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Abstract

In this paper we propose the use of the least-squares based methods for obtaining digital rational approximations (IIR
filters) to fractional-order integrators and differentiators of type s, a2R. Adoption of the Pade’, Prony and Shanks
techniques is suggested. These techniques are usually applied in the signal modeling of deterministic signals. These methods
yield suboptimal solutions to the problem which only requires finding the solution of a set of linear equations. The results
reveal that the least-squares approach gives similar or superior approximations in comparison with other widely used
methods. Their effectiveness is illustrated, both in the time and frequency domains, as well in the fractional
differintegration of some standard time domain functions.
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1. Introduction

The area of fractional calculus (FC) emerged,
three centuries ago, at the same time as the classical
differential calculus and deals with derivatives and
integrals to an arbitrary order: real, rational,
irrational or even complex order [1-3]. However,
its inherent complexity postponed the application of
the associated concepts. Nowadays, the FC theory
is applied in almost all the areas of science and

engineering, being recognized its ability to yield a
superior modeling and control in many dynamical
systems [1,3-6].

In what concerns the area of control systems the
application of the FC concepts is still scarce and
only in the second-half of the last century appeared
the first applications. Oustaloup [4] introduced the
fractional-order algorithms and demonstrated the
superior performance of the CRONE controller
(French abbreviation of ‘‘Commande Robuste
d’Ordre Non Entier’’) over the standard PID
controller. More recently, Podlubny [3,7] proposed
a generalization of the PID scheme, namely the
PI1D" controller, involving an integrator of order 1
and differentiator of order m (the orders 1 and m
may assume real noninteger values). He also



demonstrated the superior response of this type of
controller, in comparison with the classical PID,
when used for the control of fractional-order
systems. The transfer function of the PI'D" is given
by Kilp §1=Tibs™!p Tq4s"], where 1 and m are
positive real numbers; K is the proportional gain, Ti
the integral time constant and Tq the derivative time
constant. Clearly, taking d1; mp ¥ f31; 1b; 1; O; 60; 1p;
8;0pg we obtain the classical {PID;PI;PD;P g
controllers, respectively. All these classical types of
PID algorithms are particular cases of the fractional
PI'D" controller. However, the PI'D™ controller is
more flexible and gives the possibility of adjusting
more carefully the dynamical properties of a

fraCHO?un gcrjr?e[nga s grlne(rlftog)tﬁ SI%C strategies is
the fractional-order differentiator and/or integrator
(hereafter referred to as differintegrator), $ 2 Rb.
Hence, the crucial step in digital implementation of
an FOC is the discretization of the fractional
differintegrator s In this study, the approach for

obtaining discrete transfer functions approxima-
tions to fractional differintegrators adopts the
tions to fractional differintegrators adopts the

techniques of Pade”, Prony and Shanks. These
techniques are usually applied in the signal model-
ing of deterministic signals. The whole process can
be summarized in the following three steps:

(1) Discretize the fractional-order operator s* using
a suitable generating function s¢ ¥H?2 z1 ;b

(2) Obtain the impulse response sequence hskp, of
the fractional discrete equivalent, by performing
a power series expansion (PSE) (or Taylor
series) over Ha3z~1p;

(3) Apply the signal modeling techniques (Pade’,
Prony or Shanks) to the impulse response
sequence h'dkpin order to get the desired IIR-
type approximation.

The least-squares strategy just described provides
rational transfer functions of the z variable that give
good approximations, both in the time and fre-
quency domains, to continuous fractional-order
operators. Therefore, they represent an alternative
choice to other proposed methods, namely the
widely used continued fraction expansion (CFE)
method.

Bearing these ideas in mind, the paper is
organized as follows. Section 2 reviews the funda-
mentals of FC. Section 3 presents an unified
discretization scheme for fractional-order integra-
tors and differentiators, while Section 4 derives its

impulse response. Section 5 develops the signal
modeling techniques of Pade”, Prony and Shanks for
the design of IIR approximations to continuous
fractional-order operators. Section 6 presents some
illustrative examples showing the effectiveness of
the proposed techniques. Finally, Section 7 draws
the main conclusions.

