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Abstract

A two space dimensional active nonlinear nonlocal cochlear model is formulated in
the time domain to capture nonlinear hearing effects such as compression, multi-
tone suppression and difference tones. The micromechanics of the basilar membrane
(BM) are incorporated to model active cochlear properties. An active gain parame-
ter is constructed in the form of a nonlinear nonlocal functional of BM displacement.
The model is discretized with a boundary integral method and numerically solved
using an iterative second order accurate finite difference scheme. A block matrix
structure of the discrete system is exploited to simplify the numerics with no loss
of accuracy. Model responses to multiple frequency stimuli are shown in agreement
with hearing experiments. A nonlinear spectrum is computed from the model, and
compared with FFT spectrum for noisy tonal inputs. The discretized model is effi-
cient and accurate, and can serve as a useful auditory signal processing tool.
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1 Introduction

Auditory signal processing based on phenomenological models of human per-
ception has helped to advance the modern technology of audio compression
[10]. It is of interest therefore to develop a systematic mathematical frame-
work for sound signal processing based on models of the ear. The biomechanics
of the inner ear (cochlea) lend itself well to mathematical formulation ([1,2]
among others). Such models can recover main aspects of the physiological
data [13,11] for simple acoustic inputs (e.g. single frequency tones). In this
paper, we study a nonlinear nonlocal model and associated numerical method
for processing complex signals (clicks and noise) in the time domain. We also
obtain a new spectrum of sound signals with nonlinear hearing characteristics
which can be of potential interest for applications such as speech recognition.

Linear frequency domain cochlear models have been around for a long time
and studied extensively [8,9]. The cochlea, however, is known to have nonlinear
characteristics, such as compression, two-tone suppression and combination
tones, which are all essential to capture interactions of multi-tone complexes
[4,5,17]. In this nonlinear regime, it is more expedient to work in the time
domain to resolve complex nonlinear frequency responses with sufficient ac-
curacy. The nonlinearity in our model resides in the outer hair cells (OHC’s),
which act as an amplifier to boost basilar membrane (BM) responses to low-
level stimuli, so called active gain. It has been shown [3] that this type of
nonlinearity is also nonlocal in nature, encouraging near neighbors on the BM
to interact.

One space dimensional transmission line models with nonlocal nonlinearities
have been studied previously for auditory signal processing [5,16,17,15]. Higher
dimensional models give sharper tuning curves and higher frequency selectiv-
ity. In section 2, we begin with a two space dimensional (2-D) macromechani-
cal partial differential equation (PDE) model. We couple the 2-D model with
the BM micromechanics of the active linear system in [9]. We then make the
gain parameter nonlinear and nonlocal to complete the model setup, and do
analysis to simplify the model.

In section 3, we discretize the system and formulate a second order accurate
finite difference scheme so as to combine efficiency and accuracy. The matrix
we need to invert at each time step has a time-independent part (passive) and
a time-dependent part (active). In order to speed up computations, we split
the matrix into the passive and active parts and devise an iterative scheme.
We only need to invert the passive part once, thereby significantly speeding
up computations. The structure of the system also allows us to reduce the
complexity of the problem by a factor of two, giving even more computa-
tional efficiency. A proof of convergence of the iterative scheme is given in the
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Fig. 1. The figure on the left is a schematic of the cochlea, while the figure on
the right represents the upper chamber with the macromechanical equations and
boundary conditions.

Appendix.

In section 4, we discuss numerical results and show that our model successfully
reproduces the nonlinear effects such as compression, multi-tone suppression,
and combination difference tones. We demonstrate such effects by inputing
various signals into the model, such as pure tones, clicks and noise. A nonlinear
spectrum is computed from the model and compared with FFT spectrum for
the acoustic input of a single tone plus Gaussian white noise. The conclusions
are in section 5.

