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Abstract 

In this paper, we survey the different types of error-handling strategies that have been described in 

the literature on recognition-based human-computer interfaces. A wide range of strategies can be 

found in spoken human-machine dialogues, handwriting systems, and multimodal natural interfaces. 

We then propose a taxonomy for classifying error-handling strategies that has the following three 

dimensions: the main actor in the error-handling process (machine versus user), the purpose of the 

strategy (error prevention, discovery, or correction), and the use of different modalities of 

interaction. The requirements that different error-handling strategies have on different sets of 

interaction modalities are also discussed. The main aim of this work is to establish a classification 

that can serve as a tool for understanding how to develop more efficient and more robust multimodal 

human-machine interfaces.  
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1. Recognition-based technology 

 

Multimodal interaction refers to interaction with the virtual and physical environment through 

natural modes of communication such as speech, body gestures, handwriting, graphics, or gaze. 

Unlike keyboards and mice inputs, natural modes of communication usually are non-deterministic, 

and have to be “recognised” by a recognition system, before they can be passed on to an application. 

Recent developments in recognition-based technology (e.g. speech and gesture recognition) have 

opened a myriad of new possibilities for the design and implementation of multimodal applications. 

Handwriting recognisers, for example, are being used in personal digital assistants (e.g. Paragon’s 

multilingual PenReader software for Pocket PC devices), and speech recognition has made its way 

into desktop machines (e.g. IBM’s ViaVoice
TM

 speech recognition engines). However, designing and 



implementing systems that take the best advantage of these new interaction techniques is difficult. 

Our lack of understanding of how recognition-based technologies can be best used and combined in 

the user interface often leads to interface designs with poor usability. In particular, users’ 

expectations of a system’s capabilities and users’ mental models of how a multimodal interface 

works are often inadequate, and these trigger interaction problems. Another source of errors comes 

from the ambiguous nature of many recognition-based users’ inputs (inputs that can be understood in 

two or more possible ways). This is especially true of speech, as the expressive power of spoken 

language is often obtained at the price of some ambiguity and imprecision in the messages. 

Moreover, recognition-based technologies are still error-prone. Speech recognisers, for example, are 

not perfect listeners. They make mistakes.  

Speech recognition accuracy is usually calculated as the number of words correctly recognized, as a 

percentage of the number of words spoken. The technology has made much progress in the last 

several decades and recognition accuracy rates as high as 98% have been reported [1][2]. However, 

the performance of today’s speech recognition systems is still dependent on a number of factors, 

such as vocabulary size, quality of audio signal, and variability of voice parameters. Background 

noise and small changes in voice characteristics, due, for example, to the speaker having a cold, can 

significantly affect the performance of a recogniser even after the user has trained it. Besides, a 

linear relationship has been identified between a user’s level of physical exertion and recognition 

accuracy; the higher the level of exertion, the lower the accuracy rate [3]. Finally, current speech 

recognition systems have been designed to process read text or speech that does not exhibit 

disfluencies, such as pauses, hesitations, repetitions and repairs. For spontaneous and disfluent 

speech, recognition accuracy decreases drastically [4]. 

Handwriting recognition systems are not perfect either. The causes of the recognition errors that are 

likely to occur in handwriting interfaces include: discrete noises, badly formed shapes, incorrectly 

spelt words, cancelled material, and device-generated errors [5]. In 1999, MacKenzie and Chang [6] 

compared two handwriting recognisers by asking users to copy words that were presented to them 

and by logging entry speed and accuracy. Accuracies of between 87% and 93% were reported. In 

2001, a study by Read et al [7] measured accuracy, speed, and user satisfaction with handwriting 

recognition, using children as subjects. Recognition rates averaging 86% were reported for 

unconstrained text entry.  Higher performance numbers have been achieved in recent years [8], 

however, all recognition performance numbers are dependent on the particular test set and should be 

taken with a pinch of salt [9]. This is because, in order to correctly interpret these statistics, one need 

to know the experimental conditions that prevailed in the studies. 

Every study of recognition-based human-computer interfaces shows that recognition errors reduce 

the effectiveness of natural input modalities such as speech and handwriting [10][11][12]. Typical 

text entry rates of 25 to 30 words per minutes (wpm) via speech recognition systems with 



recognition accuracy as high as 94%, are much slower than voice dictation speeds, which are 

generally around 150 wpm [13] [14]. The primary reason for this slower speed is the need to correct 

recognition errors. But recognition accuracy and speed are not the only determinant of user 

acceptance of recognition-based technology [15]. In speech systems, error rates have been found to 

correlate only loosely with satisfaction [16]. According to [17], higher speech recognition accuracy 

tends to be associated with better general performance (e.g. higher text entry rate), but the 

correlation, at 0.62, is not as strong as might be expected. In fact, users who have the best 

performance tend to be those who employ the best correction strategies. Similarly, Frankish et al 

[18] have studied the relationship between recognition accuracy and user acceptance of pen 

interfaces, and have shown that it is highly task dependent. For example, it was found that users 

were less frustrated by handwriting recognition errors when the task was to enter a command in a 

form than when they were writing journal entries. In general, the impact of recognition errors 

depends upon a number of factors such as the amount of input required, the acceptability of 

uncorrected recognition errors, the benefits of using speech or handwriting as compared with other 

interaction means, and the availability of adequate error recovery mechanisms.  

