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Abstract

The problem of adaptive array beamforming with multiple-beam constraints in the presence of steering angle error is

considered. We first construct a cost function consisting of terms that utilize a posteriori information due to the received

array data and an exponential constraint associated with steering angle error, respectively. Then, an appropriate

estimate of the actual phase angle vector associated with each of the desired signals can be obtained by performing

nonlinear optimization based on the cost function. An implementation algorithm is further presented to iteratively solve

the problem. Theoretical analysis regarding the convergence property of the iterative procedure is also investigated.

Finally, several computer simulation examples are provided for illustration and comparison.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

An adaptive array beamformer is a spatial filter designed to extract the desired signal(s) while canceling
interference and noise through spatial discrimination. The only a priori knowledge for a main-beam or a
multiple-beam constrained beamformer is the actual direction vectors of the desired signals. The direction
vector of a desired signal can be obtained from knowledge of the array sensor locations, signal directions-
of-arrival, and propagation characteristics. However, the information may not be perfectly known in
practice. This results in a mismatch between the presumed steering vectors and the actual direction vectors.
Many reports have shown that the performance of a steered beam adaptive array beamformer is very
sensitive to such mismatch [1–5].
e front matter r 2005 Elsevier B.V. All rights reserved.
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To cure the problem of array performance degradation due to the above mismatch, a variety of robust
techniques propose to impose additional constraints such as multiple linear constraints, derivative
constraints, and norm constraints on the array weight vector [5–15]. However, imposing additional
constraints deteriorates the array’s capability to suppress interference and noise, i.e. it consumes some of
the array’s degrees-of-freedom. In contrast, the authors of [16] presented a robust approach based on the
worst-case performance optimization for dealing with the problem of array performance degradation due
to the signal covariance matrix with some fixed error. On the other hand, the problem of the steering vector
error due to signal look direction mismatch is considered in [17] to formulate a constrained minimization
problem which can be solved by convex optimization-based implementation using second-order cone
programming. However, this method provides array performance very similar to that of using the simple
so-called diagonal loading of the sample matrix inversion (LSMI) algorithm [18] and comparable with that
of using eigenspace-based approaches [19] when the signal-to-noise ratio (SNR) is reasonably high.
Recently, the authors of [20] have considered the beamforming problem when the desired signal has a
nonrandom steering vector error using the Capon beamformer. A robust method for determining the
diagonal loading value is also proposed. All of the above-mentioned techniques [5–20] are developed in the
case of adaptive beamforming with main-beam constraint. In many applications, such as satellite
communications [21], an antenna array must possess beamforming capability to receive more than one
signal with specified gain requirements while suppressing all jammers. This purpose can be effectively
achieved by using an antenna array with multiple-beam pattern [21,22]. Recently, a technique for adaptive
beamforming with the capability of providing multiple-beam constraints (MBC) has been presented in [23].

In this paper, the problem of adaptive beamforming with MBC in the presence of steering angle error is
considered. Instead of directly dealing with the estimation of the actual steering angle, we handle an
equivalent problem where the corresponding steering phase angle vector is to be found. A robust method in
conjunction with an iterative procedure is presented for coping with the considered problem. To find the
optimal phase angle vector, we construct a cost function consisting of the squared norm of the projection of
the steering vector on the noise subspace and a constraint related to an exponential function of the squared
norm of the resulting phase error vector. The proposed cost function uses an exponential constraint instead
of a non-exponential constraint proposed by a recent research work [24] which deals only with main-beam
adaptive beamforming. Minimizing the squared norm of the projection of the steering vector on the noise
subspace is equivalent to maximizing the squared norm of the projection of the steering vector on the signal
plus interference subspace. The constraint related to an exponential function of the squared norm of the
resulting phase error vector is utilized to prevent the obtained optimal phase angle vector for each desired
signal from becoming one of the interference phase angle vectors. Since the resulting minimization problem
is highly nonlinear, we use a gradient method to iteratively find the solution. It is shown that using the
exponential constraint provides the advantage of properly adjusting the step size during the gradient search
procedure. The analysis regarding the investigation of the convergence property of the proposed method is
also presented. Several computer simulation examples show the effectiveness of the proposed method.

