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Abstract

In this paper a novel stochastic image model in the transform domain is presented
and its performance in image denoising application is experimentally validated. The
proposed model exploits local subband image statistics and is based on geometri-
cal priors. Contrarily to models based on local correlations, or mixture models, the
proposed model performs a partition of the image into non-overlapping regions with
distinctive statistics. A close form analytical solution of the image denoising prob-
lem for an additive white Gaussian noise (AWGN) is derived and its performance
bounds are analyzed. Despite being very simple, the proposed stochastic image
model provides a number of advantages in comparison to the existing approaches:
(a) simplicity of stochastic image modeling; (b) completeness of the model, taking
into account multiresolution, spatially adaptive image behavior, geometrical priors
and providing an accurate fit to the global image statistics; (c) very low complexity
of the algorithm; (d) tractability of the model and of the obtained results due to
the closed-form solution and to the existence of analytical performance bounds; (e)
extensibility to different transform domains, such as orthogonal, biorthogonal and
overcomplete data representations.

1 Further information: (Send correspondence to S. Voloshynovskiy): E-mail:
svolos@cui.unige.ch, http://sip.unige.ch.
∗Parts of this paper appeared as S. Voloshynovskiy, O. Koval and T. Pun,
“Wavelet-based image denoising using non-stationary stochastic geometrical image
priors”, In SPIE Photonics West, Electronic Imaging 2003, Image and Video
Communications and Processing V, Santa Clara, CA, USA, January 20-24 2003,
and S. Voloshynovskiy, O. Koval, F. Deguillaume and T. Pun, “Data hiding
capacity-security analysis for real images based on stochastic non-stationary
geometrical models”, In SPIE Photonics West, Electronic Imaging 2003, Security
and Watermarking of Multimedia Contents V, Santa Clara, CA, USA, January 20-
24 2003.

Preprint submitted to Elsevier Science 20 April 2005



Debruitage d’images base sur le modèle de traitement
des contours

Résumé

Dans cet article, un nouveau modèle stochastique pour les images dans le
domaine transformée est présenté et ses performances pour les applications
de débruitage sont expérimentallement validées. Le modèle proposé exploite
les statistiques locales de l’image décomposée en sous-bandes et il est basé
sur des primitives géométriques. Contrairement aux modèles basés sur des
corrélationes locales ou aux modèles mixtes, le modèle proposé effectue une
partition de l’image en des régions disjointes avec des statistiques distinctes.
Une proche solution analytique au problème de débruitage d’image pour un
Bruit Blanc Gaussien Additif (BBGA) est obtenue et ses performance limites
sont analysées. Malgré sa grande simplicité, le modèle stochastique proposé
fournit de nombreux avantages en comparaison des approches existantes : (a)
simplicité de la modélisation stochastique des images ; (b) complétude du
modèle, offrant la multireésolution, un comportement spatialement adaptif,
des primitives géométriques, un adjustement précis aux statistiques globales de
l’image ; (c) très petite complexité de 1’algorithme; (d) tractabilité du modèle
et des résultats obtenus dus à une solution analytique et à l’existence de limites
de performance analytiques; (e) extensibilité à différents domaines transformée
tels que les représentations orthogonales, biorthogonales et redondantes.

Keywords: denoising, stochastic modeling, ML, MAP, variance estimation,
wavelets, overcomplete expansions.

1 INTRODUCTION

Due to various factors during acquisition and transmission, an image might
be degraded by noise leading to a significant reduction of its quality. The
artifacts arising due to imperfectness of these processes create obstacles to
the perception of visual information by an observer. Thus, for image quality
improvement, efficient denoising technique should be applied to compensate
such annoying effects.

Development of such image denoising methods remains a valid challenge at
the crossing of functional analysis and statistics. Depending on the underlying
assumptions about the properties of the image two main research lines have
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been developed targeting the solution to this problem. According to the first
one [1], the image is mostly considered as a smooth (peacewise smooth) func-
tion both in the coordinate and different transform domains. Following this
line, significant amount of deterministic denoising algorithms has been devel-
oped using various filtering techniques and variational calculus during last fifty
years. For further details concerning development and performance analysis of
the deterministic denoising techniques the interested reader is pointed to [2–8].

Within the stochastic framework, it is assumed that both image and noise
are realizations of some random variables distributed according to some prior
probability density functions (pdf). In this case, given contaminated (noisy)
version of the original image, it is necessary to find its accurate estimate that
is usually done using Bayesian approach.

Assuming independent identically distributed (i.i.d.) Gaussian statistics of the
noise, it is possible to classify the developed Bayesian denoising approaches
based on the underlying stochastic image model and on the type of the trans-
formation used.

According to the first classification criterion, one can first mention the de-
noising algorithms that are based on the global i.i.d. assumption about image
data, which are modeled using a single marginal distribution. Introduced by
Nikolova in 1996 [9], this approach became very popular. The main issue to be
solved according to this concept is to find the best estimator for data with i.i.d.
Generalized Gaussian distribution (GGd) [10,11] or Student law [12]. Follow-
ing this direction we are coming to various types of thresholding and shrinking
techniques that are optimal from the information-theoretic approach point of
view as was shown by Moulin and Liu [13]. It is important to underline at the
moment [8] that one of the best deterministic denoising techniques known as
the Osher-Rudin-Fatemi algorithm [6] that is based on the (u+v) or “cartoon
+ texture” image model is similar to one of such shrinking techniques [14].