A wide range of strategies for handling recognition errors can be found in the literature on spoken 

human-machine dialogues, handwriting systems, and multimodal natural interfaces. In the next 

section of the paper, we survey the different types of error-handling strategies that have been 

proposed. We then present in section 3 a taxonomy for classifying error-handling strategies, which is 

based on three dimensions: the main actor in the error-handling process (machine versus user), the 

purpose of the strategy (error prevention, discovery, or correction), and the use of different 

modalities of interaction. A discussion on the requirements different error-handling strategies have 

on different sets of interaction modalities follows in section 4 of the paper. The main aim of this 

work is to establish a classification of error-handling strategies that can serve as a tool for 

understanding how to develop more efficient and natural multimodal human-machine interfaces.  

 

2. Error-handling strategies in recognition-based interfaces 

 

Mankoff et al [19] suggest four key research areas for error-handling in recognition-based interfaces: 

error reduction, error discovery, error correction techniques and toolkit-level support. According to 

Mankoff, error reduction involves research into improving recognition technology in order to 

eliminate or reduce errors. We have found in the literature a variety of other techniques to achieve 

error reduction, such as better interface design and the use of contextual information. 

In the area of error discovery, Mankoff mentions two categories of strategies: explicit users’ input to 

tell the system that an error exists, and the system’s output of uncertain interpretations of recognised 



input to make the user aware of potential errors. A number of other strategies have in fact been 

proposed, for example, the mutual disambiguation of input modes in natural multimodal interfaces. 

 

In this section, we present error-handling strategies using the following six categories: error 

reduction by design (constraining or influencing users’ actions, expectations, and mental models to 

prevent errors), error reduction by context (augmenting input signals with contextual information to 

improve recognition), user prevention (users’ spontaneous behavioural changes to prevent errors), 

automatic detection (techniques to automatically detect potential recognition errors), machine-led 

discovery (techniques to facilitate error discovery by users), and user correction (strategies to allow 

users to resolve recognition errors).  

 

2.1. Error reduction by design 

 

A number of different techniques have been proposed whose main goal is to prevent or reduce 

recognition errors. “Error reduction by design” describes techniques that achieve error reduction by 

leading users towards the production of inputs that are easier to recognise by machines. The different 

techniques differ in the level of constraints they impose on user behaviour and actions, and the 

degree of control the user has on the interaction. We describe them here, starting from the most 

constraining methods.  

 

In recognition-based technology, there are two basic problems that recognisers must solve: 

segmentation and recognition. In handwriting, the input to a recogniser is a series of ink strokes 

stored as sets of digitised points. Segmentation is the process of determining which segments are in 

which characters [8]. One way to reduce the complexity of segmentation is to constrain input, for 

example, by supporting block printed characters only, or non-connected cursive handwriting only. 

On-screen boxes are sometimes used to force users to write isolated characters of uniform size, and 

discourage connected cursive handwriting.  

In a 1993 paper, at a time when handwriting recognition technology was considered a failure, 

Goldberg and Richardson at the Xerox Palo Alto Research Center [20] introduced the Unistrokes 

alphabet. Unistrokes is a stylised single-stroke alphabet that is both easier for software to recognise 

(because there is no possibility of segmentation errors), and quicker for users to write. The public 

never adopted Unistrokes, probably because it is difficult to learn, but in 1996, Palm Inc. introduced 

another single-stroke system called Graffiti that proved much more successful. Graffiti has been 

credited as a significant reason for the commercial success of the Palm [8]. The great advantage that 

Graffiti has over Unistrokes is its similarity to normal hand-printed characters (see figure 1). 

Recognition accuracy rates as high as 97% have been reported in [21] for inputs with Graffiti. 



 

Figure 1. The graffiti alphabet (reproduced from [8]). 