This paper is organized as follows. Section 2 formulates the problem of adaptive beamforming with MBC
in the presence of steering angle error. Then, a robust method is presented in Section 3 for dealing with the
considered problem. In Section 4, we present a theoretical analysis to provide a proof regarding the
convergence property of the proposed method. Section 5 shows several simulation examples to illustrate the
effectiveness of the proposed method. Finally, we conclude the paper in Section 6.
2. Problem formulation

Consider a uniform linear array (ULA) with M sensors and interelement spacing equal to half of
the smallest wavelength of the signals. Let K uncorrelated narrow-band and far-field signals impinge on the
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array from direction angles yi, i ¼ 1; 2; . . . ; K , with respect to array broadside. The signal received at the
mth array sensor can be expressed as

xmðtÞ ¼
XK

i¼1

siðtÞamðyiÞ þ nmðtÞ; m ¼ 1; 2; . . . ;M, (1)

where amðyiÞ ¼ expðjð2pdmsinyiÞ=liÞ, li is the wavelength of the ith signal, and dm is the distance between the
mth and the first array sensors, si (t) is the complex waveform of the ith signal, and nm(t) is the spatially
white noise with mean zero and variance s2n received at the mth array sensor. In matrix form, we can write
the data vector received by the ULA as follows:

xðtÞ ¼ BsðtÞ þ nðtÞ, (2)

where the matrix B ¼ ½aðy1Þ aðy2Þ . . . aðyK Þ� with the direction vector of the ith signal being given by
aðyiÞ ¼ ½a1ðyiÞ a2ðyiÞ . . . aM ðyiÞ�

T, the signal source vector is sðtÞ ¼ ½s1ðtÞ s2ðtÞ � � � sK ðtÞ�
T, and the noise vector

is nðtÞ ¼ ½n1ðtÞ n2ðtÞ . . . nMðtÞ�
T. The superscript T denotes the transpose operation. Under the assumption

that s(t) and n(t) are uncorrelated, the M�M ensemble correlation matrix of x(t) is Toeplitz–Hermitian
and given by

Rx ¼ Rkl½ � ¼ Rðk � lÞ½ � ¼ E xðtÞxðtÞH
� �

¼ BRsB
H þ s2nI , (3)

where the superscript H denotes the complex conjugate transpose. Rs ¼ EfsðtÞsðtÞHg has rank K if the K

signals are uncorrelated.
Let the ULA use a weight vector w ¼ ½w1w2 . . . wM � for processing the received data vector x(t) to

produce the array output signal yðtÞ ¼ wHxðtÞ. Assume that the selective gain/null requirements are
specified by assigning a gain cp at the direction vector a(yp) for p ¼ 1; 2; . . . ; P, where P denotes the number
of signals with gain/null constraint. Then, the optimal weight vector for the adaptive array can be found
from the following constrained optimization problem [21]:

Minimize E yðtÞ
�� ��2n o

¼ wHRxw

Subject to GHw ¼ c, ð4Þ

where the matrix G ¼ ½aðy1Þ aðy2Þ � � � aðyPÞ� denotes the constraint matrix and c ¼ ½c1c2 . . . cP� denotes the
gain vector. Accordingly, the optimal weight vector is given by

wo ¼ R�1x G GHR�1x G
� ��1

c. (5)

Substituting (5) into Efj yðtÞj2g ¼ wHRxw yields the corresponding array output power equal to

E yðtÞ
�� ��2n o

¼ wHRxw ¼ cH GHR�1x G
� ��1

c. (6)

In the presence of a steering angle error, let the error vector associated with the direction angles be
he ¼ ½Dy1 Dy2 . . . DyP�

T. We consider that the phase angle error vector for the signal with gain cp due to the
direction angle error Dyp, p ¼ 1; 2; . . . ; P, is given by

Hep ¼ Hp �Hdp, (7)

where Hp and Hdp denote the phase angle vectors associated with actual direction vector a(yp) and the
presumed direction vector ad (yp), respectively. Without loss of generality, let the mth entry of the actual
direction vector a(yp) be expressed as amðypÞ ¼ expðjupmÞ and the corresponding phase angle vector be
constructed as Hp ¼ ½up1 up2 . . . upM �

T. Similarly, let the mth entry of the presumed direction vector ad(yp)
be expressed as admðypÞ ¼ expðjudpmÞ and the corresponding phase angle vector be constructed as
Hdp ¼ ½udp1 udp2 . . . udpM �

T. We finally construct an M�P phase angle error matrix W and the
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corresponding PM� 1 phase angle error vector G for the P uncorrelated signals as follows:

W ¼ He1He2 . . .HeP½ �, (8)

C ¼ HT
e1H

T
e2 . . .H

T
eP

� �
. (9)

To deal with the problem of array beamforming with MBC in the presence of steering angle errors as
described above, we present a robust method in the next section.
3. A robust method

From the property of a gain-constrained array beamformer, it is well known that the output power of the
beamformer will achieve its maximum when each presumed direction vector ad (yp) of the constraint matrix
G coincides with the actual direction vector a(yp), p ¼ 1; 2; . . . ; P. Moreover, from the eigendecomposition
of Rx, we can express Rx ¼

