Plant identification via adaptive combination
of transversal filters

Jeronimo Arenas-Garcia , Manel Martinez-Ramon,
Angel Navia-Vazquez, Anibal R. Figueiras-Vidal

Department of Signal Theory and Communications, Universidad Carlos III de Madrid, 28911 Leganés Madrid, Spain

Abstract

For least mean square (LMS) algorithm applications, it is important to improve the speed of convergence vs the residual
error trade off imposed by the selection of a certain value for the step size. In this paper, we propose to use a mixture
approach, adaptively combining two independent LMS filters with large and small step sizes to obtain fast convergence
with low misadjustment during stationary periods. Some plant identification simulation examples show the effectiveness of
our method when compared to previous variable step size approaches. This combination approach can be
straightforwardly extended to other kinds of filters, as it is illustrated with a convex combination of recursive least

squares (RLS) filters.

Keywords: Least mean square (LMS); Adaptive algorithms; Convex combination; Plant identification

1. Introduction

Widrow and Hoff’s least mean-square (LMS)
algorithm [1] was first presented in 1960. Ever since,
it has been used in a variety of applications due to
its robustness, good tracking capabilities, and
simplicity [2]. An important limitation of LMS is
the rate of convergence vs misadjustment trade-off
imposed by the selection of a certain value for the
step size. Consequently, much effort has been spent

to improve this balance. Some modifications of the
LMS algorithm apply non-quadratic error func-
tions, while other authors have proposed to use an
adaptive learning rate that takes a high value when
a high speed of convergence is required, and a
low value to decrease the final misadjustment in
stationary situations.

Among those that modify the cost function, the
least mean-fourth (LMF) algorithm [3], which
consists of minimizing the fourth power of the
error, has played a very important role, since, for
values of the absolute error higher than 1, the
convergence of the LMF algorithm is faster than
that of LMS. However, stability of the LMF filter
imposes a more restrictive upper bound on the
adaption step size. The idea of combining LMS and

Cita bibliográfica
Published in: Signal Processing, Vol. 86, nº 9, pp. 2430–2438, Sep. 2006

LMF cost functions was first proposed in [4], with
the objective of keeping the speed of convergence of
LMF and the stability of LMS. In [5] the authors
use the same basic idea, but let the mixing
parameter vary according to the instantaneous
value of the error. The idea of switching between
both cost functions has been explored in [6].

Following a different direction, many researchers
have proposed schemes to manage the step size.
Some of such algorithms can be found in [7]. Several
designs in this group have the disadvantage of
being batch algorithms, which are not appropriate
when on-line learning is required. There are also
several schemes that manage the step size in a
stochastic manner (see, for instance, [8—13]). All
these procedures obtain good results and are
computationally efficient, but they add some
hyperparameters which must be fixed to a priori
values. This selection itself implies some kind of
compromise between convergence capabilities and
precision, and optimal values are highly dependent
on the characteristics of the particular application
environment.

Following this second way above, we propose a
new approach that is an analogy of a well-known
neurological fact: in human brains, the thalamus
sends the signals that it receives from the ears or the
eyes to the amygdala via a fast connection, and to
the neocortex following a slower way. After these
first transmissions, the neocortex and the amygdala
interact. This allows us to combine a fast, coarse
reaction against abrupt and potentially dangerous
environmental changes with a finer, more elabo-
rated, but necessarily not-so-fast conscious re-
sponse. The analogous scheme that we propose
consists of an adaptive convex combination of one
fast and one slow LMS filter, which keeps the
advantages of both speed of convergence and
reduced steady-state error. In tracking situations,
our combined filter behaves as the best LMS
filter in the mixture. Thus, instead of using just
one LMS filter and adaptively selecting an appro-
priate value for its step size, our combined filter
just has to decide how to optimally combine
both filters at each time. It will be shown that this
nature-principled approach offers very satisfactory
results.

