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Abstract: Two novel adaptive multiple-beamformers for reception of coherent 

signals with known directions-of-arrival (DOAs) in the presence of uncorrelated 

interferences are proposed. The first approach is a two-step solution as follows: estimate 

the amplitudes of all the coherent signals using a subspace method and then construct the 

linearly constrained minimum variance beamformer from the generalized array manifold. 

The second approach applies multiple linear constraints determined from the DOAs of 

the coherent signals to develop a minimum variance beamformer, which can achieve 

efficient signal utilization. To cope with performance degradation due to sample 

covariance errors, DOA estimation errors and other array imperfections, the 

eigenstructure of the covariance matrix is exploited to improve the performance of the 

proposed approaches by constraining the weight vector in the signal subspace. Simulation 

results are presented which compare the performance of the proposed algorithms with 

that of the minimum mean square error approach. 
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I. Introduction 

Coherent sources are common in many practical problems. A well-known 

example is multipath propagation. Signals traveling along different paths can be 

considered as coherent with the original source signal if their relative delays are much 

smaller than the reciprocal of the signal bandwidth. Conventional adaptive beamforming 

approaches, which assume uncorrelated signal sources, suffer from signal cancellation in 

the presence of coherent signals. To eliminate signal cancellation, possible solutions [1]-

[4] include the use of averaging over either spatial or frequency domain to destroy the 

coherent components prior to beamforming. After de-correlating the coherent signals, the 

beamformer can then put nulls in their directions-of-arrival (DOAs). This approach is 

further refined in [5] by the use of high-order null constraints in the DOAs associated 

with the coherent signals. In [6,7], signal cancellation in the presence of coherent 

interferences is attributed to the non-Toeplitz structure of the estimated covariance matrix 

and techniques of redundancy averaging and enhanced redundancy averaging are 

proposed, which put nulls in the DOAs of  the coherent interferences.  

However, in some scenarios, such as multipath propagation, steering the nulls in 

the directions of the coherent signals is not desirable. This is because to fully exploit the 

information of the coherent signals a beamformer should constructively combine these 

signals instead of canceling all but one of them. A cumulant-based blind beamformer has 

been developed in [8] in the presence of coherent multipath propagation. In this 

approach, multipath components are utilized instead of de-correlated, but this is only 

feasible in situations where the desired signal and the interference are non-Gaussian and 

Gaussian, respectively. A two-stage procedure for the reception of coherent signals and 

the suppression of strong interference has also been proposed in [9]. The first step uses an 

interference-blocking (IB) transformation to remove the strong interference, while 

retaining the desired signals and noise. Optimum beamforming is then performed based 

on the IB transformation data to maximize the output signal-to-interference-plus-noise 

ratio (SINR). However, this method is only suitable for a very small signal-to-

interference ratio. By constructing a steering matrix with each column corresponding to 

the steering vector of a selective beam and a constraint vector with each entry equal to the 

gain of a beam, [10] proposes an adaptive array beamformer with multiple-beam 
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constraints, although the details of obtaining the constraint vector are not discussed. A 

beamforming scheme, consisting of three steps, is developed for the reception of multiple 

coherent signals in [11].  Here, estimates of the coherent source directions are used to 

restore the composite steering vector (CSV). A transformation is then carried out to 

remove the coherent signals while retaining the interference and noise. Finally, optimum 

beamforming is performed based on the CSV and the transformed data to maximize the 

output SINR. However, this scheme needs the DOA information of all signals, including 

that of the interferences.  

Coherent signal beamforming can be achieved by using an antenna array with a 

multiple-beam pattern selected such that the beams are directed to all the coherent signals 

and their gains are proportional to the corresponding coherent signal amplitudes. In this 

paper, we present two adaptive beamforming approaches which use multiple beams for 

coherent signal reception as well as interference suppression. We assume that the DOA 

information of the coherent signals is available or has already been estimated [12]-[15] 

but their amplitudes are not known a priori.  