2. Essentials of fractional calculus

In the literature we find several different defini-
tions for differentiation and integration to an
arbitrary order [1-3]. One usually defines the
generalized operator by the notation 2% where a
and t are the limits and a da 2RP the order of the
operation. The two most well-known definitions are
the Riemann—Liouville and the Gru'nwald-Letnikov
definitions which for a wide class of functions are

equivalent. The Riemann-Liouville definition is
given by (a<-0p:
o 1 " f() _
Dif (1) = rin —x)de /_J (f— )=t e dr,
n—l<a<=n, (1)

where Gy ¥ represents the Gamma function of x
From a control and signal processing perspective,
the definition of fractional differintegration given by
the Grunwald-Letnikov approach seems to be the
most useful and intuitive, particularly for a discrete-
time implementation [3,8,9]. It is defined by the
following expression da 2 Rb:

iy ,
_J!':l'rf.f[e':l=..Illll_r'|3“r?—2 QZJ:I (—1y Lk );’[!—Mﬂl, (2a)
-g:)_ Ma+1) (2b)
(k,_r[k+nr[:—k+n‘ -

where f tdis the applied function, h is the time
increment and [x] means the integer part of x.
Oldham and Spanier [1] called operator (2) a
differintegral since it unifies in a single operator
the notions of derivative and integral. Furthermore,
the Gru'nwald—Letnikov definition poses the fewest
restrictions on the functions upon which it is applied
and can be converted easily into numerical schemes.
An important property revealed by Egs. (1) and
(2) is that while integer-order operators imply a
finite series, the fractional-order counterparts are
defined by an infinite series. This means that integer
operators are local operators in opposition with the



fractional operators that have, implicitly, a ‘‘mem-

ory’’ of all past events.

For the analysis and synthesis of automatic
control systems we often adopt the Laplace trans-
form (L) based methods. In the Laplace domain, the
fractional differimtegration of order « € R, D5 (1),
of f(t) (being f14) a causal function of ¢, f{¢r) =0 for
t<a>=0), under null imtal conditions, 1s given by
the simple expression:

LI, D (1)} = 5 F(s), (3)

where Fis) = L{f(#)}. Note that expression (3) is a
direct generalization of the classical integer-order
scheme with the multiplication of the signal trans-
form F(s) by the Laplace s-variable raised to a
fractional value . The Bode diagrams of amplitude
and phase of the fundamental fractional-order
operator 5 (3) are represented by straight lines of
202 dB/dec and an/2rad (x € W) in all frequency
domain, respectively. These facts reveal that fre-
quency-based  analysis methods may be  easily
adapted to the fractional-order case.

3. Unified discretization scheme for fractional-order
differentiators and integrators

The wusual approach for obtaining discrete
equivalents of continuous fractional-order opera-
tors of type 5° (x € R) adopts a generating function
s =wm(z71) [10,11]. By other words, given a con-
tinuous transfer function (filter), @(s), a discrete
equivalent, G(z), can be found through the sub-
stitution:

G(2) = G5l ppi=(zys (4)

where A7(z) denotes the fractional discrete equiva-
lent of order z of fractional-order operator s,
expressed as a function of the complex variable z or
of the shift operator z7'. In these s — = conversion
schemes (also called analog to digtal open-loop
design methods) the most often used are the Euler
(first backward difference ruke), the Tustin (trape-
zoid rule) and the more recently ntroduced Al-
Alaow operator, which 15 a weighted interpolation
of the Euler integration rule ['41} and the Tusun
integration ruke [l—] [12.13].

It can be shown that the mentioned numerical
integration formulas are special cases of the so-
called T-integrator introduced by Smith and de-
scribed in his book [14]. In fact, Smith defined a new
type of integration formula, which has a close

relation to the mean value theorem, given by the

two-parameter tunable transfer function:

Ta — ]

1A= 5
K 1 —:=

where Aand y are denoted the gain and phase tuming
parameters, respectively. An important aspect of the
T-integrator is that for 4 =1 and varving 7 from 0
to 2 in ratios of integers results in most of the useful
classical first order mtegrators. For example, when
A=land y= {%-,%, 1}, the T-integrator (5) becomes
the Tustin, the Al-Alaow and the Euler (backward
difference) integration rules, respectively. More
specifically, the T-integrator can take on a double
infinity of values (4 and y) in-between the classical
mtegrators. In this sense the integrator can be tuned
precisely to any problem being solved, system
being controlled or system being simulated [14]).
Thus, the designation of Tunable-type integrators
(T-integrators).

