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Abstract

An extensive analysis of a non-parametric, information-theoretic method for instantaneous blind source separation

(BSS) is presented. As a result a modified stochastic information gradient estimator is proposed to reduce the

computational complexity and to allow the separation of sub-Gaussian sources. Interestingly, the modification enables

the method to simultaneously exploit spatial and spectral diversity of the sources. Consequently, the new algorithm is

able to separate i.i.d. sources, which requires higher-order spatial statistics, and it is also able to separate temporally

correlated Gaussian sources, which requires temporal statistics. Three reasons are given why Renyi’s entropy estimators

for Information-Theoretic Learning (ITL), on which the proposed method is based, is to be preferred over Shannon’s

entropy estimators for ITL. Also contained herein is an extensive comparison of the proposed method with JADE,

Infomax, Comon’s MI, FastICA, and a non-parametric, information-theoretic method that is based on Shannon’s

entropy. Performance comparisons are shown as a function of the data length, source kurtosis, number of sources, and

stationarity/correlation of the sources.
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1. Introduction

Blind source separation (BSS) is a method of
extracting one or more desired signals from an
observed mixture of signals. Strictly speaking the
term ‘blind’ denotes that nothing is known about
either the sources, including the source statistics,
or the mixing process. Suppose that N samples of a
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set of M zero-mean desired signals, sm(n), for
m ¼ {1, 2, y, M} and n ¼ {1, 2, y, N}, are
available and are combined into an (M�N)
matrix, S. Suppose further that the linear,
instantaneous mixing matrix is denoted as A and
that M observations, xm(n), are available and are
combined into an (M�N) matrix X. The observa-
tions can then be represented mathematically as,
X ¼ AS. Demixing is attempted by linearly com-
bining the observations. This produces M outputs
at each time instant, ym(n), which together form an
(M�N) matrix Y that can be expressed as,
Y ¼WX ¼WAS. For A full rank the most
obvious solution is W ¼ A�1, in which case
Y ¼ S as desired. The BSS problem can therefore
be stated as follows: given a set of observations X,
find the W such that Y is the best approximation
of S. For additional details on BSS, see papers by
Cardoso [1] and Hyvarinen [2].

The canonical contrast for BSS is to minimize
the mutual information (MI) between the outputs
[1]. If the observations are sphered prior to
demixing and the demixing matrix is constrained
to be a pure rotation, then minimizing MI is
equivalent to minimizing the sum of marginal
entropies [3]. Hence, this class of criteria for BSS
entails the selection of a definition of entropy and
a method to estimate the entropy from samples.
Herein, the definition of entropy is restricted to the
family of entropies formulated by Alfred Renyi [4]
and the three methods used to estimate entropy
from data are all based on Parzen window
probability density function (pdf) estimation using
Gaussian kernels [3,5]. Renyi’s definition of
entropy allows for a fairly comprehensive exam-
ination of this class of criteria since it represents,
as a function of a single user-defined parameter a,
a family of entropies that encompasses Shannon’s
definition [6,7] in the limit as a approaches 1. The
entropy estimator is also a function of a single
user-defined parameter, s, which represents the
width of the Gaussian kernel. Consequently, the
class of BSS algorithms that consist of minimizing
a sum of marginal entropies can be studied by
observing the effect of jointly selecting a and s for
each of the three entropy estimators.

This particular approach to BSS falls under the
general framework of Information Theoretic
Learning (ITL), a term coined in a paper by
Principe et al. [8] to denote a class of optimization
algorithms that replace the conventional mean
square error (MSE) criterion in the adaptation of
linear and nonlinear systems. More specifically,
ITL methods are concerned with the extremization
of criteria based on a formulation of either
(Renyi’s) entropy or a quadratic measure of
divergence that may be computed directly from
samples. This paradigm represents a general
optimization procedure that unifies supervised
and unsupervised learning and has been used for
function approximation, feature extraction, clus-
tering, and for BSS. With respect to BSS, a ¼ 2 is
used in the original paper by Hild et al. [3], while
the extension to any value of a (except a ¼ 1) is
covered in a paper by Erdogmus et al. [9]. The
present paper provides a systematic study of the
joint effect of Renyi’s entropy order, a, and the
kernel size used in the entropy estimation, s, for
three entropy estimators with special emphasis
placed on the separation of sub-Gaussian sources.
The results of this discussion suggest slight
modifications to the originally proposed criterion
and provides new insight as to why Renyi’s
quadratic entropy ða ¼ 2Þ is preferred over both
Shannon’s entropy ða ¼ 1Þ and kurtosis-based
methods.
2. Renyi’s entropy for BSS

The criterion under consideration is the sum of
Renyi’s marginal entropies, which is expressed as

JaðY Þ ¼
XM
m¼1

HaðY mÞ ðfor a40Þ, (1)

where Ha(Ym) is Renyi’s marginal entropy of order
a for the mth output. The discussion is initially
limited to theoretical entropies and is then
followed by a discussion of three sample-based
entropy estimators.

