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Abstract

In 1948 H. Wold introduced an isometric isomorphism between a Hilbert (linear) space
formed from the weighted shifts of a numerical sequence and a suitable Hilbert space
of values of a second order stochastic sequence. Motivated by a recent resurrection
of the idea in the context of cyclostationary sequences and processes, we present the
details of the Wold isomorphism between cyclostationary stochastic sequences and
cyclostationary numerical sequences. We show how Hilbert-space representations of
cyclostationary sequences are interpreted in the case of numerical CS sequences.
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1 Introduction

In [34] Herman Wold identified an isometric isomorphism, to be called the Wold
Isomorphism, between the Hilbert space of a stationary stochastic sequence and a
Hilbert space formed from a numerical sequence. A numerical sequence is sometimes
called a functional sequence or a time-series and may be envisioned as a doubly in-
finite sequence of numerical observations of some variable quantity made at equally
spaced intervals of time. Wold was evidently motivated to show that methodologies
involving linear processing of stationary stochastic sequences (such as linear predic-
tion, innovations or spectral representations) would provide via this isomorphism the
corresponding parallel results for a single time-series.

The notions of spectral analysis and linear prediction for a numerical sequence are
connected to Norbert Wiener’s theory of generalized harmonic analysis, see [30] or
the reviews in [22] or [24]. In an early work [29] , Wiener denoted numerical sequences
as arrays, and the present authors give a more complete treatment of the spectral
theory for the cyclostationary case in [18].

Lately the sphere of problems raised by Wold and Wiener has been resurrected
by Gardner, see e.g. [6, pp. 179-181],[7, p. 377], [8], and [9] in the context of cy-
clostationary stochastic processes and cyclostationary numerical functions. Gardner
introduced [6, pp. 347], in the spirit of Wold, the construction of an ensemble of
random variables, with time index t and ensemble index s (shift) by

X(t, s) = xt+s, (1.1)

where {xt}∞t=−∞ is a numerical sequence of complex numbers. If the first and second
moments of X(t) are calculated using the fraction of time distributions, then these
moments equal those determined by time averages of {xt}, assuming the time averages
exist.

The goal of this work was to see if a mapping in the precise sense of a standard
Hilbert space isomorphism used by Wold [34] for the stationary case exists in the
cyclostationary case. In presenting the affirmative result we have to examine carefully
the domain and range spaces involved and the shift operators that shift the sequences
by one period.

1.1 Summary

In section 2 we review and clarify the results of Wold [34] for stationary sequences.
Here we are concerned with the space of two-sided complex valued sequences obtained
by linear combinations of shifts of a given complex valued sequence x. This linear
space can be closed in a way to produce H1(x), a Hilbert subspace of a Marcinkiewicz
space (see Bass [1]). This gives a little more insight into the nature of the sequence
space that is isomorphic to the linear space of some second order stochastic sequence.
Finally, it is important to note that the one place shift of a stationary sequence
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defines a unitary operator in the aforementioned Hilbert space of sequences, and this
corresponds through the isomorphism to the unitary operator on the linear space of
a stochastic sequence.

In section 3 we define CS (cyclostationary) numerical sequences in terms of the N -
step mean and the N -step autocorrelation formed by averaging N -step subsequences.
Using the N -step autocorrelation, a scalar product on the linear combinations of
shifts of a given CS sequence x is defined and its closure HN (x) is the sequence space
that is isomorphic to the linear space of some stochastic cyclostationary sequence.
The result of Bass [1] again proves this sequence space to be a Hilbert sub-space of a
Marcinkiewicz space of sequences. In this case, the one place shift of a CS sequence is
no longer unitary in HN (x) but the N place shift is unitary and corresponds through
the isomorphism to the unitary operator of a stochastic cyclostationary sequence. We
then apply the representations for stochastic CS sequences to the case of CS numerical
sequences.

1.2 Other related work

Brillinger [3] gives a nice exposition of most of the issues about stationary functional
sequences that are of concern to us. Bass [1] deals with “pseudo-random” functions
(in continuous time) and gives a method for understanding the completion of a pre-
Hilbert space generated by a single numerical function.

Independently of Wold, and using a completely different technique, the problem
of determining a stochastic process and its probability distributions, from a single
numerical sequence were treated by Furstenberg [5] (see also Masani’s review [23]).
These ideas exceed our current framework as we shall only be concerned here with
the L2 theory. There are also related ideas in the papers [31, 32, 33] and in [21, p.
31, pp. 34 - 35].

Gardner incorporates in [10] the Wold isomorphism idea in a bigger discussion of
basic scientific views about inference. He frames an approach to estimation theory
that deals with a single sequence of numbers, the one we in fact use to form an esti-
mate, and not with a set of sample paths, which is the view invoked by probabilistic
models of inference. Gardner shows how these two views of inference effect the esti-
mation of spectral density, which is a non-linear operation and thus neither covered
by the Wold theory nor by this paper. The ideas in [10] have been extended to almost
periodic and higher order cases [11, 12, 19, 20].