We can obtain a family of new fractional-order
differentiators from the digital T-integrator (5). The
direct inversion of (5), raised to the power a, will
give the following generating function for discreti-
zation:

ey 1 1 -z :
re= (E:-ﬂl —:-'}:“) ' (©

Table 1 lists some of the fractional discretization
schemes that results from the unified generating
function (6) for different values of parameter g (with
a fixed value of 1¥il). Clearly, many of the widely
varied classical numerical integration formulas,
each of which is considered in some way to be
different from the others, are actually the same
integrator, differing only in the amount of phase
shift g. For a more detailed description about the
features of this integrator see [14].

Table 1
5 — r conversion schemes (4= 1)

Implicit Adams second order

T F—= I Method

0 . 11—z ")* Forward Euler rule
T {I' =1

L (21— =" Trapezoid rule

3 . {;l = ) pe

r+=-t
z o (B 1= )* Al-Alaoui rule
{WH: 7

1 o e {l -z ")‘ Backward Euler rule

5 oo -




As can be seen in Table 1, the fractional-order
conversion schemes lead to nonrational =-formulae.
In order to get rational expressions we have two
alternatives. One way is o perform a PSE (Taylor
serics) over them and the final approximation
corresponds to a truncated z-polynomial function
(FIR filter) [8-10,15. For example, using the
backward Fuler rule, Hiz ) =(1 - :'1};']‘", and
performing a PSE of ((1—-z"")/T) gives the
discretization formula corresponding to the Griin-
wald-Letnikov definition (2), yielding:

sy = YO _ (1Y pspia - 1y
D[_}—X[__}_(T) PSE{(1 —=""F}y

] z
= (?) P.\-[:_.I}

1 : 2 z)_— z)_—N 7
N (?) (@) +a%2 2 ()

where P is a polynomial of degree N and &%, (k =
0,1,...) are binomial coefficients which may be
caleulated recursively as:

r § rd ] r
d¥=1, &= (]—$)c-ij, k=12,....

(8)
Another possible way is to obtain a discrete transfer
function in the form of rational function (i.e., as the
ratio of two polynomials) (IIR filter). This can be
accomplished by application of the well-known
CFE method [10,11,16-18]. By doing so, over the
tunable generating function (6), it results in the

discrete transfer function, approximating continu-
ous fractional-order operators, expressed as:

z__}'[:j_ qu J—:_1 )1
PO=35" (,:.r) {'FE{(H[J -y }m
{1\ Puiz™)
T \AT) 0,0
_ ]_ Potpiz ot P
AT) gu+aqz='+--+gz""

(9

where P and Q are polynomials of degree m and n,

respectively. It is well known that rational approx-
imatjons_frequently converge faster than

mlai approglma{}/ons MEE%aVE S Wider pé)clamgi'n of

convergence in the complex domain. Therefore, in
this study we only develop z-variable rational

transfer functions approximations of the continuous
fractional-order operators. Moreover, the proposed
algorithms adopt the time domain, which make
them suited for z-transform analysis and discrete-
time implementation.

The CFE method leads o an approxmation
that produces a Taylor series coeffidents identical
to those obtained through the fractional-order
discrete equivalent up to the order of approxima-
tion, that is, D%(z) — H(z) = O(z"t"t"), where Hiz)
is the approximation of order m+n+1 [11,19)].
The new techmques relax this constramt by
considering the least-squares determination of the
model parameters over a wider range of the Taylor
serics coefficients (or of the mpulse response
length).

4. Impulse response of digital fractional-order
differentiators and integrators

This section denves the impulse response se-
quence A7(k) corresponding to the tunable generat-
ing function H*z7") (6). It is assumed that
R%ik) =0 for k=0, that 15, a causal system.

One puts the discretization formula H*z"" in
the form:

H () = 1 1 —z1 :
T NATy 4 (1 =gz
— ! ’ e T ey
= (ﬁ) (1 -z Yy +d—p")
(10)
By taking the PSE of the functions (1 — =71 and
[+ (1 — =177 it yields (=0

0 a
-z = —1j* P
( ) E ( }(kj

k=0
=+

=3 o, (1)

k=l

& —a
p+(1 =y =) = -yt e
(y+1 k=) ( ) k

k=)

=dy? +d T
=) & (12)

k=)



Let us introduce the product of the two generating
series as:

(i c'}c’J:_j‘) (i d}c—’J:_j‘ )
=0 k=0
a0 k
= Z (Z c:}’jr&__j.j):_’" . (13}

k=0 \ =0
Using Taylor series (11) and (12) m conjunction
with the product property (13), we obtain the final

expansion of H*(z') into a power series in z7':

1 1—z! :
.=y — [
re= (—‘-T:-'Hl —:-']I:“)

1 z oo k »
R
4 k=0 N\ =0

(5 )5

=0+ B+ P2+ +

=) Wk, (14)
k=0
where the impulse response sequence A°(k) is
caleulated by the expression (kz0):

1 z k ) )
2 _ I 2 i T I
W [k]_(”,) ¥, (1—p)f

’ =1

L) 19

Table 2 shows the impulse response sequences for
the most commonly used discretization schemes,
Le., the Euler, the Tustin and the Al-Alaow
operators. These were obtained afler simplification
of expression (15) and considering the tuning
parameter (with A= 1) y= 1. { and 4. respectively.

