l1?m4

loopH

strict

l2!m4 l1?m4

(d) Resulting term

Figure 9: Illustration of execution

Figure 9 extends the example from Figure 8 and illustrates the use of the
execution relation. Here, action l2!m4 is to be executed. At the root of the
interaction is a seq operator. Here, it is possible to execute l2!m4 because, as
we have seen with the example from Figure 7 and Figure 8, the left sub-term
evades lifeline l2. l2!m4 is executable within the right sub-term because it is its
left-most leaf. Then, in order to obtain the resulting term, the left sub-term is
pruned w.r.t. l2 and action l2!m4 is executed within the right sub-term. At the
root of the right sub-term is a loopH operator. Applying the corresponding rule
yields a repetition using seq. What remains to be executed in the loop instance
is l1?m4, and the initial loop is scheduled afterwards using seq.

Figure 10, which is the interaction counterpart of the trace example from
Figure 3 further illustrates the rule for the loopW operator and makes explicit
its difference with loopH . Let us consider repetitions of the interaction i =
alt(strict(l1!m1, l2?m1), l2!m2). The interaction designated with A○ at the top
left of Figure 10 corresponds to i0A = seq(i, i) (i is repeated twice using weak

sequencing). The path i0A
l1!m1−−−→ i1A

l2!m2−−−→ i2A
l2?m1−−−−→ i3A starting from that

interaction and going to the right on Figure 10 corresponds to a behavior that
can be expressed by i0A (i.e., a trace accepted by i0A). In i0A = seq(i, i), there
are two distinct occurrences of action l1!m1 (in the top alt and the bottom alt).
In the trace highlighted on Figure 10, the first executed action corresponds to

28

l1!m1

l2!m2
l2?m1

l1!m1

l1!m1 l2!m2 l2?m1

A

B

C

Figure 10: Illustrating the operational semantics and counter-example of Figure 3

the second occurrence of l1!m1 (at the bottom). This action is immediately
executable because, with pruning, we can force the choice of the right branch of
the first alternative, which evades l1. At the end, the trace t = l1!m1.l2!m2.l2?m1

is expressed by seq(i, i). Let us now consider the interaction designated with B○
which is i0B = loopH(i). Here, we can manage to execute the first action l1!m1

but from that point, the second action of t which is l2!m2 is not executable.
Indeed, the presence of l2?m1 at the top of the diagram prevents it from being
executed. As loopH is associated with the weak HF-closure ;↰××∗ and not to the
K-closure ;××∗, it is therefore expected that t could not be accepted by loopH(i)
in this example. However, considering the interaction i0C = loopW (i) designated
with C○, the semantics of that loopW (i) contains t. Indeed, prepending the
pruned version of the loop allows one to delay the determination of the instance
as part of which the initial l1!m1 is executed.

The predicates ↓ and → ground the operational semantics σo given below:

Definition 12 (Operational semantics). σo : IΩ → P(TΩ) is s.t.:

i ↓
ε ∈ σo(i)

t ∈ σo(i
′) i

a−→ i′

a.t ∈ σo(i)
With i and i′ interactions in IΩ, t trace in TΩ and a action in AΩ.

29

5.4. Correctness of operational semantics with respect to denotational semantics

In the following we prove the equivalence of σo and σd. The proof is a
transcript of a formal Coq proof available in [23]. Let us at first prove that for
any interaction i we have σo(i) ⊆ σd(i). The first step to do so is to characterize
the execution relation → in relation to σd:

Lemma 8. For any a in AΩ, t in TΩ and i, i′ in IΩ,(
(i

a−→ i′) ∧ (t ∈ σd(i
′))

)
⇒ (a.t ∈ σd(i))

Proof. By induction on the rules from Definition 11 that make the hypothesis
i

a−→ i′ possible. See Appendix A.

Lemma 8 and Lemma 4 state that the σd semantics accepts the same two
construction rules (that for the empty trace ε and that for non empty traces of
the form a.t) as those that define σo inductively. As a result any trace that is
accepted according to σo is also accepted according to σd:

Theorem 1 (Inclusion of σo in σd). For any i ∈ IΩ we have σo(i) ⊆ σd(i).

Proof. Let us consider i ∈ IΩ and t ∈ σo(i) and let us reason by induction on
the trace t.

• If t = ε, the definition of σo entails that i ↓. Then as per Lemma 4, we
necessarily have ε ∈ σd(i).

• If t = a.t′ then, by definition of σo, a.t
′ ∈ σo(i) iff ∃ i′ ∈ IΩ s.t. i

a−→ i′

and t′ ∈ σo(i
′). Let us consider such an interaction i′. By the induction

hypothesis on t′, we have (t′ ∈ σo(i
′))⇒ (t′ ∈ σd(i

′)). As a result we have

i
a−→ i′ and t′ ∈ σd(i

′). By Lemma 8, we conclude that a.t′ ∈ σd(i).

Let us now prove the reciprocate, which is that for any interaction i, we have
σd(i) ⊆ σo(i). We provide, with Lemma 9, a second characterization of → with
regard to σd.

Lemma 9. For any a ∈ AΩ, t ∈ TΩ and i ∈ IΩ,

(a.t ∈ σd(i))⇒
(
∃ i′ ∈ IΩ, (i

a−→ i′) ∧ (t ∈ σd(i
′))

)
Proof. By induction on the term structure of interactions. See Appendix A.

Thanks to Lemma 9 and Lemma 4 we conclude with Theorem 2:

Theorem 2 (Inclusion of σd in σo). For any i ∈ IΩ we have σd(i) ⊆ σo(i)

Proof. Let us consider i ∈ IΩ and t ∈ σd(i) and let us reason by induction on
the trace t.

30

• If t = ε, the fact that t = ε ∈ σd(i) implies, as per Lemma 4, that i ↓.
Then, the definition of σo implies that ε ∈ σo(i).

• If t = a.t′ then, the fact that a.t′ ∈ σd(i) implies, as per Lemma 9, that

there exists an interaction i′ such that i
a−→ i′ and t′ ∈ σd(i

′). Let us
therefore consider such an interaction i′. By the induction hypothesis on
trace t′, we have (t′ ∈ σd(i

′)) ⇒ (t′ ∈ σo(i
′)). As a result we have i

a−→ i′

and t′ ∈ σo(i
′). By definition of the operational semantics, this implies

that a.t′ ∈ σo(i). Hence the property holds.

We have therefore proven that the sets of traces associated with interactions
respectively by denotational semantics and operational semantics are equal.
Both semantics σd and σo are equivalent.

Incidentally, for any two interactions i1 and i2, if i1 ≈E i2 (with the axiom
system E from Definition 6) then σo(i1) = σo(i2). All syntactic transformations
which are sound w.r.t. σd are also sound w.r.t. σo.

6. Implementing action-traceable interaction execution

6.1. Motivation

We illustrate on Figure 11 how the operational formulation of the trace
semantics of interactions (via the execution relation→) might be used to execute
interaction models and explore their semantics.

Let us consider the initial interaction i:

i = seq(alt(seq(strict(l1!m1, l2?m1), strict(l2!m2, l3?m2)),
loopW (strict(l1!m2, l3?m2))),

strict(l1!m1, l3?m1))

According to the operational semantics described in Section 5, the unique
derivation tree for executing action l1!m1 which is at position 1111 in i is the
following:

i|1111 = l1!m1
l1!m1−−−−→ ∅

i|111 = strict(l1!m1, l2?m1)
l1!m1−−−−→ strict(∅, l2?m1)

i|11 = seq(· · ·) l1!m2−−−−→ seq(strict(∅, l2?m1), strict(l2!m2, l3?m2))

i|1 = alt(· · ·) l1!m2−−−−→ seq(strict(∅, l2?m1), strict(l2!m2, l3?m2))

i
l1!m2−−−−→ seq(seq(strict(∅, l2?m1), strict(l2!m2, l3?m2)), strict(l1!m1, l3?m1))

From the bottom to the top, we successively apply the rule for the seq
operator for its first argument (relative position 1), then the rule for the alt
operator (relative position 1), then seq (relative position 1), strict (relative
position 1) and finally the rule for executing the action l1!m1 (relative position

31

ε). By concatenation of the successive positions, we get the position 1111 of the
executed action l1!m1 within the initial interaction i.

The derivation tree of any derivation i
a−→ i′ is uniquely defined by the

position p in i of the action a that is executed. We can therefore designate
unambiguously any and all such derivations using the position of the executed
action. Using positions is notably pertinent as there can be several instances
of the same action. Indeed, for a given action a there may be several i′j such

that i
a−→ i′j . On Figure 11 are represented (using diagrammatic representations

of interactions) all the three possible derivations of our example interaction.
The one on the left corresponds to the derivation which we have presented
(executing action l1!m1 at position 1111). Let us remark the presence of two
distinct instances of action l1!m1 at different positions (1111 and 21) which can
be immediately executed and yield different “follow-up” interactions.

l1!m1 l1!m2 l1!m1

Figure 11: Deriving term transformations from the → execution relation

Via the use of the positions p of immediately executable actions, it is possible

to infer the derivations i
i|p−−→ i′ without having to construct the corresponding

derivation trees. As a result, the operational-style semantics may be reformu-
lated in a functional-style, based on the definition of two functions:

• one which determines the positions of immediately executable actions

• and one which, given an interaction and such a position, computes the
corresponding follow-up interaction

This reformulation separates these two concerns which are intertwined in
the operational formulation of the predicate i

a−→ i′. The advantages of this

32

reformulation includes (1) an easy implementation, (2) that we do not need
to compute all derivations and follow-up interactions to know which actions
are immediately executable and (3) that by using it, we can trace the unique
positions of the actions which are executed thus resolving the inherent non-
determinism of interactions.

To mirror the denotational and operational semantics, we call this refor-
mulation an execution semantics. In this section, we ground this semantics
denoted as σe with respect to the two previous formal semantics σd and σo and
we propose implementation optimizations via the use of the semantically sound
transformations of Definition 6.

6.2. Pruning

The termination ↓ and evasion ↓×
×
predicates can be trivially expressed in

functional style. In Definition 13, we propose a functional-style formulation of
the pruning relation. Lemma 10 states that the pruning relation is equivalent
to its functional-style formulation.