Our combination scheme is similar to that in
[14,15], which uses the idea of mixture of different
models as Jacobs et al. [16] did for neural networks
to increase representation capability. However, the
filters in our scheme just differ in their step sizes,

and they are combined with quite a different aim: to
simultaneously exploit the good convergence and
precision capabilities of the fast and slow LMS
filters, respectively.

The same basic ideas of combining adaptive filters
in an adaptive manner can also be applied to other
adaptive schemes without major modifications, as
well as to situations different from plant identifica-
tion problems, such as adaptive equalization,
arrays, blind source separation, etc.

In the next section we describe the basic
algorithm to combine LMS filters in an adaptive
manner (CLMS algorithm), in the context of plant
identification, as well as some modifications to
improve its practical performance. Then, we will
present a more sophisticated algorithm (CLMS2)
that exploits the convex combination ideas in a
three-filter configuration. Section 4 analyzes the
computational complexity of the combination
methods. In Section 5 we show the advantages of
our proposal through some simulation results.
Finally, we present our conclusions and suggest
some lines of future research.

2. Adaptive combination of LMS filters: the CLMS
algorithm

We propose to use, for plant identification, an
adaptive convex combination of two LMS adaptive
filters. The first is a fast filter (i.e., with a large step
size), which achieves fast convergence and good
tracking properties in situations where rapid
changes take place. The second is a slow filter
(small u,) that will provide a very good approxima-
tion of the plant in stationary (or slowly changing)
situations. This idea was presented as a preliminary
version in [17]. Here, we add several algorithmic
changes to circumvent the serious limitations of that
version.

The two component filters operate, in principle,
completely decoupled, and their coefficients are
adapted to minimize their own quadratic errors
using the standard LMS rule

wi(n + 1) = wi(n) + wei(mu(n), i=1,2, (D
where w;(n) are the filter weight vectors at time n,
ei(n) = d(n) — w} (mu(n), 2)

d(n) is the desired output, and u(n) = [u(n), u(n —
1),...,u(n — M + 1)]" are the inputs to the filter, M
being the length of the adaptive filter.

The weights of the combined filter are obtained
using the following convex combination scheme

w(n) = n(mwi(n) + [1 — n(n)wa(n), A3)

where #(n) is a mixing parameter that lies between 0
and 1. One can immediately express the output and
the error of the CLMS filter (y(n) and e(n),
respectively) as convex combinations of the two
component filters

y(n) = wh(mpu(n) = n(m)y,(n) + [1 = n(m)]y,(n),
e(n) = d(n) — y(n) = n(mei(n) +[1 —n(mlex(n). (4)

where

»i(n) = wi (myu(n) ®)

is the output of the ith adaptive filter.
Regarding parameter 5(n), we will define it via a
sigmoid activation function [18]

|

1 + e a(n)’ (6)

n(n) = sgmla(n)] =

where we update a(n) at each iteration to minimize
the quadratic error of the combined filter, also by
means of a minimum square error stochastic
gradient algorithm [2] with step size p,

0 2
am+1)=an —% aea((:))
= a(n) — pe(n)er(n) — ex(n)]
xn(n)[1 —n(n)]. (7

The benefits of using a sigmoid activation are
twofold: first, it serves to constrain n(n) values
between 0 and 1; second, its derivative, i.c., factor
n(n)[1 —n(n)] in (7), reduces the adaptation speed
and the gradient noise near the endpoints 0 and 1,
when the combined scheme is expected to perform,
respectively, like the fast and slow filters without
degradation.

In our implementation, we have limited a(n)
values to the interval [—4,4], so the algorithm never
stops because either n(n) or 1 — n(n) are then never
too close to 0. Furthermore, the parameter p, must
be fixed to a very high value so that the combination
is adapted even faster than the fastest LMS filter.
Note that, since n(n) € (0,1), the stability of the
combined filter is guaranteed as long as the
individual stability conditions of both LMS filters
are satisfied.

