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Abstract

Low bit rate image coding is an important problem regarding applications such as
storage on low memory devices or streaming data on the internet. The state of the
art in image compression is to use 2-D wavelets. The advantages of wavelet bases
lie in their multiscale nature and in their ability to sparsely represent functions
that are piecewise smooth. Their main problem on the other hand, is that in 2-D
wavelets are not able to deal with the natural geometry of images, i.e they cannot
sparsely represent objects that are smooth away from regular submanifolds. In this
paper we propose an approach based on building a sparse representation of the edge
part of images in a redundant geometrically inspired library of functions, followed
by suitable coding techniques. Best N-terms non-linear approximations in general
dictionaries is, in most cases, a NP-hard problem and sub-optimal approaches have
to be followed. In this work we use a greedy strategy, also known as Matching Pursuit
to compute the expansion. The residual, that we suppose to be the smooth and
texture part, is then coded using wavelets. A rate distortion optimization procedure
chooses the number of functions from the redundant dictionary and the wavelet
basis.
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1 Introduction

The state of the art in image compression is based on transform coding using
orthonormal basis such as DCT and Wavelets. These schemes have achieved
high compression ratios thanks to the huge research work that has been per-
formed in efficiently coding the transform coefficients and parameters. Never-
theless these traditional approaches suffer some severe limitations. Wavelets
for example fail to capture regularities of contours, since they are not able
to sparsely represent one-dimensional singularities of 2-D signals [1]. Recently
a lot of research effort was aimed at representing a natural image exploiting
its inherent geometrical structure. Concerning image compression, interesting
approaches that follow this idea can be found for example in [2], [3] and [4].

In this work we aim at obtaining an efficient encoding by approximating the
edges of an image by a sum of two-dimensional, non-separable functions. The
residual, that we suppose constituted by the smooth part of the image and
textures, is then coded via wavelets. The edge-oriented dictionary is built by
anisotropically scaling, orienting and bending a generating function, resulting
in an overcomplete basis set. Highly non-linear approximation in redundant
dictionaries is, in general, a NP-hard problem. However this does not impair
the possibility of finding good sparse representations in particular classes of
dictionaries. There are different approaches that find a sub-optimal solution
to this problem like Basis Pursuit [5] (BP), Orthogonal Matching Pursuit [6]
(OMP) and Matching Pursuit [7] (MP). In this paper we use a technique based
on the greedy Matching Pursuit algorithm that in general is not sparseness-
preserving [8]. However experimental results showed its ability to give highly
sparse decompositions of 1-D signals [9], images [10,11] and videos [12,13].
Moreover very recent theoretical results prove that, under certain conditions,
MP iteratively selects the atoms that give the sparsest representation. This
recovery condition is based on the quasi-incoherence of the dictionary and the
sparseness of the signal [14–16]. Combining the MP approximation properties
with an accurate design of the dictionary makes it possible to achieve high
compression ratios, catching the most visually relevant structures of natural
images. Since at very low bit rate these structures mainly consist of object
contours, we designed a dictionary that can represent edges working on the
output of a Laplacian pyramid. The low-frequency part and textures are coded
using a simple wavelet coder. The balance between the functions approximat-
ing the contours and wavelet coefficients is performed in a rate distortion sense.
Numerical and visual comparisons with the state of the art show the quality
of the results; in particular ringing artifacts typical of wavelets are avoided.

This paper is organized as follows: Section 2 explains the adopted coding
scheme composed by a high pass filtering that gives a detail version of an
image, a greedy decomposition for the high frequencies and a wavelet based
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coding of the residual. Section 3 recalls the basic principles of the Matching
Pursuit algorithm, while the dictionary design and the atom selection method
are illustrated in Section 4 and 5 respectively. Section 6 presents a rate dis-
tortion study of our representation method and Section 7 shows results and
comparisons. Finally, conclusions can be found in Section 8.

2 Representation Method

Natural images present different primitives with peculiar characteristics. We
can easily distinguish smooth parts (low frequency components, Ismooth), edges
(Iedge) and textures (Itexture). Formally, we propose here the following model
for an image I:

I ' Ismooth + Iedge + Itexture. (1)

According to this model, we describe here a compression scheme that codes
each of the primitives of Eq. 1 with a different technique. Such a scheme is
presented in Fig. 1.