2.1. Renyi’s theoretical entropy

The Central Limit Theorem states that the pdf
of a summation of independent random variables
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tends toward the Gaussian distribution. Therefore,
the goal of BSS is to force the pdf of each output,
f Y m
ðymÞ, to be as far from Gaussian as possible.

The nice feature of Shannon’s entropy is that, for a
fixed variance, it is maximized for Gaussian
distributions. This is ideal for BSS when a
sphering/rotation architecture is used because
separation can be achieved simply by minimizing
the sum of (Shannon’s) entropies. This is true
independent of whether the source distributions
are sub-Gaussian or super-Gaussian as demon-
strated in Fig. 1. This figure shows a plot of both
Renyi’s quadratic and Shannon’s (theoretical)
entropies as a function of b, where b is the
parameter of a generalized Gaussian pdf

f Y m
ðymÞ ¼ Bme

�Cmjymj
b

and where bo2 refers to the super-Gaussian
region, b42 refers to the sub-Gaussian region,
and Bm and Cm are functions of b that ensure the
pdf integrates to 1 and that yield a pdf corre-
sponding to a unit-variance random variable. The
values in Fig. 1 are numerical estimates of the
theoretical entropies. The asterisks indicate analy-
tically computed values of Renyi’s entropies for
b ¼ 1; 2, and infinity, which correspond to a
Laplacian, Gaussian, and uniform pdf, respec-
tively. The values of Renyi’s quadratic entropy
and Shannon’s entropy for a uniform random
variable are identical (this is true for all a40). This
Fig. 1. Renyi’s theoretical entropy, for a ¼ 1 and a ¼ 2, versus b.
figure shows that, for the generalized Gaussian
family where 1pbp10, Shannon’s entropy is
maximized for b ¼ 2, as expected, and Renyi’s
quadratic entropy is maximized for b equal to 4.
In Fig. 2 the entropy of a mixture of 2 Laplacian

sources is plotted as a function of rotation angle, y,
for values of b ¼ 1, 2.7, 5, and 10, where
kp/2 radians corresponds to separation for k any
integer and the (2� 2) matrix representing the
product of the mixing and demixing matrices is
given by

WA ¼
cosðyÞ sinðyÞ

� sinðyÞ cosðyÞ

" #
.

The results for both Renyi’s quadratic and
Shannon’s entropies in Fig. 2 were scaled for
visualization purposes so that the minimum value
is 0 and the maximum value is 1. For Laplacian
sources, shown in the upper left subplot, the two
results are virtually identical. In fact, although it is
not shown, there is very little difference in the
space of the demixing coefficients between Renyi’s
quadratic and Shannon’s entropies for all super-
Gaussian pdfs of the generalized Gaussian family.
The remaining subplots show that the behavior of
Renyi’s quadratic entropy for sub-Gaussian data
is much more complex than Shannon’s entropy.
Fig. 2. Renyi’s quadratic theoretical entropy versus rotation

angle (kp/2 rad is solution). Upper left, upper right, lower left,

lower right subplots are for b ¼ 1, 2.7, 5, 10, respectively.
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Notice that a local minimum always occurs at the
solution (there is a minimum at the solution in the
upper right subplot of Fig. 2 although it is difficult
to see). However, it is neither the only minimum
nor the global minimum for 2obo8. The fact that
Renyi’s quadratic entropy has an acceptable
performance surface for super-Gaussian but not
sub-Gaussian signals is related to the monotoni-
city of Renyi’s quadratic entropy as a function of
b. In order for Eq. (1) to be a suitable criterion for
BSS, it is necessary that the entropy used in the
definition is monotonically increasing for 1pbo2
and monotonically decreasing for 2obp infinity.
If, on the other hand, the entropy is only
guaranteed to be monotonic (increasing or de-
creasing) for both of these regions then it is a
simple matter to include the appropriate change of
sign in Eq. (1) so that its minimization leads to
separation. This relaxation of the constraints for
separation requires extra information, which can
and must be estimated from the data. In parti-
cular, the modified criterion must determine
whether each output is sub-Gaussian or super-
Gaussian. The result is that Eq. (1), which consists
of theoretical entropies, is an ideal demixing
criterion for BSS without regard for the Gaus-
sianity of the sources only when a ¼ 1 (Shannon’s
entropy). Likewise, ao0:6, a ¼ 1, a44 are the
only values of a are appropriate for Eq. (1) if the
appropriate sign change (based on the Gaussian-
ity) is included as shown in the first author’s
dissertation [10].
2.2. Renyi’s empirical entropy