The rest of the paper is organized as follows. The data model is presented in 

Section II. Two new beamforming approaches, the first a linearly constrained minimum 

variance (LCMV) beamformer and the second a multiple constrained minimum variance 

(MCMV) beamformer, are developed in Section III. Section III also reviews the optimum 

minimum mean square error (MMSE) combiner and statistically optimal interference-

plus-noise rejecter. The performance of the proposed LCMV and MCMV beamformers is 

analyzed in Section IV. To overcome the problem arising from sample covariance errors 

due to finite samples, DOA estimation errors and other array imperfections, the use of an 

eigenspace-based beamformer that constrains the weight vector in the signal subspace is 

also discussed in Section IV. In Section V, simulation results are presented to illustrate 

the effectiveness of the proposed methods. Finally, conclusions are drawn in Section VI. 

 

II. Data Model 

 Assume that plane waves emitted by a group of P coherent sources and J 

uncorrelated interferences impinge on a M-element antenna array from directions θ , 

i=1,2,…,P and θ , i=1,2,…,J, respectively, where the numbers of the coherent signals 

id

iu
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and interference sources and the bearings of the coherent sources are known a priori. All 

the sources are assumed to be narrowband with the same center frequency and in the far 

field of the array. The received array signal vector can be expressed as 

1 1

( ) ( ) ( ) ( ) ( ) ( )d i i i i

P J

d u

i i

t s t s t tα θ θ
= =

= +∑ ∑x a a + n ,                               (1) 

where  represents the desired signal waveform, the quantity( )ds t iα represents the 

complex amplitude of the ith coherent signal and 1iα < , 1,...,i P= . The 1×M vector 

)(θa  is called the steering vector of the array, and s t represents the ith interference 

with power 

( )i

22 { ( ) }i iE s tσ = , i=1, 2, …, J.  The  is a spatially white noise vector with 

power . It is assumed that s , { }, and n  are uncorrelated with each other. 

For a more general data model, interested readers can refer to [7]. The signal-to-noise 

ratio (SNR) for the ith coherent signal is defined as 

)

(

(tn

2
nσ ( )d t ( )is t )t

2

2

{ ( )d t }iα
i =

n

E s
σ

⋅
SNR , and 

interference-to-noise ratio (INR) for the ith interference is defined as 
2

2
i

n
iINR σ

σ
= , 

respectively. Denote the composite vector associated with the coherent sources by  

                                                        
1

( )i i

P

d

i

α θ
=

= = ⋅∑a a A α% ,                                              (2) 

where 1 2[ ( ), ( ), , ( )]Pd d dθ θ θ=A a a aL  and 1 2[ , , , ]P

Tα α α=α L . Note that a~  is also referred 

to as the generalized array manifold (GAM) [8] of the desired signal. If we further denote 

the interference vector by 
1

( )
J

i

t s ( )i ( )iut θ
=

= ∑i a , then (1) can be written as 

 ( ) ( ) ( ) ( )dt s t t t= + +i%x a  .                                                    (3) n

The covariance matrix of x  is given by R , where (.)( )t })()({ H
xx ttE xx= H denotes 

conjugate transposition. Given x  and , the aim is to devise optimum beamforming 

weight vectors. 

)(t A
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III. Development of New Beamformers 

The MMSE combiner is first reviewed. If the waveform of the desired signal is 

known, that is when a training signal is available, the optimum weight vector w  for 

processing  is computed by minimizing the following mean square error function:  )(tx

{ }2
( ) ( )d

HE s t t− ⋅w x .                                     (4) 

The MMSE solution is given by [2] 
1

MMSE xx xs
−=w R r

R w

,                                                          (5) 

where r x ,  (.)*{ ( ) ( )}dxs E t s t= ⋅ * is the conjugate operation.  

 Another well known beamformer is the statistically optimal interference-plus-

noise rejecter [2], whose weight vector is chosen to pass the desired signal to the 

beamformer output while maximally rejecting the contribution of the interferences and 

noise. The corresponding weight vector is determined as 

opt arg min H
in=

w
w w  ,     subject to 1H =w a% ,                            (6) 

where   R   is the interference-plus-noise covariance or signal-free covariance. The 

solution to (6) is 

in

1

opt /( )H
in in

−
⋅= ⋅w R a a R% % %1−

⋅ a

a

.                                            (7) 

Note that  r    and 
2

xs dσ= % 2 H
xx in dσ= + aa% %R R  in (5). Using the matrix inversion lemma, 

we have 

1 1
2

2 1
,2 1( )

1
H Hd

in d in in inH
d in

σσ
σ

1− − −−
−+ = −

+ ⋅ ⋅
R aa R R aa R

a R a
% % % %

% %  

and with the use of (7), (5) can be expressed as 
4 1

MMSE 2 11

H
d in

optH
d in

σ
σ

−

−=
+ ⋅ ⋅

a R aw
a R a
% %

% %
w

%

.                                           (8) 

Since  is a scalar, (8) indicates that the MMSE combiner is equivalent to the 

statistically optimal interference-plus-noise rejecter. 