The dictionary, described in Section 4, has been designed to match the object
contours. These discontinuities have most of their energy at high frequencies.
Therefore, before coding the edges, the image is decomposed with wavelets and
reconstructed keeping all the sub-bands but the low-pass. This step is equiv-
alent to a high-pass filtering and it is labeled as “W HP” in Fig 1. The high
frequency content of the signal is thus decomposed over the edge-oriented dic-
tionary using the Matching Pursuit algorithm. After that the MP projection
coefficients have been quantized, a residual image is computed by subtracting
the quantized MP reconstruction from the original input image. This resid-
ual contain the low frequencies of the signal, the textures and the artifacts
introduced by MP (the latter also include quantization errors). As can be
seen in Fig. 1 the residual is decomposed with wavelets. The wavelet func-
tions, used for both decomposing the residual and computing the HP input
for MP, are the Cohen-Daubechies-Feauveau 9,7 [17]. At this point we have
low pass wavelet coefficients (projection on the scaling function) representing
Ismooth, atoms from the edge-oriented dictionary representing Iedge and the
high frequency wavelet coefficients representing Itexture and correcting the MP
artifacts, if any. Note that the quantization of the MP indexes and projections
is fixed. The coefficients of the coarse version representing the smooth part
of the image are quantized in a differential way (DPCM), while the wavelet
coefficients are subject to a dead-zone quantization with the dead-zone step
twice the quantization step. The quantization steps for the coarse signal and
wavelet coefficients are independent.

All these parameters are subject to a Rate-Distortion (RD) optimization that
establishes the number of atoms to code, the quantization step for the DPCM
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of the coarse version and the step for the wavelet dead-zone quantization.
All the parameters and the quantized coefficients are entropy coded using an
adaptive arithmetic coding algorithm.

input

W HP MP Dec Q

MP Rec

W Dec

RD&AC

+
-

∑

output

Fig. 1. Encoding scheme: W HP is the high-pass filtering using Wavelets, MP Dec
and MP Rec are respectively the Matching Pursuit decomposition and reconstruc-
tion, Q represents the quantization operation, W Dec is the Wavelet decomposition,
RD is the Rate-Distortion optimization and AC stands for Arithmetic Coding.

3 Matching Pursuit Algorithm

In this section we recall the basics of the iterative process used for the selection
of waveforms that represent the signal structures. A more detailed explanation
of the Matching Pursuit algorithm can be found in [7].
Let D = {gγ}γ∈Γ be a dictionary of unit norm vectors gγ called atoms, where
Γ is the set of possible indexes. The function f is first decomposed as follows:

f = 〈gγ0 , f〉gγ0 + Rf, (2)

where Rf is the residual component after having approximated f in the di-
rection of gγ0 . Since Rf and gγ0 are orthogonal, it follows that

‖f‖2 = |〈gγ0 , f〉|2 + ‖Rf‖2. (3)

To minimize ‖Rf‖ we must choose gγ0 such that the absolute value of the
projection |〈gγ0 , f〉| is maximal. Applying iteratively such a procedure, after
N iterations we obtain:

f =
N−1
∑

n=0

〈gγn
, Rnf〉gγn

+ RNf, (4)

where R0f = f and Rnf is the residual after the nth step; it can be proved
[18] that Rnf converges to zero when n tends to infinity. The convergence is
exponential in the case of finete dimensional signal spaces. Following (3) we
can write:
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‖f‖2 =
N−1
∑

n=0

|〈gγn
, Rnf〉|2 + ‖RNf‖2. (5)

Equation (5) expresses the energy conservation of the MP. The convergence
of MP depends on the structure of the dictionary, the search strategy and the
signal f that has to be approximated. In [18] it is shown that there exist two
real numbers α, β ∈]0, 1] such that for all n ≥ 0 the following relation is valid:

‖Rn+1f‖ ≤ (1 − α2β2)1/2 · ‖Rnf‖, (6)

where α is an optimality factor related to the strategy adopted to select the
best atom in the dictionary, while β depends on the dictionary, representing
its ability to capture the features of the input function f [19]. Equation (6)
gives a simple upper bound of the decay of the approximation error.