PM
i¼1lieie

H
i , where l1Xl2X . . .XlJþPXlJþPþ1 ¼ . . . ¼ lM ¼ s2n, are the

eigenvalues of Rx in the descending order, ei are the corresponding eigenvectors, and J is the number of
interferers. The eigenvectors associated with the minimum eigenvalue s2n are orthogonal to the direction
vectors of the signals with specified gain/null constraints and interferers. Therefore, the subspaces spanned
by En ¼ feJþPþ1; . . . ; eMg (called the noise subspace) and Es ¼ fe1; e2; . . . ; eJþPg (called the signal plus
interference subspace) are orthogonal. Consequently, we can rewrite Rx as follows:

Rx ¼
XM
i¼1

lieie
H
i ¼ EsKsE

H
s þ EnKnEH

n , (10)

where Ks ¼ diagfl1; l2; . . . ; lJþPg and Kn ¼ s2nI , where I denotes the identity matrix with appropriate size.
Based on (6) and (10), we create an appropriate cost function regarding the phase angle errors as

JðUÞ ¼
XP

p¼1

sp

� �H
EnEH

n sp

� �
� k exp �

XP

p¼1

Hsp �Hdp

� �T
Hsp �Hdp

� �h i,
2

( )
, (11)

where sp ¼ ½sp1 sp2 . . . spM �
T ¼ ½expðjvp1Þ expðjvp2Þ . . . expðjvpM Þ�

T, Hsp ¼ ½vp1 vp2 . . . vpM �
T, and U ¼

½HT
s1H

T
s2 . . . HT

sP�
T. The first term of (11) represents the squared norm of the projection of the constraint

vectors sp, p ¼ 1; 2; . . . ; P, on the noise subspace spanned by En; the second term is the constraint
related to the squared norm of the phase angle error, and k denotes a positive weighting parameter
providing the relative weight between these terms. According to the theoretical analysis presented
in [25], we would expect that the proposed method shows better capabilities against the finite sample
effect because of using a projection scheme to estimate the phase angle vector as shown by the first term
of Eq. (11).

As a result, the optimal solution Uo in minimizing (11) can then be used as an appropriate estimate of
UP ¼ ½H

T
1 HT

2 . . . HT
P�

T formed by the actual phase angle vectors Hp, p ¼ 1; 2; . . . ; P, for array
beamforming. However, the cost function of (11) is a highly nonlinear function of the phase angle vectors
Hp, p ¼ 1; 2; . . . ; P. Thus, a closed-form solution for the optimal solution cannot exist. We resort to an
iterative procedure to solve this problem as follows. First, we rewrite (11) as follows:

JðUÞ ¼ ðSÞHWðSÞ � k exp �
XP

p¼1

Hsp �Hdp

� �T
Hsp �Hdp

� �h i,
2

( )
, (12)

where the MP� 1 vector S ¼ ½sT1 sT2 . . . sTP�
T and W is a PM�PM block diagonal matrix with the pth

M�M diagonal block matrix given by EnEn
H. Then, the gradient vector of JðUÞ can be computed
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according to

rFJðUÞ ¼ �2Re j EnEH
n s1

� �
� sn1

� �� �
� 2Re j EnEH

n s2
� �

� sn2
� �� �

� � �
�

�2Re j EnEH
n sP

� �
� snP

� �� ��T
þ k exp �

XP

p¼1

Hsp �Hdp

� �T
Hsp �Hdp

� �h i
=2

( )
U�Udð Þ

" #
, ð13Þ

where Re{x} denotes the real part of x, the superscript n the complex conjugate, and � the Hadamard (or
elementwise) product [26]. Ud ¼ ½H

T
d1H

T
d2 . . . Y

T
dP�

T. Then, we update the phase angle vector U and the
corresponding steering constraint vector sp as follows:

Uðkþ1Þ ¼ H
ðkþ1Þ
s1

� 	T
H
ðkþ1Þ
s2

� 	T
. . . H

ðkþ1Þ
sP

� 	T
 �T
¼ UðkÞ � �rFJ UðkÞ

� �
, (14)

sðkþ1Þpm ¼ exp jnðkþ1Þpm

� 	
; p ¼ 1; 2; . . . ;P; m ¼ 1; 2; . . . ;M, (15)

where the superscript k in bracket denotes the kth iteration and e the preset positive step size. From (14), we
note that the second term includes the factor of the squared norm related to each of the phase angle vector
errors Hsp �Hdp, p ¼ 1; 2; . . . ; P, at the kth iteration. Hence, it would be expected that the resulting
gradient approach for finding the optimal U can provide a more appropriate estimate of U since the
resulting step size becomes variable due to the exponential term as shown in (13).