This scheme has a very intuitive interpretation.
When abrupt or fast changes appear, the fast LMS
filter achieves a quadratic error lower than that of

the slow filter, application of the learning rule (7)
will increase a(n), and n(n) will approximate 1. So, in
this situation, the CLMS algorithm acts as a
LMS filter. However, in stationary (or nearly-
stationary) intervals, it is the slow LMS filter that
will perform best, thus decreasing a(n) so that #7(n)
will approach 0, and the combined filter will behave
as the slow, more precise LMS filter [19,20].

It should be noted that (7) only uses the errors of
the component filters. So, this convex combination
scheme could be used, with no modifications, to
combine any other two adaptive filters, as we show
in Section 5 with a combination of two recursive
least-squares (RLS) filters.

Fig. 1 summarizes the proposed scheme up to this
point, indicating which error is used to control each
LMS filter and their combination.

2.1. Speeding up the convergence of the slow filter

The performance of the basic CLMS algorithm can
be improved if we allow interaction between the
component filters in certain situations. To see this,
note that, if both filters are completely decoupled,
abrupt changes will induce independent convergences,
their combination being equivalent to the fast filter
until the slow filter presents a smaller quadratic error.
At that moment, the CLMS filter will switch to the
second filter. So, the final overall convergence will be
as slow as that of the p, LMS filter.

We can accelerate the convergence of the
slow filter when an abrupt change appears by

Wo

I
I
I
|
: N é; =)
I

LA

D

(NS

Fig. 1. Plant identification with the proposed adaptive (convex)
combination scheme. Two LMS adaptive filters w; and w,, one of
them “fast” and the other “slow” (large and small step sizes,
respectively) adaptively combine their outputs by means of a very
rapidly adapted parameter 7 in order to identify the plant wy.

step-by-step transferring a part of weight vector w;
to wy. Thus, the (modified) adaption rule for w;
becomes

wa(n + 1) = a[Wa(n) + prea(m)u(mn)]
+ (1 —o)wi(n+1), ®)

where o is a parameter close to 1. This way, at each
step, the adaption of w; is similar to that of a
standard LMS filter, but the application of (8)
over many consecutive iterations will speed up the
convergence of the p, LMS filter and, as a
consequence, the convergence of the CLMS filter.

An inconvenience of the new learning rule is that
it increases the final misadjustment of the slow filter.
To avoid this, the weight transfer must only be
applied when the fast filter is much better than
the slow one in tracking the plant changes.
Our combination method provides us with a
straightforward way to verify this condition: #(n)
must be near 1. So, we will only use this speeding up
procedure provided that n(n) > f, f being a thresh-
old close to the maximum value that can be reached
by n(n). It would be possible to use more robust
criteria to activate/deactivate this weight transfer
procedure. However, we prefer the above mode to
keep the simplicity inherent to LMS-type algo-
rithms.

Although this “speeding up” mechanism requires
two extra parameters, we have checked that the
CLMS algorithm is not very sensitive to the
selection of o and . In any case, this mechanism
should be seen as an optional procedure that can
be used to improve the performance of the
basic combination algorithm in very particular
situations.

3. Iterating the adaptive combination scheme: The
CLMS?2 algorithm

Obviously, the performance of the CLMS scheme
could be further improved by managing u; and u,.
Parameter #(n) can be used as a criterion to manage
these step sizes. We will only manage u,, since the
fast filter is used just as a fast tracker for rapid
changes and, consequently, managing y; would not
give much advantage.

Instead of directly changing u,, we propose to
iterate the convex combination scheme and replace
filter w, with a CLMS filter with step sizes u,; and

tan (> o) > o))
wa(n) = ny(mwai(n) + [1 — ny(n)waa(n))

with #,(n) = sgm[ax(n)]. Since this new configura-
tion consists of a double nesting of CLMS, we call
the resulting scheme CLMS2.

The mixing parameter of the inner CLMS filter
is adapted like a(n), but to minimize e3(n) =
[d(n) — WE(pu(m)]:

ar(n+ 1) = ax(n) — ppea(n)exn(n) — exn(n)]
xny(m[1 — ny(n)]. (10)

Since we usually have that [ey(n) —en(n)|<
le1(n) — ex(n)|, u, must be higher than p, (we have
typically used p, = 10u,), and applying weight
transfer from w,; to wy, makes little sense.