The preceding discussion is limited to theoretical
quantities as opposed to using an entropy estima-
tor, which produces values based on a finite
number of samples. For the case that the pdfs
are estimated using Parzen windows [5] with
Gaussian kernels, the entropy estimator is [9]

ĤaðY m;sÞ

¼
1

1� a
log

1

N

XN

n¼1

1

N

XN

k¼1

GðymðnÞ � ymðkÞ; 2s
2Þ

 !a�1

ðfor a40; aa1Þ, ð2Þ
where G(ym(n), s2) is the value of a Gaussian
kernel evaluated at ym(n) and s is a user-defined
parameter referred to as the kernel size. Details of
the derivations of this equation and Eq. (4) below
are not provided here as they may be found in
papers by Erdogmus et al. [9,11]. Eq. (2) is not
valid for a ¼ 1 since it results in the indeterminant
value 0/0. There are two ways in which an
analogous expression can be found for an estima-
tor for a ¼ 1. In the first method the gradient
of Eq. (2), which is needed for gradient-based
adaptation anyway, is found and then a is set to 1
in the gradient expression. The second method is
derived by noticing that Shannon’s (theoretical)
entropy can be written in terms of an expectation
as follows, H1(Ym) ¼ �E [log(fYm(Ym))]. Approx-
imating the expectation with the sample mean and
using Parzen window estimation for the pdf
produces the following estimator for Shannon’s
entropy:

Ĥ1ðY m;sÞ ¼
�1

N

XN

n¼1

log
1

N

XN

k¼1

GðymðnÞ � ymðkÞ;s
2Þ

ðfor a ¼ 1Þ ð3Þ

which is similar to that used previously by Viola et
al. [12] for processing magnetic resonance images.
It is simple to show that the gradient of Eq. (3) is
identically the gradient of Eq. (2) with a ¼ 1.
Both Eqs. (2) and (3) have O(N2) computational

complexity. An O(N) estimator may be obtained
with the help of the Stochastic Information
Gradient (SIG) [11]. This involves the removal of
one of the summations in the entropy estimator of
Eq. (2), producing a third entropy estimator

Ĥ2ðY m;sÞ ¼ � log
1

N

XN

k¼1

GðymðkÞ � ymðk � pÞ; 2s2Þ

ðfor a ¼ 2Þ, ð4Þ

where the difference in time between the outputs, p,
is user-defined. The recommended value is p ¼ 1,
which is particularly suitable for applications
requiring online entropy manipulation [13]. Notice
that dropping either summation of Eq. (2) results in
essentially the same entropy estimator as Eq. (4).
That is, the distribution that maximizes/minimizes
one entropy estimator will maximize/minimize the
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other [10]. Eq. (4) can also be derived from Eq. (3)
by removing the outer summation.

The O(N) entropy estimator of Eq. (4) is not a
function of a and it can be derived from Equation
(2) for any a40. However, it is of practical
importance to know that the only O(N2) entropy
estimator that Eq. (4) approximates well is Eq. (2)
with a ¼ 2, otherwise known as Renyi’s quadratic
entropy. The reason Eq. (4) approximates Eq. (2)
only for a ¼ 2 is that the inner summation term of
Eq. (2) is raised to the power of 1 only for this value
of a. Good approximation can be guaranteed if
either one of the following two conditions is met:
�

Fig

ker

the
Multiple entropy estimates are averaged, where
the (time) indices of the data are uniformly
randomized for each estimate [11].

�
 The data is i.i.d. and N is sufficiently large, e.g.