4 The Dictionary

The dictionary used to represent the detail version of the image is composed
of a set of functions, named atoms, built by applying the following four types
of transformation to the generating function φ(~x) : R

2 → R with ~x = (x1, x2).

a) Translation T~b, to move the atom all over the image:

T~b φ(~x) = φ(~x −~b). (7)

b) Rotation Rθ, to locally orient the atom along contours:

Rθ φ(~x) = φ(rθ(~x)), (8)

where rθ is a rotation matrix

rθ(~x) =







cos θ − sin θ

sin θ cos θ













x1

x2





 . (9)

c) Since, in general, images not only contain straight edges, we are adapting the
atoms to the shape of natural contours with a bending transformation Br.
Roughly speaking, this operation arches the x2-axis with radius r, formally
Br φ(~x) = φ (βr(~x)). Figure 2 shows how the βr(·) operation acts, and Figure
4 shows the result of bending a generating function. The transformation
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βr : IR2 −→ (−∞, r] × IR is not linear and it is defined as

βr(~x) =





























































r −
√

(x1 − r)2 + x2
2

arctan( x2

r−x1
)





 if x1 < r







r − |x2|
sign(x2)

(

x1 − r + r π
2

)





 if x1 ≥ r

. (10)

Applying the bending to a continuous function φ(~x) we obtain Brφ(~x), which
is in general discontinuous on the semi-axis [r, +∞). When φ(~x) is contin-
uous and satisfies the conditions

φ(r, x2) = const for − r ≤ x2 ≤ r and

φ(r, x2) = φ(r,−x2) ∀x2 ∈ IR,
(11)

it follows that Brφ(~x) is continuous for all ~x ∈ IR2. The definition of the
bending transformation is driven by the desire to keep the wavelet like
behavior of the generating function (see Subsection 4.1) perfectly orthogonal
to the smooth direction of edges.

In practice the bending transformation does not introduce discontinuities
in the atoms, since the generating functions are close to zero for x1 = r.

x1

x2

r

Fig. 2. Bending operation Br that arches the x2-direction with radius r.

d) Anisotropic scaling Sa1,a2 , to adapt to contour smoothness

S~a φ(~x) = Sa1,a2 φ (x1, x2) = φ
(

x1

a1

,
x2

a2

)

. (12)
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Atoms are generated varying the parameters~b, θ, r,~a of the four previous trans-
forms in the following order:

g(~b,θ,r,~a)(~x) = T~b Rθ Br S~a φ(~x). (13)

Finally the waveforms obtained are normalized:

gnorm

(~b,θ,r,~a)
(~x) =

g(~b,θ,r,~a)(~x)

‖g(~b,θ,r,~a)(~x)‖ . (14)

The dictionary used by the MP-algorithm can be written as in equation (15),
where all the parameters are discretized:

D = {gnorm

(~b,θ,r,~a)
(~x)}~b,θ,r,~a . (15)

The radius r is discretized using a dyadic grid, while for the position ~b a
uniform grid is kept. The two scaling factors are discretized in a uniform way;
the range of the scaling factor along x2 is bigger than the one along x1 and
depends on the radius parameter (it can not exceed π

2
times the radius). The

rotation step θ is inversely proportional to the scale a2.

4.1 Generating functions

The choice of the generating function φ(x1, x2) is driven by the idea of ef-
ficiently approximating the high frequencies of contours, like singularities in
2-D. Therefore, the atom must be a smooth low resolution function in the di-
rection of the contour and approximate the edge transition in the orthogonal
(singular) direction.

In order to be able to well represent either roof and ramp edges [20] we adopted
two different generating functions, doubling in this way the size of the dictio-
nary.

The first function, called φ1(~x) is a combination of a generalized Gaussian
and its first derivative. In the x1-direction (which is the singular-direction) it
is the first derivative of a Gaussian, while in the x2-direction (which is the
contour-direction) it is a generalized Gaussian, see Fig. 3:

φ1(x1, x2) = 2x1 e−(x2
1+x4

2). (16)

The second generating function φ2(~x), shown in Fig. 3, is a combination of
a Gaussian and its second derivative. It is a slight variation of the function
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Fig. 3. Generating functions: φ1(x1, x2) on the left, φ2(x1, x2) on the right.

introduced in [21]; this choice is motivated by the optimal joint spatial and
frequency localization of the gaussian kernel:

φ2(x1, x2) = (4x2
1 − 2) · e−(x2

1+x4
2). (17)

We chose the shape parameter of the generalized gaussian equal to four in the
x2-direction in order to have a faster decay in the space domain. It turns out
that atoms can better approximate segments of edges and visual artifacts are
reduced.