Definition 13 (Pruning in functional style). The function prn : IΩ × L → IΩ
is defined for any couple (i, l) in IΩ × L verifying i ↓×× l as follows4:
• provided i ↓×× l then prn(i, l) = match i with
| ∅ → ∅
| a ∈ AΩ → a

| alt(i1, i2) →

 prn(i2, l) if i2 ↓×
×
l ∧ ¬i1 ↓×

×
l

prn(i1, l) if i1 ↓×
×
l ∧ ¬i2 ↓×

×
l

alt(prn(i1, l), prn(i2, l)) if i1 ↓×
×
l ∧ i2 ↓×

×
l

| f(i1, i2) → f(prn(i1, l), prn(i2, l)) for f ∈ {strict, seq, par}

| loopk(i1) →
{

loopk(prn(i1, l)) if i1 ↓×
×
l

∅ else
for k ∈ {S,H,W,P}

Lemma 10. For any i ∈ IΩ and any l ∈ L:

(∃ i′ ∈ IΩ, s.t. i ≃××l i′)⇒ (prn(i, l) = i′) and (i ↓×× l)⇒ (i ≃××l prn(i, l))

Proof. By induction on the term structure of interactions. See Appendix A.

6.3. Frontier

As previously discussed in Section 6.1, within an interaction i, there can
be several occurrences of the same action a. Hence we can have two distinct
interactions i′A and i′B such that i

a−→ i′A and i
a−→ i′B . As illustrated in the

example in Section 6.1, we unambiguously identify actions via their position
within the interaction.

Actions can only be found at the leaf nodes of the syntactic tree of an inter-
action. Among these actions, only some are immediately executable. Given an
interaction i ∈ IΩ, Definition 14 introduces the set frt(i) ⊆ pos(i) of positions
of these immediately executable actions, which we call the frontier of execution.

4The presentation is freely inspired by the syntax of the OCaml functional language.

33

Definition 14 (Frontier of execution). The function frt : IΩ → P({1, 2}∗) is
defined for each i in IΩ by:
• frt(i) = match i with
| ∅ → ∅
| a ∈ AΩ → {ε}

| strict(i1, i2) →
{

1.frt(i1) ∪ 2.frt(i2) if i1 ↓
1.frt(i1) else

| seq(i1, i2) → 1.frt(i1) ∪ {p | p ∈ 2.frt(i2) , i1 ↓×
×
θ(i|p)}

| f(i1, i2) → 1.frt(i1) ∪ 2.frt(i2) for f ∈ {alt, par}
| loopk(i1) → 1.frt(i1) for k ∈ {S,H,W,P}
frt(i) is inferred statically from the term structure of i. The empty inter-

action has an empty frontier: frt(∅) = ∅. For any atomic action a ∈ AΩ,
frt(a) = {ε}, because the position ε designates the root node of the interac-
tion. For any interaction i of the form loopk(i1), with k ∈ {S,H,W,P}, we have
frt(i) = 1.frt(i1) because the loop can be instantiated through the execution
of any one of the immediately executable actions from its sub-interaction, which
specifies the behaviors that can be repeated.

(a) On diagram

seq

alt

strict

l1!m1 l2?m1

seq

strict

l3!m2 l1?m2

loopS

strict

l1!m3 l2?m3

loopH

strict

l2!m4 l1?m4

(b) On term

Figure 12: Frontier of execution

Given i1, i2 ∈ IΩ and f ∈ {strict, seq, par, alt}, if an interaction i is of the
form f(i1, i2), then frt(i) is inferred from frt(i1) and frt(i2).

• In all cases, actions that are immediately executable within the left sub-
interaction i1 are also immediately executable in i. Indeed, ordering con-
straints are only introduced on the right sub-term i2. Thus 1.frt(i1) is
included in frt(i).

• As for the actions that are immediately executable within the right sub-
interaction i2, whether or not they are also immediately executable in i
depends on the nature of the constructor f and that of the left sibling
interaction i1.

– If f = alt or f = par, 2.frt(i2) is also included in frt(i) because no
constraint may prevent the execution of actions from i2.

34

– If f = strict, any action from i2 can only be executed in i if no action
from i1 is executed in the same execution (otherwise it would violate
the strict sequencing). Therefore 2.frt(i2) is included in frt(i) iff i1
accepts the empty trace i.e., iff i1 ↓.

– If f = seq, elements p from 2.frt(i2) are included in frt(i) iff i1
accepts an execution that does not involve the lifeline on which the
action i|p occurs i.e., iff i1 ↓×

×
θ(i|p).

Figure 12 illustrates the use of frt on our running example. Here we have
three immediately executable actions: l1!m1, l3!m2 and l2!m4 which are respec-
tively at positions 111, 1211 and 221.

6.4. Execution

In Definition 15, we define a function exe which returns the unique follow-up
interaction resulting from the execution of a specific frontier action specified by
its position.

Definition 15 (Interaction Execution). The function exe : IΩ × {1, 2}∗ → IΩ
is defined for any i ∈ IΩ and p ∈ frt(i) by:
• exe(i, p) = match (i, p) with
| (act, ε) → ∅
| (alt(i1, i2), 1.p1) → exe(i1, p1)
| (alt(i1, i2), 2.p2) → exe(i2, p2)
| (strict(i1, i2), 1.p1) → strict(exe(i1, p1), i2)
| (strict(i1, i2), 2.p2) → exe(i2, p2)
| (seq(i1, i2), 1.p1) → seq(exe(i1, p1), i2)
| (seq(i1, i2), 2.p2) → seq(prn(i1, θ(i2|p2

)), exe(i2, p2))
| (par(i1, i2), 1.p1) → par(exe(i1, p1), i2)
| (par(i1, i2), 2.p2) → par(i1, exe(i2, p2))
| (loopS(i1), 1.p1) → strict(exe(i1, p1), i)
| (loopH(i1), 1.p1) → seq(exe(i1, p1), i)
| (loopW (i1), 1.p1) → seq(prn(i, θ(i1|p1

)), seq(exe(i1, p1), i))
| (loopP (i1), 1.p1) → par(exe(i1, p1), i)

6.5. Simplifications

The barebones definition of the pruning prn and execution exe functions
makes it so that the empty interaction ∅ might appear at different positions
in the resulting terms. The presence of these ∅ sub-terms may sometimes be
redundant and warrant simplifications which are justified by the semantically
sound syntactic transformations from Definition 6. We illustrate this on Fig-
ure 13 which further develops on the example from Figure 9.

These more trivial simplifications (such as simplifying occurrences of ∅) can
be directly included in the functional style definitions from Definitions 13 and
15 to simplify interaction terms on-the-fly as they are being built. We denote by
prn≈ and exe≈ these modified versions of prn and exe which are such that for

35

seq

alt

strict

l1!m1 l2?m1

seq

strict

l3!m2 l1?m2

loopS

strict

l1!m3 l2?m3

loopH

strict

l2!m4 l1?m4∅ ∅

seq

loopH

strict

l2!m4 l1?m4

■ pruning

■ execution

■ simplification

(a) Execution of l2!m4

seq

seq

strict

l3!m2 l1?m2

∅

seq

strict

∅ l1?m4

loopH

strict

l2!m4 l1?m4

(b) Result without simplifications
seq

strict

l3!m2 l1?m2

seq

l1?m4 loopH

strict

l2!m4 l1?m4

(c) Result with simplifications

Figure 13: Execution with simplifications (example from Figure 9)

any i ∈ I, any l ∈ L s.t. i ↓×
×
l and any p ∈ frt(i) we have prn≈(i, l) ≈E prn(i, l)

and exe≈(i, p) ≈E exe(i, p).
For instance, for the execution function we may define exe≈ as follows:

• exe≈(i, p) = match (i, p) with
| (act, ε) → ∅∣∣∣∣ (alt(i1, i2), j.pj)

for j∈{1,2}
→ exe≈(ij , pj)∣∣∣∣ (f(i1, i2), 1.p1)

for f∈{strict,seq,par}
→

{
f(exe≈(i1, p1), i2) if exe≈(i1, p1) ̸= ∅
i2 else

| (strict(i1, i2), 2.p2) → exe(i2, p2)

| (par(i1, i2), 2.p2) →
{

par(i1, exe(i2, p2)) if exe(i2, p2) ̸= ∅
i1 else

· · ·

6.6. The execution semantics and its correctness

The functions frt and exe ground the execution semantics σe given in Def-
inition 16 below.

Definition 16 (Execution semantics). For any implementation exe≈ of the
execution function, we define σe : IΩ → P(TΩ) as:

σe(i) = empty(i) ∪
⋃

p∈frt(i)

i|p.σe(exe≈(i, p))

with:

empty(i) =

{
{ϵ} if i ↓
∅ else

In the following we prove the equivalence of σe and σo. A formalisation of
the proofs using Coq is available in [23].

36

Lemma 11 states that every derivation i
a−→ i′ starting from i that can be

inferred with the execution relation can also be inferred using the frontier frt
and the execution function exe.

Lemma 11. For any interactions i and i′ in IΩ, for any action a ∈ AΩ, we
have: (

i
a−→ i′

)
⇒

(
∃ p ∈ frt(i), s.t. (i|p = a) ∧ (i′ = exe(i, p))

)
Proof. By induction on the term structure of interactions. See Appendix A.

The inclusion of σo in σe, given in Theorem 3 is a simple consequence of
Lemma 11.

Theorem 3. For any interaction i ∈ IΩ:

σo(i) ⊆ σe(i)

Proof. Let us consider i ∈ IΩ and t ∈ σo(i) and let us reason by induction on
the (size of the) trace t.

• If t = ε, the fact that t = ε ∈ σo(i) implies that i ↓. Then, this implies
that empty(i) = {ε} and therefore that ε ∈ σe(i).

• If t = a.t′ then, the fact that a.t′ ∈ σo(i) implies the existence of an action

a and an interaction i′ such that i
a−→ i′ and t′ ∈ σo(i

′).

– On the one hand, we can apply the induction hypothesis on t′, which
implies that t′ ∈ σe(i

′)

– On the other hand, we can apply Lemma 11 to reveal the existence
of a position p ∈ frt(i) such that i|p = a and i′ = exe(i, p) ≈E

exe≈(i, p)

– As a result we have p ∈ frt(i) and t′ ∈ σe(exe≈(i, p)). Therefore, by
definition of σe we have t = a.t′ = i|p.t

′ ∈ σe(i)

Lemma 12 states that every follow-up exe(i, p) determined using frontier
positions from frt(i) can also be inferred using the execution relation →.

Lemma 12. For any i ∈ IΩ and p ∈ frt(i) we have i
i|p−−→ exe(i, p)

Proof. By induction on the term structure of interactions. See Appendix A.

Finally, the inclusion of σe in σo, given in Theorem 4 follows from Lemma 12.

Theorem 4. For any interaction i ∈ IΩ:

σe(i) ⊆ σo(i)

37

Proof. Let us consider i ∈ IΩ and t ∈ σe(i) and let us reason by induction on
the trace t.