N41000 requires only a single estimate [10].
Unlike theoretical entropy, entropy estimators
require the selection of the kernel size, s, in addition
to selecting the entropy order, a. For minimizing/
maximizing an entropic cost function experience
shows that s should be restricted to be between 0.1
and 2 for unit-variance signals. Fig. 3 shows Renyi’s
O(N) entropy estimator, given by Eq. (4), for four
values of kernel size as a function of the generalized
. 3. Renyi’s entropy estimator using SIG for four values of

nel size (s ¼ 0:1, 0.25, 0.5, and 1) versus b. The thick line is

result for Renyi’s theoretical entropy.
Gaussian parameter, b. The measurements were
made using N ¼ 1000 i.i.d. data samples and they
demonstrate that the O(N) entropy estimator
produces a good approximation of the theoretical
value of Renyi’s quadratic entropy when N is
sufficiently large and s is small (relative to the
standard deviation of the data). Notice that, up to
s ¼ 0:5, a bias is introduced that is largely
independent of b. The fact that it is independent
of b implies that it has no effect on minimization or
maximization of the entropy estimator. As the
kernel size increases further to s ¼ 1 the bias is no
longer independent of b and the shape no longer
resembles the theoretical entropy curve for a ¼ 2.
Interestingly, this is beneficial in the context of
BSS since it makes the plot of entropy versus b
monotonic in the sub-Gaussian region.
Fig. 4 shows the plot of entropy versus b when

the entropy estimators of Eq. (2) and (3) are used.
Upon close observation of Fig. 4 it can be seen
that increasing s has a tendency to upward bias
the estimates for large b. Several important
conclusions can be drawn from this. For a ¼ 1
and s40:75, the plot no longer peaks at b ¼ 2.
This implies that ITL algorithms based on
Shannon’s entropy estimator need to incorporate
appropriate sign change(s) for s40:75. For a ¼ 2
the entropy plot is monotonic in the super-
Gaussian region for all four values of s while the
Fig. 4. Renyi’s entropy estimators versus b. Upper left, upper

right, and lower left subplots are for s ¼ 0:25, 0.5, and 1,

respectively. The lower right subplot shows, for sake of

comparison, the results for Renyi’s theoretical entropies.
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sub-Gaussian region becomes monotonic only for
s41. Therefore, with the appropriate value of s
and as long as the criterion uses the appropriate
sign for each marginal entropy, Renyi’s quadratic
sample-based entropy is suitable as a criterion for
BSS. This was not the case for the theoretical
entropy with a ¼ 2. It is also inferred from Fig. 4
that ao 0.3 and a44 is appropriate for BSS for all
interesting values of s.
3. Selection of Renyi’s entropy order, a, for BSS

To assist with the selection of a the statistical
properties of the entropy estimation are quanti-
fied. It should be noted that the entropy estimation
used in ITL has different objectives than the
entropy estimation normally considered in coding
or channel capacity. The main difference is that
ITL involves the extremization of, e.g., an entropy-
based criterion. Consequently, the performance
does not necessarily depend on how well the
entropy is estimated, but on how accurately the
coefficients can be found that minimize or max-
imize entropy. The desire is to select a such that
the resulting criterion produces an estimate of the
rotation angle(s) that is both unbiased and has
small variance. Since asymptotic analyses of the
bias and variance do not favor one value of a over
another and since a closed-form expression for the
case of finite N and non-zero s is not known to
exist, the following evaluation is necessarily
heuristic.

3.1. Statistical analysis

In an ITL context one necessary requirement for
the choice of a (and s) is that the curves of Fig. 4,
which represent mean values, are monotonic for
1pbo 2 and 2pb infinity. The requirements for
monotonicity are given in Fig. 5 as a function of a
for three of the more interesting values of s. Aside
from monotonicity it is tempting to select a based
on Fig. 4 by choosing the value whose curves
have the largest slope in both the super-Gaussian
and sub-Gaussian regions since this implies the
maximum discriminability, hence robustness,
with respect to estimation. This would be a valid
approach except that the variance of the entropy
estimator also varies with b. Therefore, evaluation
of different values of a is performed using the
following metric, which takes into account both
types of information.

rða; s;bÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½ĤaðXb;sÞ

2
�

q
jE½ĤaðX 1;sÞ� � E½ĤaðX 2;sÞ�j

.

In this equation X b represents a random
variable having a generalized Gaussian distribu-
tion with parameter b. The numerator is the
standard deviation of the entropy estimate and
the denominator, which accounts for the slope of
the curve, is the absolute difference in the mean
values for b ¼ 1 and 2. With this definition
inferences for bo2 are more accurate than for
those made for b42. This compromise was made
since experience indicates that the largest differ-
ences in the performance of the different BSS
algorithms occur for super-Gaussian sources. A
small value of r(a,s,b) is indicative of a good
estimator.
Fig. 6 shows the normalized standard deviation