Another approach proposes to divide an image into two regions of edges and
flat areas and to apply different models to describe these regions (i.i.d. GGd
and Gaussian distribution correspondingly) [15]. The main drawback of these
models is their inability to capture local statistics that play a crucial role in
denoising applications. Moreover, by applying global permutation of image
data we do not change their marginal properties under the i.i.d. assumption
and therefore denoising based on global statistical models does not reflect the
local image structure.

Another possible solution is inspired by lossy wavelet data compression where
the so-called estimation-quantization (EQ) model was developed [16] and
demonstrated to have superior performance in denoising application [17]. The
main idea of the EQ model consists in representing the image data in wavelet
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subbands as an i.i.d. Gaussian field with zero mean and slowly varying vari-
ance. Under such an assumption the best estimator will coincide with a classi-
cal scalar form of the Wiener filter. This strategy has given significantly better
denoising performance (approximately 2 dB) than the previous class of mod-
els [17]. Here and in the following we use peak-signal-to-noise ratio (PSNR) for
quantitative analysis of denoising algorithm performance. An attempt to com-
bine the EQ strategy with the GGd prior image model was reported in [11].
However, the performance of this algorithm was worse than for the locally
Gaussian prior case.

The second important classification criterion is the domain where the denois-
ing procedure is applied. The simplest solution is to process the data in the
coordinate domain directly. If the data are assumed to be i.i.d. stationary
Gaussian, the denoising will coincide with a classical Wiener filter [18]. This
solution is the simplest one but it is not the best according to the output image
quality. Probably, the most popular choice towards the end of 90’s in denois-
ing applications was to use an orthogonal critically sampled wavelet transform
(Figure 1,a) [10–12]. The wavelet transform captures most of the information
about the image in the low frequency part where noise presence is not so
significant, and represents the data in a pyramidal and a sparse way. These
give new possibilities for efficient processing (for instance, only few coefficients
in the high frequency wavelet subbands significantly contribute to the image
quality). The efficiency of the algorithms is higher in this case in comparison
with the coordinate domain but the Gibbs phenomenon is observed in the
reconstructed image near image borders (edges) [19].

A solution that overcomes this Gibbs artifacts problem of the crytically sam-
pled wavelet transform by eliminating its down- and upsampling stages, the so-
called non-decimated or stationary wavelet transform, was firstly introduced
by Coifman and Donoho [20] (Figure 1,b). Moreover, using biorthogonal fil-
ters [21], boundary problems could be also solved. A denoising technique that
exploits an improved version of the EQ model and this type of transforma-
tion demonstrated a very good performance [21]. The recent work of Sterla et
al. [22] presented a more powerful transform with a larger amount of spatial
orientations (steerable pyramid [23]) that could bring additional benefit for
the performance of the algorithm. But the main advantage is coming from
the correct assumption made about the image statistics or about the stochas-
tic model of the data that are supposed to be correlated in the transform
domain. The data in this transform domain is caracterized by a Gaussian
mixture model [22], where a random vector a can be expressed as the follow-

ing product: a
d
= b

√
c of a zero-mean Gaussian vector b and an independent

positive scalar
√

c and equality is with respect to the correspondent pdfs. In
this case, a processing applied to denoise the image operates with covariance
matrices rather than exploits correspondent local variances. Experimental re-
sults presented in [22] show that this method provides the best quality of the
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Fig. 1. (a) Structure of 1-level critically sampled and (b) non-decimated wavelet
transform; the filters for the analysis stage are denoted by H(z) and for the syn-
thesis stage by G(z); index “0” corresponds to the low pass filters and index“1”
corresponds to the high pass filters.

denoised image among existing Bayesian techniques in terms of PSNR.

Other authors have developed representations with similar properties. The
details can be found in [24–27]. Examples of bidimensional multiresolution
transforms in image denoising applications can be found in [28,29].

Another possibility of ringing artifacts reduction was recently proposed in [30],
where a new geometrical image representation was introduced and applied to
the denoising problem in the translation invariant set-up. This representation,
known as bandlets, is based on the orthonormal wavelet basis function adap-
tation to the directions in which the image grey levels have regular variations.

Based on the above discussion, the main goal of this paper can be formulated
as follows: to develop a stochastic image model that will allow to increase the
Bayesian denoising algorithm performance in terms of the PSNR assuming
i.i.d. statistics of the data and without using more complex transforms.

The structure of the paper is the following. In Section 2 a stochastic approach
for the removal of the AWGN is reviewed and analyzed analytically. As a
result, some problems when a maximum likelihood (ML) strategy is used for
data variance estimation are pointed out. In Section 3, a new stochastic image
model based on geometrical prior information about an image structure is
then introduced, as well as the solution to these problems. In Section 4, three
versions of the denoising algorithm based on geometrical priors are proposed
to investigate the model effectiveness in the coordinate, orthogonal critically
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sampled wavelet and biorthogonal non-decimated wavelet transform domains.
Finally in Section 5, a new stochastic image model, the so-called edge process
model, is introduced and investigated in the wavelet and in the overcomplete
transform domains.

Notations. We use capital letters to denote scalar random variables X, bold
capital letters X to denote vector random variables, regular letters x and bold
regular letters x to designate the realizations of scalar and vector random
variables, respectively. We use X ∼ fX(x) or simply X ∼ f(x) to indicate that
a continuous random variable X is distributed according to fX(x). The mean
value of scalar and vector random variables are denoted x̄ and x̄, respectively.
The covariance matrix of X and variance of X are denoted as CX and σ2

X . We
use IN to designate the identity operator of N×N dimensionality. Calligraphic
characters R are used to indicate data set cardinalities. Also, x is used to
denote a two-dimensional sequence representing the luminance of the original
image. We use in our notations the so-called lexicographical ordering x =
{x[1], x[2], ..., x[N ]}, where N = M1 × M2 is the size of the image. The ith

element of x is designated as x[i] where i = M1 · n1 + n2, 1 ≤ i ≤ N and
x ∈ RN .