• If t = ε, the fact that t = ε ∈ σe(i) implies that empty(i) = {ε} and
therefore that i ↓. Then, the definition of σo entails that ε ∈ σo(i).

• If t = a.t′ then, the fact that a.t′ ∈ σe(i) entails the existence of a frontier
position p ∈ frt(i) such that i|p = a and t ∈ σe(exe≈(i, p)).

– On the one hand, given that trace t′ is strictly smaller than t, we can
apply the induction hypothesis which implies that t′ ∈ σo(exe≈(i, p)) =
σo(exe(i, p))

– On the other hand, we can apply Lemma 12 to get that i
a−→ exe(i, p)

– These two facts combined imply that t = a.t′ ∈ σo(i)

We have therefore proven both inclusions and can conclude that the execu-
tion semantics σe is indeed equivalent to the operational-style semantics σo and
hence that the three semantics presented in this paper are equivalent.

The execution semantics σe is used in several other works as a basis to imple-
ment algorithms manipulating interactions (e.g., for generating NFA [26] or for
analyzing behaviors against specifications written as interactions [29, 28, 27]).
It is also implemented in the HIBOU tool [25] for the execution of interactions,
the visualization of their semantics and the implementation of the aforemen-
tioned algorithms. In this paper, by formalizing σe and proving its equivalence
to more widely accepted denotational (σd) and operational (σo) semantics of
interactions we therefore formally ground all these approaches.

7. Related works

Semantics of Interaction Languages. Extensive literature concerns the seman-
tics of interaction languages. This is exemplified for UML-SD by the review [33]
which underscores the variety of manners with which this language can be under-
stood and interpreted. It is notable that UML-SDs are described semi-formally
in the norm [34]. This allows for a rich language with operators such as assert or
negate [10] which are not covered in our IL. However a full formalisation proves
difficult, as explained in [33, 10]. The extent to which UML-SDs are formalised
may vary [33]: some works formalize loops [21], others do not [16], and some
only allow finitely many iterations [40]. In all cases where there are loops, only
one loop operator is proposed and corresponds to either loopS [14, 1, 39, 19],
loopW [40, 15, 37] (none of them being implemented/tooled) or it may be loopW
limited to only contain basic interactions [17]. The semantics found in the lit-
erature are mostly given either (1) via a translation towards another formalism
or (2) in denotational-style or operational-style semantics.

38

Semantics of interactions via translation. Approaches based on translations are
the most abundant in the literature. They are also more oriented towards appli-
cations and tools, given that the target formalisms generally benefit from a more
mature ecosystem and tool support. In [8], a subset of UML-SD is translated to-
wards multivalued nets (a variety of Petri Nets). The proposed translation uses
composition to link parts of the Net which correspond to part of the sequence
diagram. In [9] a translation from UML-SD with synchronous exchanges to
timed automata is proposed. The automata, which are encoded within the UP-
PAAL tool, are used to verify an implementation of a communication protocol
for audiovisual applications. In [4], annotated UML-SD are translated as sets of
communicating Timed Input Output Symbolic Transition Systems (TIOSTS).
Each TIOSTS keeps track of the region (combined fragment) of the diagram in
which it currently is so as to resolve non-determinism (enforcing that different
TIOSTS may not take different branches of alternatives). [1] proposes a trans-
lation from graphs of basic MSC to Non-Deterministic Finite Automata (NFA).
However, this translation is only possible if the edges of the graph are inter-
preted as strict sequencing (and hence it is not possible to represent a loopW).
Indeed, [1] states that the problem, under the asynchronous interpretation, is
undecidable. Similarly, [39] translates UML-SD into NFA. However, they use
composition, mapping UML-SD operators to NFA operators (e.g., alt to union,
loop to Kleene star). Here, only the strictly sequential loop is handled and weak
sequencing can only be used within basic SD (i.e., we cannot weakly sequence
more complex SD). [17] proposes a dedicated automaton language to translate
UML-SD. In these automata, counters V record how many times lifelines are
executed in loops. This allows them to translate weakly sequential loops but in
a restricted manner (i.e., these loops can only contain a basic SD).

[14] proposes translating UML-SD into Communicating Sequential Processes
(CSP). The local order of events on each lifeline is encoded as a CSP process
l . Each emission-reception pair is translated to a dedicated CSP process m
which enforces that a reception must occur after the corresponding emission.
Then, weak sequencing is translated as a generalized parallel composition of the
l and m CSP processes, synchronizing on the emission and reception events.
However, in [14], the only loop operator that is proposed is the strictly sequential
loop (they sequence different instances of the loop with the CSP sequencing
operator which requires termination of the first process before the second can
be executed). This may be due to the fact that their synchronization mechanism
relies on identifying emission-reception pairs via a (id,from,to) tuple which is
unique in the diagram. If several instances of a loopW are active at the same
time, without mechanisms to rename identifiers id, there would be ambiguity
on the instance of the pair on which to synchronize. This signifies that for a
single (id,from,to) in a m , there may be several matching events in a l .

Unlike some other works (e.g., [16, 32, 14]), we do not have a dedicated
constructor for the passing of a message from a lifeline to another. We formulate
this in the form strict(a!m, b?m), expressing that the emission of message m on
lifeline a precedes its reception on b. For broadcasts, we may use patterns of the
form strict(a!m, par(b?m, c?m)). This has the advantage of isolating emission-

39

reception pairs or broadcast patterns within the term structure of interactions
itself and each such pattern can be unambiguously referred to via its position
in the term. This allows several distinct instances of the passing of the same
message to be executed in parallel without losing track of which instances are
ready to receive the given messages. In contrast to that, in approaches that rely
on a form of synchronization based on static labels (such as message names),
this ambiguity cannot be resolved. In [14] they avoid the issue by using a strictly
sequential loop instead of a weakly sequential loop.

Denotational and operational style semantics of Interactions. Denotational se-
mantics found in the literature are often based on partial order sets [40, 15]
or algebraic operators on sets of traces [16]. In [29] we have introduced a de-
notational semantics in the former style which we have then reformulated in
the latter style in [30]. This semantics can be seen as an extension of the one
from [16] with repetition operators in the form of variants of the algebraic Kleene
closure.

Operational semantics of interaction languages are quite rare [33]. One of
the most complete and well-known, which is based on the Algebra of Commu-
nicating Processes, is found in [37] for Message Sequence Charts. The authors
from [19], which provide an alternative based on a theory of agents and envi-
ronments, mention that [37] is quite complex and thus difficult to implement.
Let us remark that in [19] they use a strict sequential loop instead of a weakly
sequential one. A simpler presentation than that of [37] is found in [32]. This
approach, which inspired ours for the operational semantics, uses a termination
predicate and an execution relation. Similarities between [32] and our work
include the use of pruning which, in [32], relates to a “permission relation”.
In [32], loops are not handled and there is no strict constructor: direct causal
relations between actions occurring on different lifelines (such as that between
an emission and the corresponding reception of a message) are handled by maps,
updated during executions. Moreover, rules involve negative conditions such as
i ̸ a−→ expressing that it is not possible to find an interaction i′ verifying i

a−→ i′.
This approach reduces the set of rules to be considered, but does not give clear
access to reasoning about the rule system itself, in particular reasoning about
semantics equivalence. In [37], a loop construction for weak sequencing com-
position is considered in addition to the constructions discussed in [32]. Rules
in [37] include two rules similar to our rules for loopH and loopW so that the
semantics includes the two ways of dealing with composition according to the
weak sequencing.

In contrast to [37], we have not included operators and rules related to
delayed choice or delayed parallel composition. Indeed, thanks to its equivalence
to our denotational semantics, our operational semantics can be combined with
syntactic transformations corresponding to distributive properties such as that
alt(seq(a1, a2), seq(a1, a3)) ≈ seq(a1, alt(a2, a3)). Hence delayed choice (here
that of the alternative branch upon observation of a1) can be handled without
a dedicated operator and rule. Such transformations preserve trace semantics
but not the bissimulation.

40

We have introduced our operational semantics in [30] in the style of Plotkin’s
structural operational semantics [36]. It is defined in the fashion of process alge-
bras [2] and adopts some of the ideas introduced in [32, 37] (which, as a distinct
feature, uses maps between sent and received messages) but is closer to usual
structural operational semantics. The present paper extends [30] with the def-
inition of a third “execution” semantics which is closer to the implementation
in our tool (HIBOU [25]) and the initial formulation in [29]. This semantics
separates two concerns intertwined in the operational semantics which corre-
spond to the determination of the “frontier” of immediately executable actions
and the computation of “follow-up” interactions which specify continuations of
behaviors of an initial interaction after the execution of a specific action.

The present paper also extends [30] via the definition of classes of syntac-
tically distinct but semantically equivalent interactions in which we can find a
unique representative. In combination with the “execution” semantics imple-
mented in HIBOU [25], this enabled us to generate NFA with few states (close
to the minimal NFA) from interactions [26].

Trace analysis from interactions. Interactions can be used to recognize behav-
iors that they specify via incremental membership tests (in a similar manner
as Finite Automata or Regular Expressions [38] can be used to recognize words
of a language). Behaviors of distributed systems can be expressed as global
sequences of actions called traces [20] (in the case where there is a global clock)
or tuples of local traces called multi-traces [5] (one per sub-system when there
is a local clock per sub-system).

This problem of recognizing a trace specified by a behavioral model is called
trace membership or trace analysis. In [29], in order to implement a trace
analysis algorithm for interactions, we introduced σe. The analysis then tries
to re-enact a behavior characterized by a trace t in an interaction i. If t = ε,
this consists in verifying whether or not i ↓. If t = a.t′, then it suffices to use
the frontier frt to check whether or not a is immediately executable (i.e., if
∃ p ∈ frt(i) s.t. i|p = a). If this is not the case, then the trace is not accepted.
If this is the case, then the analysis boils down to whether or not any of the
follow-ups i′ = exe(i, p) for the p ∈ frt(i) s.t. i|p = a accepts t. In [28], we used
our execution semantics as a reference to prove the correctness of an algorithm
dedicated to analysing the conformity of DS executions expressed as multi-
traces against interactions. [27] extends [28] to handle “partially observed”
multi-traces defined as multi-traces in which some local traces are not observed
or their observation stops too early.

In this paper, by proving the equivalence of σe to more widely accepted
denotational and operational semantics of interactions, we formally ground the
approaches developed in [29], [28] and [27] for resp. trace, multi-trace, and par-
tially observed multi-trace analysis. In other words, we bridge the gap between
the formal semantics from [30] and the applications developed in [29, 28, 27]. In
addition, our reformulation of the execution semantics includes syntactic term
simplifications which are proven to be semantically sound. These term simplifi-
cations benefit implementations of trace and multi-trace analysis algorithms by

41

keeping the successive interaction terms compact.