We will only use this three-filter scheme provided
that n(n) is below some threshold that, in our
implementation, has been set to the same ff used as a
threshold for weight transfer.' Switching between
two- and three-filter configurations is made in the
following manner:

e We initially use a two-filter scheme with para-
meters y; and u,, and a(n) is set to its highest
value [a(n) = 4].

o If 5(n) falls below f, we switch to a three-filter
scheme: wy;(77) and woy(n) are set to wa(n), az(n) is
set to 0, and we choose new learning rates u,, =
py and pyy = pp /r (r>1).

e Finally, if #(n) exceeds f§, we return to the two-
filter configuration according to the present value
of wy(n).

When using a three-filter configuration, #,(n) gives
information on the goodness of filters wy; and wa;.
This information could be used to iterate the
process and replace either wy; or wy, with a convex
combination of two filters (i.e., we could use a
further nesting of CLMS filters). Alternatively,
we propose to manage (,; and p,, following these
rules:

e If #,(n) is near 1 [ny(n)>p, for example], we
increase the learning rates to p5, =ru,; and
Ury = oy, and set War(n) = wy (n) and ax(n) = 0.
Note that we keep a filter with step size u,, in
order to guarantee that the performance of filter
w, does not worsen.

e The opposite is done when 7,(n) is close to 0

[ny(m) <1 — f].

"It would be possible to use a different threshold. However,

using f gives good performance while saving one parameter.

4. Computational complexity of the proposed
algorithms

In this section, we study the computational
complexity of the proposed combination methods.
Since the number of additions is comparable to the
number of multiplications for the proposed combi-
nations, we will consider just the number of real
multiplications.

It is a well-known fact that LMS operation
requires 2M + 1 multiplications, M being the length
of the filter. Since CLMS combines two LMS filters,
it needs 4M + 2 multiplications for the adaptation
of the component filters, and 6 more products are
needed to compute the output of the filter and to
update a(n) (see (4) and (7), respectively). Evalua-
tion of the sigmoid function is not well suited for
real time operation, but it could be efficiently
implemented using a look-up table.

Depending on the application, it may be neces-
sary to explicitly compute the CLMS weight vector,
w(n). According to (3), explicit weight calculation
requires 2M additional multiplications. Finally, if
the weight transfer procedure is being applied, it will
become necessary to compute 2M extra products at
some iterations.

Regarding CLMS2, when the two-filter operation
is used [n(n)>p], its computational complexity is
exactly the same as for CLMS. However, if the
three-filter configuration is active, it requires 6 M +
3 multiplications for the component filter adapta-
tions, and 12 more products to compute the output
of the scheme and to adapt a(n) and a,(n). Further,
3M + 2 multiplications are necessary in this case for
the explicit calculation of the weights of the overall
filter. Note that weight transfer is not applied when
using the three-filter configuration since n(n)<pf.

Table 1 summarizes the computational complex-
ity of CLMS and CLMS2. As we can see, their
complexity grows linearly with the number of taps
[O(M)], and it is roughly twice and three times
higher than that of LMS for the basic combination

Table 1

schemes. The application of the weight transfer
procedure increases the computational burden of
the filters. Note, however, that this method has been
designed to accelerate the convergence of the slow
LMS filter in a very particular situation, and it is
not necessary to get the main goal of the combina-
tion schemes: to put together the best properties of
each component filter.

The above analysis and conclusions would still be
valid if combining other kinds of adaptive filters
different from LMS, modifying accordingly the
computational complexity for the adaptation of the
component filters.