2 MAXIMUM A POSTERIORI PROBABILITY IMAGE
DENOISING

2.1 Problem statement

In the scope of this paper we assume that the original image X is corrupted
by an additive noise Z:

Y = X + Z, (1)

where Y is the degraded noisy data and Z ∼ N (0,CZ) is an i.i.d. AWGN
with zero-mean and known covariance matrix CZ = σ2

ZIN .

Therefore, the main task of this paper consists in the accurate recovery of X
from its noisy version Y.

2.2 Maximum a Posteriori Probability estimator for the Gaussian model

It is known that the most accurate estimate of an original data based on its
degraded version can be obtained taking into account available proper prior
information. Therefore, a maximum a posteriori probability (MAP) estimate
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was selected to perform denoising:

x̂ = arg max
x∈RN

pY|X(y|x)pX(x), (2)

where x̂ denotes the estimate of the original image, pY|X(y|x) is the likelihood
function for the AWGN in our case, pX(x) is the prior distribution of the
original image.

Assuming that both data and noise are multivariate Gaussian with respective
means x̄ and 0 and respective covariance matrices CX and CZ , i.e. X ∼
N (x̄,CX) and Z ∼ N (0,CZ) the solution to the problem (2) becomes:

x̂ = CZ(CZ + CX)−1x̄ + CX(CZ + CX)−1y. (3)

The MAP estimator produces some estimation error x̃ = x̂−x that will also be
Gaussian X̃ ∼ N (0,CX̃), since the MAP estimator is linear. The covariance
matrix of the estimation error is defined as:

CX̂ = E
[
(X̂−X)(X̂−X)T

]
= CX(CX + CZ)−1CZ , (4)

and the variance of the MAP estimator is:

σ2
X̂

=
1

N
tr[CX̃ ] (5)

that is one of possible criteria for evaluating estimator performance.

2.3 MAP estimator performance analysis

If the original signal is uncorrelated but non-stationary CX = diag[σ2
X [1], σ2

X [2],
· · · , σ2

X [N ]] and the noise is the AWGN, CZ = σ2
ZIN , the MAP estimator of

x is reduced to:

x̂ = x̄ + CX(CX + σ2
ZIN)−1(y − x̄), (6)

or simply to:

x̂[i] = x̄[i] +
σ2

X [i]

σ2
X [i] + σ2

Z

(y[i]− x̄[i]), (7)

1 ≤ i ≤ N . In this case the variance of the MAP estimator is found as:

σ2
X̂

=
1

N

N∑

i=1

σ2
X [i]σ2

Z

σ2
X [i] + σ2

Z

. (8)
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If the signal is additionally white Gaussian, CX = σ2
XIN , and the noise is the

AWGN, CX = σ2
ZIN , the MAP estimator of x is simply one-to-one mapping:

x̂ = x̄ + σ2
XIN(σ2

XIN + σ2
ZIN)−1(y − x̄) (9)

or simply:

x̂[i] = x̄[i] +
σ2

X

σ2
X + σ2

Z

(y[i]− x̄[i]), (10)

1 ≤ i ≤ N . In this case the variance of the MAP estimator is found as:

σ2
X̂

=
σ2

Xσ2
Z

σ2
X + σ2

Z

. (11)

Therefore, the higher is the variance of the image, the lower is the accuracy of
the estimation. It is clear that for stationary data the estimation performance
is fixed. To analyze the non-stationary Gaussian data case, the local variance
estimate should be obtained. Assuming local stationarity, for one dimensional
signal this can be performed using a maximum likelihood (ML) strategy:

σ2
X [i] =

1

|Ω|
∑

k∈Ω(i)

(x [k]− x̄ [i])2, (12)

where we use a square window Ω(i) centered at x[i] with |Ω| to be the number
of coefficients in Ω(i) and x̄ [i] is the local mean in Ω(i):

x̄[i] =
1

|Ω|
∑

k=Ω(i)

x[k]. (13)

3 A NEW STOCHASTIC IMAGE MODEL BASED ON GEO-
METRICAL PRIOR INFORMATION

3.1 Coordinate domain setup

The following example should help link the results of Section 2 with the fore-
going issues of stochastic image modeling. It is well known that real images
have a non-stationary nature. One can assume that an image can be repre-
sented as a union of a number of statistically homogeneous regions of different
intensity levels (see Figure 2,a). We can then model the data inside each region
as a stationary Gaussian with some variance [31] (for instance, σ2

X= 100) (see
Figure 2,b and Figure 2,c). In this case the application of the classical ML
estimators based on the sampling space located in the boundary regions (Fig-
ure 2,d), to estimate the local variance will lead to completely incorrect local

8



variance estimates. Assume that in the sampling window there are pixels from
the two-component i.i.d. stationary Gaussian mixture of mean values x̄1, x̄2

and variances σ2
1, σ2

2, respectively, then the joint probability density function
(pdf) is:

pX(x) = αN (x̄1, σ
2
1) + (1− α)N (x̄2, σ

2
2), (14)

where α is the first component fraction in the mixture. Then, for the mixture
distribution we have the corresponding mean and variance:

x̄ = E [X] = αx̄1 + (1− α) x̄2, (15)

σ2 = E [X − x̄]2 = ασ2
1 + (1− α) σ2

2 + α (x̄− x̄1)
2 + (1− α) (x̄− x̄2)

2 . (16)

(a) (b)

1

2

(c) (d)

Fig. 2. Variance estimation using standard ML strategy for the edge region: (a)
“Lena” test image and its fragment (marked by the square); (b) two-region mod-
eling of Lena’s fragment; (c) modeling example for 1D edge profile; (d) individual
components and resulting pdf (with estimated variances).