1H
in

−a R a%

 In the MMSE beamformer and the statistically optimal interference-plus-noise 

rejecter, the multiple correlated waveforms corresponding to the coherent signals are 

optimally combined to maximize the output SINR. However, the use of a training signal 

 5



implies a waste of bandwidth and a training signal may not be available in many practical 

situations, and the interference-plus-noise covariance cannot obtained directly from the 

received data. In the following sections, two blind beamforming approaches, which 

require no training signals, are proposed. 

 

A. LCMV Beamformer based on GAM estimation (LCMV-GAM) 

If the GAM of the desired signal is known, that is the DOAs and complex 

amplitudes of the coherent signals are available, a standard beamforming strategy is to 

use the LCMV criterion, which chooses the weight vector as  

2

LCMV-GAM arg min { ( )) }HE t= ⋅
w

w w x  ,     subject to .                (9) 1H =a w%

The LCMV-GAM beamformer is given by 
1

1LCMV-GAM
xx

H
xx

−

−

⋅

⋅
=

⋅
R aw

a R a
%

% %  .                                               (10) 

Since we do not have complete knowledge of a~ , the unknown amplitude parameters, α , 

are first estimated prior to computing (10). Orthogonality between the noise and signal-

plus-interference subspaces is exploited to determine α  using a two-step procedure:  

Step 1. Identify the signal-plus-interference subspace from the eigen-decomposition of 

the covariance matrix : xxR

{ }
1

( ) ( ) H H
M

H
xx s s s n n ni i i

i

E t t λ
=

= = = +∑R x x e e E Λ E E Λ E H ,                       (11) 

where 2
1 2 1 2J J M nλ λ λ λ λ+ +≥ ≥ ≥ ≥ = = =L L σ  are the eigenvalues, and ei, i=1, 2, …, 

M, are the corresponding orthonormal eigenvectors. It is assumed that the vectors { a~ , 

1( )uθa , 2( )uθa ( )Ju,…, θa

xx

a

} are all distinct which means that they span a subspace of 

dimension J+1. We further assume that both the SNR and INR are sufficiently large to 

regard the signal and interference sources as the main contributors to the largest J+1 

eigenvalues of R . The signal-plus-interference subspace is then identified as that one 

spanned by the columns of the matrix Es=[e1, e2,…,eJ+1]. Similarly, the columns of the 

matrix En=[eJ+2,eJ+3,…,eM] spans a subspace, identified as noise alone subspace. Any of 

the vectors { ~ , 1( )uθa 2( )u, θa ( )Ju,…, θa } should have a minimal projection onto the 

noise alone subspace which accounts for Step 2 as follows, 
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Step 2. Since αAa ⋅=~  is in the signal subspace, α  can be estimated from the noise 

subspace as 

       
2ˆ arg min ( ) arg minH H

n= ⋅ =
α α

E A α Qαα  ,       subject to α 12 =α ,                   

(12) 

where Q A , which is equivalent to HH
n n= E E A









=
αα

Qααα
α H

H
minargˆ .                                                      (13) 

Note that the constraint of 12 =α

ˆ

 is to prevent the trivial solution of zero. A necessary 

condition for the uniqueness of α  in (13) is strict convexity of the quadratic form α  

or equivalently positive definiteness of Q  which is of dimensions P . Hence, we 

should have 

HQα

P×

( ) min[ ( ), ( )]nrank rank rank P= =Q A E ,                                (14) 

i.e.                                                min[ , 1]P M J P− − = ,                                              (15) 

or                                                      1M J P> + +                                                         (16) 

which imposes a constraint on the array length. 

 When Q is positive definite, it is well known that α  is the eigenvector 

corresponding to the minimum eigenvalue of Q . Substituting α  into (10) yields the 

LCMV-GAM solution.        