Table 2
Impulse responses sequences of Euler (first backward difference],
Al-Alaoui and Tustin operators (4 =1)

Method k), k=0
Eukr (y = 1) {'l)‘{'k—:ﬁ—l)
Tk
WP g — Iy ¢ P = —
Al-Alaoui {3 =3) {i '\L{l) i :t 1 :t.
7T) &\ i M-
Tustin (7 =3 {i)*{-_ 'f_:f_L —::.
=10 k—j

Note that the power series method leads to impulse

response sequences of infinite length. In a

practically realizable form these sequences are

truncated yielding approximations in the form of
finite impulse responses (FIR filters).

5. Design of IIR approximations to fractional
differintegrators using least-squares

Consider that the desired impulse response i (k)
is spedfied for £=0. The transfer function of the
approximation H(z™'), to be designed, has the form

B2y by+biz7'4+ . 4 b ™
H[:}:—[_}z “J’_ 1___|+ + o “6}
Alz)  l4az7' + - ta,z
where m<n. The impulse response A(k) is related to
Hiz) by the z-transform

H(z) =Y hik)=™. (17
k=)

The approximation (16) has m +n + | parameters,

namely, the coeflicients a; (k=1,2,....n) and by

(k=0,1,...,m), which can be sclected to minimize

the sum of the squared errors

N-1
E=Y"[h*(k)— hil)}, (18)
k=0

where N denotes the number of impulse values used
in the summation. In general, this approach leads to
a nonlinear problem for the model parameters (ay,
b)) and hence the mmimization of E involves the
solution of a set of nonlinear equations. However, if
we rewrite H(z) = B(z)/ A(z) as follows:

Hiz)A(z) = Biz) (19)
and assuming that A*(k) is given approximately by
the impulse response of H{z), one can write the
corresponding tme-domam equation as (note that
the left-hand sided corresponds to a convolution)

h’[k}+zam=[k—n:{ﬁ“’ O<k<m, (20)
I=1

This gives a set of linear equations, which can be
used in different ways to solve for the coefficients ax
and by [19-24]. Our objective is to use simple
(indirect) methods that can handle more easily the
(indirect) methods that can handle more easily the

determination of the model parameters. In this
perspective, this study considers the application o
solutions: the Pade approx-

imation, the Prony’s method and the Shanks’
method.

0, k=m



The Padé fraction yields an approximation that
fits exactly A"(k) dunng the first m+ n+ 1 values of
k. Then, Eq. (20) becomes

. noo b, 0=k<m,
k “CH.- ;mﬁ k-h= 0, m+lsks<m+n,

(21)

where #(k) =0 for k<0. A two-step approach 1
used to solve the system of m+n+1 linear
equations in m+a+ | unknowns (21). In the first
step, the cocfficients g are found using the last n
equations in (21), which after simple manipulations,
may be written in matrix form as:

Ifim) m = 1) oo WM =n+1)
F{m+ 1) T (m) e W m=n+12)
Hm+n=101 Km+n-=2) - H(m)
aj him+ 1)
s hm+2)
| [=-| | @2
iy h*(m+ n)
Hya = —ho, (23)

where a and hyy are n x| vectors and Ha is an s x n
nonsymmetric Toeplitz matrix [25]. If Hs 15 non-
sigular (1.e., 15 mvertible) then H3_1 exists and the
cocfficients ap (k=1,2,...,n) may be unmiquely
determined by:
a=—Hy'hy. (24)
In the second step, the coefficients by are found
using the first m+ 1 equationsin (21), which may be
wrilten in matrix form as:
TR0 0 . 0
(1) D) 0 . 0
() () oy - 0