Next, we present an appropriate scheme for choosing the initial estimate for the MP� 1 vector S ¼

½sT1 sT2 . . . sTP�
T in order to initiate the iterative process of the proposed robust method. According to the

optimal weight vector given by (5) under the assumption that P ¼ 1 and the desired signal with direction
vector a(yp), the output of the adaptive array is approximately given by

ypðtÞ ¼ wH
opxðtÞ � spðtÞgp þ wH

opnðtÞ (16)

based on the assumptions that M4K and the interference signals are suppressed enough, where gp �

wH
opaðypÞ denotes the array gain for the specified signal, where subscript p represents the results obtained by

using the desired signal with direction vector a(yp), p ¼ 1; 2; . . . ; P. Eq. (16) reveals that the output of the
adaptive array can be used as a reference signal to find the actual phase angle vector Hp. Consider the cross-
correlation between x(t) and yp(t). We have

E xðtÞypðtÞ
n

n o
¼ E xðtÞxðtÞH

� �
wop ¼ Rxwop � ppgn

pa yp

� �
þ s2nwop, (17)

where pp denotes the power associated with the specified signal. In practice, the noise power sn
2 is

unknown. However, it can be estimated by taking the average of the M�K smallest eigenvalues of the
autocorrelation matrix as the estimate of sn

2. This raises the issue of estimating the number K of signals/
jammers, which is in itself a difficult signal processing problem. Nevertheless, the techniques based on AIC/
MDL criteria proposed by Wax and Kailath [27] and Fiscler et al. [28] or the bootstrap-based technique
proposed by Brcich et al. [29] can be utilized to deal with this difficulty. From (17), we can therefore adopt
the following vector as the initial estimates for each of sp:

vp ¼ Rxwop � s2nwop. (18)

From (18), we note that the direction vector a(yp) is approximately proportional to vp with a proportional
constant ppgp

�. Hence, an appropriate initial estimate sp
(0) for sp can be formed as follows:

up ¼ up1; up2; . . . ; upM

� �T
¼ vp1

� ��1
vp; sð0Þpm ¼ upm

�� ���1upm; m ¼ 1; 2; . . . ;M, (19)
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sð0Þp ¼ s
ð0Þ
p1 ; s

ð0Þ
p2 ; . . . ; s

ð0Þ
pM

h iT
(20)

for p ¼ 1; 2; . . . ; P, where vp1 denotes the first entry of vp. The superscript ‘‘0’’ in bracket identifies the
initial estimate. In other words, we keep only the phase portion of vp and then take the phase referencing to
the first element of vp to form the initial estimate sp

(0). Finally, we construct an initial estimate Sð0Þ ¼

½ðsð0Þ1 Þ
T
ðsð0Þ2 Þ

T . . . ðsð0ÞP Þ
T
�T of S for carrying out the proposed iterative process.
4. Convergence of the proposed method

In this section, the convergence property of the proposed method is evaluated. To ensure convergence,
we have to show that the cost function to be minimized as given by (12) possesses the property of
JðUðkþ1ÞÞoJðUðkÞÞ. For the sake of simplicity, we let the vector A(k) represent the second term of (14),
i.e., AðkÞ ¼ ��rFJðUðkÞÞ ¼ ½ðAðkÞ1 Þ

T
ðAðkÞ2 Þ

T . . . ðAðkÞP Þ
T
�T and AðkÞp ¼ ½A

ðkÞ
p1 A

ðkÞ
p2 . . . A

ðkÞ
pM �

T, p ¼ 1; 2; . . . ; P.
Assume that A(k) is a nonzero real vector with a norm small enough at the kth iteration. Then,
ðAðkÞÞTAðkÞ40, i.e.,

AðkÞ
� �T

2�Re j W SðkÞ
� �� �

� SðkÞ
� �nn on

��k exp � UðkÞ �Ud

� �T
UðkÞ �Ud

� �h i.
2

n o
UðkÞ �Ud

� �o
40.