ˆ

ˆ

 

B. MCMV Beamformer 

  The motivation for the second approach is the use of the DOA information of the 

coherent signals to construct multiple constraints for the minimum variance beamformer, 

such that the coherent signals are preserved and signal cancellation is prevented. The 

MCMV beamformer is determined from the following constrained optimization problem 

[5]: 

        

2

MCMV arg min { ( ) }HE t= ⋅
w

w w x  ,     subject to ,                 (17) H =A w f

where f is the  unknown response vector which is to be determined. It is clear that f 

is dependent on α . According to the theory of adaptive arrays, the optimal weight vector 

for (17) is given by 

1P ×
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1 1 1
MCMV ( H

xx xx
− − −=w R Α A R A f) .                                              (18) 

 In fact, the choice of the constrained vector f has a significant effect on the system 

performance. In [5], is chosen as [ , which corresponds to preserving the signal 

in only one desired direction and forcing the receiver response in the direction of the 

remaining (P-1) coherent signals to zero. Although the additional constraints prevent 

signal cancellation due to coherent signals, this method does not make use of the energy 

in the coherent signal components and, therefore, is not optimal.  

f T]0,...,0,1

There have been many successful examples of cross-fertilisation between the 

areas of array processing and channel identification. For example, Honig et al [16] apply 

an idea from array processing to channel estimation via optimizing the receiver’s output 

energy while constraining the response of the user of interest to be constant. An extension 

of this work to the multipath case is investigated in [17], where a max/min approach for 

optimizing the constraints is devised. We use the approach in [17] to obtain the 

constrained vector in (17) as follows. 

Using (18), the array output power can be expressed as 

 12 1{ ( ) } ( )H H H
xxoutP E t − −= ⋅ =w x f A R A f .                                           (19) 

After preserving the desired signals and suppressing the interference using the multiple 

constraints, an optimal constrained vector is obtained by maximizing (19) subject to 

12 =f , i.e., 

 ,      subject to ˆ arg  max outP=
f

f 12 =f .                                       (20) 

where the constraint 12 =f  accounts for the unique solution on unit circle. Equation (20) 

is equivalent to  

ff
  fARAf      f

f H
xx

HH 1)(maxargˆ
1 −−

=                    (21) 

The solution to (21) is the eigenvector corresponding to the maximum eigenvalue of 

. It is apparent that the maximum eigenvalue of  is equivalent 

to the minimum eigenvalue of . Thus, (21) is equivalent to  

1 1( H
xx

− −A R A) )1 1( H
xx

− −A R A

)( 1ARA −
xx

H
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ff
  fARAf      f

f H
xx

HH )(minargˆ
1−

= .                        (22) 

We see that (22) is more computationally efficient than (21) because no matrix inversion 

is required. The solution to (22) is the eigenvector corresponding to the minimum 

eigenvalue of . Substituting f  into (18) yields the MCMV solution.        )( 1ARA −
xx

H ˆ

 

 

IV. Performance Analysis 

It is shown in [17] that for strong SNR and INR, the solution of (22) converges to  

     ( )   ˆ arg min
HH H

n n

H=
f

f A E E A ff
f f

.                                   (23) 

Comparing (23) with (13) yields 

ˆ ˆ≈f α .          (24) 

On the other hand, let the maximum eigenvalue of (  be 1)1 −− ARA xx
H

maxγ . Then the 

solution of (21) satisfies 

ffARA ˆˆ)( max
11 ⋅γ=

−−
xx

H .                                                         (25) 

Substituting (25) into  (18), we obtain 
1

MCMV max
ˆxxγ −= ⋅w R ⋅A f .                                                         (26) 

Using (24) and comparing (26) with (10) gives 

MCMV LCMV-GAMµ= ⋅w w  ,                                                       (27) 

where )~~( 1
max aRa ⋅

−⋅⋅γ=µ xx
H . As µ  is a scalar, (27) indicates that the MCMV and 

LCMV-GAM beamformers are equivalent when both the SNR and INR are sufficiently 

large. However, when the noise is strong enough, α  can be shown to be an unbiased 

estimate of α in the LCMV-GAM method, while the constrained vector f  is a biased 

estimate of α [17]. The bias, in terms of the vector norm, is proportional to the noise 

power. Consequently, it is expected that the LCMV-GAM method will outperform the 

MCMV beamformer at lower SNR conditions. 