If, for instance, α = 0.5, then the over-estimation ratio (estimated-to-correct
variance ratio), for the case of above selected variances, is more than 20 times.
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As the solution to this variance over-estimation problem we propose to model
an image using the following partition of its support as a set of non-overlapping
regions (Figure 3):

∪iRi = S;Ri ∩Rj = ∅; i = 1, 2, ..., v. (17)

3

2

Fig. 3. Image partition as a set of regions with i.i.d. homogeneous statistics.

Let xi denotes the subset of image pixels supported by the region Ri. In
our model we assume that each region is fully covered by the probabilistic
model θ ∈ {Θ1, Θ2, ..., Θv} and no two neighboring regions are described by
the same model. In particular, we assume that the pixels in the image sub-
region xi are distributed according to the joint pdf pX(xi|θi). The class of
such models is very broad and depends on the used domain (coordinate or
transform). In the following, we only concentrate on Gaussian models, mean-
ing pX(xi|θi) = N (x̄i, σ

2
i I). This model is different from the classical Gaussian

mixture model used for example as the background assumption for the EQ
model, since it supposes the homogeneity of the data within the same region,
while the Gaussian mixture model allows the presence of samples with differ-
ent statistics as well as from the Osher-Rudin-Fatemi model [6] in such a way
that no smoothness assumption within Rj, j ∈ 1, 2, ..., v, is required.

According to our model, to perform a correct ML-based local variance estima-
tion one needs to take into account only those coefficients in the transform do-
main that belong to the subset Ω∗ of the local sampling space Ω that contains
the elements from the corresponding subregion Ri, to which the estimated
sample belongs (Figure 4). In this case the classical ML estimate should be
replaced by a restricted support ML local variance estimate:

σ̂2
X [i] =

1

|Ω∗|
∑

k∈Ω(i)

x [k]2 mk, (18)

where mk is a subset indicator function, mk =





1 if mk ∈ Ω∗,

0 otherwise
; |Ω∗| is the

cardinality of the subset Ω∗, and the dimensionality of Ω (dimensionality of a
sampling window centered at x[i]) is selected to be large enough to guarantee
reliable estimation.
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Such a partition is targeting region mean separation and satisfaction of the
assumed Gaussian statistics within the defined regions. For this purpose we
exploited segmentation software [32] developed by Cornell University with
empirically adjusted parameters (Figure 5,b,c).

(a)

pixel

*

estimated

W

W

(b)

Fig. 4. (a) Fragment of test image Lena; (b) local estimation window with indication
of the subset (black pixels) and of the estimated pixel (gray) for the restricted
support ML local variance estimation.

(a) (b)

80 90 100 110 120 130 140 150 160 170 180
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

(c)

Fig. 5. Segmentation results: (a) test image Lena; (b) segmented image Lena using
Cornell University segmentation software; (c) statistics of image data in one of the
selected regions: real histogram (dashed line) and Gaussian pdf (solid line).

3.2 Transform domain setup

If one transforms the data to the wavelet or overcomplete domain, the variance
over-estimation compensation problem still exists. Since in this case the data
mean value in the transform domain is equal to zero, the current set-up can
be modeled using (Figure 4,a). To justify the introduced stochastic model,
we propose to study the following two-texture example (Figure 6,a). In this
case there are two components with zero mean and different variances (100
and 25) in the sampling space. According to (16) it is easy to verify that
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the calculated variance estimate will be also incorrect. Therefore, the region
partition technique (Figures 3-5) and the adaptive ML procedure (18) are
needed to eliminate variance over-estimation.

(a) (b)

(c)

Fig. 6. Variance estimation using classical ML strategy for the edge image region:
(a) original image; (d) one-dimensional original image fragment; (e) correspondent
individual components and resulting pdfs with estimated variances.

Therefore, the difference with the model definition in the coordinate do-
main is that a particular sample from a region Ri covered by a particular
model θi ∈ {Θ1, Θ2, ..., Θv} that is assumed to be a zero-mean Gaussian pdf
pX(xj|θi) = N (0, σ2

i [j]). Thus, non-stationary data behavior in regions is as-
sumed according to the parallel source splitting paradigm [33] where glob-
ally non-Gaussian data might be considered as locally Gaussian with non-
stationary variance.
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4 ALGORITHM IMPLEMENTATION AND BENCHMARKING

According to the benchmarking results summarized in [34], one can see that
denoising in the coordinate domain can not be as efficient as in the transform
domain. However, to estimate the benefit we can expect from the proposed
underlying stochastic model it could be really indicative. In this case, assum-
ing locally stationary Gaussian image behavior, i.e. X[k] ∼ N (x̄[k], σ2

X [k]),
denoising will consist in the application of the Wiener filtering based on the
ML local variance estimate, using the region partition map (Figure 5) as a
side information to form the correct sampling space (Figure 4,b). The Cornell
University segmentation software was used to generate this map. The PSNR
performance improvement for the case of Lena image and the developed model
is 0.11 dB contrary to the wiener2 procedure from Matlab with known vari-
ance of the noise (correspondingly, 29.41 dB and 29.30 dB).