The use of frameworks of equivalent semantics. Unifying Theories of Program-
ming (UTP) [11] (1) motivates the definition of several equivalent semantics for
programming language and (2) proposes techniques to derive one from the other
and prove their equivalence. It discusses denotational, algebraic and operational
semantics as well as their respective advantages and drawbacks. For instance,
operational semantics are especially important in the diagnosis of unexpected
behavior of a program but since their use requires a fully written program, they
are of no use for direct reasoning about specification and design. These discus-
sions can also be made for modeling languages and more particularly sequence
diagrams.

In the same spirit, [3] focuses on notions of control flow in various paradigms
of programming languages (object-oriented, functional, etc.). It argues that
although operational semantics are the more widely used and intuitive manners
to define control flow semantics, denotational semantics are a precious assistance
for developing logics to reason on programs. A proof of equivalence is of course
required to use them both jointly.

[12] proves the equivalence of denotational and operational semantics for a
subset of the Hardware Description Language Verilog. Their proof of equiv-
alence justify the use of program transformations and system partitioning for
hardware/software co-design.

In the same manner as [12] does for Verilog, we follow UTP [11] principles by
deriving a unifying semantics for MSC. The relevance of this approach is justified
by applications such as trace and multi-trace analysis [29, 28, 27] which combine
aspects of both representations of the semantics for an efficient implementation
(see [25]).

8. Conclusion

With this paper we provided a formal basis for an expressive Interaction
Language which can be used in a variety of applications thanks to the three se-
mantics which we have defined and proven equivalent (a Coq proof is available
in [23]). Particular care has been given to the handling of the weak sequencing
operator which is a hallmark of sequence diagrams, as well as loop operators.
The denotational-style semantics, which makes use of composition and algebraic
operators is well-suited for the definition of semantically-sound transformations
which can be used, among others, to simplify interactions and compute canonical
forms. The operational-style semantics, through the definition of an execution
relation, allows constructing accepted traces via the concatenation of succes-
sively executed actions. A functional-style implementation of the operational
semantics, which we call the execution semantics can then integrate term trans-
formations justified by the denotational semantics and be used in trace analysis
for recognizing accepted behavior in an efficient manner. These three trace se-
mantics are proven equivalent and constitute a formal basis for further results
and applications.

42

References

[1] Alur, R., Yannakakis, M., 1999. Model Checking of Message Sequence
Charts, in: Baeten, J.C.M., Mauw, S. (Eds.), CONCUR ’99: Concur-
rency Theory, 10th International Conference, Eindhoven, The Netherlands,
August 24-27, 1999, Proceedings, Springer. pp. 114–129. doi:10.1007/
3-540-48320-9_10.

[2] Baeten, J., 2000. Process Algebra with Explicit Termination. Computing
science reports, Technische Universiteit Eindhoven.

[3] de Bakker, J., de Vink, E., 1996. Control Flow Semantics. MIT Press,
Cambridge, MA, USA.

[4] Bannour, B., Gaston, C., Servat, D., 2011. Eliciting Unitary Constraints
from Timed Sequence Diagram with Symbolic Techniques: Application to
Testing, in: Thu, T.D., Leung, K.R.P.H. (Eds.), 18th Asia Pacific Software
Engineering Conference, APSEC 2011, Ho Chi Minh, Vietnam, December
5-8, 2011, IEEE Computer Society. pp. 219–226. doi:10.1109/APSEC.2011.
40.

[5] Benharrat, N., Gaston, C., Hierons, R.M., Lapitre, A., Le Gall, P., 2017.
Constraint-Based Oracles for Timed Distributed Systems, in: Yevtushenko,
N., Cavalli, A.R., Yenigün, H. (Eds.), Testing Software and Systems,
Springer International Publishing, Cham. pp. 276–292.

[6] Damm, W., Harel, D., 1998. LSCs: Breathing Life into Message Sequence
Charts. Technical Report. ISR.

[7] Dershowitz, N., Jouannaud, J.P., 1991. Rewrite Systems. MIT Press, Cam-
bridge, MA, USA. p. 243–320.

[8] Eichner, C., Fleischhack, H., Meyer, R., Schrimpf, U., Stehno, C., 2005.
Compositional Semantics for UML 2.0 Sequence Diagrams Using Petri
Nets, in: Prinz, A., Reed, R., Reed, J. (Eds.), SDL 2005: Model Driven,
Springer Berlin Heidelberg, Berlin, Heidelberg. pp. 133–148.

[9] Firley, T., Huhn, M., Diethers, K., Gehrke, T., Goltz, U., 1999. Timed Se-
quence Diagrams and Tool-Based Analysis - A Case Study, in: France, R.,
Rumpe, B. (Eds.), UML’99 — The Unified Modeling Language, Springer
Berlin Heidelberg, Berlin, Heidelberg. pp. 645–660.

[10] Harel, D., Maoz, S., 2008. Assert and negate revisited: Modal semantics
for UML sequence diagrams. Software and Systems Modeling 7, 237–252.

[11] Hoare, C.A.R., Jifeng, H., 1998. Unifying Theories of Programming. Pren-
tice Hall International Series in Computer Science.

43

http://dx.doi.org/10.1007/3-540-48320-9_10
http://dx.doi.org/10.1007/3-540-48320-9_10
http://dx.doi.org/10.1109/APSEC.2011.40
http://dx.doi.org/10.1109/APSEC.2011.40

[12] Huibiao, Z., Bowen, J.P., Jifeng, H., 2001. From Operational Semantics to
Denotational Semantics for Verilog, in: Margaria, T., Melham, T. (Eds.),
Correct Hardware Design and Verification Methods, Springer Berlin Hei-
delberg, Berlin, Heidelberg. pp. 449–464.

[13] ITU, 2011. Message Sequence Chart (MSC). itu.int/rec/T-REC-Z.120.

[14] Jacobs, J., Simpson, A., 2015. On a Process Algebraic Representation of
Sequence Diagrams, in: Canal, C., Idani, A. (Eds.), Software Engineering
and Formal Methods, Springer International Publishing, Cham. pp. 71–85.

[15] Katoen, J.P., Lambert, L., 1998. Pomsets for Message Sequence Charts,
pp. 197–207. Formale Beschreibungstechniken fuer verteilte Systeme, 8.
GI/ITG-Fachgespraech ; Conference date: 04-06-1998 Through 05-06-1998.

[16] Knapp, A., Mossakowski, T., 2017. UML Interactions Meet State Machines
- An Institutional Approach, in: 7th Conf. on Algebra and Coalgebra in
Computer Science (CALCO).

[17] Knapp, A., Wuttke, J., 2007. Model Checking of UML 2.0 Interactions, in:
Kühne, T. (Ed.), Models in Software Engineering, Springer Berlin Heidel-
berg, Berlin, Heidelberg. pp. 42–51.

[18] Korp, M., Sternagel, C., Zankl, H., Middeldorp, A., 2009. Tyrolean Ter-
mination Tool 2, in: Treinen, R. (Ed.), Rewriting Techniques and Applica-
tions, Springer Berlin Heidelberg, Berlin, Heidelberg. pp. 295–304.

[19] Letichevsky, A., Kapitonova, J., Kotlyarov, V., Volkov, V., Letichevsky, A.,
Weigert, T., 2005. Semantics of Message Sequence Charts, pp. 117–132.
doi:10.1007/11506843_8.

[20] Longuet, D., 2012. Global and Local Testing from Message Sequence
Charts, in: Proceedings of the 27th Annual ACM Symposium on Applied
Computing, Association for Computing Machinery, New York, NY, USA.
p. 1332–1338. doi:10.1145/2245276.2231987.

[21] Lu, L., Kim, D.K., 2014. Required Behavior of Sequence Diagrams:
Semantics and Conformance. ACM Trans. Softw. Eng. Methodol. 23.
doi:10.1145/2523108.

[22] Mahe, E., a. Coq proof for soundness of equivalence relation for se-
mantically equivalent interactions. erwanm974.github.io/coq hibou label
equivalent terms/. Accessed: 2021-10-14.

[23] Mahe, E., b. Coq proof for the equivalence of the semantics. erwanm974.
github.io/coq hibou label semantics equivalence/. Accessed: 2021-10-14.

[24] Mahe, E., c. Proof of convergence of the TRS using TTT2 and CSI. github.
com/erwanM974/hibou trs basic. Accessed: 2023-06-19.

44

itu.int/rec/T-REC-Z.120
http://dx.doi.org/10.1007/11506843_8
http://dx.doi.org/10.1145/2245276.2231987
http://dx.doi.org/10.1145/2523108
erwanm974.github.io/coq_hibou_label_equivalent_terms/
erwanm974.github.io/coq_hibou_label_equivalent_terms/
erwanm974.github.io/coq_hibou_label_semantics_equivalence/
erwanm974.github.io/coq_hibou_label_semantics_equivalence/
github.com/erwanM974/hibou_trs_basic
github.com/erwanM974/hibou_trs_basic

[25] Mahe, E., 2022. HIBOU tool. github.com/erwanM974/hibou label.

[26] Mahe, E., Bannour, B., Gaston, C., Lapitre, A., Gall, P.L., 2023a. A
Term-based Approach for Generating Finite Automata from Interaction
Diagrams. arXiv:2306.02983.

[27] Mahe, E., Bannour, B., Gaston, C., Lapitre, A., Gall, P.L., 2023b.
Interaction-Based Offline Runtime Verification of Distributed Systems, in:
Hojjat, H., Ábrahám, E. (Eds.), Fundamentals of Software Engineering,
Springer Nature Switzerland, Cham. pp. 88–103.

[28] Mahe, E., Bannour, B., Gaston, C., Lapitre, A., Le Gall, P., 2021. A Small-
Step Approach to Multi-Trace Checking against Interactions, in: Proceed-
ings of the 36th Annual ACM Symposium on Applied Computing, As-
sociation for Computing Machinery, New York, NY, USA. p. 1815–1822.
doi:10.1145/3412841.3442054.

[29] Mahe, E., Gaston, C., Le Gall, P., 2020. Revisiting Semantics of Inter-
actions for Trace Validity Analysis, in: Wehrheim, H., Cabot, J. (Eds.),
Fundamental Approaches to Software Engineering, Springer International
Publishing, Cham. pp. 482–501.