Hence,

AðkÞ
� �T

2Re j W SðkÞ
� �� �

� SðkÞ
� �nn on o

4k exp � UðkÞ �Ud

� �T
UðkÞ �Ud

� �h i.
2

n o
AðkÞ
� �T

UðkÞ �Ud

� �
(21)

and the objective function after the (k+1)th iteration is given by

J Uðkþ1Þ
� �

¼ Sðkþ1Þ
� �H

W Sðkþ1Þ
� �

� k exp � Uðkþ1Þ �Ud

� �T
Uðkþ1Þ �Ud

� �h i.
2

n o
. (22)

According to the above definition, (14), and (15), we have

sðkþ1Þpm ¼ exp jvðkþ1Þpm

� 	
¼ exp j vðkÞpm þ AðkÞpm

� 	n o
� 1þ jAðkÞpm

� 	
exp jvðkÞpm

� 	
,

p ¼ 1; 2; . . . ;P; m ¼ 1; 2; . . . ;M. ð23Þ

Based on the result of (23) and the definition of (20), we can express the MP� 1 vector S after the
(k+1)th iteration as follows:

Sðkþ1Þ � SðkÞ þ jAðkÞ
� �

� SðkÞ (24)

Substituting (24) into (22) and performing the necessary algebraic manipulations yields

J Uðkþ1Þ
� �

� SðkÞ þ jAðkÞ
� �

� SðkÞ
� �H

W SðkÞ þ jAðkÞ
� �

� SðkÞ
� �

� k exp � UðkÞ þ AðkÞ �Ud

� �T
UðkÞ þ AðkÞ �Ud

� �h i.
2

n o
� SðkÞ
� �H

W SðkÞ
� �

� k exp � UðkÞ �Ud

� �T
UðkÞ �Ud

� �h i.
2

n o
þ SðkÞ
� �H

� �jAðkÞ
� �

W SðkÞ
� �



ARTICLE IN PRESS

J.-H. Lee et al. / Signal Processing 86 (2006) 296–309302
þ SðkÞ
� �H

W jAðkÞ
� �

� SðkÞ
� �

þ SðkÞ
� �H

� �jAðkÞ
� �

W jAðkÞ
� �

� SðkÞ
� �

þ UðkÞ �Ud

� �T
AðkÞ þ AðkÞ

� �T
AðkÞ=2

n o
k exp � UðkÞ �Ud

� �T
UðkÞ �Ud

� �h i.
2

n o
� J UðkÞ

� �
þ 2Re SðkÞ

� �H
W jAðkÞ
� �

� SðkÞ
� �n o

þ UðkÞ �Ud

� �T
AðkÞk exp � UðkÞ �Ud

� �T
UðkÞ �Ud

� �h i.
2

n o
ð25Þ

since the norm of A(k) is small enough, we neglect the terms (A(k))TA(k) and (S(k))H�[–jA(k)]W[jA(k)]�(S(k)).
From (25), it is clear that we have to show

2Re SðkÞ
� �H

W jAðkÞ
� �

� SðkÞ
� �n o

þ UðkÞ �Ud

� �T
AðkÞk exp � UðkÞ �Ud

� �T
UðkÞ �Ud

� �h i.
2

n o
p0

(26)

for any k in order to ensure convergence. Based on (21), condition (26) can be reformulated as follows:

2Re SðkÞ
� �H

W jAðkÞ
� �

� SðkÞ
� �n o

þ AðkÞ
� �T

2Re j WSðkÞ
� �

� SðkÞ
� �nn o

p0 (27)

which can be reformulated as follows:

XP

p¼1

2Re SðkÞp

� 	H
EnEH

n jAðkÞp

h i
� SðkÞp

� 	� 
þ
XP

p¼1

AðkÞ
� �T

2Re jEnEH
n S
ðkÞ
p

h i
� SðkÞp

� 	n
� 

p0. (28)

Next, we manipulate the left-hand side of (28) as follows:

XP

p¼1

2Re SðkÞp

� 	H
EnEH

n jAðkÞp

h i
� SðkÞp

� 	� 
þ
XP

p¼1

AðkÞ
� �T

2Re jEnEH
n S
ðkÞ
p

h i
� SðkÞp

� 	n
� 

¼
XP

p¼1

2Re SðkÞp

� 	H
EnEH

n jAðkÞp

h i
� SðkÞp

� 	�
þ AðkÞ
� �T

j EnEH
n S
ðkÞ
p

h i
� SðkÞp

� 	n


¼
XP

p¼1

2Re SðkÞp

� 	H
EnEH

n jAðkÞp

h i
� SðkÞp

� 	�
þ EnEH

n S
ðkÞ
p

h iT
jAðkÞp

h i
� SðkÞp

� 	n


¼
XP

p¼1

2Re SðkÞp

� 	H
EnEH

n jAðkÞp

h i
� SðkÞp

� 	�
þ SðkÞp

� 	H
EnEH

n

� �H
�jAðkÞp

h i
� SðkÞp

� 	� n

¼
XP

p¼1

2Re SðkÞp

� 	H
EnEH

n jAðkÞp

h i
� SðkÞp

� 	�
� SðkÞp

� 	H
EnEH

n

� �H
jAðkÞp

h i
� SðkÞp

� 	� n

¼
XP

p¼1

2Re 2j Im SðkÞp

� 	H
EnEH

n jAðkÞp

h i
� SðkÞp

� 	� � 
¼ 0. ð29Þ

Hence, the result given by the left-hand side of (27) is always equal to zero, i.e.