1.3 Remarks

In this presentation, one may interpret a stochastic sequence to be a general Hilbert-
space valued sequence. We will use the stochastic terminology because under sufficient
conditions of ergodicity, (this is the idea of Wold) almost all sequences of a stochastic
CS sequence will be a functional CS sequence of the type required; we will men-
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tion some specific conditions in the conclusion. But our analysis does not require
CS numerical sequences to be sample paths of stochastic CS sequences; the ergodic
hypothesis merely allows the construction of examples.

2 The Stationary Case

2.1 Preliminaries

Let x = {xj}∞j=−∞ designate a numerical sequence of complex numbers. If Πj{·} is
the coordinate map i.e.

Πj{x} := xj

and λ is a complex number, then the operations of addition and multiplication by a
scalar are defined in terms of the coordinate maps as

Πj{x + y} = xj + yj,

Πj{λ · x} = λxj.

We define also the mean

µ (x) := lim
n→∞

1

2n + 1

n∑
j=−n

xj (2.1)

and the norm

‖ x ‖2
1:= lim

n→∞

1

2n + 1

n∑
j=−n

| xj |2, (2.2)

whenever the limits exist. Similarly we introduce for a pair of numerical sequences x
and y the scalar product

(x,y)1 := lim
n→∞

1

2n + 1

n∑
j=−n

xjyj, (2.3)

as soon as this exists, where yi denotes the complex conjugation of an element in
the sequence y. Whenever the limits (2.1), (2.2), (2.3) exist, then taking (2.3) to be
specific, then for any integer q, the limit

lim
n→∞

1

2n + 1

n∑
j=−n

xj+qyj+q, (2.4)

exists and is equal to (2.3); that is, the limits are independent of the origin. Using
Cauchy’s inequality for complex sequences we have | (x,y)1 |≤‖ x ‖2

1 · ‖ y ‖2
1 when

all the necessary limits exist.
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The autocorrelation of x is the sequence {rk}∞k=−∞ where

rk := rk (x) := lim
n→∞

1

2n + 1

n∑
j=−n

xj+qxj+q+k, (2.5)

if the limit exists, and by our previous comment it is independent of the integer q.
At any value of k for which rk exists, r−k = rk and | rk |≤ r0 = (x,x)1 < ∞.

We denote S as the forward (left) shift operator, defined in the set of doubly
infinite numerical sequences by the action

Πj{Sx} = xj+1 (2.6)

for every j. The inverse S−1 exists and is simply given as the backward (right) shift,
since the sequences are two-sided. The operation of j consecutive shifts to the left is
defined inductively as the j’th power of S, Sj as is S−j. Hence we may write

rk (x) =
(
x,Skx

)
1
. (2.7)

2.2 Stationary numerical sequences

We define next (c.f. [33, p. 98]) the notion of a stationary numerical sequence in
Wold’s sense.

Definition 2.1 A sequence x = {xj}j=∞
j=−∞ such that

1. the mean µ (x) exists as a finite number,

2. the autocorrelation rk (x) exists for every integer k,

is called a stationary numerical sequence.

Example 2.1 The numerical sequence eα = {eiαj}∞j=−∞ (i =
√
−1) is stationary

for any real α. Two sequences eα and eβ are orthonormal with respect to (·, ·)1 for
α 6= β.

Before completing our discussion of the Wold isomorphism we will first consider
jointly stationary numerical sequences.

First, if
{
z(k), k = 0, 1, . . . , K − 1

}
is a collection of numerical sequences, we define

z :=


z(0)

z(1)

...
z(K−1)

 . (2.8)
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Definition 2.2 A numerical vector sequence z, with K components z(k) =
{
z

(k)
j

}∞
j=−∞

k =

0, 1, . . . , K − 1, is stationary if the component sequences are jointly stationary in the
sense that the cross correlations defined by

φr,s(p− q) := lim
n→∞

1

2n + 1

n∑
j=−n

z
(r)
j+pz

(s)
j+q, (2.9)

exist for 0 ≤r,s≤ K − 1 and all p, q ∈ Z.