2 Model Setup

2.1 Macromechanics

The cochlea consists of an upper and lower fluid filled chamber, the scala
vestibuli and scala tympani, with a shared elastic boundary called the basilar
membrane (BM) (see Figure 1). The BM acts like a Fourier transform with
each location on the BM tuned to resonate at a particular frequency, ranging
from high frequency at the basal end to low frequency at the apical end. The
acoustic wave enters the ear canal, where it vibrates the eardrum and then
is filtered through the middle ear, transducing the wave from air to fluid in
the cochlea via the stapes footplate. A traveling wave of fluid moves from the
base to the apex, creating a skew-symmetric motion of the BM. The pressure
difference drives the BM, which resonates according to the frequency content
of the passing wave.

We start with simplification of the upper cochlear chamber into a two dimen-
sional rectangle Ω = [0, L]×[0, H ] (see Figure 1). Due to the symmetry, we can
ignore the lower chamber. The bottom boundary (z = 0) is the BM, while the
left boundary (x = 0) is the stapes footplate. The macromechanical equations
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∆p(x, z, t) = ∂2p
∂x2 +

∂2p
∂z2

= 0, x ∈ [0, L], z ∈ [0, H ], t ∈ [0,∞)

px(0, z, t) = TMpe(t), p(L, z, t) = 0

pz(x, 0, t) = 2ρutt, pz(x,H, t) = 0

(2.1)

where p(x, z, t) is the pressure difference across the BM, u(x, t) denotes BM
displacement, and ρ is fluid density.

At the stapes footplate (0, z), pe(t) is pressure at the eardrum while TM is a
bounded linear operator on the space of bounded continuous functions that
incorporates the middle ear filtering characteristics. In the frequency domain,
for each input eiωt, TM(ω) = 2ρiω/Zm, where Zm is the impedance of the
middle ear. The middle ear amplification function is given by aM = |TM|. In
our case, based on Guinan and Peake [7],

aM(f) = 1.815f 2((1− f 2

f 2
m

)2 + (2ζmf/fm)
2)−1/2, (2.2)

where fm = 4 kHz is the middle ear characteristic frequency and ζm = 0.7 is
the middle ear damping ratio. Thus, for pe(t) = A exp{2πif}+c.c, where c.c. is
complex conjugate, we have TMpe(t) = B exp{2πif}+c.c., where B = aM(f)A.

For more complex stimuli, it is useful to model the middle ear in the time
domain as a one-degree of freedom spring-mass system. The equivalent time
domain formulation of the steady state middle ear is given by











pe(t) = mms̈(t) + cmṡ(t) + kms(t)

s(0) = ṡ(0) = 0
(2.3)

where s(t) is stapes displacement and mm, cm and km are the mass, damping
and stiffness of the middle ear. The stapes boundary condition in (2.1) is
replaced by

px(0, z, t) = 2ρs̈(t) (2.4)

One of the interesting effects of using the time domain middle ear model is
that it reduces the dispersive instability in the cochlea (see [14]). It appears
that the steady state middle ear model ignores important transient effects and
phase shifts that help to reduce the shock to the cochlea.

At the helicotrema (L, z), we have used the Dirichlet boundary condition
p(L, z, t) = 0. In [9], they used an absorbing boundary condition px(L) =
cpt(L), where c is a positive constant [9]. Other models use the Neumann con-
dition px(L) = 0. It has been stated that the frequency domain solutions are
minimally affected by which boundary condition is chosen [8], and thus we
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Fig. 2. Cross section micromechanics of the
cochlea. The mass m1 represents a cross sec-
tion of the BM, while mass m2 is a cross sec-
tion of the TM. (Reconstructed from Figure 3
in [9])

have chosen the simpler Dirichlet condition. However, interesting results on
choosing the best initial conditions to minimize transient effects (dispersive in-
stability) has been shown in [14] using the Neumann condition. To summarize,
the macromechanics consist of equations (2.1)–(2.4).