2Re SðkÞ
� �H

W jAðkÞ
� �

� SðkÞ
� �n o

þ AðkÞ
� �T

2Re j WSðkÞ
� �

� SðkÞ
� �nn o

¼ 0. (30)

Consequently, we obtain

2Re SðkÞ
� �H

W jAðkÞ
� �

� SðkÞ
� �n o

þ UðkÞ �Ud

� �T
AðkÞk exp � UðkÞ �Ud

� �T
UðkÞ �Ud

� �h i.
2

n o
o0.

(31)
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It follows from (25) and (31) that

J Uðkþ1Þ
� �

oJ UðkÞ
� �

. (32)

The result shown by (32) ensures the convergence of the proposed method.
5. Computer simulation results

In this section, several simulation examples are presented for showing the effectiveness of the proposed
method. For all simulation examples, we use a ULA with interelement spacing equal to half of the
minimum wavelength of the signals with specified gain/null requirements. All simulation results presented
are obtained by averaging L ¼ 50 independent runs with independent noise samples for each run.
Moreover, the values of e and k used by the proposed method for all examples are 0.001 and 0.0001,
respectively, which were empirically found to be appropriate. Unless otherwise noted, all simulation results
are based on a sample set of 15,000 snapshots. For each of the simulation examples, the results of using the
proposed method are obtained after the iteration procedure is terminated. The stopping criterion for
terminating the iteration procedure is that the norm of the gradient vector rFJðUÞ is not greater than 0.01.

Example 1. Here, three signal sources with (SNRs) equal to 10, 20, and 20 dB, respectively, are impinging
on the array with size M ¼ 8 from direction angles 01, 601, and 801, respectively. Consider the case of main-
beam constraint. Let the specified signal be the first one with c1 ¼ 1 and the others be the interference. The
steering angle is set to 71, i.e. the steering angle error equals 71. Fig. 1 depicts the simulation results
including the array beam patterns, the corresponding array output signal-to-interference-plus-noise ratio
(SINR), and the array output SINR versus the SNR of the specified signal with and without utilizing the
proposed method. For comparison, the results of using the diagonal loading technique of [20] and without
steering angle error (i.e., the ideal case) are also shown. The output SINRs obtained by using the proposed
method, the diagonal loading method, and the ideal case (beamforming with no steering angle error) are
16.42, 7.15, and 18.40 dB, respectively. We observe from these results that the proposed method can
effectively cope with the performance degradation due to the steering angle error.

Example 2. In this example, three signal sources with SNRs equal to 5, 4, and 2 dB, respectively, are
impinging on the array with size M ¼ 8 from direction angles 171, �511, and 691, respectively. The specified
signals are the first two signals with c1 ¼ c2 ¼ 1 and the third one is the jammer. Let both direction angle
errors Dy1 and Dy2 be equal to 71. Fig. 2 plots the simulation results in terms of the array beam patterns, the
corresponding array output SINR, and the array output SINR versus the SNR of the specified signal at 171
with and without utilizing the proposed method. For comparison, the results of using the diagonal loading
technique of [20] with a loading factor of 2000 (which was empirically found to be optimal), and the ideal
case are also shown. The output SINRs obtained by using the proposed method, the diagonal loading, and
the ideal errorless beamforming are 13.57, 9.90, and 13.58 dB, respectively. We observe from the results that
the proposed method can effectively cope with the performance degradation due to steering angle errors
and provide array performance very close to that of the ideal case. From the array output SINR versus the
number of snapshots, we note that the proposed method shows better capabilities against the finite sample
effect. However, the ideal scenario demonstrates better performance than the proposed method as expected
when the number of data snapshots is sufficiently large in this case.

Example 3. Here, we consider the case of four signals with SNRs equal to 5, 6, 7, and 5 dB, respectively,
impinging on an array of size M ¼ 15 from direction angles 251, �251, 501, and 01, respectively. Assume
that the specified signals are the first three signals with c1 ¼ c2 ¼ c3 ¼ 1 and the fourth one is a jammer. Let
all of the direction angle errors be Dy1 ¼ Dy2 ¼ Dy3 ¼ 51. Fig. 3 shows the simulation results in terms of the
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Fig. 1. (a) The array beam patterns for Example 1, (b) the output SINR versus the number of snapshots for Example 1, (c) the output

SINR versus the SNR of the desired signal for Example 1.