ˆ

ˆ

Furthermore, since the LCMV and MMSE beamformers for single uncorrelated 

source are equivalent if the DOA is known exactly, it can be deduced that the LCMV-
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GAM and MMSE beamformers for coherent sources will have identical performance 

when the GAM is perfectly known. This also implies that the former will degrade in 

comparison with the latter when the GAM is subject to estimation errors. 

  

It is well known that calibration errors can seriously degrade performance in 

adaptive arrays. Similar degradation occurs when inverting the estimated covariance 

matrix, and the performance loss is particularly large when the input SNR is high [18-20]. 

To overcome these problems, [18] proposes an eigenspace-based beamformer that 

constrains the weight vector in the signal subspace, while [19] suggests a projection 

method that projects the steering vector onto the signal subspace. While the methods 

described in [18] and [19] are different, the weight vectors generated by them are 

equivalent and result in the same output SINR [20].   

Apart from the impact of additive noise, imperfect estimation of the covariance 

matrix owing to the use of a finite number of data samples, DOA estimation errors and 

other array imperfections also significantly degrade the performance of the LCMV-GAM 

and MCMV beamformers. Here we utilize the eigenstructure of the correlation matrix to 

enhance their performance. The improved weight vectors are found by projecting the 

LCMV-GAM and MCMV weight vectors onto a subspace constructed from the 

eigenstructure of the correlation matrix [19]. We refer the improved methods to as          

E-LCMV-GAM and E-MCMV beamformers, respectively.  

 

A. Eigenspace-based LCMV-GAM Beamformer 

The LCMV-GAM beamformer weight vector can be written as 
1

1 1

1 1LCMV-GAM
1 [ ]H H

s n

xx
s s s n n nH H

xx xx

−
− −

− −

⋅
⋅

⋅ ⋅
= = ⋅ + =

⋅ ⋅
R aw E Λ E E Λ E a w w

a R a a R a
%

%
% % % %

+ ,    (28) 

where 1

1

1 H
s s ss H

xx

−

−
= ⋅

⋅
⋅

⋅
w E Λ E

a R a
%

% %
a  and 1

1

1 H
n n nn H

xx

−

−
= ⋅

⋅
⋅

⋅
w E Λ E

a R a
%

% %
a . Ideally, 

0~ =⋅ aE H
n

LCMV-GAM  

, which means that w  is in the signal subspace or  w  and LCMV-GAM 0n =

s=w w . Nevertheless, due to the effects of finite samples, pointing errors and  

other array imperfections, the computed w  does not remain in the signal 

subspace, and consequently, w  is not equal to zero, which causes degradation of the 

LCMV-GAM

n
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output SINR. In [19], the eigenspace-based beamformer  discards  and only uses nw sw  

as the weight vector.  As a result, the weight vector of the eigenspace-based LCMV-

GAM beamformer is given by 

( )A

1 (− A R

s

1

1E LCMV GAM
1 H

H H
s s s

s s s

−

−− − =w Λ E a
a E Λ E a

%
% %

E .                                           (29) 

Analysis has shown [19] that the eigenspace-based beamformer has better convergence 

properties and is less sensitive to pointing errors than the conventional LCMV 

bemformer, and this is also true for the E-LCMV-GAM beamformer. 

 

B. Eigenspace-based MCMV Beamformer 

Similar to the E-LCMV-GAM beamformer, the weight vector of the eigenspace-

based MCMV beamformer can be written as 

E-MCMV MCMV
H

s s=w E E w
                                                                       (30) 

 

         = . fARAAREE 1)( 11 −
⋅

−−
xx

H
xxss

H

The output power is 

 E-MCMV

1 1 1 1

2

1 1

{ ( ) }

( ) H

H
out

H H H H
xx xx s s xx xx

P E t
− − − −− −

= ⋅

=

w x

f A R A A R E E R A A R f
.                (31) 

where f is determined from  

 ,      subject to ˆ arg  max outP=
f

f 12 =f .                                            (32) 

The solution is                    

  
ff

  fQf      
ff

  fQf      
ff H

s
H

H
s

H
minargmaxargˆ

1

==
−

f                                 (33) 

where 
1 11( ) HH H H

s xx xx s s xx xx
− −−=Q A R A A R E E R A A                (34) 1 )−

That is, f  is the eigenvector corresponding to the minimum eigenvalue of Q . 