_:‘i"{m] Him=-1) KFim=-2 .. h"{m—ﬂ]_

‘11 M
day J'J]

x|ax| = | b2 |, (25)
dpn B

Hyd= b, (26)

where b is an (m+ 1) x 1 vector, a=[1;a] 15 an
(n+ 1) 2 1 vector and Hy is an (m+ 1) = (n+ 1)
matrix. Therefore, b may be found simply
by multiplying 4 by H;. Alternatively, the
coefficients £ may be evaluated using Eq. (21) as
follows:

by = IF (k) +Zafh“{k— N, k=0,1,....m.
=i
(27)

In this way, we oblam an approximation that has a
perfect match to the desired impulse sequence (k)
for the first m+n+ 1 values of k. However, since
there 15 no bound on the error for k=m+n, in
general the Padé method does not produces a good
approximation to h*(k) for k=m +n. In fact, the
success of this method depends strongly on the
number of selected model coefficients.  Since
the design method matches A%(k) only up to the
number of model parameters, the more complex
the model, the better is the approximation to i (k)
for 0=k<m +n However, in practical applica-
tions, this introduces a major limitation of the
Padé method because the resulting approxi-
mation must contain a large number of poles and
zeros [26).

It can be shown that rational approximations
obtained by the CFE method are identical to those
resulting by application of the Padé approximation
to PSE (m=mn) [27]. Nevertheless, the CFE
approach 1 computationally less expensive than
the Padé technique.

5.2, Prony's method

Prony’s method differs from the Padé approx-
imation in the form of finding the coeffidents
ap (k=12,...,n). These are determined by
a least-squarcs mimmization over the interval



m+ 1L, N-1]"

N
Er= ) lakl (28)
k=m+1
where
eplk) =fflk}+zar:‘flk— h. (29)
I=1

The coefficients a, that minimize Ep, may be found
by setting the error ep(k)=0(k=m+1,m+
2,...,N —1)and solving for the unknowns a;.. This
produces the following set of linear equations

Fim  Km-=1) -+ K (m-n+1)
im+1y  KFim) oo B m—-n+2)

FN=2) FIN=3 - h(N-n-1)

ay Fim+1)
aa WFim+2)

x| | =- ) \ (30)
ay KN = 1)

Haa = —hey, (31)

whereas ann x 1 vector, by isan (N —m —1) = 1
vector and Ha 15 an (N —m — 1) o n matrx It 1s
obvious that i this case (31) cannot be solved
exactly. Therefore, the least-squares solution is
obtained by solving the set of n linear equations:

(HIHz)a = —Hlhy. (32)

If the matrix H}H; 15 nonsingular, 4 umgue
solution of (32) exists and the coefficients ag are
mven by:

a = —(HjHy) 'Hihy = —HThy, (33)

where HT = [H;rHQ]_]H;r is the pseudoinverse of
Hs.

Once the coefficients ap can be determined, the
coefficients by are found using the Padé method of
forang hik)=h"k) for k=0,1,...,m (sce the

b =h(k)+ Y _al(k— 1), O<k<m. (34)

I=1

5.3, Shanks" method

Shanks” method provides an  alternative to
Prony's method of finding the coefficients by
(k=0,1,....m). Instead of forcing an exact fit for
the first m+ 1 values of the impulse response, it
establishes a least squares mimmization over the
entire interval under consideration, [0, N — 1]1:

N-1

Es =Y lestk)l’, (35)
k=)

where

esth) = (k) — Y _ buglk — ). (36)

I=l)

In this approach, we convert the rational function
Hiz) as the cascade of two functions:

1
Hiz) = Biz) {m} (37)

Firstly, the coefficients @ are determined in the
same way as m Prony’s method, 1., by a least
squares fit over the mterval [m+ 1, N — 1] (see the
previous subsection). Onee A(z) has been deter-
mined, the impulse response g(k), which corre-
sponds to the filter 1/A4(z), may be computed using,
for example, the recursion

glk) = dik)— Z ayglk — 1),
=
k=0,1,....N—-1 (3E)

with gik) = 0 for k<0,

Finally, the coefficients by, that minimize Eg, may
be found by setting the error egik)=0
ik=0,1,...,N — 1), leading to the following set

%It is possible to make use of other errors. For instance, we may

'Note that this procedure corresponds to the Pade method by find it more appropriate to consider the same interval,
relaxing the constraint given by Eq. (21) from im p 1; m p n] tm p 1; N — 1], as that used in Prony’s method to derive the
upon to the number of impulse samples under  consideration, coefficients ak.

imp LN —1].