of the entropy estimate versus b for a ¼ 1 and 2,
where 100 Monte Carlo trials were used, N ¼ 1000
samples, and s ¼ 0:25. Also shown, for sake of
perspective, is the standard deviation of several
moment estimators (defined in the same manner as
r), which are constructed using the sample mean
of the data raised to the appropriate power [14].
Several interesting conclusions may be drawn from
this figure. Shannon’s entropy estimator is the
least desirable of those shown for sub-Gaussian
distributions. Renyi’s quadratic entropy estimator
for super-Gaussian data outperforms the estima-
tor for fourth-order moments, which is commonly
used as a criterion for BSS. Also, some methods
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Fig. 6. Normalized standard deviation of several different

entropy and moment estimators versus b (N ¼ 1000, s ¼ 0:25).
Fig. 7. Normalized standard deviation versus a. The left

column shows results for b ¼ 1, 2, and 10. The right column

is the mean of the results for b ¼ 1, 2, and 10.
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are not robust in that they have a low r for some
values of b and a large r for other values of b. For
example, the 8th-order moment estimator has the
lowest r (of the methods considered) for uniformly
distributed data, but it also has the highest r for
Laplacian-distributed data.

A more complete picture of the effect of a on r
may be found in Fig. 7, which shows results for
s ¼ 0:25, 0.5 and 1. When the data is super-
Gaussian the tendency is for the results to improve
as a increases (the peak is due to the mean
entropies of Laplacian and Gaussian distributions
being similar for a ¼ 0:73). This is easily under-
stood since (1) Laplacian data is heavy-tailed and
(2) decreasing values of a emphasize the tails of the
distribution [15]. This is also the reason that
kurtosis-based methods do not perform well for
super-Gaussian data [2]. When the data is sub-
Gaussian the value of a that produces the smallest
r decreases from 4 to 1.2 as s increases from 0.25
to 1. Interestingly, when the data is Gaussian-
distributed there is a minimum in r at or near
a ¼ 1, which corresponds to Shannon’s entropy.
Notice that small values of a perform poorly for
super-Gaussian data, but they perform well for
sub-Gaussian data (for s ¼ 1). The right column
of Fig. 7 shows the mean results averaged over the
three different source distributions (the conclu-
sions are unchanged if Gaussian-distributed
sources are left out of the average). The combina-
tion of the mean results from Fig. 7 and the
monotonicity requirements shown in Fig. 5 does
not yield a single value of a that is noticeably
superior to all other values. However, it is clear
that one should select a41. Additionally, one may
expect more robust adaptation by choosing aX2,
which excludes the obvious choice of a corre-
sponding to Shannon’s entropy.

3.2. Arguments for selecting a ¼ 2

Since the statistical properties of the estimator for
the densities in the exponential family are insufficient
to select a single preferred value of a, other
characteristics are considered. An obvious choice is
to use a ¼ 1 since it does not require explicit
determination of sub/super-Gaussianity (for small
s) when Parzen estimation is used. However, there
are three good arguments for selecting a ¼ 2,
�
 The normalized standard deviation is at or near
the minimum value for a ¼ 2

�
 Unlike any other value of a, there exists an

entropy estimator for a ¼ 2 that reduces the
complexity of the entropy estimation from
O(N2) to O(N)

�
 Unlike any other value of a, the O(N) entropy

estimator for a ¼ 2 allows the criterion to



ARTICLE IN PRESS

K.E. Hild II et al. / Signal Processing 86 (2006) 182–194 189
exploit spectral diversity in addition to spatial
diversity

The last two items are a direct consequence of
using the SIG approximation to estimate entropy.
The second item was discussed in Section 2.2 and
the third property stems from the nonlinear
transformation of (ym(k)�ym(k�p))2, which in-
cludes information contained in the autocorrelation
at lag p. The proof that a criterion based on Eq. (4)
can make use of spectral diversity, as well as the
conditions required for the proof, is given in the
first author’s dissertation [10]. The essential condi-
tions are that the correlations at lag p must be
positive, as commonly occurs for natural signals
when p is small, and the auto-correlations of the
sources at lag p must be distinct, as expected. The
ability to make use of spectral diversity is especially
useful if the sources are Gaussian-distributed.
Spectral information has been used in numerous
BSS methods that are based on second-order
statistics and has only rarely been discussed for
use in information-theoretic methods [16,17]. To
exploit spectral diversity it is important that Eq. (4)
is used without randomizing the time indices since
randomization destroys the temporal structure of
the data. This gives an important advantage of the
SIG estimator over Eqs. (2) and (3), for any
value of a, since their computation involves an
average over all possible pair-wise permutations of
the time indices and cannot, therefore, make use
of spectral diversity.
4. General purpose MRMI and MRMI-SIG