We note here that when the limit exists for some p, q, it will depend only on the
difference p − q. Also, the collection {φr,s(k), 0 ≤ r, s ≤ K − 1} is a crosscorrela-
tion matrix: for any n, collections {α1, α2, . . . , αn ∈ C}, {τ1, τ2, . . . , τn ∈ Z} and
{k1, k2, . . . , kn ∈ [0, 1, ..., K − 1]}, we have

n∑
p=1

n∑
q=1

αpαqφkp,kq(τp − τq) ≥ 0. (2.10)

In the case of stationary stochastic sequences {ξn, n ∈ Z}, the sequences ξ(k) =
{ξnN+k, n ∈ Z, k = 0, 1, . . . , N − 1} formed by sampling {ξn, n ∈ Z} at intervals of
length N are jointly stationary sequences, and this occurs for every N . In the case
of numerical sequences, it does not automatically occur that subsequences formed
by periodic sampling are stationary because the needed limits may not exist. As an
example, let {xn} be a real sequence taking the values −1, 1 whose mean does not
converge. Then construct {yn} by ..., x−1,−x−1, x0,−x0, x1,−x1, .... We can see µ (y)
exists but the limit defining µ ({y2j}) = µ (x) does not exist. Thus we are led to the
following.

Definition 2.3 A sequence x = {xj}∞j=−∞ is called totally stationary if the sequences

{x(k), k = 0, 1, ..., N − 1} given by

Πj{x(k)} = Πk+jN{x} (2.11)

are jointly stationary in the sense expressed in (2.9) for positive N .

A totally stationary sequence is 1-stationary, that is, stationary in the sense of
Definition 2.1.

2.3 The Wold Isomorphism

In order to introduce the Wold isomorphism let us now assume that we have a sta-
tionary numerical sequence x. Since the autocorrelation exists, then for any scalar
λ,

‖ x + λSkx ‖1 (2.12)
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exists and is finite. Thus we may introduce the linear space M1 (x) defined as the
(finite) linear span

M1 (x) = sp
{
Skx | k integer

}
,

=

y =
p∑

j=−p

λjSjx, arbitrary p, λj

 , (2.13)

and on this linear space (x1,x2)1 of (2.3) is seen to have the properties of symmetry,
additivity and homogeneity; that is, (a) (x1,x2)1 = (x2,x1)1, (b) (x1 + x2,x3)1 =
(x1,x2)1 + (x2,x3)1 and (c) (αx1,x2)1 = α (x1,x2)1 for every complex α and all
x1,x2,x3 in M1 (x). In order for (x1,x2)1 to be positive definite in the sense that
‖ x ‖2

1= 0 ⇐⇒ x = 0 we interpret 0 as the (equivalence) class of sequences that are
equivalent to the zero sequence (the complex sequence with xj = 0 for every j). This
expresses the sense of uniqueness obtained by the scalar product (2.3). For example
any two sequences x1,x2 for which z = x1 − x2 ∈ `2 are clearly equivalent because
z satisfies ||x1 − x2||1 = 0. Thus any finite sequence is equivalent to 0 and any two
sequences differing in a finite number of positions are equivalent.

In the sequel x will denote (the representative of ) any equivalence class in M1 (x).
By the definitions of the linear operations and the inner product (·, ·)1 we have thus
established M1 (x) as a pre-Hilbert space.

Let us note that the autocorrelation {rk (x)}∞k=−∞ is a non-negative definite se-
quence and is identifiable as the autocorrelation function of some (weakly) stationary
stochastic sequence ξ = {ξj}∞j=−∞ defined on some probability space (Ω,F , P ). From
the sequence ξ we can determine a Hilbert space H (ξ), the linear span of ξt closed

with respect to mean square norm ‖ η ‖H(ξ)=
√

E | η |2, where E is expectation with
respect to the probability measure P .

Let us consider a linear map J defined on M1 (x) and assuming values in the linear
span sp{ξk, k ∈ Z} of the sequence ξ by

J
(
λSpx + µSkx

)
= λξp + µξk (2.14)

for arbitrary complex λ, µ and integers k, p. This defines the Wold isomorphism1

between the pre-Hilbert space M1 (x) and it’s image JM1 (x) = sp{ξk, k ∈ Z}, which
is dense in H (ξ). If we denote H1 (x) as an abstract completion of M1 (x) with respect
to || · ||1, then by the continuity (boundedness) of J on M1 (x), J extends to a map
from H1 (x) to H (ξ) and is the desired Hilbert space isomorphism. The elements
of H (ξ) are all L2 (Ω,F , P ) random variables, but there arises a question about the
interpretation of the limit points of M1 (x). That is, are we left only to define the
closure as an abstract completion as in [26, p. 121, 124 - 125], or does there exist a
more concrete interpretation?

1It is an isomorphism in the sense that it is a bijection (invertible) and preserves inner products,
and hence is also linear [26].
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A positive answer is provided by J. Bass [1, pp.33- 35] for the case in which our
sequences are replaced by functions in a Marcinkiewicz space M2. Adapting the
result of Bass, it follows that the completion of the pre-Hilbert space M1 (x) with
respect to the norm

‖ x ‖2
M2= lim sup

n→∞

1

2n + 1

n∑
j=−n

| xj |2 (2.15)

is in fact a Hilbert space with respect to the scalar product (x,y)1. That is, if
y ∈ H1 (x) then y ∈ M2 but also that if y and z ∈ H1 (x) then (y, z)1 exists as a
limit.