Figure 4 shows three atoms generated using the two different generating func-
tions in both space and frequency domain. The bending transformation is also
shown. It can be seen that the function φ2 is more compact in the frequency
domain, whereas φ1 reaches lower frequencies.

It is worth mentioning that the atoms we generate are similar to the basis
functions obtained by Olshausen and Field while studying the spatial receptive
fields of simple cells in mammalian striate cortex [22]. These functions, as
well as our atoms, are characterized by being localized in space, oriented and
bandpass. An additional property of the overcomplete dictionary we propose is
given by the possibility of bending the generating function. This characteristic
does not appear in the functions obtained by Olshausen and Field. This can
be explained by considering that the image patches they were analyzing are
too small to observe such a phenomenon.

4.2 Size of the Dictionary

Taking into account all the atom parameters and the two generating functions,
the dictionary can be written as:

D = {gnorm

(φ,~b,θ,r,~a)
(~x)}φ,~b,θ,r,~a . (18)
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Fig. 4. Three atoms: on the top space domain, on the bottom frequency domain
represented in a logarithmic scale. The first atom is generated from φ1, the others
from φ2. The effect of bending and anisotropically scaling the atom can be observed.

Here φ ∈ {φ1, φ2} is the index that specifies which function has been chosen to
create the atom, while the other values are the same as in equation (15). Finally
we obtain a highly redundant dictionary, with a redundancy factor d ' 17000.
The size of the dictionary increases dramatically allowing big scaling factor
along x2, indeed the number of rotations is proportional to the scale parameter
a2. A dictionary including elongate atoms is able to better represents long edge
structures. In fact we can say that designing high redundant dictionaries, we
are trying to increase the β parameter of equation (6).

Even if big dictionaries can be built with a small coherence [23], our dictionary
has high coherence since we adopt a geometric oriented design. Thus, we can
not assure that MP recovers the best sparse approximation of the signal [14].
Nevertheless we notice a fast energy decay of the residual at first iterations,
which means that the dictionary copes well with natural data. MP is able to
select good atoms, at least during first iterations.

5 Searching Algorithm

Matching Pursuit is used to decompose the detail version of the image in its
most important features. This greedy algorithm selects at each iteration an
atom from the dictionary such that the projection coefficient |〈gγn

, Rnf〉| is
maximum. To find such gγn

we use a full search algorithm that computes the
inner products between the residual and all the functions of the dictionary.
Since the dictionary is composed of all the translations of the transformed
generating functions (TGF), see Eq. (13), it is clear that all the inner prod-
ucts between the TGF translated all over the residual and the residual itself,
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correspond to the convolution of the TGF with the residual. To speed up the
search, we compute the convolutions like products in the frequency domain.
The Fourier transform of all the TGF is computed only once and stored.

The complexity of a MP decomposition of a signal of n samples results to be
of the order of

C · N · d · n log2 n, (19)

where N is the number of chosen atoms, the constant C depends on the
strategy adopted for atom selection and d depends on the size of the dictionary.
In fact, d = |D|/n is the redundancy of the dictionary and it corresponds to
the size of D without considering translations. In particular we use a modified
Matching Pursuit algorithm for which C � 1. At each iteration, nk − nk−1

atoms are selected and used to decompose the residual. Like in Eq. (4) we can
write:

f =
K−1
∑

k=0





nk+1−1
∑

n=nk

〈gγn
, Rnf〉gγn



+ RNf, (20)

with n0 = 0 and nK = N . At the kth iteration all the atoms of the dictionary
are sorted according to the absolute values of the projection coefficients. Af-
terwords, starting from the one with highest projection, all the atoms that are
quasi-orthogonal are selected. We adopted this algorithm in order to obtain
an important reduction in computational load. In fact selecting on average nk

atoms at once it turns out that MP only needs N/nk iterations, reducing in
this way the number of inner products which constitute the most computa-
tionally demanding part of the algorithm. For example, decomposing images
of size 256 × 256 pixels we observed a speed-up of around 20. The drawback
of this method is that there is no more a guaranty that at each iteration the
best atom will be selected as in the case of the full search MP. However the
resulting loss in image quality is negligible [10].