To prove the efficiency of the proposed model in practice we developed two
versions of the AWGN removal algorithm for the critically sampled and non-
decimated wavelet transform domains. The structure of the algorithm is shown
in Figure 7 and includes three main blocks: direct transform block (DT),
Wiener filter block (WF) that receives the side information (geometrical prior
(GP) information) about regions Ri, and inverse transform block (IT). The
critically sampled wavelet transform is implemented using the orthogonal
Beylkin filter pair [35] (5 decomposition levels were selected as in [17]). The
noise reduction method is the same as the one used for the coordinate do-
main. The side information for all decomposition levels except the fifth one
is obtained from the reconstructed lowpass subband based on the previously
denoised data from the previous decomposition level. It is the same for all
highpass subbands from all levels. The data on the fifth level are denoised
using the classical ML local variance estimate. The local variance estimation
is performed in a local window of size from 5×5 to 11×11 depending on the
decomposition level.

GP

DT WF IT
X             Y X̂

),0(~ 2
Z

Z sN

Fig. 7. Structure of the proposed denoising algorithm in the transform domain.

A practical problem that was encountered stemmed from the computational
complexity of the segmentation software to obtain the partition. This caused
a significant increase in execution time for transform domain denoising, where
the segmentation needs to be performed repeatedly in the various subbands. To
overcome this problem, we propose to use a quantization-based segmentation,
which is performed using a simple uniform quantization of the image dynamic
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range (Figure 8). It is important to note that, contrarily to the coordinate
domain set-up, in the transform domain case validity of local Gaussianity that
corresponds to the proposed model, is justified by the parallel source splitting
and, therefore, the role of segmentation consists only in region separation.

For optimization, we performed a number of tests to establish the optimal
number of quantization bins. It was determined that from the point of view
of the denoised image quality 4 bins was the best choice. Using this simpler
segmentation, we obtained denoising results similar to those attained using the
Cornell University segmentation software (performance loss in terms of the
denoised image quality was at most 0.06 dB), while reducing segmentation
time by a factor of 2.5. Therefore, all following experiments were obtained
using this quantization-based segmentation.

Fig. 8. Quantization based segmentation results for the 4-bin uniform quantizer
case.

The algorithm has a similar structure in the non-decimated biorthogonal trans-
form domain. According to the scheme presented in Figure 1.b, the transform
was accomplished using 9/7 CDF [36] biorthogonal filter pair and 4 levels
of decomposition. In addition, we took into account the fact that coefficient
variances in high frequency subbands Σ2

X are distributed according to a mar-
ginal distribution that can be very closely approximated by the Rayleigh law
(Figure 9):

pΣ2
X
(σ2

X) =
σ2

X

s2
exp

(
−(σ2

X)2

2s2

)
, (19)

where s is a scale parameter. This knowledge of the prior variance distribution
allows us to apply the MAP estimate rather than the ML estimate for the local
variance:

σ2
MAP =

s2(|M | − 1)

2


−1 +

√√√√√1 +
4

s2(|M | − 1)

|M |∑

i=1

(x [i])2


 , (20)

where |M | is a cardinality of the sampling window. The scale parameter s
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is estimated in each subband using the ML estimation in a 3×3 sampling
window:

s2 =
1

2N

N∑

i=1

σ2
3×3 [i] . (21)

2
Xs

)( 2

2 X
X

p s
S

Fig. 9. Histogram of the variance of the high frequency subband (first decomposi-
tion level, diagonal orientation) of test image Lena in the overcomplete transform
domain.

The proper sampling space is again formed based on the denoised lowpass
subband geometrical image prior information, using the proposed quantization
based segmentation (except for the subbands from the fourth decomposition
level). A complete sampling space dimensionality |M |=15×15 was found to
be optimal from the output image PSNR point of view. To verify the perfor-
mance of the developed algorithms, we applied them to a set of twelve 8 bit
512×512 test images for 100, 225, 400, 625 noise variances of the AWGN. Due
to the fact that only two standard test images Lena and Barbara are used for
experimental validation of the most of existing Bayesian denoising algorithms,
for the fair comparison purpose, only results for these images are presented
in this paper and compared with the best Bayesian denoising techniques. Due
to the fact that none of the candidates is simultaneously the best for the case
of two test images, the benchmarking was performed using the average PSNR
for these images for a particular noise variance value (Table 1). The average
PSNR results prove that for the critically sampled transform the performance
of the proposed algorithm is the best among known Bayesian techniques, but
for the case of the overcomplete domain the method proposed in [22] provides
better results. The first explanation for this comes from the low robustness
to noise of the segmentation, which leads to a bias during the partitioning
process. The second reason is connected to the more sophisticated transform
type used in the best algorithm, which decorrelates the data in more than 3
spatial directions (steerable pyramid transform [23]), and to the assumption
that data in the linear transform domain are still correlated. A more complex
form of the Wiener filter (4) should be used, but this would not be attractive
for many practical applications. Moreover, without this correlation assump-
tion this algorithm [22] provides poorer quality (in terms of the PSNR) of the
denoised image than the technique proposed in this paper.
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Table 1
Comparison of average PSNR [dB] for several denoising methods and both test
images.