5. Experimental results
5.1. Discussion of CLMS performance

In this section, we use the CLMS filter to model a
24-tap transversal varying plant (see Fig. 1) with
input u(n) being a white, Gaussian, zero-mean
signal. The variance of wu(n) is selected to set
E{||u(n)||%} = 1. The output additive noise, ey(n), is
the same kind of signal, but has variance 10 2,

The weights of the plant are initially set to
random values between —1 and 1, and are modified
during some intervals according to the random-
walk model:

wo(n + 1) = wo(n) + q(n), (11)

where q(n) is an i.i.d. random, zero-mean vector,
with diagonal covariance matrix E{q(n)q"(n)} = 051.
The variance 05 is related to the speed of changes in
the plant. We will consider two different speeds,
Moé =5x%x10 7 and Mafl =10 4, for intervals
50000 <n<75000 and 100000 <7< 125000, respec-
tively. At n= 75000, the plant changes abruptly
and new random values are selected within [—1, 1].

To model the plant, we have used a CLMS
filter with M =24 and step sizes p; = 0.05
(which satisfies the stability condition), u, = 0.005,
and u, =400 for the mixing parameter. For the

Summary of the computational complexity of the combination algorithms measured as the number of real multiplications per iteration

LMS CLMS CLMS?2 [n(n)>f3] CLMS?2 [n(n)<f]
Component filter adaptation 2M + 1 4M +2 4M +2 6M +3
Basic combination 6 6 12
Explicit weight calculation 2M 2M 3IM+2
Weight transfer 2M 2M

“speeding up” parameters we have used o = 0.9 and
fp =0.98. These are reasonable values for a wide
range of practical situations, as we will check in
this example. Finally, the mixing parameter a(n) is
initially set to its intermediate value [a(0) = 0], and
the weights of both LMS filters are initialized with
Zeros.

Filter performance will be measured with an
estimate of the mean square deviation (MSD)
between the real and the estimated plant, calculated
as the average of the plant identification error

MSD(n) = [lwo(n) — w(n)||2

over 1000 independent runs.

Fig. 2(a) presents the performance of the LMS
and CLMS filters, and Fig. 2(b) depicts the
evolution of the mixing parameter 5. The fast
LMS filter has a quick convergence after the
abrupt changes at n = 0 and n = 75000, achieving
a residual error of approximately —22dB over
the entire interval, with a small increase during the
rapid changes at 100000<n<125000. On the
contrary, the slow filter obtains a lower MSD not
only at the stationary intervals (MSD ~ —32dB),
but also when the plant changes slowly (50000 <
n<75000). During the fast change period, however,
the slow filter is unable to track the plant, and its
MSD increases towards —5dB.

The CLMS algorithm performs like the slow
LMS filter during the stationary and slow change

o

Z

@)

w2

=

(a)

0 4 8 12 16

(b) n x 10*

Fig. 2. Performance of CLMS in a time varying plant identifica
tion task: (a) MSDs obtained by a fast LMS filter with step size
u; =0.05 (dotted), by a slow LMS filter with p, = 0.005
(dashed), and by their adaptive combination with parameters
1, =400, « =0.9, and f =0.98 (solid); (b) Evolution of the
mixing parameter.

intervals (with #(n) near 0), and it takes the (lower)
MSD of the y, filter when fast and abrupt changes
occur (with n(n) close to 1). Note that, after the
transitions, the use of the “speeding up’ procedures
allows the CLMS filter to reach the final misadjust-
ment of a p, filter very soon in comparison to the
performance of this LMS filter, thus accelerating the
convergence of the combined filter.

5.2. Comparison to an LMS filter with variable step
size

We have carried out a large number of experi-
ments comparing CLMS with other previous vari-
able step size schemes. We will consider here the
LMS algorithm with adaptive gain (AG-LMS)
[11,21], which is a good representative of these
versions.