This method is similar to the fast MP implementation described by Mallat
[18]. When you control the structure of the dictionary, you can update the
projection of the atoms on the residual at the next step taking into account
the correlation between atoms, according the following updating formula:

〈gγ, R
n+1f〉 = 〈gγ, R

nf〉 − 〈gγn
, gγ〉〈gγn

, Rnf〉. (21)

In particular the projection of the atoms orthogonal to the selected ones will
not change.

In order to further speed up the atom selection, another algorithm, based on
a tree-based pursuit decomposition, may be taken into account [24]. But since
the quality loss is not negligible, especially at the range of bit rate that we are
interesting in, we decided not to use this searching method.
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6 Rate Distortion

As described in Section 2 , the number of atoms to code and the quantization
step for the wavelet coefficients are chosen based on a Rate-Distortion opti-
mization. In order to study the RD of our representation method, we take into
account the image model (1) proposed in Section 2.

We indicate with Ĩedge(m) the m-terms approximation of the edge part of the
image obtained by the MP decomposition of Iedge over the contour oriented
dictionary. Thereby the input of the wavelet decomposition (Ist), supposed to
contain the smooth and texture part, is obtained by subtracting Ĩedge from the
original image:

Ist(m) = I − Ĩedge(m) = Ismooth + Itexture + (Iedge − Ĩedge(m)). (22)

Since Ĩedge(m) is the superposition of m atoms with quantized projections, the
final error is given by

Ierr = I − Ĩst(m, ∆), (23)

where Ĩst(m, ∆) is the approximation of Ist(m) given by the quantization of
the wavelet coefficients. Let RMP the rate due to the atoms and RW the one
due to the wavelet coefficients, the total rate is R = RMP + RW . It depends
on the number of atoms used to approximate Iedge and on the quantization
steps of the wavelet coefficients. Before investigating the Rate-Distortion of
our representation method, we study the rate related to the MP expansion,
and we recall the RD theory concerning wavelet coding.

6.1 MP rate

Our signal approximation over D is represented by the atom indexes, positions
and projections. The indexes or parameters that characterize the atoms shape
are entropy coded using an adaptive arithmetic coding algorithm. Since the
x2-scale parameter depends on the radius, the arithmetic coder uses the condi-
tional probability p(x2-scale|radius) to code the x2-scale, and p(rotation|x2-
scale) for the rotation parameter. In order to code the positions and projec-
tion coefficients, two different approaches can be taken into account. The first
one consists of ordering the atoms in decreasing absolute projection values,
then the projections can be quantized either in a differential way (DPCM)
[10] or using an exponential quantizer [25]. The quantization is followed by
arithmetic coding. The x1 and x2 coordinates of the atoms positions are then
simply stored without any particular coding scheme.

The second approach performs a different sorting of the atoms in such a way
to take advantage in coding their positions [12]. The atoms are ordered by
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Fig. 5. Left: Comparison between projections oriented and positions oriented coding.
Right: Total number of bits per atom as a function of the number of atoms used
to approximate Iedge. The position oriented method is used to code positions and
projections.

raster scanning, then the x1 and x2 coordinates are coded in a differential way
followed by arithmetic coding. The drawback is that the SNR scalability is
lost [11]. In this case a simple uniform quantization and arithmetic coding of
the projections is performed.

As shown on the left-hand side of Figure 5, the position oriented coding
method outperforms the projection coding, thus we chose to use the former
to code atoms positions and projections. Finally the right-hand side of Fig-
ure 5 gives the total bit rate per atom Ra(m) as a function of the number of
atoms used to approximate the edge component Iedge. The exponential decay
of Ra(m) is due to the fact that increasing m, the grid representing the atoms
positions becomes more dense and the entropy of the displacements between
adjacent atoms decreaseS. At the limit we can say that the bits required to
code an atom get close to the coding rate of the projection and shape param-
eters.