Denoising method Noise standard deviation Transform type

10 15 20 25 Wavelets

Noisy image 28.13 24.63 22.10 20.17 Db8

Liu & Moulin [10] 33.61 31.30 − − Db8

Mihcak et al. [17] 33.52 31.32 29.81 28.64 Db8

Chang et al. [11] − 30.51 29.07 28.01 Symmlet 8

Romberg et al. [37] 32.89 30.58 29.09 28.01 Db8

Xiao et al. [38] (HMM) 33.49 31.30 29.80 28.68 Db8

Xiao et al. [38] (AHMF ) 33.58 31.41 29.92 28.80 Db8

Fan & Xia [39] 33.55 31.35 29.90 28.75 Db8

Proposed method 33.68 31.51 29.92 28.84 Beylkin

Overcomplete

Chang et al. [11] − 31.82 30.31 29.12 Symmlet 8

Li & Orchard [21] 34.12 32.04 30.55 29.40 CDF 10/18

Fan & Xia [39] 34.30 32.20 30.70 29.55 Symmlet 8

Portilla et al. [22] 34.38 32.39 31.01 29.95 Steerable

Proposed method 34.41 32.37 30.98 29.86 CDF 9/7

In order to complete experimental validation of the developed algorithms,
denoising results obtained using these techniques versus those one presented
in [17] and [22] are given in Figures 10 and 11 for visual quality comparison.

5 DENOISING BASED ON EDGE PROCESS MODEL

Based on the experimental results of Section 4, one can conclude that to
enhance the denoising performance it is necessary to take into account local
data relationships in the stochastic image model. Since this could lead to an
increase in computational complexity of the algorithm, the natural question
arises: whether it is possible to enhance the algorithm performance without
significantly increasing its complexity?

The residual correlation of the data in the high frequency subbands exists
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 10. Experimental results: (a) and (e) fragments of original test images; (b) and
(f) the same fragments corrupted by zero-mean AWGN with σ2

Z = 400; (c) and (g)
DWT domain denoising results; (d) and (h) DOT domain denoising results.

(a) (b) (c) (d)

Fig. 11. Denoising results of test image fragments (Figure 10,a,e) corrupted by
zero-mean AWGN with σ2

Z = 400 (from Figure 10,b,f): (a) and (b) denoised by
Michak et al. [17]; (c) and (d) denoised by Portilla et al. [22].

because no linear transform is able to completely decorrelate the edges of real
images. This phenomenon is illustrated in Figure 10 where a simple example
of step edge (Figure 12, a) is transformed using non-decimated wavelet trans-
formation (Figure 12,b). Therefore, if one finds a way to completely “remove”
the edges from the subband data, this will allow an increase in performance
by providing additional decorrelation (Figure 12,c).
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Fig. 12. Edge parameter estimation and edge subtraction from the high frequency
subband data: (a) original data representing a test step edge in the coordinate
domain; (b) non-decimated transform of the edge data; (c) subtracted edge data.

As a practical example, let us consider the fragment of Lena test image (Fig-
ure 2,a) in the overcomplete transform domain shown as a 3-D plot in Figure
13,a with the correspondent histogram presented in Figure 13,b. Application
of the estimation and subtraction of the edge information detected using the
proposed quantization based segmentation appled directly to the high fre-
quency subband, from the original data leads to the following three main
results (Figure 13,b-d):

1) the variances within the subbands are significantly reduced;

2) signal becomes more decorrelated;

3) marginal highly non-Gaussian distribution are transformed into a distribu-
tion very close to a pure Gaussian one.
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Fig. 13. Edge subtraction from the high frequency subband data: (a) original data
with the variance σ2=1.81; (b) correspondent histogram; (c) subtracted edge data
with the variance σ2=0.31; (d) correspondent histogram.

5.1 EP model definition for real images

Our goal is to introduce the edge process model (EP) and to compare it with
the EQ model. The EQ model belongs to the class of intraband stochastic
image models and assumes that the wavelet coefficients are Gaussian (in the
original paper of Lopresto et al. the Generalized Gaussian [16]) distributed,
with zero mean and variances that depend on the coefficient location within
each subband. It is also assumed that the variance is slowly varying.

We assume that each subband of the multiresolution critically sampled trans-
form has its own support Sl, l = 1, ..., 3W , where W is the number of dyadic
decomposition levels such that Si ∩ Sj = ∅, i 6= j and ∪lSl = S. For non-
decimated wavelet transform without downsampling used in our modeling,
each subband has the same support as above but the dimensionality of each
Sl is the same as the original image. According to the partition approach ap-
plied to the EQ model, we assume that only one region Rl is given within the
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subband Sl and all coefficients in this subband belong to the same region Rl:

Rl = {xl : Xl[i] ∼ N (0, σ2
Xl

[i])}, (22)

i.e. all coefficients are considered to be independently distributed with zero-
mean Gaussian distribution and different local variances σ2

Xl
[i]. Equivalently,

this means that only one stochastic model out of θl ∈ {Φ1, Φ2, ..., ΦL} is applied
to the whole support Sl and pXl

(xl | θl) follows an i.i.d. Gaussian pdf. In the
following, we will only consider the image model for one subband. Contrarily
to the EQ model, the proposed edge process model assumes two distinctive sets
of coefficients in wavelet domain for each subband, i.e. those belonging to the
flat regions and those belonging to the edge and texture regions. Moreover,
it is assumed that a transition corresponding to an edge or to a fragment
of texture consists of several distinct mean values that propagate along the
transition (Figure 12). In the following we will refer to the transition simply
as the edge. These mean values could be considered as the reconstruction
levels of a scalar uniform threshold quantizer (UTQ) designed for the given
subband Sl that is characterized by the global Generalized Gaussian (GGD)
pdf Xl ∼ fXl

(xl) and fXl
(xl) = GGD(µl, γl, λl) with mean µl = 0, shape

parameter γl and scale λl:

x̄l
j =

∫ dj

dj−1 xlfXl
(xl)dxl

∫ dj

dj−1 fXl
(xl)dxl

, (23)

where dj − 1 ≤ x̄l
j ≤ dj and {dj} are decision levels of the UTQ. It is assumed

that the UTQ has decision levels uniformly-spaced and the reconstruction
levels are selected to minimize a mean square error (MSE). The dead-zone of
UTQ [−T ; T ] is chosen to be equal to 2∆, where ∆ is a quantization step-size
between {dj}.