Hence we have obtained the following assertion.

Proposition 2.2 Let x be a stationary numerical sequence having autocorrelation
sequence {rk (x)}∞k=−∞ and let J be the map from M1 (x) into sp{ξk, k ∈ Z} ⊂ H (ξ)
defined for arbitrary complex λ, µ and integers k, p by (2.14). Then J can be extended
as an isometric Hilbert space isomorphism from a complex Hilbert space H1 (x) ⊃
M1 (x) to the complex Hilbert space H (ξ), the closed linear span of a wide sense
stationary sequence ξ that has autocorrelation function equal to {rk (x)}∞k=−∞.

The assignment
JSkx = ξk, k an integer (2.16)

is conceptually utilized throughout Wold’s paper [34], but is never explicitly stated
nor is there any comment about how one is to think about the closure of M1 (x).

Let us recall that in H (ξ) there exists a unitary operator U such that

Uξj = ξj+1 (2.17)

(see e.g. [27, p. 14]). Hence the Wold isomorphism J leads to

JSkx = ξk = Ukξ0 = UkJx, (2.18)

which justifies the expression
U = JSJ−1. (2.19)

Thus in the stationary case U and S are unitarily equivalent or similar operators (see
[28, p. 242] and [26, p. 193]).

It is natural to say that two L2 stochastic sequences {ξj} and {ηj} are equivalent
if and only if the random variables are identical: ‖ ξj − ηj ‖L2= 0 for every j. In the
case of numerical sequences, the relationship

‖ Sjx− Sjy ‖1= 0 (2.20)

is valid for every j if it is valid for j = 0.
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2.4 The Spectral Representation of Stationary Numerical Se-
quences

Having established that S is a unitary operator on H1 (x), we can use the spectral
representation for stationary sequences (in any Hilbert space) to write

Skx =
∫ 2π

0
exp(iλk)dZ(λ), (2.21)

where Z(λ) = E(λ)x with E(λ) denoting a spectral family of projection operators on
H1 (x). The interpretation of (2.21) is that the quantity

‖ Skx−
n∑

m=1

exp(iλmk)[Z(λm)− Z(λm−1)] ‖2
1 (2.22)

converges to 0 as the n → ∞ and norm of the partition {0 = λ0, λ1, . . . , λn = 2π}
tends to zero.

The sense of the approximation given in (2.22) (see Brillinger [3, Theorem 3.9.1])
is that the increments [Z(λm) − Z(λm−1)] = [E(λm) − E(λm−1)]x are elements of
H1 (x) and thus are sequences themselves. Hence exp(iλmk)[Z(λm)−Z(λm−1)] is the
increment sequence Z(λm) − Z(λm−1) with every element multiplied by the scalar
exp(iλmk). It is important to observe that the parameter k is no longer associated
with time, as in the stochastic case, but with the number of positions the sequence x
is shifted.

3 The Cyclostationary Case

3.1 Cyclostationary Numerical Sequences

Here we will give the definition of cyclostationary numerical sequences. A key idea in
the definition of numerical cyclostationary sequences (see [6]), is the use of an N -step
mean and an N -step autocorrelation.

Definition 3.1 The N-step mean of a numerical sequence x with starting point m
is the quantity

µ(N)
m (x) := lim

M→∞

1

2M + 1

M∑
j=−M

xjN+m (3.1)

when the limit exists.

It follows from the independence of the origin that if µ(N)
m (x) exists, then µ

(N)
m+kN (x)

also exists for every integer k and

µ(N)
m (x) = µ

(N)
m+kN (x) (3.2)

for all m, n. So if the N -step mean µ(N)
m (x) exists for m = 0, 1, ..., N − 1, it exists for

all m and (3.2) is true for all m.
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Definition 3.2 The N-step autocorrelation of a numerical sequence x is the quantity
obtained from the N-step scalar product between the numerical sequences Smx and
Snx:

R(N)
m,n(x) := lim

M→∞

1

2M + 1

M∑
j=−M

xjN+mxjN+n (3.3)

when the limit exists.

Again it follows from the independence of the origin that if R(N)
m,n(x) exists, then

R
(N)
m+kN,n+kN(x) exists for every integer k and

R(N)
m,n(x) = R

(N)
m+kN,n+kN(x). (3.4)

So if the N -autocorrelation R(N)
m,n(x) exists for m = 0, 1, ..., N − 1, n ∈ Z, it exists for

all m,n and (3.4) is true for all m,n.