2.2 Micromechanics

This is a resonant tectorial membrane model based on [9]. The BM and TM
(tectorial membrane) are modeled as two lumped masses coupled by a spring
and damper, with each mass connected to a wall by a spring and damper.
(See Figure 2). A classical approximation is to have no longitudinal coupling
except that which occurs through the fluid. Denoting ξ(x, t) = (u(x, t), v(x, t))
as BM and TM displacement, respectively, the equations of motion for the
passive case at each point along the cochlea are given by

Mpξ̈ + Cpξ̇ +Kpξ = F (2.5)

where

Mp =







m1 0

0 m2





 , Cp =







c1 + c3 −c3

−c3 c2 + c3





 , Kp =







k1 + k3 −k3

−k3 k2 + k3





 (2.6)

and forcing function

F =







p(x, 0, t)

0





 (2.7)

The parameters mi, ci, and ki are functions of x. The initial conditions are
given by

ξ(x, 0) = ξ̇(x, 0) = 0 (2.8)

To make the model active, a self-excited vibrational force acting on the BM
is added to (2.5):

Mpξ̈ + Cpξ̇ +Kpξ = F + Fa
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where

Fa =







γ[c4(u̇− v̇) + k4(u− v)]

0







The difference u − v represents OHC displacement. The parameter γ ∈ [0, 1]
is the active gain control. In [9], this is a constant, but in our case will be a
nonlinear nonlocal functional of BM displacement and BM location. Bringing
Fa to the left, we have

Mpξ̈ + (Cp − γCa)ξ̇ + (Kp − γKa)ξ = F (2.9)

where

Ca =







c4 −c4

0 0





 , Ka =







k4 −k4

0 0





 (2.10)

Thus, the micromechanics consist of equations (2.6)–(2.10).

2.3 Nonlinear Nonlocal Active Gain

A compressive nonlinearity in the model is necessary to capture effects such
as two-tone suppression and combination tones. Also, to allow for smoother
BM profiles, we make the active gain nonlocal. Thus we have

û(x, t) =
2√
λπ

∫ L

0
e−(x−s)2/λ u2(s, t) s.

and gain

γ(x, t) =
1

1 + θû
where θ, λ are constants.

2.4 Semi-discrete Formulation

Solving the pressure Laplace equation on the rectangle using separation of
variables, we arrive at

p(x, 0, t) = TMpe(t)(x− L) +
∞
∑

n=1

An cos βnx (2.11)

where

An =
(−4ρH

L

)

(

coth βnH

βnH

)

∫ L

0
utt(x, t) cos βnxx. (2.12)

6



βn =
(n− 1

2
)π

L
Substituting (2.11) into (2.7) and then discretizing (2.9) in space into N grid
points, we have

M~ξtt + C(t)~ξt +K(t)~ξ = ~b(t) (2.13)

where

M =







M1 + αMf 0

0 M2







C(t) = Cp − Γ̂(t)Ca =







C1 + C3 − Γ(t)C4 −(C3 − Γ(t)C4)

−C3 C2 + C3







K(t) = Kp − Γ̂(t)Ka =







K1 +K3 − Γ(t)K4 −(K3 − Γ(t)K4)

−K3 K2 +K3







~b(t) =







TMpe(t)(~x− L)

0







Mf,ij =
K
∑

k=1

cothβkH

βkH
cos(βkxi) cos(βkxj)wj

α =
4ρH

N − 1

Cp, Kp, Ca and Ka are now block diagonal, where Ki = diag{ki} and Ci =

diag{ci}. Also, Mi = diag{mi}, Γ(t) = diag{γi(t)} and Γ̂(t) = diag{Γ(t), 0}.
The numbers wj are numerical integration weights in the discretization of
(2.12) and are chosen based on the desired degree of accuracy. Note that we
can write Mf = M s

fW , where W = diag(wj) and M s
f is symmetric and positive

definite. The result of separation of variables produced the matrix Mf , which
is essentially the mass of fluid on the BM and dynamically couples the system.