6.2 Wavelet rate distortion

The wavelet functions, used to decompose the residual (22), are the Cohen-
Daubechies-Feauveau 9,7 with normalization (

√
2,
√

2). This biorthogonal wavelet
basis is nearly orthogonal and thus we suppose that the distortion given by
the quantization in the wavelet domain coincides with the distortion in the
original domain. In order to have an hint on the real rate-distortion behavior,
let us make the hypothesis of high resolution quantization, although it is not
always satisfied in the compression domain. Using a uniform quantizer, we can
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approximate the distortion or MSE as a function of the quantization step ∆:

DW =
∆2

12
. (24)

The rate, that corresponds to the entropy of the output indexes, depends on
the quantization step and on the differential entropy

RW =

∑

k Nk(hk − log2 ∆)

N
=

∑

Nkhk

N
− log2 ∆, (25)

where hk is the differential entropy, Nk is the number of wavelet coefficients
at resolution k and N is the size of the signal.

6.3 MP+Wavelet rate distortion

Now we can formulate the Rate-Distortion of our coder based on MP and
wavelet decomposition. The final distortion depends on the quantization step
of the wavelet coefficients, and for fine quantization we have that D = DW =
∆2

12
. The total rate R = RMP (m)+RW (m, ∆) depends on the number of atoms

approximating Iedge and obviously on the quantization step ∆,

RMP (m) =
Ra(m)m

N
, (26)

RW (m, ∆) =

∑

Nkhk(m)

N
− log2 ∆. (27)

It is important to notice that the differential entropy hk(m) associated to
wavelet resolution level k, depends on the number of atoms that represent
Ĩedge(m). Indeed the statistic of Ist(m) = I − Ĩedge(m) changes with m, espe-
cially at the resolution levels that contain the energy of the edge structures.
The left-hand side of Figure 6 shows how the differential entropy depends on
m. We thus write the Lagrangian cost

L(m, ∆) = D(∆) + λ (R(m, ∆) − Rbpp) = (28)

∆2

12
+ λ

(

Ra(m)m

N
+
∑

k

Nk

N
hw(m) − log2 ∆ − Rbpp

)

,

where Rbpp is the bit budget per pixel.

Differentiating with respect to ∆ and m (we neglect the integer constrain on
m), we obtain

∂L

∂∆
=

2∆

12
− λ

∆ ln 2
(29)
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∂L

∂m
= λ

(

R′

a(m)m + Ra(m)

N
+
∑

k

Nk

N
h′

w(m)

)

(30)

and setting the derivative to 0 we obtain

∆ =

√

6λ

ln 2
(31)

and
R′

a(m)m + Ra(m) +
∑

k

Nkh
′

k(m) = 0. (32)

Solving equation (32) we find the optimal number of atoms that minimizes the
rate for a given distortion. It is important to notice that the solution of (32)
does not depend on the final distortion D. This is due to the assumption of
fine quantization of the wavelet coefficients. Once we get the optimal number
of atoms mopt, setting to zero the derivative of equation (28) with respect to
λ, we obtain the quantization step as a function of the bit budget,

∆ = 2

(

Ra(mopt)mopt

N
+
∑ Nk

N
hk(mopt)−Rbpp

)

. (33)

Remark that this is true only at hight bit rate, and that the functions Ra(m)
and hk(m) have to be estimated. Figure 6 shows on the left-hand side the
behavior of the differential entropy at different resolution levels, and on the
right-hand side shows the total rate as a function of m for a fixed step ∆
(changing ∆ corresponds to a vertical translation of the wavelet rate). The
minimum rate is reached coding mopt atoms: for studied example this minimum
occurs between 100 and 150 atoms.

In practice, at low bit rates the fine quantization hypothesis is not satisfied and
the simple model for the wavelet RD does not fit its real behavior. Moreover,
we are using a dead zone uniform quantizer, which improves the rate distortion
at low bit rate quantization [26], and different steps of quantization for the
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coarse and wavelet coefficients can be chosen. Implementing a numerical rate
distortion optimization, it turns out that the optimal number of atoms changes
depending on the bit rate. All the graphics in this section show the mean of
the results obtained using the three standard images Lena, cameraman and
peppers of size 256 × 256.