[30] Mahe, E., Gaston, C., Le Gall, P., 2022. Equivalence of Denota-
tional and Operational Semantics for Interaction Languages, in: Ameur,
Y.A., Craciun, F. (Eds.), Theoretical Aspects of Software Engineer-
ing - 16th International Symposium, TASE 2022, Cluj-Napoca, Roma-
nia, July 8-10, 2022, Proceedings, Springer. pp. 113–130. doi:10.1007/
978-3-031-10363-6_8.

[31] Mauw, S., Reniers, M.A., 1997. High-level message sequence charts, in:
SDL ’97 Time for Testing, SDL, MSC and Trends - 8th International SDL
Forum, Proceedings, Elsevier. pp. 291–306.

[32] Mauw, S., Reniers, M.A., 1999. Operational Semantics for MSC’96. Com-
puter Networks 31, 1785–1799. doi:10.1016/S1389-1286(99)00060-2.

[33] Micskei, Z., Waeselynck, H., 2011. The many meanings of UML 2 Sequence
Diagrams: a survey. Software & Systems Modeling 10, 489–514.

[34] OMG, 2017. Unified Modeling Language. omg.org/spec/UML/.

[35] Parrow, J., 2001. An Introduction to the π-Calculus, in: Bergstra, J.A.,
Ponse, A., Smolka, S.A. (Eds.), Handbook of Process Algebra. North-
Holland / Elsevier, pp. 479–543.

[36] Plotkin, G., 2004. A Structural Approach to Operational Semantics. The
Journal of Logic and Algebraic Programming 60-61, 17–139. doi:10.1016/
j.jlap.2004.05.001.

45

github.com/erwanM974/hibou_label
http://arxiv.org/abs/2306.02983
http://dx.doi.org/10.1145/3412841.3442054
http://dx.doi.org/10.1007/978-3-031-10363-6_8
http://dx.doi.org/10.1007/978-3-031-10363-6_8
http://dx.doi.org/10.1016/S1389-1286(99)00060-2
omg.org/spec/UML/
http://dx.doi.org/10.1016/j.jlap.2004.05.001
http://dx.doi.org/10.1016/j.jlap.2004.05.001

[37] Reniers, M., 1999. Message Sequence Chart : Syntax and Semantics. Ph.D.
thesis. Mathematics and Computer Science. doi:10.6100/IR524323.

[38] Roşu, G., Viswanathan, M., 2003. Testing Extended Regular Language
Membership Incrementally by Rewriting, in: Nieuwenhuis, R. (Ed.),
Rewriting Techniques and Applications, Springer Berlin Heidelberg, Berlin,
Heidelberg. pp. 499–514.

[39] Simmonds, J., Gan, Y., Chechik, M., Nejati, S., O’Farrell, B., Litani, E.,
Waterhouse, J., 2009. Runtime Monitoring of Web Service Conversations.
IEEE Trans. Serv. Comput. 2, 223–244. doi:10.1109/TSC.2009.16.

[40] Störrle, H., 2003. Semantics of interactions in UML 2.0, in: IEEE Sympo-
sium on Human Centric Computing Languages and Environments, 2003.
Proceedings. 2003, pp. 129–136. doi:10.1109/HCC.2003.1260216.

[41] Zankl, H., Felgenhauer, B., Middeldorp, A., 2011. CSI – A Confluence Tool,
in: Bjørner, N., Sofronie-Stokkermans, V. (Eds.), Automated Deduction –
CADE-23, Springer Berlin Heidelberg, Berlin, Heidelberg. pp. 499–505.

Appendix A. Detailed proofs

Lemma (Lemma 4). For any i ∈ IΩ, (i ↓)⇔ (ε ∈ σd(i))

Proof. Let us reason by induction on the term structure of i.

• If i is of the form ∅, then we have both ∅ ↓ and ε ∈ σd(∅).

• If i belongs to AΩ, we have neither i ↓ nor ε ∈ σd(i).

• If i is of one of the following forms strict(i1, i2), par(i1, i2) or seq(i1, i2)
with i1 and i2 two sub-interactions that satisfy the induction hypotheses,
the reasoning is quite similar for the three operators strict, par and seq.
Consider the case of the strict operator:
⇐ Let us suppose that ε ∈ σd(i). By definition of σd for the strict
constructor, there exist t1 ∈ σd(i1) and t2 ∈ σd(i2) such that ε ∈ (t1; t2).
This trivially implies that t1 = ε and t2 = ε. By the induction hypotheses,
we obtain i1 ↓ and i2 ↓. This, in turn, implies that strict(i1, i2) ↓.
⇒ If strict(i1, i2) ↓, then we have both i1 ↓ and i2 ↓. By the induction
hypotheses, we get ε ∈ σd(i1) and ε ∈ σd(i2). Therefore ε ∈ σd(i).

• If i is of the form alt(i1, i2):
⇐ The fact that ε ∈ σd(i) entails that either ε ∈ σd(i1) or ε ∈ σd(i2) or
both. Let us suppose ε ∈ σd(i1). As per the induction hypothesis, we
have i1 ↓, which implies that alt(i1, i2) ↓.
⇒ If alt(i1, i2) ↓, then either i1 ↓ or i2 ↓ (or both). Let us suppose i1 ↓.
The induction hypothesis implies that ε ∈ σd(i1) and hence ε ∈ σd(i).

• If i is of the form loopk(i1), with k ∈ {S,H,W,P} we have i ↓ and ε ∈
σd(i).

46

http://dx.doi.org/10.6100/IR524323
http://dx.doi.org/10.1109/TSC.2009.16
http://dx.doi.org/10.1109/HCC.2003.1260216

Lemma (Lemma 5). For any l ∈ L and i ∈ IΩ,(i ↓×
×
l)⇔ (∃ t ∈ σd(i),¬(t××l))

Proof. Given l ∈ L, let us reason by induction on the term structure of i.

• If i is of the form ∅, then we have ∅ ↓×
×
l and ε ∈ σd(∅) satisfies ¬(ε××l).

• If i is an action in AΩ of the form l′!m or l′?m (i.e θ(a) = l′), we have, on
the one hand, a ↓×

×
l iff l′ ̸= l and on the other hand, a is the only trace of

σd(i) verifying ¬(a××l) iff θ(a) ̸= l. This gives the result for i = a.

• If i is of one of the forms strict(i1, i2), par(i1, i2) or seq(i1, i2) with i1 and
i2 two sub-interactions that satisfy the induction hypotheses, the reasoning
is similar for the three operators. Let us consider the case of strict:
⇒ If i ↓×

×
l then both i1 ↓×

×
l and i2 ↓×

×
l. We can therefore apply the

induction hypotheses, which lets us consider two traces t1 ∈ σd(i1) and
t2 ∈ σd(i2) such that ¬(t1××l) and ¬(t2××l). By definition of σd, we have
(t1; t2) ⊂ σd(i). By distributivity of ×× over ;, this implies that ∃ t ∈ (t1; t2)
s.t. ¬(t××l) and this trace is in σd(i).
⇐ Reciprocally, if there exists t in σd(strict(i1, i2)) s.t. ¬(t××l), then, by
definition of σd, this entails that there exist two traces t1 ∈ σd(i1) and
t2 ∈ σd(i2) s.t. t ∈ (t1; t2). Then, we have ¬(t1××l) and ¬(t2××l). We can
therefore apply the induction hypothesis which implies that i1 ↓×

×
l and

i2 ↓×
×
l, which, per the definition of ↓×

×
, implies that i ↓×

×
l.

For interactions of the form par(i1, i2) and seq(i1, i2), the reasoning is the
same except that we reason on respectively the operators || and ;×× over
both of which the conflict ×× is also distributive.

• If i = alt(i1, i2):
⇒ If i ↓×

×
l then either or both i1 ↓×

×
l and i2 ↓×

×
l. Let us suppose we have

i1 ↓×
×
l (the other case is similar). By the induction hypothesis, we have

∃ t1 ∈ σd(i1) s.t. ¬(t1××l). We then simply observe that σd(i1) ⊂ σd(i).
⇐ Reciprocally, if there exists t in σd(alt(i1, i2)) s.t. ¬(t××l), this trace t is
in either σd(i1) or σd(i2). Let us suppose the first case. By the induction
hypothesis, this implies that i1 ↓×

×
l (the other case is handled similarly).

Then, by the definition of ↓×
×
, this implies that i ↓×

×
l.

• If i is of the form loopk(i1) with k ∈ {S,H,W,P}, by definition, we have
i ↓×

×
l and the empty trace ε ∈ σd(i) verifies ¬(ε××l).

Lemma (Lemma 6). For any i ∈ IΩ and any l ∈ L, (i ↓×× l) ⇔ (∃! i′ ∈ IΩ s.t.
i ≃××l i′)

Proof. Given l ∈ L, let us reason by induction on the term structure of i.

• If i is of form ∅, then we have ∅ ↓×
×
l and i′ = ∅ is the unique i′ s.t.

i ≃×
×

l i′

47

• If i is of form a ∈ AΩ, we have, on one hand, a ↓×
×
l iff θ(a) ̸= l and on the

other hand, provided that θ(a) ̸= l, a is the unique term s.t. a ≃×
×

l a. The
two conditions are therefore equivalent.

• Let us now suppose that i is of the form f(i1, i2), with f ∈ {strict, seq, par},
and i1 and i2 two sub-interactions that satisfy the induction hypotheses:
⇒ If i ↓×

×
l then both i1 ↓×

×
l and i2 ↓×

×
l. We can therefore apply the

induction hypotheses, which allow us to consider two interactions i′1 and
i′2 such that i1 ≃×

×

l i′1 and i2 ≃×
×

l i′2. Then by Definition 10 we have
f(i1, i2) ≃×

×

l f(i′1, i
′
2). Given that this is the only rule which can apply to

infer an i′ s.t. f(i1, i2) ≃×
×

l i′ and given that i′1 and i′2 are unique then
i′ = f(i′1, i

′
2) is also unique.

⇐ Reciprocally, if there exists an unique interaction i′ in IΩ such that
f(i1, i2) ≃×

×

l i′), then, as per Definition 10 there must exist unique i′1 and
i′2 such that i1 ≃×

×

l i′1 and i2 ≃×
×

l i′2. We can then apply the induction
hypothesis to obtain that i1 ↓×

×
l and i2 ↓×

×
l which imply i ↓×

×
l.