3 Numerics

In formulating a numerical method, we note that the matrices in (2.13) can be
split into a time-independent passive part and a time-dependent active part.
In splitting in this way, we are able to formulate an iterative scheme where
we only need to do one matrix inversion on the passive part for the entire
simulation. Thus, using second order approximations of the first and second
derivates in (2.13), we arrive at

(Lp − Ln
a )
~ξn+1 = ~Bn =⇒ ~ξn+1,k+1 = L−1

p
~Bn + L−1

p Ln
a
~ξn+1,k (3.14)
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where superscript n denotes discrete time, k denotes iteration and

Lp = 2M +
3

2
∆tCp +∆t2Kp

Ln
a = Γ̂n[

3

2
∆tCa +∆t2Ka]

~Bn = ∆t2~b(n∆t) +M(5~ξn − 4~ξn−1 + ~ξn−2) +
∆t

2
Cn(4~ξn − ~ξn−1).

Proof of convergence will follow naturally from the next discussion. Notice
that this is a 2N × 2N system. We shall simplify it to an N ×N system and
increase the computational efficiency.

3.1 System Reduction

We write Lp and Ln
a in block matrix form as

Lp =







M̃1 −P3

−P3 M̃2







Ln
a =







ΓnP4 −ΓnP4

0 0







where

M̃1 = 2(αMf +M1) + P1 + P3

M̃2 = 2M2 + P2 + P3

Pi =
3

2
∆tCi +∆t2Ki

It is easily seen that the left inverse of Lp is given by

L−1
p =







D−1 D−1M̃−1
2 P3

M̃−1
2 P3D

−1 M̃−1
2 P3D

−1M̃1P
−1
3







where

D= M̃1 − P3M̃
−1
2 P3

=2αMf + [2M1 + P1 + P3(I − M̃−1
2 P3)]

= {2αM s
f + [2M1 + P1 + P3(I − M̃−1

2 P3)]W
−1}W

≡DsW (3.15)
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Note that D is invertible since M s
f is positive definite, thus invertible, and

all other terms are positive diagonal matrices, and thus their sum is positive
definite and invertible. We also have

L−1
p Ln

a =







D−1ΓnP4 −D−1ΓnP4

M̃−1
2 P3D

−1ΓnP4 −M̃−1
2 P3D

−1ΓnP4





 (3.16)

Letting ~Bn = ( ~Bn
1 ,

~Bn
2 ), we have

~un+1,k+1=W−1[ζn1 +D−1
s ΓnP4(~u− ~v)n+1,k] (3.17)

~vn+1,k+1=W−1M̃−1
2 P3[ζ

n
2 +D−1

s ΓnP4(~u− ~v)n+1,k] (3.18)

where

ζn1 = D−1
s [ ~Bn

1 + M̃−1
2 P3

~Bn
2 ] (3.19)

ζn2 = D−1
s [ ~Bn

1 + M̃1P
−1
3

~Bn
2 ] (3.20)

At each time step, we do 2N×N matrix solves in (3.19) and (3.20) to initialize
the iterative scheme. Then, since the same term appears in both equations
(3.17) and (3.18), for each k we only have to do 1 N × N matrix solve. In
practice, since Ds is symmetric, positive definite and time-independent, we
compute the Cholesky factorization of Ds at the start of the simulation and
use the factorization for more efficient matrix solves at each step. As a side
note, if we subtract (3.18) from (3.17), we have one equation for the OHC
displacement u− v.