When using an adaptive step size, the LMS
adaption rule becomes

w(n + 1) = w(n) + u(n)e(mu(n). (12)

The AG-LMS algorithm proposes to use a gradient
algorithm to adapt the step size

a 2
-+ 1) = o) — 2 "’a/ﬁ”)
= u(n) + ce(n) ¥ (mu(n) (13)
where
_ ow(n)
W(n) =) (14)

The recursion for adapting W(n) is obtained by
differentiating both sides of (12) with respect to u:

¥(n+ 1) = [— pmu(mu’ (m)]¥(n)
+ e(n)u(n). (15)

The AG-LMS algorithm iteratively applies (12),
(13), and (15) to update w(n) and p(n). In addition,
w(n) must be truncated to remain within the interval
[Umins Umax]- According to [11], pn, 1s nearly
irrelevant to get good behavior, and it can be fixed
either to 0 or to a very small constant. On the
contrary, U,., has a large influence in the perfor-
mance of the algorithm.

We have carried out experiments with the same
plant used in the previous subsection. For these
experiments we have fixed p,;, =0, and have
explored different combinations of ., and e.
Next, we will describe the characteristics of the

AG-LMS performance, and then we will compare it
to our CLMS algorithm.

e For fixed ¢ and decreasing u.,.,, AG-LMS
obtains a decreasing residual misadjustment,
but also shows slower convergence. In Fig. 3(a),
we show the MSD for AG-LMS with ¢ = 0.01
and two different values of u,,.. As stated
before, using a low value u,,,, = 0.01 favors the
good behavior of AG-LMS during stationary
intervals. However, for this value of .., the
performance of AG-LMS is very poor during
interval 100000 <#n< 125000, when fast changes
appear in the plant, and following abrupt
changes (see convergence after n = 75000). It is
possible to improve the convergence and tracking
capabilities of AG-LMS by using a higher g,
This indeed occurs for p,,, = 0.05, but it can be
seen that, in this case, the residual MSD in
stationary situations is higher.

We have checked that this performance compro-
mise between slow and fast change situations also
appears for other values of .

e A similar trade-off occurs when u.,. is kept
constant and the value of ¢ is modified. This
situation is shown in Fig. 3(b) for p,,, = 0.05

MSD(dB)

MSD(dB)

(b) n x 10°

Fig. 3. Comparison of CLMS and AG LMS performance. In
both figures, CLMS (u; = 0.05, u, =0.005, p, =400, o = 0.9,
and f = 0.98) is depicted using a solid line, while the rest stand
for AG LMS with yu;, = 0 and different values of p,,,, and &: (a)
fixed ¢ = 0.01 for p,,x = 0.01 (dashed) and p,,,, = 0.05 (dotted);
(b) fixed . =0.05 for ¢ =0.003 (dashed) and &= 0.0003
(dotted).

and two values of &. We see that using a very
small ¢ reduces the MSD achieved by AG-LMS
in very long stationary intervals at the cost of a
degraded convergence.

When comparing CLMS to AG-LMS with ¢ = 0.01
(Fig. 3(a)), we see that CLMS obtains a slightly
lower misadjustment during stationary and slowly
changing intervals. Moreover, CLMS is as good as
AG-LMS with p,,. =0.05 in tracking the fast
changes during 100000<rn<125000 and after the
abrupt change in the plant at n = 75000.

The performance of AG-LMS with p,,, = 0.05
and ¢ = 0.0003 (Fig. 3(b)), is generally worse than
that of CLMS, although it is able to get a smaller
residual MSD in very long stationary intervals,
since CLMS cannot achieve a lower MSD than that
of a y, LMS filter.

From the above, we conclude that AG-LMS
performance is very sensitive to the selection of
parameters fi,,,, and ¢, which is a difficult task. In
addition to this, these parameters introduce a
performance compromise for stationary, slow, and
fast change situations. We have checked that this
trade-off is present in most of the variable step size
algorithms. On the contrary, CLMS is very effective
at exploiting the best properties of its two compo-
nent filters in each situation and, although it also
introduces a number of parameters, these do not
suffer the same kind of compromise.