Definition 3.3 A sequence x = {xj}∞j=−∞ such that

1. the N-step mean exists for every m (and thus satisfies (3.2) for all m);

2. for m = 0, 1, ..., N−1, n ∈ Z, the autocorrelation kernel exists (and thus satisfies
(3.4) for all m, n;

is defined to be cyclostationary with period N .

For the purpose of notation, we shall say that a cyclostationary sequence with
period N is CS(N) and we note that CS(1) corresponds to stationarity in the sense
of section 2.2 above.

Observe that the N -step mean and autocorrelation are formed by periodic sam-
pling of x. In fact this suggests that one may view a CS numerical sequence as a
sampling of shifts of some sequence x, rather than as x itself.

There is another condition on the autocorrelation that is often found in literature
on cyclostationarity; we now make precise its equivalence to item 2 above.

Proposition 3.1 A necessary and sufficient condition for the existence of R(N)
m,n(x)

for all m,n is the existence of

B
(N)
k,τ (x) := lim

M→∞

1

2M + 1

M∑
j=−M

xj+τxj exp(−i2πkj/N)) (3.5)

for k = 0, 1, ..., N − 1, τ ∈ Z.
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Proof: It is not difficult to show, using the invertibility of discrete Fourier transforms,
that a collection of complex numbers {R(N)

m,n}, m, n ∈ Z satisfy R(N)
m,n = R

(N)
m+N,n+N if

and only if there exist a family of Fourier coefficient sequences
{
B

(N)
k,τ , τ ∈ Z

}N−1

k=0
for

which

R(N)
m,n =

N−1∑
k=0

B
(N)
k,m−n exp(i2πkn/N).

The coefficient sequences are determined by

B
(N)
k,τ =

1

N

N−1∑
n=0

R
(N)
n+τ,n exp(−i2πkn/N).

The necessity of our claim follows from the fact that if the autocorrelation exists
for all m,n, then

B
(N)
k,τ (x) = lim

M→∞

1

2M + 1

M∑
j=−M

xj+τxj exp(−i2πkj/N)

=
1

N

N−1∑
n=0

lim
M ′→∞

1

2M ′ + 1

M ′∑
j′=−M ′

xj′N+n+τxj′N+n exp(−i2πkn/N)

=
1

N

N−1∑
n=0

R
(N)
n+τ,n(x) exp(i2πkn/N) (3.6)

where we use the fact that every j ∈ Z in the first sum has a unique representation
j = j′N + n(j) for 0 ≤ n ≤ N − 1 and

exp[−i2πkj/N ] = exp[−i2πk(j′N + n(j))/N ] = exp[−i2πkn(j)/N ].

The sufficiency may be deduced in the same manner by starting with the existence
of the Bk,τ (x), k = 0, 1, ...N − 1 and showing with the help of

R(N)
m,n(x) =

N−1∑
k=0

B
(N)
k,m−n(x) exp(i2πkn/N) (3.7)

that the averages R(N)
m,n(x) must exist.

Remark 3.1 The quantity B
(N)
k,τ (x) is identically zero for k 6= 0 if and only if R(N)

m,n(x)
depends only on m−n, as is seen by (3.6) and (3.7). This condition defines a stationary
subclass of CS(N). We refer to this subclass as the set of N-stationary numerical
sequences.
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3.2 Examples

Example 3.2 The stationary numerical sequence eα given in Example 2.1 above is
also CS(N) for arbitrary positive N and also totally stationary.

In the following examples we will often use the idea of a strictly periodic sequence.
A sequence f = {fj}∞j=−∞ will be called strictly periodic with period N if fj = fj+N

for all j, and this holds for no smaller value of N .

Example 3.3 A modulated exponential CS sequence. The numerical sequence
x obtained using amplitude modulation of eα in Example 2.1 by a strictly periodic
numerical sequence f and defined as

xj = fj eiαj (3.8)

for any integer j, is CS(N), as is easily seen.

Example 3.4 Amplitude scale modulation. Suppose y is a totally stationary
numerical sequence. If f is strictly periodic with period N , then consider the product
sequence

xj = fj yj (3.9)

for any integer j. Then for any m, n,

1

2M + 1

M∑
j=−M

xjN+mxjN+n =
1

2M + 1

M∑
j=−M

fjN+myjN+mfjN+nyjN+n (3.10)

converges using the notation in (2.9) to

R(N)
m,n(x) = fmfn φm−n(0) = R

(N)
m+N,n+N(x). (3.11)

Taking fj = 1 for all j shows that a totally stationary numerical sequence is CS(N).