4 Numerical Results

4.1 Model Parameters

We start with a modification of the parameters in [9] (See Table 1). It is known
that higher dimensional models give higher sensitivity. This is the case with
this model. The 1-D model [9] gives a 90 dB active gain at 16 kHz, whereas
the 2-D model gives a 160 dB active gain. Thus, we need to tune the system to
reduce the gain. There are many ways to do this, and the method we choose
is to increase all the damping coefficients in the table by the following:

2 e0.2773x ci 7→ ci, i = 1, 2, 3, 4

9



Table 1
Model parameters in cgs units

m1(x) 3 · 10−3 g · cm−2 mm 34.4 · 10−3 g · cm−2

c1(x) 20 + 1500 e−2x dyn · s · cm−3 cm 1.21 · 103 dyn · s · cm−3

k1(x) 1.1 · 109 e−4x dyn · cm−3 km 2.18 · 107 dyn · cm−3

m2(x) 0.5 · 10−3 g · cm−2 L 2.5 cm

c2(x) 10 e−2.2x dyn · s · cm−3 H 0.1 cm

k2(x) 7 · 106 e−4.4x dyn · cm−3 ρ 0.1 g · cm−3

c3(x) 2 e−0.8x dyn · s · cm−3 θ 0.5

k3(x) 107 e−4x dyn · cm−3 λ 0.08 cm

c4(x) 1040 e−2x dyn · s · cm−3 ∆t 2.5 · 10−6 – 10−5 s

k4(x) 6.15 · 108 e−4x dyn · cm−3 N 401
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Fig. 3. Both figures are sensitivity curves for CP = 0.77 cm or CF = 10 kHz. The
left plot is a collection of sensitivity curves for the linear steady state active model
where the parameter is the active gain γ. The right plot is a collection of sensitivity
curves for the nonlinear time domain model where the parameter is pressure at the
eardrum in dB SPL (sound pressure level).

4.2 Isointensity Curves

In an isocontour plot, a probe is placed at a specific location on the BM where
the time response is measured and analyzed for input tones covering a range
of frequencies. Figure 3 shows isointensity curves for CF = 10 kHz, which
corresponds to CP = 0.77 cm. The characteristic place (CP) for a frequency
is defined as the location on the BM of maximal response from a pure tone
of that frequency in the fully linear active model (γ = 1). The characteristic
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Fig. 4. An impulse, or click, lasting 0.1 ms starting at 0.4 ms is input into the
nonlinear nonlocal ear model. The left plot is the BM displacement time series for
various CF’s ranging from 0.5-4 kHz. The right plot is a sensitivity plot for various
stimulus intensities at CF = 6.4 kHz.

frequency (CF) at a BM location is the inverse of this map. The left plot is
the linear steady state active case. The parameter is the active gain γ, and
for each value of the active gain we get a curve that is a function of the input
frequency. The value of this function is the ratio |u|(CP)/Pe, where |u|(CP) is
BM displacement at the characteristic place and Pe is pressure at the eardrum.
This is known as sensitivity. It is basically an output/input ratio and gives
the transfer characteristics of the ear at that particular active level. Notice
that when γ = 1, the BM at the characteristic place is most sensitive at the
corresponding characteristic frequency, but at lower values of the gain, the
sensitivity peak shifts to lower frequencies.

Analogously, the second plot in Figure 3 shows isointensity curves for the non-
linear time domain model where now the parameter is the intensity of the input
stimulus in dB SPL (sound pressure level). For the time domain, we measure
the root-mean-square BM amplitude from 5 ms (to remove transients) up to a
certain time T . Note that for high-intensity tones, the model becomes passive
while low-intensity tones give a more active model. This shows compression.
Again, there is a frequency shift of the sensitivity peak (about one-half octave)
from low to high-intensity stimuli in agreement with [11], so called half-octave
shift. The plot agrees well with Figure 5 in [11].
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Fig. 5. Gaussian noise is input into the ear. The left plot is the BM displacement
times series for various CF’s ranging from 0.5-16 kHz. The right plot is a sensitivity
plot for CF = 6.4 kHz.