Substituting f  into (30) yields the E-MCMV weight vector. 

ˆ

ˆ
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 Finally, the additional computational complexity of the enhanced LCMV-GAM 

and MCMV beamformers is considered. Performing the eigen-decomposition to obtain 

the signal subspace generally requires a computational load of O M , so the E-LCMV-

GAM and E-MCMV beamformers need more O M  computations than the LCMV-

GAM and MCMV beamformers.  

3( )

)3(

 

V. Numerical Examples 

 Computer simulations are presented to evaluate and contrast the beamforming 

performance of the proposed approaches for coherent signal reception. We consider a 

uniformly linear array with 16 sensors, which corresponds to M=16, and the inter-element 

spacing is equal to the half of the wavelength of the signals. There are four signals 

impinging on the array from angles of °− 40 , °− 20

( )d

,  and , off the array 

broadside. The first three signals are assumed to be the desired coherent signals with 

different gains and the fourth signal is an uncorrelated interference with INR of 60dB. 

The desired signal is assumed to be of the form s t

°10

(2 / 3j te

°30

)dπ φ+= , and the interference 

signal is s t (2 / 7 )( ) ij t
i e π φ+= , where dφ  and iφ  denote the initial phase of the desired signal 

and interference respectively. Since Rxx is not available in practical applications, it should 

be estimated from a finite sample of the received signals. Unless stated otherwise, the 

estimate of Rxx is based on 1000 data snapshots and the DOAs of the coherent signals are 

assumed to be free of errors. 

Example 1: Figure 1 shows the beam patterns of the MMSE, LCMV-GAM, 

MCMV, E-LCMV-GAM and E-MCMV beamformers when 1 0.5α = , 2 0.63α =  

3 0.8α =  and the coherent signals have SNRs of  -12dB, -10dB, and -8dB, respectively. 

We see that all of these methods produce three main beams, with gains proportional to 

the amplitude of each coherent signal, for simultaneous reception of the desired signals 

and a null for successful suppression of the interference.  Hence, they are capable in 

operating in the coherent signal environment. The performance of the E-LCMV-GAM, 

E-MCMV and MMSE algorithms is nearly identical, indicating the optimality of the 

eigenspace-based beamforming approaches. 
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Figure 1. Beam pattern at low SNR 

 

1 0.5α = 2 0.71α =

 

Example 2: The above test is repeated for a high SNR when , , 

3 0.89α =  and the coherent signals have SNRs of 20, 23, and 25dB, respectively. The 

results are shown in Figure 2. It can be seen that the performance of the LCMV-GAM 

and MCMV beamformers suffers from significant degradation due to the more severe 

signal cancellation resulting from the use of the sample covariance matrix. On the other 

hand, the E-LCMV-GAM and E-MCMV algorithms successfully preserve the desired 

signals and the performance is almost identical with that of the MMSE approach.  
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Figure 2. Beam pattern at high SNR 

 

Example 3: The above test is repeated to examine the sensitivity of the output 

SINR to variations of phase angles of ( ,1 2 3, )α α α

1 2 3, )

 while maintaining same magnitudes as 

Example 2. The phase angles of ( ,α α α  are chosen as ( ,0, )φ φ− , where φ  is changed 

from  to 180 . The results are shown in Figure 3. We see that all these methods 

are sensitive to variations of phase angles, and the performance of the E-LCMV-GAM 

and E-MCMV algorithms is almost identical with that of the MMSE approach. 