In Section 3 we introduced the CLMS?2 algorithm
as a way to effectively manage the learning rate y,.
Now, we will show how CLMS2 can be used to
further improve the performance of the CLMS
filter. In Fig. 4, we have depicted the MSD achieved
by the CLMS?2 filter with the same settings of

---CLMS2

Fig. 4. MSDs achieved by a CLMS filter (1, = 0.05, p, = 0.005,
1, =400, o = 0.9, and f# = 0.98), a CLMS2 filter (same settings,
plus p, = 10y, and r=2), and an AG LMS filter (u,;, =0,
Imax = 0.05, and ¢ = 0.0003), respectively, represented by solid,
dashed, and dotted lines.

CLMS and additional parameters p,, = 10y, and
r=2. We see that CLMS2 keeps the good
performance of CLMS during the whole example,
improving its performance during stationary situa-
tions, where it obtains a similar or even lower MSD
than AG-LMS (see MSDs of both algorithms after
n = 150000). Again, note that CLMS2 does not
suffer any performance compromise and, in non-
stationary situations, its MSD is the same of the
CLMS filter.

5.3. Adaptive combination of recursive least squares
filters

Obviously, our scheme for combining adaptive
filters can be used with no modifications to combine
filters different from LMS. In this subsection, we
will illustrate this fact with an adaptive combination
of RLS filters [2] with different forgetting factors.

The example involves the identification of an
8-tap plant whose weights are selected within
[—1,1], and are modified during 15000 <7n<35000
and 60000<n<75000 according to the random-
walk model (11) with Mo? = 10 ®and Ma2 = 10 °,
respectively. An abrupt change is induced in the
plant at n = 35000, assigning new random values to
all the weights. In this case, the input signal, u(n), is
obtained from a first-order autoregressive model
with transfer function V1 —a?/(1 —az '), a=0.7,
fed with 1.i.d. Gaussian noise, whose variance was
tuned to set E{||u(n)||§} =1.

To model the plant we combine two RLS
filters minimizing the exponentially weighted
costs

Cin)=>_ i "é(m), i=1,2 (16)
m=1

with 4; = 0.995 and 1, = 0.9995, so that the first
filter has a shorter memory and, consequently,
adapts faster to fast or abrupt changes in the plant.
For the combination of both filters (CRLS scheme)
we have used the same settings considered in the
CLMS case, i.e., u, =400, « =0.9, =098, and
a(0) = 0.

In Fig. 5 we present the performance of the RLS
and CRLS filters. Again, the combined scheme
extracts the best properties of each component at
each time, performing like the 4; RLS filter during
60000 <n<75000 and after n = 35000, and achiev-
ing the lower MSD of the second filter in stationary
and nearly-stationary intervals.

0 2.5 5 7.5 10
x 10*

Fig. 5. Performance of a convex combination of two RLS filters
in a time varying plant identification setup. MSD of the RLS
components is depicted using dotted and dashed lines for 4, =
0.995 and 4, = 0.9995, respectively, while the MSD achieved by
their combination is represented with a solid line.

Finally, it is worth mentioning that colored inputs
do not affect the performance of combined schemes,
as long as the component filters are robust to this
situation, which is a well-known property of RLS
filters.

6. Conclusions

An adaptive convex combination of one fast and
one slow LMS filters constitutes a reasonable
approach to get both speed and precision in plant
identification, as intuitively expected. Practical
implementations must include a simple weight
transfer mechanism to be fully effective. Addition-
ally, further splitting of the slow filter provides even
better capabilities. In this case, the resulting
procedure is equivalent to step size management,
without adopting any particular algorithm for it,
but searching the optimal value at each iteration.
All the parameters in the combined schemes have
easy design rules, and the whole algorithm is robust
enough with respect to their selection. Simulation
examples show a clear advantage of the proposed
scheme with respect to previous variable step size
proposals.

Obviously, the proposed design can be further
refined: for example, using different step sizes for
each weight will be effective in cancellation applica-
tions. Finally, it is also evident that the convex
combination scheme could also be used to combine
other adaptive filters, as we have illustrated with a
combination of RLS filters, and other adaptation
rules can be considered for the mixing parameter.
This opens the way to exploit the basic ideas of our
approach in many other applications of adaptive
systems.