The variation of the coefficients with the same mean is supposed to be low
along the edge. According to the above introduced amplitude-based partition
approach, the edge process model is defined as:

R1 = {x : X[i] ∼ N (0, σ2
X [i])}, (24)

R2 = {x : Xj[i] ∼ N (x̄j[i], σ
2
Xj

[i])}, (25)

where R1∪R2 = S and S represents a particular subband. The equation (25)
assumes the proper separation of the regions with the distinctive statistics
according to the case B (Figure 14). If the width of the bin ∆ is chosen to
be relatively small in comparison with the flatness of the pdf, one can use the
uniform approximation of the region R2 statistics (case C in Figure 14) with
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Fig. 14. Synthetic 1D example of non stationary mean data and amplitude-based
classification.

mean x̄j[i] and interval (−∆/2, +∆/2):

R2 = {x : Xj[i] ∼ U(x̄j[i],−∆/2, +∆/2)}. (26)

However, similarly to one-dimensional case we are not looking for the best
possible quantized version approximation of the data but rather one aims
at receiving the proper region separation. Therefore, the high-rate mode of
quantization is out of interest in our formulation.

The region R1 represents all flat regions within a subband assumed to be
zero-mean Gaussian random variables with the local variance σ2

X [i]. The re-
gion R2 corresponds to the texture and edge regions. Each distinctive geo-
metrical structure corresponding to the edge or texture transition within R2

is decomposed into a set of local mean constellations. Moreover, a particular
mean value x̄j[i], j = 1, ..., J propagates along the edge creating the so-called
edge process. Therefore, the coefficients on the edge are considered to have
one of the possible mean values from the set {x̄j[i]}, contrarily to the EQ
model which does not differentiate flat and edge regions and assumes zero-
mean for all coefficients. Moreover, we can also assume that the variation of
the coefficients with respect to the mean values (and this is especially true
for the overcomplete transform) is very small. Therefore, the EP model as-
sumes that the image consists of flat regions that are considered to be i.i.d.
stationary Gaussian with almost “deterministic” edge occlusions which have a
clearly defined geometrical structure depending on the mutual orientation of
the edge and the subband basis function. Moreover, normally transitions along
the edge have longer stationary length than the transitions within the texture
(that explains the existence of higher correlations along the edges); this pro-
vides higher redundancy of the support for more accurate model parameter
estimation. Due to this fact, the stationarity condition is more strict for the
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edges than for the textures. Finally, all this leads to the conclusion that the
real variance of the subbands is very low and is mostly determined by the flat
regions and by the accuracy of edge shape approximation, contrarily to the
EQ model or even more to the spike model [40] where the huge spikes of image
coefficients with large variance can occur due to the edge that is supposed to
model the wavelet coefficients’ sparsity. No relationship or special geometrical
spatial structure is assumed among the spikes in spike model contrary to the
EP model where the “spikes” belonging to the same edge are treated jointly
along the direction of edge propagation.
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Fig. 15. Graphical interpretation of the edge process model: (a) edge representation
in the highpass subband; (b) correspondence to the model subband partition map.

5.2 EP model verification on real images

To verify the EP model efficiency we incorporated it into the proposed non-
decimated biorthogonal wavelet transform denoising algorithm (Figure 7).
Since the EQ model is used in the denoising method of Mihcak et al. [17],
we have chosen this method for the sake of comparison.

Both the EQ and EP models belong to the Gaussian family of distributions
with only difference in the estimation of model parameters. In this case, the
resulting estimate will be in the form of Wiener filter and the corresponding
variance of the estimator can be found as:

σ2
MAP =

1

N
tr

[
E[(X− X̂)(X− X̂)T ]

]
=

1

N

N∑

i=1

σ2
X [i]σ2

Z

σ2
X [i] + σ2

Z

, (27)

where σ2
X [i] is the local image variance of the EQ or EP models. Obviously,

the lower image variance, the lower variance of the estimator.

Moreover, to avoid any subjective implementation issues (extraction of edges)
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of a particular model parameter estimation we have used an empirical upper
bound [41] as a criterion for the comparison. The empirical upper bound as-
sumes that the stochastic model parameter estimation is performed based on
the clean original image. In the case of the EQ model it refers to the estima-
tion of the local image variances for each subband. We have investigated two
modifications of the EQ model, either using a fixed window for all coefficients,
or using a bootstrap version of the EQ denoiser described by Mihcak et al.
[17]. In the case of the EP model, we performed three sets of tests aiming at
investigating transform influence on the performance of denoising and at the
establishing the power of prior knowledge of model parameters. In all cases,
the parameters of the model (positions of the edge coefficients, local means
magnitudes and local variances of flat regions) were estimated from the orig-
inal image high frequency subbands using the proposed quantisation-based
separation technique. Experimental results are presented in Table 2 for two
images Lena and Barbara and compared to those obtained for the EQ model.

The denoised test images in both DWT and DOT domains for the situation
when the AWGN variance is equal to 400 and side information about positions
and means of the edge coefficients is available while the local variances are
estimated from the noisy data are presented in Figure 16.