Example 3.5 Time scale modulation. Suppose y is a totally stationary sequence
and f : Z → Z is strictly periodic with period N . Then the periodically rearranged
sequence

xj = y(j+fj) (3.12)

is CS(N). Indeed, consider for any m, n

1

2M + 1

M∑
j=−M

xjN+mxjN+n =
1

2M + 1

M∑
j=−M

y(jN+m+fjN+m)y(jN+n+fjN+n
) (3.13)

which converges in the notation of (2.9) to

R(N)
m,n(x) = φm+fm−n−fn(0) = R

(N)
m+N,n+N(x). (3.14)
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Example 3.6 Periodic Mixtures of Jointly Stationary Sequences. This is a
generalization of the amplitude modulation model. It is possible to show that all
cyclostationary numerical sequences can be expressed in a similar form [18].

Suppose {yk, k = 0, 1, . . . , K − 1} is a collection of jointly totally stationary se-
quences and {fk, k = 0, 1, . . . , K − 1} is a collection of strictly periodic sequences all
with period N . Then the sum (a sequence)

xj =
K−1∑
k=0

fk
j yk

j (3.15)

is CS(N). Indeed, consider for any m, n

1

2M + 1

M∑
j=−M

xjN+mxjN+n =
1

2M + 1

M∑
j=−M

K−1∑
k=1

K−1∑
k′=0

fk
jN+m yk

jN+mfk′
jN+n yk′

jN+n (3.16)

which converges to

R(N)
m,n(x) =

K−1∑
k=0

K−1∑
k′=0

fk
mfk′

n φk,k′(m− n) = R
(N)
m+N,n+N(x). (3.17)

3.3 Preliminary properties

In this section we recapitulate some essential properties that the autocorrelation
R(N)

m,n(x) possesses and show the close connection of CS numerical sequences, as in
the case of random sequences [13], to stationary vector sequences.

Lemma 3.7 (m,n) 7→ R(N)
m,n(x) is non-negative definite.

Proof: We need to show
k∑

p=0

k∑
q=0

λpλqR
(N)
p,q (x) ≥ 0

for arbitrary integer k and arbitrary complex numbers {λp}k
p=0.

But using the definition in (3.3) we immediately obtain

k∑
p=0

k∑
q=0

λpλqR
(N)
p,q (x) = lim

n→∞

1

2n + 1

n∑
j=−n

k∑
p=0

k∑
q=0

λpλqxjN+pxjN+q (3.18)

Let T denote the transpose of a vector and let x := (xjN , . . . , xjN+k) and λ =
(λ0, . . . , λk) be row vectors, we have for every j,

k∑
p=0

k∑
q=0

λpλqxjN+pxjN+q =| λxT |2≥ 0, (3.19)

which gives the assertion.
And another important property is given in the following lemma.
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Lemma 3.8 If x = {xj}∞j=−∞ is a CS numerical sequence with period N , then

y = x + λSpx, p is an integer (3.20)

is a CS numerical sequence with period N .

Proof: The claim about the mean is by assumption obvious. We need to first show
that the autocorrelation kernel R

(N)
m,k(y) for the sum exists. To verify this we consider

the finite sum

n∑
j=−n

yjN+myjN+k =
n∑

j=−n

(xjN+m + λxjN+m+p)
(
xjN+k + λxjN+k+p

)

=
n∑

j=−n

xjN+mxjN+k + λ
n∑

j=−n

xjN+mxjN+k+p +

λ
n∑

j=−n

xjN+m+pxjN+k + |λ|2
n∑

j=−n

xjN+m+pxjN+k+p.

Dividing this equality by 2n + 1 and taking the limit as n →∞, we obtain

R
(N)
m,k(y) = R

(N)
m,k(x) + λR

(N)
m,k+p(x) + λR

(N)
m+p,k(x) + |λ|2R(N)

m+p,k+p(x). (3.21)

Hence the required autocorrelation kernel R
(N)
m,k(y) exists for every m, k and

R
(N)
m,k(y) = R

(N)
m+N,k+N(y),

showing that y is CS with period N .
It follows that any finite linear combination of shifts of a CS numerical sequence

x is CS with the same period and therefore it is meaningful to consider the linear
space MN (x) consisting of all such finite linear combinations:

y =
p∑

j=−p

λjSjx, arbitrary p, λj.

On MN (x) we may define a scalar product on two arbitrary elements y1,y2 by

(y1,y2)N =
n∑

j=1

n′∑
j′=1

λ1
jλ

2
j′R

(N)
j,j′ (x). (3.22)

Just as the scalar product (2.3) induces a norm on the elements of M1(x), the
N -step scalar product (3.22) induces a norm on the elements of MN(x) provided we
consider as identical any sequences x,y with ||x− y||N = 0.

13



Proposition 3.9 A numerical sequence x is CS(N) if and only if the numerical
vector sequence

x :=


x(0)

x(1)

...
x(N−1)

 (3.23)

formed in terms of x(k) = {xjN+k}∞j=−∞ k = 0, 1, . . . , N − 1 is jointly stationary in
the sense of definition 2.2.