algorithms

Presented below are three practical algorithms
for BSS. These algorithms are computed directly
from samples and are appropriate irrespective of
the Gaussianity of the sources. They are found by
replacing the theoretical entropies in Eq. (1) with
the entropy estimators of Eqs. (2)–(4) and includ-
ing a change of sign as needed. The determination
of sub/super-Gaussianity is estimated using the
sign of the kurtosis, for which super-Gaussian
sources (generally) have a positive value and sub-
Gaussian sources (generally) have a negative
value. While this approximation works well in
practice, there are known counterexamples, e.g.,
super-Gaussian sources having zero kurtosis [18].
The first criterion uses the entropy estimator of
Eq. (2)

ĴaðY Þ ¼
1

1� a

XM
m¼1

sign
XN

k¼1

ðy4
mðkÞ � 3y2mðkÞÞ

 !

� log
1

N

XN

n¼1

1

N

XN

k¼1

GðymðnÞ � ymðkÞ; 2s
2
mÞ

 !a�1

ðfor a40; aa1Þ ð5Þ

the second uses Eq. (3)

Ĵ1ðY Þ ¼ �
1

N

XM
m¼1

XN

n¼1

log
1

N

XN

k¼1

GðymðnÞ � ymðkÞ; s
2Þ

ðfor a ¼ 1Þ ð6Þ

and the third employs the SIG approximation of
Eq. (4),

Ĵ2ðY Þ ¼ �
XM
m¼1

sign
XN

k¼1

ðy4
mðkÞ � 3y2

mðkÞÞ

 !

� log
1

N

XN

k¼1

GðymðkÞ � ymðk � pÞ; 2s2mÞ

ðfor a ¼ 2Þ, ð7Þ

where s should be chosen in accordance with
Fig. 5. These three criteria will be referred to as the
(modified) Minimum Renyi’s Mutual Information
(MRMI), Minimum Shannon Mutual Information
(MSMI), and (modified) MRMI-SIG criteria,
respectively. Notice that the kurtosis estimation
is performed on each output. As a result no a
priori information concerning each source kurtosis
is required. Also, Eq. (6) does not include a sign-
change term as it assumes a small kernel size. If it
is desired to use Shannon’s entropy with a large
kernel size one can always use the criterion of
Eq. (5) with a near to 1, e.g. a ¼ 0.95 or 1.05.
Whenever s is small and N is large, the entropy

estimators on which these three criteria are built
provide a good approximation of their respective
theoretical entropy. Hence, these sample-based criter-
ia are appropriate for BSS, with small s, whenever the
respective theoretical entropy is appropriate for BSS.
A list of the range of a appropriate for BSS when the
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criterion is based on a summation of Renyi’s
theoretical entropies is given in Section 2.1. The
preferred criterion, MRMI-SIG, estimates Renyi’s
(theoretical) quadratic entropy when s is small and
approximates kurtosis when s is large, as can easily be
shown with a Taylor series approximation [10] (for
i.i.d. data or if the time indices are randomized). This
is ideal since MRMI andMRMI-SIG are able to take
advantage of the improved statistical properties of
Renyi’s quadratic entropy for super-Gaussian sources
as previously shown in Fig. 6 and to benefit from the
monotonicity of the kurtosis for sub-Gaussian
sources, simply by changing s. The recommendation
is to use a single small value of s for all outputs that
are positively kurtotic and a single large value for
outputs that are negatively kurtotic. In addition, if the
sources have spectral diversity then MRMI-SIG is
able to use this information simply by not randomiz-
ing the time indices.
5. Comparisons

This section consists of a detailed comparison of
the suggested criterion, MRMI-SIG, with MSMI
from Eq. (6), JADE [19], FastICA [20], Comon’s
MI [21], and Infomax [22]. Two additional methods
were also tried, which included an MI method by
Pham [23] and one by Yang and Amari [24]. The
method by Pham appears to be inappropriate for
sub-Gaussian sources and preliminary results from
the Yang and Amari method were disappointing, so
results from these two methods are not reported
here. All the methods under consideration use
higher-order statistics. Methods that use only
second-order statistics were not included since most
of the separation tasks in the comparison are for
i.i.d. sources, for which second-order statistics is
insufficient. The comparisons assume an off-line
implementation, which implies that the data may be
re-used for any number of epochs. The performance
is measured using the signal-to-interference ratio
(SIR), which is given by