In case of the EP model, we assume three possible situations of different model
priors available at the estimator (denoiser), i.e. when only positions of the EP
coefficients are known and the mean values and the variances are estimated
from noisy images directly; when both positions and the means values are
known and the variances are estimated; and when both positions and the
means and the variances are available. The image denoising was performed in
two transform domains, i.e. DWT (Db8) and DOT (9/7). In case of the DWT
domain, the EP model was applied to the first decomposition levels while
the Wiener filer was applied to the rest ones. In case of the DOT, the EP
model was applied to all decomposition levels. The results of the EP model
performance in the DWT domain indicate that the EP model outperforms
the EQ model in terms of empirical upper bound for all types of prior side
information. The increase of amount of side information at the denoiser in-
creases the EP model performance advantage from about 1 dB up to about
2 dB over the EQ model. The same results are obtained for the DOT where
the performance gap is increased up to 1.5-6.0 dB. This means that not only
model selection is important, but also that the transform domain could have a
significant impact on the denoising problem. The obtained results also justify
the performance of the EP model parameter estimation and power of prior
knowledge in different domains. In particular, the knowledge of the EP means
plays an important role for the critically sampled DWT domain where the
amount of data is reduced in comparison with the DOT domain. Therefore,
one can observe practically the same denoiser performance in the DOT for the
situation when only positions are available and when both the positions and
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the means computed based on the mean MSE centroid estimate from the clean
subbands are available. The ML-estimation of means demonstrates that the
means estimated from the noisy subbands and those estimated from the clean
subband pdf practically coincide. This indicates that it suffices to estimate the
means from the noisy image without loss of the performance. The situation
is different for the critically sampled DWT where the reduction of the sam-
pling space reduces the accuracy of mean estimate and thus the availability of
the clean mean constellations enhances the denoiser performance. Finally, the
additional prior information about local variances increases the performance
gap between the EQ and EP models even more drastically. In conclusion, the
usage of the EP model as opposed to the EQ model is justified according to
this reference application.

(a) (b) (c) (d)

Fig. 16. Denoising results of the fragments of Lena and Barbara test images cor-
rupted by zero-mean AWGN with σ2

Z = 400 when side information information
about edge coefficient positions and means is available: (a) and (b) DWT domain
set-up; (c) and (d) DOT domain set-up.

Based on the presented benchmarking results it is possible to conclude that the
denoising performance enhancement over the algorithm described in Section
4 (the last line in Table 1) is more than 1 dB on average for all tested noise
variances.

Despite very promising theoretical results, one should admit that reliable esti-
mation of the edge information (especially, the positions of transition sample)
is an open and challenging problem in denoising application and will be con-
sidered in our future research.

6 Conclusions and future perspectives

We have presented in this paper a new stochastic image model based on geo-
metrical image prior information about the local image structure in the crit-
ically sampled and non-decimated wavelet transform domains. Data in high
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Table 2
Comparison of empirical bounds for the EP and EQ models in a denoising applica-
tion, based on resulting PSNR [dB].

Image model Noise standard deviation Wavelet type

10 15 20 25

L E N A

Noisy image 28.13 24.63 22.10 20.17

EQ (fixed window) 34.44 32.21 30.50 29.18 Db8

EQ ( [17], bootstrap) 34.58 32.59 31.17 30.06 Db8

EP (positions) 35.46 33.42 31.91 30.73 Db8

EP (positions and
means)

35.93 33.93 32.36 31.21 Db8

EP (positions, means,
variances)

36.24 34.37 32.88 31.77 Db8

EP (positions) 37.92 36.34 35.08 33.97 9/7, overcomplete

EP (positions and
means)

37.92 36.36 35.07 34.03 9/7, overcomplete

EP (positions, means,
variances)

38.37 37.03 36.06 35.16 9/7, overcomplete

B A R B A R A

Noisy image 28.14 24.63 22.11 20.18

EQ (fixed window) 32.97 30.45 28.73 27.38 Db8

EQ ( [17], bootstrap) 32.84 30.46 28.86 27.65 Db8

EP (positions) 33.74 31.80 30.36 29.31 Db8

EP (positions and
means)

34.22 32.32 30.97 29.80 Db8

EP (positions, means,
variances)

34.42 32.61 31.34 30.38 Db8

EP (positions) 36.66 35.26 34.19 33.30 9/7, overcomplete

EP (positions and
means)

36.68 35.27 34.19 33.31 9/7, overcomplete

EP (positions, means,
variances)

37.03 35.81 34.95 34.25 9/7, overcomplete
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frequency subbands are modeled as locally stationary in some non-overlapping
subregions. The region partition is performed using the quantization-based
segmentation of the corresponding previously denoised lowpass subband data.
We have developed two versions of the denoising algorithms that exploit this
model in critically sampled and overcomplete transform domains. Benchmark-
ing with known denoising techniques within the Bayesian estimation frame-
work has demonstrated that our approach is competitive with the best existing
denoising techniques in both transform domain.

Aiming at enhancing denoising performance without increasing algorithmic
computational complexity, the edge process stochastic image model was pro-
posed as a way to decrease the residual correlation in the high frequency
subbands. In case of the EP model we treat data in the flat regions and in
the edge regions in different ways: as non-stationary zero-mean Gaussian for
flat areas, and as locally stationary non-zero mean Gaussian with very low
variance for edges. To demonstrate the possible benefit obtained from using
the EP model we have performed a set of experiments assuming that the edge
region spatial statistics were available from the original image (the so-called
performance empirical upper bound was estimated). In this case the signifi-
cant gain in the PSNR was obtained for all tested AWGN variances. As it was
mentioned, the main open issue of the EP model is the reliable estimation of
the model parameters in the presence of noise. Therefore, we will concentrate
on the solution to this problem in our ongoing research, and will exploit it
for other applications such as image compression [42] and watermarking [43]
where attacks and watermark are power limited due to perceptual constraints
on image fidelity.
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