• If i is of the form alt(i1, i2):
⇒ If i ↓×

×
l then (a) either i1 ↓×

×
l and i2 ↓×

×
l, and by induction, we have

unique i′1 and i′2 such that i1 ≃×
×

l i′1 and i2 ≃×
×

l i′2 and hence a unique
i′ = alt(i′1, i2) s.t. i ≃×

×

l i′ because the other two rules of the pruning
relation on the alternative cannot apply (since we have ¬(i2 ̸ ↓ ××

l) and
¬(i1 ̸ ↓ ××

l)); (b) or only one of i1 and i2 verifies the evasion predicate.
Let us suppose i1 ↓×

×
l and i2 ̸ ↓ ×

×
l (the opposite case is handled similarly),

then, we have by induction i1 ≃×
×

l i′1, and by Definition 10 i ≃×
×

l i′1 is unique
because the other two rules cannot apply.

⇐ Reciprocally, let us suppose that there exists an unique i′ in IΩ such
that i ≃×

×

l i′. We reason by case according to the rules defining ≃×
×
: (a)

if it is i ≃×
×

l alt(i′1, i
′
2) then, we have the hypotheses of unique i′1 and i′2

s.t. i1 ≃×
×

l i′1 and i2 ≃×
×

l i′2 which imply, by induction, that i1 ↓×
×
l and

i2 ↓×
×
l and hence i ↓×

×
l (b) if it is i ≃×

×

l i′1 then we have a unique i′1 s.t.
i1 ≃×

×

l i′1 and the hypothesis that i2 ̸ ↓ ×
×
l. By induction, we have i1 ↓×

×
l,

and because i = alt(i1, i2) is an alternative, we have i ↓×
×
l (c) the third

case (i ≃×
×

l i′2 with i1 ̸ ↓ ×
×
l) is handled similarly.

• If i is of the form loopk(i1), with k ∈ {S,H,W,P}. We have i ↓×
×
l and:

– if i1 ↓×
×
l then by induction there is a unique i′1 s.t. i1 ≃×

×

l i′1 and
hence a unique i′ = loopk(i

′
1) s.t. i ≃×

×

l i′ because the other rule
cannot apply given ¬(i1 ̸ ↓ ×

×
l)

– if i1 ̸ ↓ ×
×
l then we have i ≃×

×

l ∅ and this i′ = ∅ is unique because the
other rule cannot apply (otherwise we would have i1 ↓×

×
l)

Lemma (Lemma 7). For any l ∈ L and any i and i′ from IΩ verifying i ≃××l i′:

σd(i
′) = {t ∈ σd(i) | ¬(t××l)}

48

Proof. Given l ∈ L, let us reason by induction on the term structure of i.

• For i = ∅, we have ∅ ≃×
×

l ∅ and σd(∅) = {ε}. ε having no conflict with l,
the property holds.

• For i = a ∈ AΩ with i ≃×
×

l i′, then we have θ(i) ̸= l and i′ = a. Hence
a ≃×

×

l a and σd(a) = {a} has a single trace with no conflict with l.

• For i of the form strict(i1, i2), with i1 and i2 two sub-interactions that
satisfy induction hypotheses, i.e. such that, given ij ≃×

×

l i′j we have
σd(i

′
j) = {tj ∈ σd(ij) | ¬(tj××l)} with j ∈ {1, 2}, by definition of prun-

ing, we have i ≃×
×

l strict(i′1, i
′
2) and let us denote it by i′ = strict(i′1, i

′
2)

for short.
⊂ If t ∈ σd(i

′) then there exist t1 ∈ σd(i
′
1) and t2 ∈ σd(i

′
2) s.t. t ∈ (t1; t2).

By the induction hypothesis, we have t1 ∈ σd(i1) and ¬(t1××l) and t2 ∈
σd(i2) and ¬(t2××l). Therefore t ∈ σd(i1);σd(i2) = σd(i), and ¬(t××l).
⊃ If t ∈ σd(i) is s.t. ¬(t××l) then this implies the existence of t1 ∈ σd(i1)
and t2 ∈ σd(i2) s.t. t ∈ (t1; t2). The fact that ¬(t××l) implies that both
¬(t1××l) and ¬(t2××l). According to the induction hypothesis, t1 ∈ σd(i

′
1)

and t2 ∈ σd(i
′
2). Therefore (t1; t2) ⊂ σd(i

′) and hence t ∈ σd(i
′).

• For interactions of the form par(i1, i2) and seq(i1, i2), the reasoning is the
same as for the previous case except that we reason on (respectively) the
operators || and ;×× over both of which the conflict ×× is also distributive.

• For i of the form loopk(i1) with k ∈ {S,H,W,P}, let us note ⋄ the cor-
responding operator on sets of traces, i.e. ⋄ =; if k = S, ⋄ =;↰×× if k = H,
⋄ =;×× if k = W and ⋄ = || if k = P . We then have:

– if i1 ̸ ↓ ×
×
l, then loopk(i1) ≃×

×

l ∅. As per the reciprocate of Lemma 5,
if i1 does not avoid l, all the traces from σd(i1) have conflicts with
l. Then, all the traces obtained from merging traces from i1 have
conflicts with l. Therefore ε is the only trace from σd(loopk(i1))
which has no conflict with l. Since σd(∅) = {ε}, the property holds.

– if i1 ↓×
×
l, then there exists a unique i′1 such that i1 ≃×

×

l i′1 with i′1
verifying σd(i

′
1) = {t1 ∈ σd(i1) | ¬(t1××l)}. Then we have:

σd(loopk(i
′
1)) = σd(i

′
1)

⋄∗

= {t ∈ σd(i1) | ¬(t××l)}⋄∗
= {t ∈ σd(i1)

⋄∗ | ¬(t××l)}
= {t ∈ σd(loopk(i1))) | ¬(t××l)}

Indeed, the conflict ×× distributes over ⋄, and hence any trace obtained
from merging traces from i1 has no conflict with l iff it is obtained
from merging traces from i1 that all have no conflict with l. There-
fore, traces that have no conflict with l are precisely those that are
obtained from merging traces with no conflicts with l. These traces
come from loopk(i

′
1) as per the induction hypothesis. Therefore the

property holds.

49

Lemma (Lemma 8). For any a in AΩ, t in TΩ and i, i′ in IΩ,(
(i

a−→ i′) ∧ (t ∈ σd(i
′))

)
⇒ (a.t ∈ σd(i))

Proof. Given i and i′ in IΩ, a in AΩ and t ∈ TΩ, let us suppose that i
a−→ i′ and

that t ∈ σd(i
′). In order to prove a.t ∈ σd(i) let us reason by induction on the

rules from Definition 11 that makes the hypothesis i
a−→ i′ possible.

• When executing i ∈ AΩ, we have i′ = ∅. Then σd(i) = {i} and σd(∅) =
{ε}. The property i.ε = i ∈ σd(i) holds.

• When executing an action on the left of an alternative i = alt(i1, i2), we

have i′ = i′1 such that i1
a−→ i′1. As a result, i1

a−→ i′1 and t ∈ σd(i
′
1).

By induction hypothesis on i1, a.t ∈ σd(i1). Given that σd(i1) ⊂ σd(i),
the property holds. The case for executing an action on the right of
i = alt(i1, i2) is treated similarly.

• When executing an action on the left of i = par(i1, i2), we have i′ =

par(i′1, i2) with i1
a−→ i′1 and t ∈ σd(par(i

′
1, i2)). By definition of σd, there

exists (t′1, t2) ∈ σd(i
′
1)× σd(i2) s.t. t ∈ (t′1||t2). Therefore we have i1

a−→ i′1
and t′1 ∈ σd(i

′
1). By induction hypothesis on i1, we have a.t′1 ∈ σd(i1).

Given that σd(par(i1, i2)) is the union of all the (tα||tβ) with tα and tβ
traces from i1 and i2, (a.t

′
1||t2) ⊂ σd(i). In particular, t ∈ (t′1||t2), so, by

definition of the || operator, we have that a.t ∈ (a.t′1||t2). Executing an
action on the right of i = par(i1, i2) is treated similarly.

• Executing an action on the left of a strict is treated like executing an
action on the left of a par. When executing an action on the right of
i = strict(i1, i2), we have i′ = i′2 with i2

a−→ i′2 and i1 ↓. Given that

t ∈ σd(i
′
2) and i2

a−→ i′2, we apply the induction hypothesis on i2 to obtain
that a.t ∈ σd(i2). Given that σd(strict(i1, i2)) includes σd(i2) when i1 ↓,
the property holds.

• Executing an action on the left of a seq is treated like executing an ac-
tion on the left of a par. When executing an action on the right of
i = seq(i1, i2), we have i′ = seq(i′1, i

′
2) with i1 ≃×

×

θ(a) i′1 and i2
a−→ i′2.

Then, i1 ↓×
×
θ(a) is implied by i1 ≃×

×

θ(a) i′1. Given that t ∈ σd(i
′), there

exists t1 ∈ σd(i
′
1) and t2 ∈ σd(i

′
2) s.t. t ∈ (t1;×× t2). By the induction

hypothesis on i2, we have a.t2 ∈ σd(i2). Since t1 ∈ σd(i
′
1), Lemma 7 gives

that ¬(t1××θ(a)). As a result, by definition of the seq operator, (t1;×× a.t2)
includes a.t. Finally, given that σd(i) includes all (tα;×× tβ) s.t. tα ∈ σd(i1)
and tβ ∈ σd(i2), we have, in particular (t1;×× a.t2) ⊂ σd(i).

• When executing an action a in i = loopS(i1), we have i
′ = strict(i′1, loopS(i1))

with i1
a−→ i′1. We have that t ∈ σd(i

′). Therefore there exists t1 ∈

50

σd(i
′
1) and t2 ∈ σd(i) s.t. t ∈ (t1; t2). We then remark that i1

a−→ i′1
and t1 ∈ σd(i

′
1). Hence we can apply the induction hypothesis on sub-

interaction i1, which implies that a.t1 ∈ σd(i1). As a result, given that
t2 ∈ σd(loopS(i1)) = σd(i1)

;∗, and a.t1 ∈ σd(i1), we have, (a.t1; t2) ⊂
σd(i1)

;∗ i.e. (a.t1; t2) ⊂ σd(i). Then, given that t ∈ (t1; t2), we have im-
mediately that a.t ∈ (a.t1; t2) because it is always possible to add actions
from the left. Therefore a.t ∈ σd(i), so the property holds.

• The cases for loopH and loopP are treated like the one for loopS .