Tablk 3
Cocfficients of Promy's approximations, Hi{z)= Biz)/4(z), to Tustin operator for a=—% N =100, T=001s and {m,n =
B, 1,03, 3),. .., (9, 9]

Ratonal function Order (m,n)

Hiz) Coefficdent (L1} (33 (5.5) (7.7) (9.9)
by QOTI06TEL 00707 106 TEL 0OTOTID6TEL 00707 106TEL Q0T TI0GTEL
by (LD0EE4 31239 DLD0E3020645 00472764912 00047370173 (LD DER Bi)
bz —{.0528 1R6TS — LR a4 16090 —{. 1354 5626 5K — 177026 14981
by —0.0017470271 —{L0043558157 —.0071 65317 — 0010491 1076
by 002656297 007957483 01521127174
LE 0005193119 QLDD2TEGEIED QD0TO6S 1570
b {01180 31 —0.0506123212
b — {0001 T2 92 —.001 586 THA
by (L0401 34950
ba Q.000DED 3T5T

Alz) da L ODOD00D000 1000000 100000000 LAOOO0 D00 (VTN ]
ay —(LET4393429 09250 174848 —(.9331403493 —{.93300845 54 — 0929446 ROET
a3 —{1. 3218423797 —LEQ5T] 6853 — 14826324234 —207T40E] 6932
a3 02506444 279 D.B006E 33232 1.34TRO3T4 38 1. EW43E84303
s OIT401T1115 0.5753152257 1. 387524 5003
sy —LOE4G] 41199 — . 4935684346 — L.2222439076
g —.0415439761 — . 31606805
as 0.02TESNEE S 02604191128
a3 (152884314
g — LA 18T 3966

Table 4

Coefficients of Prony's approximations, Hi(z) = Biz)/A(z), to Al-Alaow operator for = —L N =1000, T=001s and (m,n)=

L, 103,30, ., 09, 90)

2

Rational function Order (m,n)

Hiz) Cocfficent (L1} (3,3) (5.5) (7.7 (9.9)

Bz by 00935414347 (M 3541447 00935414 47 (R3I541447 (A1 541 4247
by —(10336E32 200 —{. 13 A5 —( 23618467 = 327610 1609 —.425754 31935
5] QO3R5E10145 0.1 E6D475050 0436630606 0,790 105 3063
by QL0207 24059 —0 0566021 — (L 26E4862300 —.759151 5747
by — {0002 192801 OL06ETES4321 LU T S
[ 00007631060 —(LN 15285715 — LA ERE 9202
be —(LO0 14280565 (L0347 5903
by QL006454 7T QL2215TE2
by — (000 TE2 4620
by — (L0007 T16S

Alz) i 1 00000000 L0000 1 OO0 000 L OO0 L0000 00
ay —(19315173402 — 197284497700 =3 02H{MESL6 —4 0737285101 — 5. 12293445900
s L13162TE51 3 3084 M99a5 6. 588029 53990 1SS RIEEEES
a3 —L1ETHEH0TH —1 533072377 —53102729619 — 1 2620009041
ay (2527828079 21636134979 E.3546321360
s — (0014666 745 —(LATEEY52401 — 106 5746303
g OLODGETHE0S0 (5485273792
dy (02454 535 — (0146333039
a3 —L006062 3532
dg (L0 2R 1560




of linear equations

r gl0) 0 0 0 1
gil) g(0) 0 0
g9(2) g(l) 0 0

gdN—1) g(N-2) gN —m—1)

)
& (1)
b s
x| |=] @ |, (39)
b
N1 |
Gh=h, (40)

where b 15 an (m+1)x 1 vector, h 15 an N = 1]
vector and G s an N = (m + 1) matnx. The keast-
squares solution is found by solving a system of
m+ 1 linear equations:

(G'G)b=G'h. (41)

If the matrix G'G is nonsingular, the coefficients a
can be umquely determined by:

bh=(G"G) " G'h=G"h, (42)

where GT = (G'G)7'G" is the pseudoinverse of G.
The techniques just desenbed may be comple-
mented with the following observations:

e The Prony and the Shanks methods are supenor
to Padé approximation, since A(k) approximates
k), in a least-squares sense, for values of
k=m+ n. Therefore, it will be expected a good
match even outside the interval [0, m 4+ n);

# In the Shanks’ method, both a; and A are
determined through an optimzation viewpoint
(using least-squares minmization), leading to a
further improvement of the approximation accu-
racy. However, note that these oplimization
algorithms are distinet from the one obtaned
by the direct application of the least-squares
method;

® The use of inverses or pseudoinverses is accep-
table n theory, butl practical caleulations should
better avowd them and solve lincar algebraic
systems, possibly in a least-squares sense. 1L s
well known that there are efficient methods for

the solution of such systems, either by using the
linear equations (23), (32) and (41) [28], or using
the inverses or pseudoinverses (24), (33) and (42)
[29], but the best choice is probably the use of one
of the least-squares solvers available. In this
perspective, we  verify that the wse of the
MATLAB backlash operator " can casily
and efficiently solve the algorithms proposed in
this study.