References

[1] B. Widrow, M.E. Hoff, Adaptive switching circuits, in:
Wescon Convention Record, 1960, pp. 96 104.

[2] S. Haykin, Adaptive Filter Theory, Prentice Hall, Upper
Saddle River, NJ, 2002.

[3] E. Walach, B. Widrow, The least mean fourth algorithm and
its family, IEEE Trans. Inform. Theory 30 (March 1984)
275 283.

[4] J. Chambers, O. Tanrikulu, A. Constantinides, Least mean
mixed norm adaptive filtering, Electron. Lett. 30 (September
1994) 1574 1575.

[5] D.I. Pazaitis, A.G. Constantinides, LMS+F algorithm,
Electron. Lett. 31 (August 1995) 1423 1424.

[6] C. Rusu, M. Helsingius, P. Kuosmanen, Joined LMS and
LMF threshold technique for data echo cancellation, in:
J. Tasic (Ed.), Proceedings of COST#254 International
Workshop on Intelligent Commissions and Multimedia
Terminals, 1998, pp. 127 130.

[7] A. Cichoki, R. Unbehauen, Neural Networks for Optimiza
tion and Signal Processing, Wiley, West Sussex, UK,
1993.

[8] R.W. Harris, D.M. Chabries, F.A. Bishop, Variable step VS
adaptive filter algorithm, IEEE Trans. Acoust. Speech Signal
Process. 34 (1986) 309 316.

[9] R.H. Kwong, E.W. Johnston, A variable step size LMS
algorithm, IEEE Trans. Signal Process. 40 (July 1992)
1633 1642.

[10] V.J. Mathews, Z. Xie, A stochastic gradient adaptive filter
with gradient adaptive step size, IEEE Trans. Signal Process.
41 (July 1993) 2075 2087.

[11] H.J. Kushner, J. Yang, Analysis of adaptive step size SA
algorithms for parameter tracking, IEEE Trans. Automat.
Control 40 (August 1995) 1403 1410.

[12] T. Aboulnasr, K. Mayyas, A robust variable step size LMS
type algorithm: analysis and simulations, IEEE Trans.
Signal Process. 45 (March 1997) 631 639.

[13] S.D. Peters, A. Antoniou, A self tuning NLMS adaptive
filter using parallel adaptation, IEEE Trans. Circuits and
Systems II: Analog and Digital Signal Process. 44 (January
1997) 11 21.

[14] A.C. Singer, M. Feder, Universal linear prediction by model
order weighting, IEEE Trans. Signal Process. 47 (October
1999) 2685 2700.

[15] S.S. Kozat, A.C. Singer, Multi stage adaptive signal proces
sing algorithms, in: Proceedings of 2000 IEEE Sensor Array
and Multichannel Signal Processing Workshop, 2000,
pp- 380 384.

[16] R.A. Jacobs, M.I. Jordan, S.J. Nowlan, G.E. Hinton,
Adaptive mixtures of local experts, Neural Comput. 3
(January 1991) 79 87.

[17] M. Martinez Ramon, J. Arenas Garcia, A. Navia Vazquez,
A.R. Figueiras Vidal, An adaptive combination of adaptive
filters for plant identification, in: A.N. Skodras, A.G.
Constantinides (Eds.), Proceedings of 14th International
Conference on DSP, 2002, pp. 1195 1198.

[18] C.M. Bishop, Neural Networks for Pattern Recognition,
Oxford University Press, New York, NY, 1995.

[19] J. Arenas Garcia, A.R. Figueiras Vidal, A.H. Sayed, Stea
dy state performance of convex combinations of adaptive
filters, in: Proceedings of ICASSP’05, vol. IV, 2005,
pp. 33 36.

[20] J. Arenas Garcia, A.R. Figueiras Vidal, A.H. Sayed, Mean
square performance of a convex combination of two
adaptive filters, IEEE Trans. Signal Process., to appear.

[21] A. Benveniste, M. Metivier, P. Priouret, Adaptive
Algorithms and Stochastic Approximations, Springer,
New York, Berlin, 1990.