SIR ¼ arg max

k

1

M

XM
m¼1

10 log 10
Pki

Pi � Pki

� �
;

where ki, for i ¼ 1, 2, y, M, is an element of {1, 2,
y, M}, ki not equal to kj for i not equal to j, Pki

is
the power of source ki in output i, and Pi is the total
power of output i. The set of ki terms, k, are
determined by assuming a particular permutation of
the output signals. Due to the permutation indeter-
minacy inherent in BSS, the permutation that
maximizes the summation above is the one of
interest. The SIR is a measure of mean separation
performance across channels where larger values
represent better performance and values above 20dB
correspond to inaudible interference when audio
sources are used. A total of ten Monte Carlo runs
are performed for each separation task. Each of the
Monte Carlo runs uses a different mixing matrix,
whose entries are chosen uniformly in [�1, +1].
In order to take advantage of any spectral

diversity, randomization is not used for MRMI-
SIG whenever the outputs are such that the mean
(across channels) of the normalized correlation
coefficient at lag p exceeds 0.4, a value which was
experimentally determined. The kernel sizes for
MRMI-SIG are chosen to be 0.25 and 1 for
positively and negatively kurtotic outputs, respec-
tively. While it is possible to fine tune the kernel sizes
in order to avoid local minima [15], this was not
done. The kernel size for MSMI is chosen to be 0.5
in order that the maximum entropy pdf remains the
Gaussian and, due to the O(N2) complexity, MSMI
uses a maximum of 500 randomly selected data
points. For all synthetically created i.i.d. data the
nonlinearities of the Infomax algorithm were selected
to be the cumulative distribution functions (cdf’s) of
the sources, in which case the Infomax algorithm
becomes a maximum-likelihood method [25]. This
prevents the need to adapt the nonlinearities and
represents a best-case scenario for the Infomax
algorithm since knowledge of the source distribu-
tions is not normally available in the context of BSS.
Some results are also included for speech data, for
which a sigmoid nonlinearity is a decent approxima-
tion of the cdf. In this latter case the sigmoid
nonlinearity is used. In all cases the tap weight
update for Infomax uses the natural gradient [26],
which is also known as the relative gradient [27].
The first separation task is to separate M ¼ 5

sources for different combinations of b and N. Six
different exponentially increasing values of b are
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used. These values are 1, 1.2, 1.7, 2.7, 5, and 10
(for each test, all five sources have the same b). An
exponential increase was used since b ¼ 2 is the
logical choice for the midpoint. In addition, seven
different values were used for the data length.
These values are 100, 200, 500, 1000, 2000, 5000,
and 10,000. This made a total of 42 different
combinations for each method. The samples for
this task are drawn in an i.i.d. fashion so that the
data is stationary and temporally independent.

Fig. 8 shows the results for each method
averaged over ten Monte Carlo trials. In this
figure each subplot represents a different value
of b. Aside from some initial differences in data
Fig. 8. SIR versus N for the competing BSS methods for i.i.d. sourc

(F) b ¼ 10.
efficiency (i.e. for small values of N) notice that the
different methods perform almost identically as
the distribution of the sources become increasingly
uniform.
Fig. 9 shows the results averaged over b. This

figure indicates that MRMI-SIG is the most data-
efficient method. Despite the exponentially greater
computational complexity and implicit determina-
tion of sub/super-Gaussianity, MSMI performs
worse than both MRMI-SIG and JADE at all
values of N. The performance for this method is
flat above N ¼ 500 due to the imposed data-length
restriction. Interestingly, Infomax performs worse
than both MRMI-SIG and JADE at all values of
es. (A) b ¼ 1, (B) b ¼ 1:2, (C) b ¼ 1:7, (D) b ¼ 2:7, (E) b ¼ 5,
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Fig. 9. Mean SIR as a function of N, averaged over b ¼ 1, 1.2,

1.7, 2.7, 5, and 10, for i.i.d. sources.
Fig. 10. SIR as a function of N data samples, for M ¼ 5 audio

sources.

Fig. 11. SIR as a function of M audio sources, for N ¼ 10; 000
data samples.
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N even though knowledge of the true source cdfs
was used to construct the nonlinearities. FastICA
performs the worst when there is little data and
Comon’s MI method performs the worst for
N41000 (neglecting MSMI).