J.-H. Lee et al. / Signal Processing 86 (2006) 296–309304
array beam patterns using 30,000 data snapshots, the corresponding array output SINR, and the array
output SINR versus the SNR of the specified signal at 251 with and without utilizing the proposed method.
For comparison, the results of using the diagonal loading technique of [20] with an empirically optimal
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Fig. 2. (a) The array beam patterns for Example 2, (b) the output SINR versus the number of snapshots for Example 2, (c) the output

SINR versus the SNR of the desired signal for Example 2.
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loading factor of 2000, and the ideal beamforming case are also shown. The output SINRs obtained by
utilizing 30,000 data snapshots for the results of using the proposed method, the diagonal loading, and the
ideal case are 17.76, 10.87, and 17.86 dB, respectively. Again, we observe from the simulation results that
the proposed method performs very satisfactorily in the presence of steering angle errors for the multiple-
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Fig. 3. (a) The array beam patterns for Example 3, (b) the output SINR versus the number of snapshots for Example 3, (c) the output

SINR versus the SNR of the desired signal for Example 3.
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beam case. From the array output SINR versus the number of snapshots, we note that the proposed
method shows better capabilities against the finite sample effect. However, the ideal scenario demonstrates
better performance than the proposed method as expected when the number of data snapshots is
sufficiently large in this case.
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In order to better highlight the contribution, the comparison between the proposed method, the method
of [24], and using the quadratic constraint k

PP
p¼1½ðsp � adðypÞÞ

T
ðsp � adðypÞÞ� to replace the exponential

constraint–k exp �
PP

p¼1½ðHsp �HdpÞ
T
ðHsp �HdpÞ�=2

n o
is also performed in terms of array beam patterns
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Fig. 6. The output SINR and number of iterations versus the step size for Example 2.
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and output SINR versus the number of snapshots in the case of Example 2 as shown by Fig. 4. The output
SINRs obtained by using the method of [24] and the quadratic constraint after using 15,000 data snapshots
are 10.18 and 9.70 dB, respectively, which are significantly less than that (13.57 dB) obtained by using the
proposed method. These results show that the proposed method indeed outperforms the method of [24] and
the method using a quadratic constraint. Finally, we present figures to illustrate how sensitive the array
performance is with respect to the values of k and e. Figs. 5 and 6 show the array output SINRs and the
numbers of iterations versus k and e, respectively, for Example 2. We note that the proposed method
provides array performance with robust capabilities not very sensitive to the choice of k and e in the ranges
shown by the figures. However, the number of iterations for obtaining the convergent results decreases in
general as the value of e increases.
6. Conclusion

This paper has presented an efficient method for multiple-beam adaptive beamforming in the presence of
steering angle errors. We have illustrated that the performance degradation of an adaptive beamformer
with multiple-beam constraints due to steering angle errors is significant. The proposed method constructs a
cost function consisting of the squared norm of the projection of the steering vector on the noise subspace
and a constraint related to an exponential function of the squared norm of the corresponding phase error
vector. The resulting minimization problem is highly nonlinear but can be solved through the use of an
iterative procedure. In conjunction with a steepest-descent algorithm, the phase angle estimates for all of
the signals with specified gain constraints can be obtained simultaneously. The convergence property of the
proposed method has been investigated. Several simulation examples have shown the effectiveness of the
proposed method in dealing with adaptive beamforming under steering angle errors.
References

[1] A.M. Vural, Effects of perturbation on the performance of optimum adaptive arrays, IEEE Trans. Aerospace Electron. Syst. 15

(February 1979) 76–87.

[2] R.T. Compton Jr., Pointing accuracy and dynamic range in a steered beam adaptive array, IEEE Trans. Aerospace Electron. Syst.

16 (May 1980) 280–287.



ARTICLE IN PRESS

J.-H. Lee et al. / Signal Processing 86 (2006) 296–309 309
[3] R.T. Compton Jr., The effect of random steering vector errors in the Applebaum adaptive array, IEEE Trans. Aerospcae

Electron. Syst. 18 (September 1982) 292–400.

[4] L.C. Godara, Error analysis of the optimal antenna array processor, IEEE Trans. Aerospace Electron. Syst. 22 (May 1986)

395–409.

[5] N.K. Jablon, Adaptive beamforming with the generalized sidelobe canceller in the presence of array imperfections, IEEE Trans.

Antennas Propagat. 34 (August 1986) 996–1012.

[6] K.M. Ahmed, R.J. Evans, Robust signal and array processing, IEE Proceedings Partest F, Communications in Radar and Signal

Processing, August. 1982, pp. 297–302.