Proof: If x is CS with period N , then the existence of the limit R(N)
m,n(x) for arbitrary

m, n and the uniqueness of the relationships m = pN + r and n = qN + s shows
that the limits φr,s(p − q) will exist for all p, q ∈ Z and r, s ∈ [0, 1, . . . , N − 1] and

φr,s(p − q) = R(N)
m,n(x). Further, the relationship R(N)

m,n(x) = R
(N)
m+N,n+N(x) makes it

clear that φr,s(p− q) = R
(N)
pN+r,qN+s(x) depends only on the difference p− q.

The converse follows from the same relationships.
In view of the preceeding proposition, a totally stationary numerical sequence in

the sense of definition 2.3 above is precisely a numerical sequence that is cyclosta-
tionary with every period.

The following does not occur in the case of stochastic sequences.

Proposition 3.10 If x is CS(N) then it is CS(1).

Proof: If x is CS(N) and the sum

1

2M + 1

M∑
j=−M

1

N

N−1∑
k=0

xjN+m+kxjN+n+k

converges as M → ∞, then the limit is rm−n(x). But the sum does indeed converge
to

1

N

N−1∑
k=0

R
(N)
m+k,n+k(x) = rm−n(x) (3.24)

for every m, n, hence proving the claim.
Finally, we observe from the invariance of the time origin that

‖ Sjx− Sjy ‖N= 0 (3.25)

is valid for every j if and only if it is valid for j = 0, 1, . . . , N − 1.

3.4 The Wold Isomorphism

We are now in position to extend the isomorphism to the cyclostationary case.
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A stochastic sequence ξ = {ξj}∞j=−∞ with E [| ξj |2] < ∞ is called cyclostationary
(CS), see [13], or periodically correlated with period N (PC) if

µn = E [ξn] = µn+N (3.26)

and if the autocorrelation satisfies

Rm,n = E
[
ξmξn

]
= Rm+N,n+N (3.27)

for every m and n. Since µn is periodic in n, it is equivalent to require the autoco-
variance to satisfy (3.27). If ξ is CS with period N = 1, then ξ is (weakly) stationary,
so for the proper CS-property we require N > 1. It is well known that a CS random
sequence with period N can be obtained by interleaving the components of a station-
ary vector valued random sequence with N components and vice versa (see [13] and
[25]).

The Wold isomorphism for cyclostationary sequences follows in exactly the same
manner as in the stationary case. One first establishes the correspondence on the two
linear manifolds and then takes limits.

Proposition 3.11 Let x be a CS(N) numerical sequence having autocorrelation R(N)
m,n (x)

and let J be the map from MN (x) into sp{ξk, k ∈ Z} ⊂ H (ξ) defined for arbitrary
complex λ, µ and integers k, p by

J
(
λSpx + µSkx

)
= λξp + µξk (3.28)

Then J can be extended as an isometric Hilbert space isomorphism from a complex
Hilbert space HN (x) containing MN to the complex Hilbert space H (ξ), the closed
linear span of a CS stochastic process ξ that has autocorrelation function R(N)

m,n (x).

Proof: Since some HN (x) exists, at the very least via the process of abstract
completion [26, p. 121, 124 - 125], the proposition holds through the continuity
(boundedness) of J on MN (x).

But again the results of Bass [1, loc. cit.] may be applied because the pre-Hilbert
space MN (x) is a subspace of the Marcinkiewicz space M2 of sequences described in
the previous section. To see this, suppose z ∈ MN (x), then (z, z)N =‖ z ‖2

N exists
and is given by limit of the type (3.22). But if the limit exists for z certainly the
limsup exists and so z ∈ M2. The theorem of Bass implies that if y ∈ HN (x) then
y ∈M2 but also that if y and z ∈ HN (x), then (y, z)N exists as a limit.

And now we know there is a continuous invertible linear map

J : HN (x) → H (ξ)

that preserves inner products and the respective topologies are those induced (·, ·)N

and (·, ·)L2
.

The following proposition, whose proof is simple and thus omitted, (see [17] for
the continuous time case and [4] for a review), gives the connection between unitary
operators and cyclostationary sequences.
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Proposition 3.12 A second order stochastic sequence ξ = {ξj}∞j=−∞ is periodically
correlated or cyclostationary with period N if and only if there exists a unitary oper-
ator U on the Hilbert space H (ξ) for which

ξj+N = Uξj (3.29)

for every integer j.

From (3.28) we obtain

JSkx = Uξk−N = UJSk−Nx, (3.30)

which produces
U = JSNJ−1, (3.31)

which means that U and SN are unitarily equivalent.

3.5 Spectral Representations of CS Numerical Sequences

Having established the Hilbert space isomorphism between HN (x) and the Hilbert
space H (ξ) of a CS(N) random sequence, we can use any of the representations for
CS random sequences to produce a corresponding representation for CS numerical
sequences.