The next two separation tasks use artificially
mixed audio sources. There are a total of 50
sources, of which 24 were speech (approximately
Laplacian-distributed) and 26 were music (most of
which were slightly super-Gaussian). Each Monte
Carlo trial uses M randomly selected sources. One
task is to separate M ¼ 5 sources as a function of
N, while the second task varied M and used a
constant data length of N ¼ 10; 000. These results
are shown in Figs. 10 and 11, respectively. Notice
that the performance of all the methods are
reduced from that of the i.i.d. sources due to the
reduction of available statistical information
caused by the time-correlation of the audio
sources. However, MRMI-SIG is reduced much
less than the others. Unlike before, MSMI is able
to improve as N increases above 500, as shown in
Fig. 10, since the 500 randomly selected points
become less likely to be temporally correlated as N

increases. Infomax performs quite well in this case
even though a sigmoid nonlinearity is used, which
is not perfectly tuned to the cdf of the sources. In
fact, it surpasses the performance of JADE which
had outperformed it for i.i.d. data. Fig. 10 shows
that MSMI is better than all methods except
MRMI-SIG for No500. Notice that the rank of
performance is consistent with the findings of the
statistical properties of the entropy and moment
estimators for super-Gaussian distributions, as
shown previously in Fig. 6. The performance
advantage of MSMI is not seen in Fig. 11 because
of the restriction on the amount of data used.
Recall that MSMI is limited to 500 data points
while all other methods use more than a magni-
tude of order more data. Also, it appears that
the performance for all the methods, except
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Table 1

Adaptation time (in relative magnitudes of order)

M ¼ 5

N ¼ 100

M ¼ 5

N ¼ 1000

M ¼ 20

N ¼ 10,000

MRMI-SIG 3 4 7

JADE 1 1 2

Infomax 3 4 6

Comon’s MI 3 4 8

FastICA 1 1 3

MSMI 4 5 (N ¼ 500) 6 (N ¼ 500)
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MRMI-SIG, is flat up to and including N ¼ 2000,
with the slope across all methods basically
identical for N42000. The better performance of
MRMI-SIG for No2000 is attributed to the
extraction of temporal dependencies. In Fig. 11
the data point corresponding to M ¼ 20 for
Comon’s MI method is unavailable because the
time of adaptation for large M, an order of
magnitude longer than the other gradient-based
methods, became unbearably long.

This comparison was for an off-line BSS
implementation, therefore the time of adaptation
is considered unimportant (except in extreme
cases). However, the amount of time required for
each is listed in Table 1. Keep in mind that, had
the comparison fixed the adaptation time, the
gradient-based algorithms would have traded
performance for time. Nevertheless, it is quite
impressive that JADE and FastICA perform as
well as they do, and yet require very little training
time as compared to the other algorithms.
6. Conclusions

This paper presents a detailed study on the use
of Renyi’s entropy for blind source separation. In
this context Renyi’s entropy has very different
properties than Shannon’s entropy. The funda-
mental difficulty of Renyi’s (theoretical) entropy is
that it peaks for the Gaussian distribution only
when a ¼ 1. Consequently, this is the only value of
a appropriate for Eq. (1) (which ignores the sub/
super-Gaussianity of the sources). This paper
presents a method to counteract this limitation
for sample-based entropy estimators by taking
advantage of the combined effect of Renyi’s
entropy parameter, a, and the kernel size of the
Parzen window estimator, s. It should be men-
tioned that the arguments in this paper are only
made for exponential distributions and cannot be
guaranteed to generalize to other source distribu-
tions. However, extensive experience with these
methods, as well as the results of the audio
mixtures, indicates the validity of this approach.
The findings suggest that the previously pub-

lished MRMI-SIG criterion [11] should be mod-
ified to (1) use a large kernel size for sub-Gaussian
sources, (2) select the sign of each marginal
entropy in the sum based on the kurtosis of the
associated source estimate, and (3) refrain from
randomizing the time indices when the sources are
highly temporally correlated. Likewise, the MRMI
criterion [9] should implement the first two of the
three changes above (the third is not applicable).
The need for these changes passed unnoticed in the
paper by Erdogmus et al. [15] when optimizing
a because the changes are not needed for super-
Gaussian sources and, even without the changes as
Fig. 2 shows for b ¼ 10, there is roughly a 50%
probability of obtaining the global minimum for
sub-Gaussian sources. While Parzen windows may
be applied to create a non-parametric BSS algo-
rithm for any positive value of a, three reasons are
given why a ¼ 2 (corresponding to MRMI-SIG) is
preferred over all other values of a including a ¼ 1,
which corresponds to Shannon’s entropy. They are
as follows: (1) nearly minimal normalized standard
deviation, (2) the ability to exploit spectral
diversity, and (3) exponentially reduced computa-
tional complexity.
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