180− ° °
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Figure 3. Output SINR to variations of phase angles of 1 2 3( , , )α α α  

 

Example 4: The fourth experiment evaluates the output SINR of the five 

beamformers as a function of the input SNR. For simplicity, the SNRs of the three 

coherent signals are chosen to be identical. The results are plotted in Figure 4 and we 

perform 50 Monte Carlo trials for each SNR point. When the SNR is moderate, that is 

from –20dB to –5dB, the performance of the four proposed approaches is close to that of 

the MMSE beamformer. On the other hand, when the SNR is higher, the performance of 

the LCMV-GAM and MCMV methods degrades due to the signal cancellation resulted 

from using finite samples, while the performance of the E-LCMV-GAM and E-MCMV 

approaches is again close to the optimum MMSE algorithm. Furthermore, we see that the 

LCMV-GAM beamformer is slightly superior to the MCMV method at very low SNR 

conditions, which is consistent with our analysis in Section IV. It is also noted that at 

very low SNRs, the performance of the E-LCMV-GAM and E-MCMV methods is not 

optimum, because of the incorrect subspace decomposition in such conditions.  
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Figure 4: Output SINR versus SNR 

 

Example 5: This test investigates the convergence behavior of the five 

beamformers. Figure 5 shows the average output SINR versus the number of snapshots, 

where each data point is based on 50 Monte Carlo trials. The SNR and the complex 

amplitudes of the coherent signals are the same as those in Example 2. We observe that 

the E-LCMV-GAM and E-MCMV methods converge much faster than the LCMV-GAM 

and MCMV algorithms, and they achieve maximum SINR with a small sample size.  
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Figure 5: Convergence behavior of the beamformers 

 

Example 6: This experiment investigates the performance of the five methods in 

the presence of DOA estimation errors and the results are plotted in Figure 6. The SNR 

and the complex amplitudes of the coherent signals are identical to those in Example 1. 

We see that the LCMV-GAM and MCMV approaches suffer significant degradation in 

performance due to the severe signal cancellation, whereas the projection-based E-

LCMV-GAM and E-MCMV methods are more robust to steering errors and achieve 

higher SINRs than those of the LCMV-GAM and MCMV beamformers, which approach 

MMSE performance. 
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Figure 6: Output SINR versus DOA error 

 
Example 7: This experiment examines the sensitivity of the performance due to 

variations of array length of the five methods and the results are plotted in Figure 7. The 

SNR and the complex amplitudes of the coherent signals are identical to those in 

Example 1. We see that the performance of all the methods generally improves as the 

array length increases. 
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Figure 7: Output SINR versus Array length 

 
Example 8: The last experiment investigates how the occurrence of a single-

coherent jammer would affect the adapted array pattern and the results are plotted in 

Figure 8. The SNR, INR and the complex amplitudes of the coherent signals are identical 

to those in Example 1, except the interference at 30  is a single-coherent jammer. We see 

that correlation between desired signal and unwanted interferences can make the adaptive 

beamformers not only fail to form nulls in the direction of the coherent interferences, but 

also tend to cancel the desired signal in the output. For coping with the performance 

degradation due to the presence of coherent jammers, our approaches can be used in 

conjunction with spatial smoothing technique [1] or Toepliz approximation approach [10, 

6, 7] to alleviate the coherent jammer effect. 

°
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Figure 8. Beam pattern for signal-coherent jammer 

 

VI. Conclusions 

Two novel beamforming approaches for coherent signal reception in the presence 

of uncorrelated interferences, assuming that the direction-of-arrival (DOA) information 

of the coherent signals is known, have been developed. The first approach performs 

linearly constrained minimum variance (LCMV) beamforming together with estimation 

of the complex amplitudes of the coherent signals. While the second approach is based on 

a multiple constrained minimum variance (MCMV) criterion, where we make use of the 

DOAs of the coherent signals to construct the constraints such that all coherent signals 

are preserved. Basically, the idea of these two approaches is to optimally combine all 

coherent signals to yield the maximum output signal-to-interference-plus-noise ratio. The 

performance of the LCMV and MCMV beamformers is analyzed and their improved 

versions via utilization of signal subspace projection are also suggested. 

 

Numerical examples illustrate that the performance of the proposed beamformers 

is quite reliable, in particular, the two improved versions performs almost identically with 
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the minimum mean square error (MMSE) beamformer, except at very low signal-to-noise 

ratio conditions. Although the MMSE approach is optimum for all cases, it requires 

training signals, while our approaches are blind. Nevertheless, our algorithms need the 

DOA information of all coherent signals as well as the number of signal and interference 

sources. Furthermore, the proposed methods in their current forms apply to non-coherent 

jammers only. Development of beamformers for coherent signals in more general data 

models will be one of our future research directions. 
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