7 Results

This section provides some results obtained with our algorithm; in the follow-
ing it will be simply called MPW. A comparison is made with the standard
JPEG2000 [27,28]. Another point of comparison is a pure wavelet encoder
that uses exactly the same coding options and RD optimization we adopted
in the MPW coding scheme. In the following, we refer to the latter method
as “Wavelets”. Table 1 shows the PSNR vs. bit-rate results for the images
peppers and cameraman. Both images have size 256× 256 pixels. For this size,
the computational time for MPW coding is around one hour, using a 2GHz
processor.

Table 1
PSNR vs. bit rate for the images “cameraman” and “peppers”: comparisons between
MPW, JPEG2000 and a coding scheme based on DWT. See also Fig.7.

cameraman (256 × 256)

Rate (bpp) MPW JPEG2000 Wavelets

0.05 22.50 21.00 21.50

0.10 25.06 23.63 23.79

0.15 26.45 25.23 24.96

0.20 27.38 26.45 26.10

0.25 28.11 27.38 27.02

0.30 28.76 28.53 27.80

0.35 29.27 29.57 28.51

0.50 30.61 31.16 30.21

peppers (256 × 256)

Rate (bpp) MPW JPEG2000 Wavelets

0.06 23.13 21.36 22.10

0.10 25.33 23.83 23.90

0.15 27.03 25.89 25.68

0.20 28.25 27.25 27.00

0.25 29.09 28.62 28.05

0.30 29.91 29.79 29.00

0.35 30.56 30.62 29.80

0.50 32.24 32.85 31.89

At very low bit rate, our algorithm obtains good results because it is capable
of catching the main features of a natural image with few functions. It is fair
to observe that at less than 0.1 bpp the gap between JPEG2000 and MPW
is also partly due to the bigger size of the JPEG2000 header: in fact one can
notice that even our very simple “Wavelet” encoder outperforms the standard.
The size of the JPG2000 header is 148 Byte, meanwhile MPW has a simple
header of size 22 Byte. Regarding JPEG2000, if we take into account only the
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bit stream due to the quantized wavelets coefficients, we observe an increase
of about 0.6 dB, 0.4 dB and 0.2 dB respectively at 0.1 bpp, 0.2 bpp and 0.3
bpp. This difference disappears for bigger images (e.g. 512×512 pixels). In [10]
we obtained similar (but slightly worse in terms of PSNR) results with a less
elaborated approach also based on Matching Pursuit. However, thanks to the
use of the wavelets for coding the residual (see Sec. 2), the gain we obtain here
is not only limited at very low bit rates. Moreover, observing Figure 7, one
can see that the proposed scheme outperforms JPEG2000 not only in terms
of PSNR but also of visual quality. We compare results up to 0.5 bpp, where
there is no relevant visual difference between the images compressed with our
method and JPEG2000.

Other numerical results can be found in [29,30]. In particular we compress
bigger images and we show an example of how the PSNR decreases using a
less redundant dictionary.
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Fig. 7. Comparison between JPEG2000 and the proposed scheme based on MP at
0.15 bpp. Top left: original peppers image (256x256). Top right: image compressed
with MPW (PSNR = 27.03). Bottom: image compressed with JPEG2000 (PSNR
= 25.89).

8 Conclusions

In this paper we introduced a technique for coding natural images at low bit
rates. The edges are approximated using elementary waveforms from a re-
dundant dictionary, while the non-edge part of the image is represented by
wavelets. The geometry inspired dictionary is build by applying anisotropic
scaling, rotation and bending transformations to two generating functions
which are smooth on the edge direction and wavelet like in the other. In
order to overcome the combinatorial complexity in finding the sparsest ap-
proximation over a redundant dictionary, we use a pursuit algorithm based on
MP. A rate distortion analysis, together with numerical entropy estimations,
controls the number of edge-oriented atoms and the quantization of wavelets.

This coding scheme easily allows SNR scalability. Starting from a base layer
given by the atoms representing contours, SNR enhancements can be obtained
applying usual scalability properties of wavelet encoders [27].

Our coder outperforms the state of the art in terms of both PSNR and visual
quality. In particular edges, which at very low bit rate constitute the more
visually relevant features of an image, are no more affected by ringing artifacts
typical of wavelets.
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