6. Mustrative examples

Here we use the signal modeling techniques
desenibed in previous section o develop digital
rational approximations Hi{z™") of the continuous
fracuional-order operator 8*, x = +1,/2, sampled at
T'=001s Itisadopted an impulse sequence length
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Fig. 1. Impulse responss sequences of Prony's approxmations to

Tustin {upper) and Al-Alaow (down) operators for =—_';—_.

N=1000, T=00sand m=n=1,3,....9.



of N ¥, 1000. In practice, we consider m¥;, n because
the case of mon leads to inferior results [11,19,
24]. For comparison purposes, we also plot the

rational approximation obtained by the Pade

(or the CFE) method for the case of m, 5.
Tables 3 and 4 list the coefficients of selected Prony’s
approximations to Tustin and Al-Alaoui operators

fora¥-sand m¥%n¥1;3;...;9, respectively.
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6.1. Performance of the least-squares IIR
approximations

Figs. 1 and 2 depict the impulse response
sequences and the Bode diagrams of Prony’s
approximations to Tustin and Al-Alaoui operators
for a%-1and m¥%n%1;3;...;9, respectively.

2

Clearly, the higher the order m ¥ n of the rational
function better the fitting, in a least-squares  sense,

of its impulse response in the discretized fractional-
order integrator s~=2. Also, the Bode plots show
that the approximations are well fitted into the ideal
responses (dashed—dotted lines), roughly approxi-
mating the ideal continuous magnitude responses
for nearly three decades (for m¥% nX5). Note that
the Al-Alaoui scheme improves the high frequency
magnitude response comparatively to the Tustin
scheme while this one has a better phase response
approximation. We also verify that the least-squares
approach increases the performance of the approx-
imations in the low frequency range (corresponding
to the steady-state time response) by increasing the
order (or the number of impulse values used),
resulting in better approximations than those given
by the Pade”(or the CFE) method. This is due to the
fact that the proposed techniques (Prony and
Shanks) perform a least-squares fitting over a wide
range of impulse samples, while the Pade’method
produces an exact fit for the first p np1 samples
of the impulse response, with any guarantee about
the accuracy of the approximation for k4m p n.
Obviously, the upper limit frequency is dependent
on the sampling period T through the Nyquist
criterion.

Fig. 3 shows the pole-zero maps of Prony’s
approximations to the Tustin and Al-Alaoui opera-
tors for a v, _1§and m yvn 41,5, 7, 9} We observe
that the approximations satisfy two desired proper-
ties: (i) all the poles and zeros lie inside the unit
circle, and (ii) the poles and zeros are interlaced
along the segment of the real axis corresponding to
z 251 .pThus, the resulting approximations are
causal, stable and minimum phase, as desired for a
digital realization.

6.2. Fractional differintegration of some standard
time-domain functions

To further illustrate the effectiveness of the
proposed techniques, the approximations are used
to calculate the differintegral of the unit step
function that occurs at t % to (to<+0), udt — tob, and

of the causal cosine function cdtP defined as:

1. t =y, .
it —itg) = 0 ft (43)
" < T,

ol ) = cos(fhu(t). ()
The diffenintegral of the umt step function (¢ — )
15 mven by [1,3]

t—t)" t=t

-« " (45)
(0, O=¢= Ty

Dz[ﬂ[! — In:|:|] =

y(®)

t(s)

Fig. 4. Unit step responses of Shanks’ approximations to Al-
Alaoui operator for a%-% N%1000, T%:0:01sand

m¥%n¥%1;3;...;9.
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Fig.5. Unitstepresponsesof Shanks’ approximationsto Euler,
Al-Alaoui and Tustin operators for a ¥ - % N %, 1000, T %
0:0lsand m¥an¥.7.