• When executing a from i = loopW (i1), we have i
′ = seq(i′0, seq(i

′
1, loopW (i1)))

with i1
a−→ i′1 and i ≃×

×

θ(a) i
′
0. Given that t ∈ σd(i

′), there exists t0 ∈ σd(i
′
0),

t1 ∈ σd(i
′
1) and t2 ∈ σd(i) s.t. t ∈ (t0;×× t1;×× t2). Given that i ≃×

×

θ(a) i′0
we have that σd(i

′
0) ⊂ σd(i) and, given that σd(i) = σd(i1)

;××∗, we have
that σd(i);×× σd(i) ⊂ σd(i) and therefore σd(i

′
0);×× σd(i) ⊂ σd(i). Given that

t0 ∈ σd(i
′
0), per Lemma 7, ¬(t0××θ(a)) i.e. no action contained in t0 oc-

curs on θ(a). Therefore, if we consider any tβ and any tα ∈ (t0;×× tβ),
we have that a.tα ∈ (t0;×× a.tβ) because action a can be taken from the

right-hand-side of (t0;×× a.tβ). With i1
a−→ i′1 and t1 ∈ σd(i

′
1), we can apply

the induction hypothesis on sub-interaction i1, which implies that a.t1 ∈
σd(i1). Given that t2 ∈ σd(loopW (i1)) = σd(i1)

;××∗, and a.t1 ∈ σd(i1),
we have, (a.t1;×× t2) ⊂ σd(i1)

;××∗ i.e. (a.t1;×× t2) ⊂ σd(i). Finally, given
a.t ∈ (t0;×× a.t1;×× t2) ⊂ (σd(i

′
0);×× σd(i)) ⊂ σd(i), the property holds.

Lemma (Lemma 9). For any a ∈ AΩ, t ∈ TΩ and i ∈ IΩ,

(a.t ∈ σd(i))⇒
(
∃ i′ ∈ IΩ, (i

a−→ i′) ∧ (t ∈ σd(i
′))

)
Proof. Let us consider i ∈ IΩ, a ∈ AΩ and t ∈ TΩ. Let us suppose that
a.t ∈ σd(i) and let us reason by induction on the term structure of i.

• We cannot have i = ∅ because it contradicts a.t ∈ σd(i)

• For i ∈ AΩ, a.t ∈ σd(i) implies that i = a and t = ε. We then have the

existence of i′ = ∅ which indeed satisfies a
a−→ ∅ and ε ∈ σd(∅)

• For i = alt(i1, i2), then a.t ∈ σd(i) implies either a.t ∈ σd(i1) or a.t ∈
σd(i2). Let us suppose it is the first case (the second is identical). Then,

by the induction hypothesis on i1, there exists i′1 such that i1
a−→ i′1 and

t ∈ σd(i
′
1). By definition of the relation →, this implies that alt(i1, i2)

a−→
i′1. As a result, we have identified i′ = i′1 which satisfies the property.

• For i = par(i1, i2), then a.t ∈ σd(i) implies the existence of traces t1 and t2
such that t1 ∈ σd(i1) and t2 ∈ σd(i2) and a.t ∈ (t1||t2). This then implies
either (1) that t1 is of the form a.t′1 and t ∈ (t′1||t2) or (2) that t2 is of the
form a.t′2 and t ∈ (t1||t′2). As both case can be treated identically, let us

51

suppose it is the first case. Given that we have a.t′1 ∈ σd(i1), by induction

hypothesis on i1, there exists i′1 such that i1
a−→ i′1 and t′1 ∈ σd(i

′
1). By

definition of →, par(i1, i2)
a−→ par(i′1, i2). By definition of σd, given that

t′1 ∈ σd(i
′
1) and t2 ∈ σd(i2), we have (t

′
1||t2) ⊂ σd(par(i

′
1, i2)). Then, given

that t ∈ (t′1||t2), this implies that t ∈ σd(par(i
′
1, i2)). We have identified

i′ = par(i′1, i2) which satisfies the property.

• For i = strict(i1, i2) then a.t ∈ σd(i) implies the existence of traces t1
and t2 such that t1 ∈ σd(i1) and t2 ∈ σd(i2) and a.t ∈ (t1; t2). This then
implies: either (1) that t1 is of the form a.t′1 and t ∈ (t′1; t2). This case is
similar to that for par and ||. or (2) that t1 = ε and t2 = a.t. On the one
hand, the fact that t1 = ε ∈ σd(i1) implies, as per Lemma 4, that i1 ↓.
On the other hand, with t2 = a.t ∈ σd(i2), the induction hypothesis on i2
establishes the existence of i′2 s.t. i2

a−→ i′2 and t ∈ σd(i
′
2). Because i1 ↓,

this implies that strict(i1, i2)
a−→ i′2. As a result, we have identified i′ = i′2

which satisfies the property.

• For i = seq(i1, i2), a.t ∈ σd(i) implies the existence of traces t1 and t2
such that t1 ∈ σd(i1) and t2 ∈ σd(i2) and a.t ∈ (t1;×× t2). This then
implies either (1) that t1 = a.t′1 and t ∈ (t′1;×× t2), similar case to that for
par and ||, or (2) that ¬(t1××θ(a)) and that t2 is of the form a.t′2 with
t ∈ (t1;×× t

′
2). On the one hand, t1 ∈ σd(i1) together ¬(t1××θ(a)), ensures,

as per Lemma 5, that i1 ↓×
×
θ(a) and therefore, as per Lemma 6, that

there exists a unique i′1 such that i1 ≃×
×

θ(a) i′1. On the other hand, with

t2 = a.t′2 ∈ σd(i2), the induction hypothesis on i2 establishes the existence

of i′2 s.t. i2
a−→ i′2 and t′2 ∈ σd(i

′
2). By definition of →, this implies that

seq(i1, i2)
a−→ seq(i′1, i

′
2). Given that t1 ∈ σd(i1) is such that ¬(t1××θ(a)),

as per Lemma 7, this implies that t1 ∈ σd(i
′
1). By definition of σd, given

that t1 ∈ σd(i
′
1) and t′2 ∈ σd(i

′
2), we have (t1;×× t

′
2) ⊂ σd(seq(i

′
1, i

′
2)). Then,

given that t ∈ (t1;×× t
′
2), t ∈ σd(seq(i

′
1, i

′
2)). We therefore have identified

i′ = seq(i′1, i
′
2) which satisfies the property.

• For i = loopS(i1) the fact that a.t ∈ σd(i) implies that a.t ∈ σd(i1)
;∗ and

hence, as per Lemma 1, there exists a trace t′ such that a.t′ ∈ σd(i1) and
t ∈ {t′};σd(i1)

;∗. Then, with a.t′ ∈ σd(i1), the induction hypothesis on i1
gives us an interaction i′1 such that i1

a−→ i′1 and t′ ∈ σd(i
′
1). By definition

of →, loopS(i1)
a−→ strict(i′1, loopS(i1)). By definition of σd, given that

t′ ∈ σd(i
′
1) and that t ∈ {t′};σd(i1)

;∗, we have t ∈ σd(strict(i
′
1, loopS(i1)))

and i′ = strict(i′1, loopS(i1)) satisfies the property.

• The case for loopP is treated like the case for loopS .

• For i = loopH(i1), a.t ∈ σd(i) entails a.t ∈ σd(i1)
;↰××∗. By definition,

there exists j > 0 such that a.t ∈ σd(i1)
;↰×× j = σd(i1);

↰
×× σd(i1)

;↰×× (j−1) ⊂
σd(i1);

↰
×× σd(i1)

;↰××∗. Because the restricted operator ;↰×× only allows to take

52

the first action of recomposed traces from the left-hand-side, we can iden-
tify a trace t′ s.t. a.t′ ∈ σd(i1) and t ∈ {t′};×× σd(i1)

;↰××∗. Hence, the induc-

tion hypothesis on i1 establishes the existence of i′1 such that i1
a−→ i′1

and t′ ∈ σd(i
′
1). By definition of →, this implies that loopH(i1)

a−→
seq(i′1, loopH(i1)). By definition of σd, given that t′ ∈ σd(i

′
1) and that

t ∈ {t′};×× σd(i1)
;↰××∗, we have that t ∈ σd(seq(i

′
1, loopH(i1))). We have

identified i′ = seq(i′1, loopH(i1)) which satisfies the property.

• For i = loopW (i1), a.t ∈ σd(i) entails a.t ∈ σd(i1)
;××∗. There exists n > 0

such that a.t ∈ σd(i1)
;××n. As a result, we can identify traces t1 through

tn such that for any j ∈ [1, n], tj ∈ σd(i1) and a.t ∈ {t1};×× · · · ;×× {tn}.
By definition of the seq operator, action a is taken from a certain tj
with j ∈ [1, n] and tj = a.t′j and we have, for any k < j, ¬(tk××θ(a))
and t ∈ {t1};×× · · · ;×× {tj−1};×× {t′j};×× {tj+1};×× · · · ;×× {tn}. Considering i′0 s.t.

loopW (i1) ≃×
×

θ(a) i′0 (which existence is guaranteed by Lemma 6), be-

cause, for any k < j, we have ¬(tk××θ(a)) then, as per Lemma 7, for
all k < j, we have tk ∈ σd(i

′
0). Then, either (1) all the tk are ε, then

{t1};×× · · · ;×× {tj−1} = {ε} ⊂ σd(i
′
0) or (2) at least one tk is not the empty

trace then i′0 is a non empty loopW , and, given that for all k < j, we have
tk ∈ σd(i

′
0) then {t1};×× · · · ;×× {tj−1} ⊂ σd(i

′
0) (because a loopW is closed

under repetition by ;××). Hence {t1};×× · · · ;×× {tj−1} ⊂ σd(i
′
0) and therefore

t ∈ σd(i
′
0);×× {t′j};×× {tj+1};×× · · · ;×× {tn}. Given that, for k > j we have that

tk ∈ σd(i) and because i = loopW (i1), then {tj+1};×× · · · ;×× {tn} ⊂ σd(i) and
therefore t ∈ σd(i

′
0);×× {t′j};×× σd(i). Given that tj = a.t′j ∈ σd(i1), by the in-

duction hypothesis on i1, there exists i
′
1 such that i1

a−→ i′1 and t′j ∈ σd(i
′
1).

By definition of→, loopW (i1)
a−→ seq(i′0, seq(i

′
1, loopW (i1))). Finally, given

that we have shown that t ∈ σd(i
′
0);×× {t′j};×× σd(i) and because t′j ∈ σd(i

′
1),

by definition of σd we have t ∈ σd(seq(i
′
0, seq(i

′
1, loopW (i1)))). There-

fore we have identified i′ = seq(i′0, seq(i
′
1, loopW (i1))) which satisfies the

property.