4.3 Complex Stimuli

The first non-sinusoidal input we look at is a click. In the experiment in the
left plot of Figure 4, we put probes at varying characteristic places associated
with frequencies ranging from 0.5-4 kHz to measure the time series BM dis-
placement. The click was 40 dB with duration 0.1 ms starting at 0.4 ms. All
responses were normalized to amplitude 1. The plot is similar to Figure 4 in
[5]. In the right plot of Figure 4, a probe was placed at CP for 6.4 kHz and the
time series BM volume velocity was recorded for various intensities and the
sensitivity plotted. This shows, similar to Figure 3, the compression effects at
higher intensities. See Figure 9 in [11] for a similar plot.

The second non-sinusoidal input we explore is Gaussian white noise. Figure 5 is
similar in all regards to Figure 4. Notice again in the right plot the compression
effect.

4.4 Difference Tones

Any nonlinear system with multiple sinusoidal inputs will create difference
tones. If two frequencies f1 and f2 are put into the ear, nf1±mf2 will be created
at varying intensities, where n and m are nonnegative integers. The cubic
difference tone, denoted f = 2f1 − f2, where f1 < f2, is the most prominent.
Figure 6 contains three plots of one experiment. The experiment consists of
two sinusoidal tones, 7 and 10 kHz at 80 dB each. The cubic difference tone
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Fig. 6. Two sinusoidal tones, 7 and 10 kHz at 80 dB each, are the input. The
left and middle plots are snapshots at 15 ms of BM displacement and active gain,
respectively. The right plot is a spectrum plot of the BM displacement time series
at CP for 4 kHz.

is 4 kHz. The plot on the left is the BM profile for the experiment at 15 ms.
We see combination tone peaks at 1.21 cm (CP for 4 kHz), 1.54 cm (CP for
2 kHz) and 1.85 cm (CP for 1 kHz). The middle plot shows the snapshot at
15 ms of the active gain parameter, showing the difference tones getting an
active boost. Finally, the right plot is a spectrum plot of the time series for
BM displacement at 1.21 cm, the characteristic place for 4 kHz. The cubic
difference tone is above 1 nm and can therefore be heard.

4.5 Multi-tone Suppression

Two-tone (and multi-tone) suppression is characteristic of a compressive non-
linearity and has been recognized in the ear [11,4,6]. Figure 7 illustrates two-
tone suppression and is a collection of isodisplacement curves that show de-
creased tuning in the presence of suppressors and is similar to Figure 16 in
[11]. We placed a probe at the CP for 4 kHz (1.21 cm) and input sinusoids of
various frequencies. At each frequency, we record the pressure at the eardrum
that gives a 1 nm displacement for 4 kHz in the FFT spectrum of the time
series response at CP. The curve without suppressors is dashed with circles.
We then input each frequency again, but this time in the presence of a low
side (0.5 kHz) tone and high side (7.5 kHz) tone, both at 80 dB. Notice the
reduced tuning at the CF. Also notice the asymmetry of suppression, which
shows low side is more suppressive than high side, in agreement with [6].

For multi-tone suppression, we look at tonal suppression of noise. In Figure
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8, for each plot, a probe was placed at every grid point along the BM and
the time response was measured from 15 ms up to 25 ms. The signal in each
consisted of noise at 50 dB with a 2 kHz tone ranging from 40 dB to 80 dB
(top to bottom). An FFT was performed for each response and its charac-
teristic frequency amplitude was recorded and plotted in decibels relative to
the average of the response spectrum of 0 dB noise from 0.5-16 kHz. We see
suppression of all frequencies, with again low-side suppression stronger than
high-side suppression. Figure 8 is qualitatively similar to Figure 3 in [4]. It is
useful to compare this figure with Figure 9. This figure is the same as Figure
8, except we do an FFT of the input signal at the eardrum. Comparing these
two figures shows that we have a new spectral transform that can be used in
place of an FFT in certain applications, for example signal recognition and
noise suppression.