The cosine function o(f) s calkulated for the
serudenvative (o = ;—} and sermimiegral (x = — %‘.l [1]:
D'Pcos()]
] i T — . .'IE
= os| 4+ ) — 2 [ — s 46
V-"H-'_Uh{ +4) v 2f (1'&' r:) (46)
D2 (1) = ¢ .“! ’T) ey ."IE (47
[cos ]_Lm{ 1 v 2g Vi) |

where f(x) and g(x) are the awaliary Fresnel
miegrals [30]. In expressions (46) and (47), the
cosine terms express the steady-state responses while
the remaiming terms represent the fransient beha-
viowr of the responses. In fact, considening ¢ — oo,
Eqgs. (46), (47) are given by the general expression
IDPleos(t)] = cosit +an/2), =1 <ax<1.

Fig. 4 illustrates the unit step responses of
Shanks’ approximations to Al-Alaoui operator for
several values of order m /s 1;¥8; ... ; 9. Once
more, the curves show the good performance of the
least-squares approximations in the time-domain
comparatively to the Pade”(or the CFE) approxima-
tion. In Fig. 5 we compare the unit step responses of

Shanks’ approximations with the three operators

under consideration (Euler, Al-Alaoui and Tustin)
for a fixed order of m n 7. It is clear that
the best approximations are obtained with the
Euler and Al-Alaoui opgratgys (note that the

3 1
4 4

Al-Alaoui operator is a weighted interpolation
of the Euler &b and the Tustin &b operators).
By other hand, as already said in previous
subsection, the Tustin has the best frequency
response. From these results, we conclude that
the operators must be carefully selected depen-
ding on the final utilization of the approxi-
mations since they present different performances
in the time and frequency domains that should be
considered.

Figs. 6 and 7 illustrate the semiintegral (a ¥, —%)
and semiderivative (a 1/49 of the functions utg —1p
and catbcalculated with the Shanks’ and the Prony’s
approximations, respectively. The results demon-
strate the effectiveness of the approximations fitting
the ideal curves (dashed-dotted lines). Obviously,
we can tune the order m4in of the approximation
along with the sampling period T to get a better
agreement between the ideal and the approximated
curves.
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Fig. 6. Semiintegral and semiderivative of the unit step function uét — 1P calculated with Shanks’ approximation to Al-Alaoui operator for

N %1000, T % 0:01s and m¥an¥% 7:



Semiintegral
T

S Ideal, o =—1/2
%]
)
>
5
O
2 4 6 8 10 12 14 16 18 20
t(s)
Semiderivative
Ideal, o =1/2
%]
[
>
5
O
1 1 1 1 1 1 1 1 1

10 12 14 16 18 20
t(s)

Fig. 7. Semiintegral and semiderivative of the cosine function citb calculated with Prony’s approximation to Euler operator for N ¥ 1000,

T%0:0lsandm¥an¥%7:

6. Conclusions

We have described the application of the Pade”,
Prony and Shanks techniques used for the signal
modeling of deterministic signals to the design of
digital rational approximations (IIR filters) of
continuous fractional-order integrators and differ-
entiators of type s?, a2R. It is shown that these
techniques only require finding the solution to a set
of linear equations. Note, however, that the
illustrated techniques yield suboptimal solutions to
the signal modeling problem, which differ from the
optimal solution given by the direct application of
the least squares method between the desired and
the approximated impulse responses. This method
has the disadvantage of requiring the solution of a
set of nonlinear equations and, for that reason, it is
often avoided.

The effectiveness of the approximations are
illustrated both in the time and frequency domains.
Moreover, it is demonstrated that the Prony and
Shanks methods can produce better approximations
than the widely used CFE approximation method.
This is due to the fact that the poles (for the case of
the Prony’s method) and the zeros and poles (for the

case of the Shanks’ method) of the approximation
are determined in a least squares sense over the
(almost) entire impulse sequence length under
consideration. By other hand, the Pade approxima-
tion fits only on the desired impulse response, up to
the number of poles and zeros, without any error
control for larger values. In this case, can be easily
proved that the Pade’and the CFE methods yield
the same approximation (mvn). Also, the obtained
approximations are causal, stable and minimum
phase, suitable for a real-time implementation.

The results presented here indicate that the least-
squares based methods are adequate techniques for
obtaining digital approximations of continuous
fractional-order operators. They also suggest the
adoption of other similar procedures like the use of
iterative methods (i.e., steep descent, Newton’s
method or iterative prefiltering). Although, these
techniques are more involved than the methods
presented here, they may produce interesting results
(note that this is a batch process determination and
the computation time is not a crucial issue). In this
line of thought, this paper represents a step towards
the implementation of practical digital fractional-
order differentiators and integrators.
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