Recall however from the discussion of (3.25) that in the case of cyclostationary
numerical sequences of period N , ‖ Πj{x} − Πj{y} ‖N= 0 is valid for every j if and
only if it is valid for j = 0, 1, . . . , N − 1.

We begin with observing that CS random sequences are strongly harmonizable
[13] and therefore CS numerical sequences are also. This means that the spectral
representation (2.21) still applies in the sense that

‖ Skx−
n∑

m=1

exp(iλmk)[Z(λm)− Z(λm−1)] ‖2
N (3.32)

converges to 0 as n →∞ (and norm of the partition {0 = λ0, λ1, . . . , λn = 2π} tends to
zero) except that the increments [Z(λm−Z(λm−1)] (which are sequences themselves)
are no longer orthogonal but have the characteristic correlation structure belonging
to CS (or periodically correlated) sequences [13]. The strong harmonizability implies
that the correlation is given by

R(N)
m,n (x) =

∫ 2π

0

∫ 2π

0
exp(imλ1 − inλ2)rZ (dλ1, dλ2) , (3.33)

where the measure rZ is of bounded variation on [0, 2π] × [0, 2π] which may be ex-
pressed as ∫ 2π

0

∫ 2π

0
| rZ (dλ1, dλ2) |< ∞.
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A harmonizable sequence is CS if and only if the support of rZ is contained in the
union S =

⋃
k Sk of straight lines

Sk = {(λ1, λ2) ∈ [0, 2π]2 | λ2 = λ1 − 2πk/N} for k = −(N − 1), ...(N − 1).

This particular spectral representation retains the decomposition with respect to com-
plex exponentials and the time invariance of the spectral measure; however, the spec-
tral process Z(λ) does not have orthogonal increments. A spectral process having
orthogonal increments may be obtained but the spectral process will depend on time
(see [4, 17]).

4 Concluding Remarks

The isomorphism in [34] was evidently constructed in order to justify the optimal
application on a unique time-series any linear operations that are, e.g., optimal for
the ensemble of a stationary stochastic sequence in the sense of mean square. In this
paper we have made some details of Wold’s construction more precise and introduced
the Wold isomorphism as an isomorphic mapping between cyclostationary numerical
sequences and cyclostationary stochastic sequences in the sense of Hilbert spaces. The
linear space of sequences generated by shifts of the unique sequence is the cornerstone
needed in this.

In the present generalization of Wold’s idea it holds that

totally stationary ⊂ N -stationary ⊂ CS(N) ⊂ CS(1), (4.34)

where the leftmost inclusion is an observation following the definition 2.3, the second
inclusion from the right is Remark 3.1 and the rightmost inclusion is proposition 3.10.
The rightmost inclusion in (4.34) is reverse to the similar relationship valid in the
terminology of cyclostationary and stationary time-series introduced via the fraction-
of-time distributions. This is evidenced by the discussion and the Venn diagrams
on [8, pp.24-25]. The inclusions in (4.34) are a by-product of the fact that different
inner products are used to determine whether a sequence is CS(N) or CS(1). In the
notation of [8, pp.24-25] it only makes sense to talk of stationary time-series as a
class inside the class of cyclostationary time-series. This is matched in (4.34) by the
inclusion of the N -stationary numerical sequences in CS(N), in view of the remarks
in (3.1) and in view of the definition of stationary times series in [8, p.23].

Wold noted that if {Xn} is a stationary second order ergodic sequence, then
almost all of the sample sequences will be isomorphic to {Xn} in the sense described
above. Similarly, suppose {Xn} is a stochastic sequence defined on a probability
space (Ω,F , µ) by Xn(ω) = f(Snω) where S is invertible and measurable but only
N -stationary with respect to µ, in the sense that µ(S−NE) = µ(E) for E ∈ F . Then
if the system (Ω,F , µ, SN) is ergodic and f(Snω) ∈ L2(Ω,F , µ), the averages

1

2M + 1

M∑
j=−M

XjN+mXjN+n =
1

2M + 1

M∑
j=−M

f(SjN+mω)f(SjN+nω)
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converge for (µ)-almost every ω to

EXiN+mX iN+n =
∫
Ω

f(Snω)f(Smω)dµ.

If Nn,m is the µ-null set on which convergence to the indicated limit fails, then it
is clear that the set Ω − ∪m,nNn,m has full measure and on this set all the required
limits exist. Each ω in this set produces a numerical sequence for which the averages
of (3.3) converge, and each such sequence is isomophic in the sense of Wold to the
stochastic sequence.

For other issues related to ergodic theory of CS sequences, see Gray and Kieffer
[14], Boyles and Gardner [2], and Gray [15].
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