[7] R.J. Evans, K.M. Ahmed, Robust adaptive array antennas, J. Acoust. Soc. Amer. 71 (February 1982) 384–394.

[8] M.H. Er, A. Cantoni, An alternative formulation for an optimum beamformer with robust capability, IEE Proceedings Port. F,

Communications in Radar and Signal Process, October 1985, pp. 447-460.

[9] M.H. Er, A robust formulation for an optimum beamformer subject to amplitude and phase perturbation, Signal Processing 19

(January 1990) 17–26.

[10] M.H. Er, A. Cantoni, Derivative constraints for broad-band element space antenna array processors, IEEE Trans. Acoust. Speech

Signal Process. 31 (December 1983) 1378–1393.

[11] K.M. Buckley, L.J. Griffiths, An adaptive generalized sidelobe canceller with derivative constraints, IEEE Trans. Antennas

Propagat. 34 (March 1986) 311–319.

[12] H. Cox, R.M. Zeskind, M.M. Owen, Robust adaptive beamforming, IEEE Trans. Acoust. Speech Signal Processing 35 (October

1987) 1365–1376.

[13] K. Takao, N. Kikuma, Tamed adaptive antenna array, IEEE Trans. Aerospace Electron. Syst. 22 (March 1986) 388–394.

[14] J.W. Kim, C.K. Un, A robust adaptive array based on signal subspace approach, IEEE Trans. Signal Process. 41 (November

1993) 3166–3171.

[15] A. Cantoni, X.G. Lin, K.L. Teo, A new approach to the optimization of robust antenna array processors, IEEE Trans. Antennas

Propagat. 41 (April 1993) 403–411.

[16] S. Shahbazpanahi, A.B. Gershman, Z.-Q. Luo, K.M. Wong, Robust adaptive beamforming for general-rank signal models using

worst-case performance optimization, Proceedings of the Second IEEE Workshop on Sonar Array and Multichannel Processing

(SAM-2002), Washington DC, August 2002, pp. 13–17.

[17] S.A. Vorobyov, A.B. Gershman, Z.-Q. Luo, Robust adaptive beamforming using worst-case performance optimization: a solution

to the signal mismatch problem, IEEE Trans. Signal Processing 51 (February 2003) 313–324.

[18] B.D. Carlson, Covariance matrix estimation errors and diagonal loading in adaptive arrays, IEEE Trans. Aerospace Electron.

Syst. 24 (July 1988) 397–401.

[19] D.D. Feldman, L.J. Griffiths, A projection approach to robust adaptive beamforming, IEEE Trans. Signal Process. 42 (April

1994) 867–876.

[20] J. Li, P. Stoica, Z. Wang, On robust Capon beamforming and diagonal loading, IEEE Trans. Signal Process. 51 (July 2003)

1702–1715.

[21] J.T. Mayhan, Area coverage adaptive nulling from geosynchronous satellites: phased arrays versus multiple-beam antennas, IEEE

Trans. Antennas Propagat. 34 (March 1986) 410–419.

[22] K.-B. Yu, Adaptive beamforming for satellite communication with selective earth coverage and jammer nulling capability, IEEE

Trans. Signal processing, 44 (December 1996) 3162–3166.

[23] J.-H. Lee, T.-F. Hsu, Adaptive beamforming with multiple-beam constraints in the presence of coherent jammers, Signal

Processing 80 (November 2000) 2475–2480.

[24] C.-C. Lee, J.-H. Lee, Robust adaptive array beamforming under steering vector errors, IEEE Trans. Antennas and Propag.

45 (January 1997) 168–175.

[25] L. Chang, C.-C. Yeh, Performance of DMI and eigenspace-based beamformers, IEEE Trans. on Antennas and Propagat.

40 (November 1992) 1336–1347.

[26] R.A. Horn, C.R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1985.

[27] M. Wax, T. Kailath, Detection of signals by information theoretic criteria, IEEE Trans. Acoust. Speech Signal Process. ASSP-33

(February 1985) 387–392.

[28] E. Fishler, M. Grosmann, H. Messer, Detection of signals by information theoretic criteria: general asymptotic performance

analysis, IEEE Trans. Acoust. Signal Process. 50 (May 2002) 1027–1036.

[29] R.F. Brcich, A.M. Zoubir, P. Pelin, Detection of sources using bootstrap techniques, IEEE Trans. Signal Process. 50 (February

2002) 206–215.


	Robust adaptive array beamforming under steering �angle mismatch
	Introduction
	Problem formulation
	A robust method
	Convergence of the proposed method
	Computer simulation results
	Conclusion
	References