5 Conclusions

We studied a two-dimensional nonlinear nonlocal variation of the linear active
model in [9]. We then developed an efficient and accurate numerical method
and used this method to explore nonlinear effects of multi-tone sinusoidal
inputs, as well as clicks and noise. We showed numerical results illustrating
compression, multi-tone suppression and difference tones. The model reached
agreement with experiments [11] and produced a novel nonlinear spectrum.
In future work, we will analyze the model responses to speech and resulting
spectra for speech recognition. It is also interesting to study the inverse prob-
lem [12] of finding efficient and automated ways to tune the model to different
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Fig. 8. Spectrum plots of BM responses for characteristic frequencies along the BM,
from 500 Hz to 16 kHz, with 50 dB noise and a 2 kHz tone ranging from 40-80 dB.
R0 is the average of the BM response spectrum of 0 dB noise from 0.5-16 kHz. The
solid line represents noise with tone, the dotted line noise without tone.

physiological data. Applying the model to psychoacoustic signal processing
[15] will be another fruitful line of inquiry.
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A Appendix: Convergence of Iterative Scheme (3.14)

We need the following Lemma:
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Lemma 1 If

M =







A −A

B −B







then every non-zero eigenvalue of M is an eigenvalue of A− B.

PROOF.

Let λ be a non-zero eigenvalue of M with non-trivial eigenvector ~x = (~x1, ~x2).
Thus, M~x = λ~x gives

A(~x1 − ~x2) = λ~x1 (A.1)

B(~x1 − ~x2) = λ~x2 (A.2)

Subtracting the two equations, we have

(A−B)(~x1 − ~x2) = λ(~x1 − ~x2)

Now, if ~x1 − ~x2 = 0, then from A.1 and A.2 above and λ 6= 0, we have
~x1 = ~x2 = 0. But this means ~x = 0, which is a contradiction. Thus, λ is an
eigenvalue of A− B with non-trivial eigenvector ~x1 − ~x2. ✷
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Theorem 2 There exists a constant C > 0 such that if ∆t < C, then

ρ(L−1
p Ln

a ) < 1

where ρ is the spectral radius. Thus, the iterative scheme converges.

PROOF.

By the above lemma applied to (3.16), with constant γ, we have

σ(L−1
p Ln

a )⊂ γσ(D−1P4 − M̃−1
2 P3D

−1P4)

= γσ[(I − M̃−1
2 P3)D

−1P4]

where σ denotes spectrum. Thus, we have

ρ(L−1
p Ln

a )≤ γ||(I − M̃−1
2 P3)W

−1D−1
s P4||2

≤ γ||(I − M̃−1
2 P3)W

−1||2||D−1
s ||2||P4||2

Now, let (λ, ~x) be the eigen-pair of Ds with λ the smallest eigenvalue and
||~x|| = 1. Note that λ > 0 since Ds is positive definite. Thus, we have 1/λ is
the largest eigenvalue of D−1

s , which gives

||D−1
s ||2 ≤ 1/λ

Thus, using the definition of Ds from (3.15), we have

λ= ~xTDs~x

= ~xT{2αM s
f + [2M1 + P1 + P3(I − M̃−1

2 P3)]W
−1}~x

≥~xT{[2M1 + P1 + P3(I − M̃−1
2 P3)]W

−1}~x
≥min{[2m1 + p1 + p3(1− m̃−1

2 p3)]w
−1}

where lowercase represents diagonal entries. The third line above follows from
2αM s

f being positive definite. Finally, we have

ρ(L−1
p Ln

a )≤ γ||(I − M̃−1
2 P3)W

−1||2||D−1
s ||2||P4||2

≤ γ
max[(1− m̃−1

2 p3)w
−1] max(p4)

min{[2m1 + p1 + p3(1− m̃−1
2 p3)]w−1}

For ∆t small enough, we have convergence. ✷

With our parameters, for convergence it is sufficient that ∆t ≤ 0.0008. In
practice, however, convergence is seen for ∆t as large as 0.01.
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