Lemma (Lemma 10). For any i ∈ IΩ and any l ∈ L:

(∃ i′ ∈ IΩ, s.t. i ≃××l i′)⇒ (prn(i, l) = i′) and (i ↓×× l)⇒ (i ≃××l prn(i, l))

Proof. Let us consider a certain l ∈ L and reason by induction on i:
If i = ∅ then the only possible i′ s.t. ∅ ≃×

×

l i′ is ∅ and by definition ∅ ↓×
×
l

and prn(∅, l) = ∅.
If i = a ∈ AΩ then, for pruning to be possible (in both definitions) we must

have θ(a) ̸= l and we then have a ≃×
×

l a, a ↓×
×
l and prn(a, l) = a.

If i = alt(i1, i2) then (using Lemma 6):

• if i1 ↓×
×
l and ¬i2 ↓×

×
l then there exists i′1 s.t. i1 ≃×

×

l i′1 and i ≃×
×

l i′1 and
we have i ↓×

×
l and prn(i, l) = prn(i1, l). By the induction hypothesis we

have i′1 = prn(i1, l) and hence i ≃×
×

l prn(i, l).

53

• the case if ¬i1 ↓×
×
l and i2 ↓×

×
l can be treated similarly.

• if both i1 ↓×
×
l and i2 ↓×

×
l then ∀ j ∈ {1, 2}, there exists i′j s.t. ij ≃

××

l i′j and

i ≃×
×

l alt(i′1, i
′
2) and we have i ↓×

×
l and prn(i, l) = alt(prn(i1, l), prn(i2, l)).

By the induction hypothesis we have ∀ j ∈ {1, 2}, i′j = prn(ij , l) and hence

i ≃×
×

l prn(i, l).

• the case ¬i1 ↓×
×
l and ¬i2 ↓×

×
l implies that ¬i ↓×

×
l and that there are no i′

s.t. i ≃×
×

l i′.

If i = f(i1, i2) with f ∈ {strict, seq, par} then (using Lemma 6):

• if both i1 ↓×
×
l and i2 ↓×

×
l then ∀ j ∈ {1, 2}, there exists i′j s.t. ij ≃

××

l i′j and

i ≃×
×

l f(i′1, i
′
2) and we have i ↓×

×
l and prn(i, l) = f(prn(i1, l), prn(i2, l)). By

the induction hypothesis we have ∀ j ∈ {1, 2}, i′j = prn(ij , l) and hence

i ≃×
×

l prn(i, l).

• if this is not the case then ¬i ↓×
×
l and there are no i′ s.t. i ≃×

×

l i′.

If i = loopk(i1) with k ∈ {S,H,W,P} then (using Lemma 6):

• if i1 ↓×
×
l then there exists i′1 s.t. i1 ≃×

×

l i′1 and i ≃×
×

l loopk(i
′
1) and we have

i ↓×
×
l and prn(i, l) = loopk(prn(i1, l)). By the induction hypothesis we

have i′1 = prn(i1, l) and hence i ≃×
×

l prn(i, l).

• else, even though ¬i1 ↓×
×
l we still have i ↓×

×
l because i has a loop at its

root. Also, we have both i ≃×
×

l ∅ and prn(i, l) = ∅ and thus i ≃×
×

l prn(i, l).

Lemma (Lemma 11). For any interactions i and i′ in IΩ, for any action a ∈
AΩ, we have:(

i
a−→ i′

)
⇒

(
∃ p ∈ frt(i), s.t. (i|p = a) ∧ (i′ = exe(i, p))

)
Proof. Let us suppose that i

a−→ i′ and let us reason by induction on the structure
of i.

• If i = ∅ then it is not possible to have an i′ such that i
a−→ i′

• If i = a ∈ AΩ then: (1) the only possible i′ such that i
a−→ i′ is ∅ i.e. we

have a
a−→ ∅. And (2) we have ε ∈ frt(a) and a|ε = a and exe(a, ε) = ∅.

Therefore the property holds.

• If i = strict(i1, i2) then i
a−→ i′ implies:

– either that there exists i′1 such that i1
a−→ i′1 and i′ = strict(i′1, i2).

We can then apply the induction hypothesis on sub-interaction i1 to
obtain the existence of a position p1 ∈ frt(i1) such that i1|p1

= a and
i′1 = exe(i1, p1). Then, by construction 1.p1 ∈ frt(i) and i|1.p1

=
i1|p1

= a and exe(i, 1.p1) = strict(exe(i1, p1), i2) = strict(i′1, i2) = i′.

54

– or that we have i1 ↓ and that there exists i′2 such that i2
a−→ i′2

and i′ = i′2. We can then apply the induction hypothesis on sub-
interaction i2 to obtain the existence of a position p2 ∈ frt(i2)
such that i2|p2

= a and i′2 = exe(i2, p2). Then, given that i1 ↓,
we have by construction that 2.p2 ∈ frt(i) and i|2.p2

= i2|p2
= a and

exe(i, 2.p2) = exe(i2, p2) = i′2 = i′.

• If i = seq(i1, i2) then i
a−→ i′ implies:

– either that there exists i′1 such that i1
a−→ i′1 and i′ = seq(i′1, i2). This

case is similar to that of strict.

– or that we have i1 ↓×
×
θ(a) and that there exists i′2 such that i2

a−→ i′2
and i′ = seq(prn(i1, θ(a)), i

′
2). We can then apply the induction

hypothesis on sub-interaction i2 to obtain the existence of a po-
sition p2 ∈ frt(i2) such that i2|p2

= a and i′2 = exe(i2, p2) and

i|2.p2
= i2|p2

= a. Then, given that i1 ↓×
×
θ(i|2.p2

), we have by con-
struction that 2.p2 ∈ frt(i) and i|2.p2

= i2|p2
= a and exe(i, 2.p2) =

seq(prn(i1, θ(i2|p2
)), exe(i2, p2)) = seq(prn(i1, θ(a)), i

′
2) = i′.

• The case i = par(i1, i2) can be treated as the left side of strict.

• The case i = alt(i1, i2) is a simpler variant of par.

• If i = loopk(i1) with k ∈ {S,H,W,P}, then i
a−→ i′ implies that there

exists i′1 such that i1
a−→ i′1 and i′ is either strict(i′1, i) or seq(i′1, i) or

seq(prn(i, θ(a)), seq(i′1, i)) (as per Lemma 10) or par(i′1, i). In any case,
we can apply the induction hypothesis on sub-interaction i1 to obtain
the existence of a position p1 ∈ frt(i1) such that i1|p1

= a and i′1 =
exe(i1, p1). Then, by construction 1.p1 ∈ frt(i) and i|1.p1

= i1|p1
= a and

exe(i, 1.p1) = i′.

Lemma (Lemma 12). For any i ∈ IΩ and p ∈ frt(i) we have i
i|p−−→ exe(i, p)

Proof. Let us suppose that p ∈ frt(i) and then reason by induction on the
structure of i:

• If i = ∅ then we have frt(∅) = ∅ so it is not possible to have a p ∈ frt(i).

• If i = a ∈ AΩ then we have frt(a) = {ε} and p must be ε. Then because

a|ε = a, a
a−→ ∅ and exe(a, ε) = ∅, the property holds.

• If i = strict(i1, i2) then p ∈ frt(i) implies:

– either that p is of the form 1.p1 and p1 ∈ frt(i1). Also we have
i1|p1

= i|p. We can then apply the induction hypothesis on sub-

interaction i1 to get that we have i1
i1|p1−−−→ exe(i1, p1). This implies,

55

as per the definition of the execution relation, that strict(i1, i2)
i1|p1−−−→

strict(exe(i1, p1), i2). Then, given that exe(i, p) = strict(exe(i1, p1), i2)

this equates to i
i|p−−→ exe(i, p).

– or that we have i1 ↓, that p is of the form 2.p2 and that p2 ∈ frt(i2).
Also we have i2|p2

= i|p. We can then apply the induction hypothesis

on sub-interaction i2 to get that we have i2
i2|p2−−−→ exe(i2, p2). Given

that we have i1 ↓, this implies, as per the definition of the execu-

tion relation, that strict(i1, i2)
i2|p2−−−→ exe(i2, p2). Then, given that

exe(i, p) = exe(i2, p2) this equates to i
i|p−−→ exe(i, p).

• If i = seq(i1, i2) then p ∈ frt(i) implies:

– either that p is of the form 1.p1 and p1 ∈ frt(i1). This can be treated
as above.

– or that we have i1 ↓×
×
θ(i|p), that p is of the form 2.p2 and that

p2 ∈ frt(i2). Also we have i2|p2
= i|p. We can then apply the in-

duction hypothesis on sub-interaction i2 to get that we have i2
i2|p2−−−→

exe(i2, p2). Given that i1 ↓ θ(i|p), this implies, as per the definition

of the relation −→, that seq(i1, i2)
i|p−−→ seq(prn(i1, θ(i|p)), exe(i2, p2)).

Then, given that exe(i, p) = seq(prn(i1, θ(i|p)), exe(i2, p2)) this equates

to i
i|p−−→ exe(i, p).

• The case i = par(i1, i2) can be treated as the left side of strict.

• The case i = alt(i1, i2) can be treated similarly to par.

• If i = loopk(i1) with k ∈ {S,H,W,P} then p ∈ frt(i) implies that p is of
the form 1.p1 and p1 ∈ frt(i1). Also we have i1|p1

= i|p. We can apply

the induction hypothesis on sub-interaction i1 to get that we have i1
i|p−−→

exe(i1, p1). Let us then denote by i′1 the interaction exe(i1, p1). This then

implies, as per the definition of the execution relation, that loopk(i1)
i|p−−→

i′ with i′ being either strict(i′1, i) (if k = S), seq(i′1, i) (if k = H),
seq(prn(i, θ(i|p)), seq(i

′
1, i)) (if k = W , the existence of prn(i, θ(i|p)) being

proved by Lemma 10) or par(i′1, i) (if k = P). Then, in any case, given

that exe(i, 1.p1) is exactly defined as i′, this equates to i
i|p−−→ exe(i, p).

56

	Introduction
	Preliminaries
	Scheduling and repetition operators for trace handling
	Binary composition operators
	Repetition operators
	Summary of algebraic properties

	Interaction language
	Syntax and denotational semantics
	A first example of interaction
	Some comments on the loop operators
	Identifying classes of semantically equivalent interactions
	A rewrite system to characterize canonical interactions

	A structural operational semantics
	Characterizing the termination of interactions
	Dealing with weak-sequencing using evasion and pruning
	Definition of the operational semantics
	Correctness of operational semantics with respect to denotational semantics

	Implementing action-traceable interaction execution
	Motivation
	Pruning
	Frontier
	Execution
	Simplifications
	The execution semantics and its correctness

	Related works
	Conclusion
	Detailed proofs