 

Currently, all commercial products that support pen-based text input work with constraints or 

stylised alphabets. But for speech, isolated word recognisers (recognisers that can only take one 

word at a time) are no longer deemed acceptable, and the general expectation is for continuous 

speech recognition. Nevertheless, other types of constraints have been tried, in attempts to simplify 

the task of speech recognisers. Tap-to-speak interfaces are interfaces in which users must indicate 

to the system by a brief pen gesture or a mouse click that they are going to talk before each utterance 

[22]. It is reported in [23] that in such interfaces, user speech is significantly more intelligible than 

during open-microphone interaction, resulting in better recognition accuracy. No study could be 

found in the literature on user acceptance of tap-to-speak interaction, and on the effect it has on the 

naturalness of user multimodal behaviour patterns. Although potentially efficient, this method seems 

to be rarely used. 

By contrast, the use of language grammars has generalised to most continuous speech recognition 

systems. Rule-based grammars are used to limit the range of possible inputs that a recogniser will 

find acceptable and hence limit its research space and the risk of recognition errors. Many factors 

must be considered when designing a grammar, but the most important is assessing the trade-off 

between flexibility and performance. Obviously, the more constraints are imposed on what users can 

say to an application in a restricted grammar, the less likely they are to encounter recognition 

errors, but this should not be obtained at the price of forcing users to memorise commands. A badly 

designed grammar or a grammar that imposes too many constraints on user speech can be the trigger 

for more errors, as user speech, especially beginners’ speech, will often not conform to the pre-

defined grammar (this is dubbed “the vocabulary problem” in [24]). The Wizard of Oz technique 

presents a useful methodology to elicit user vocabulary and natural expressions for building 

appropriate grammars and testing dialogue models [25]. It consists in making users believe that they 

are speaking with a fully implemented spoken dialogue system, whereas a “human wizard” responds 

to their spoken inputs, and while their speech is being logged in order to build a corpus of valid user 

expressions. 

The structure of the dialogue normally determines who has the control of the interaction between the 

user and the computer and determines how information is presented and received. A dialogue may 



vary in this degree of control from user initiated (where users are in command), to computer initiated 

(i.e. guided dialogues where users simply respond to a request of the system) [26]. An advantage of 

guided dialogues is that they can prompt the user to say something from a limited set of possible 

responses [27]. When a graphical display is available, 'Form Filling' dialogues can be implemented, 

where data is entered onto screens that resemble a form. It is reported in [22] that a structured form-

based interaction can reduce speech disfluencies to just 30-40% of those that would have occurred in 

an unconstrained interface, i.e. a free form interface that requires more self-structure and planning 

from users.  

In [28] a speech-enabled VRML browser has been developed for the study of different speech errors 

that occur in 3D worlds. It introduces context-sensitive cues as a solution to support a system’s 

metaphor. Context-sensitive cues can be implemented in a variety of ways, the simplest being to 

express the names of the commands as labels and put them into the scene around the user’s current 

position. In this study, context-sensitive cues are designed as hints to express what actions the 

possible commands could produce, in order to prevent user semantic errors. However, the technique 

can also be used for explicitly (i.e. visually) presenting valid spoken commands to the user, incurring 

less out-of-vocabulary input and speech recognition errors. It presents the added benefit of enabling 

the safe use of “speech modes”. Speech modes refer to specific dialogue states, for which only sub-

sets of the recogniser’s grammar are active, effectively reducing the recogniser’s search space and 

improving recognition accuracy. Speech modes are inherently dangerous to use (suddenly, words 

that seemed to work don’t work anymore), unless users are well aware of them and are always able 

to recognise in which mode the dialogue is operating. This can be facilitated with the use of context-

sensitive cues placed in the user’s visual field. 

Another approach consists in using techniques that facilitate human adaptation to the language of the 

system [29]. The goal is to “get people to say and type what computers can understand” [30]. For 

example, controlling the system vocabulary and discourse level throughout the dialogue will shape a 

user’s speech to match that of the system’s grammar. Well-designed and consistent prompts are keys 

to achieve the desired effect [16] [31]. Two fundamental guiding principles have been identified in 

[32]: consistency and symmetry. Presentation consistency refers to the similar structure and format 

of prompts presented to the user. The principle of symmetry suggests that users respond to prompts 

in the same style and wording used by the prompt. The symmetry principle constitutes one of the 

most powerful and least intrusive means to achieve the goal of getting people to say what the system 

can understand. Recently, research has started on two-way adaptation frameworks whereby both 

users and systems dynamically adapt to each other's capability and needs during the course of 

interaction. In addition to helping users to dynamically learn the system's capabilities in context, the 

approach aims to enhance the overall interpretation capability of a system by learning new user 

expressions on the fly [33]. 



In multimodal graphic interfaces, one effective interface technique for reducing spoken disfluencies, 

and as a consequence reducing recognition errors, is to implement highly structured graphics [34]. 

It has been demonstrated in [35] that increased utterance length is a powerful predictor of spoken 

disfluencies and that structured graphic interfaces can successfully elicit brief spoken utterances, 

reducing difficult sources of linguistic variability in human speech and writing by a factor of 2 to 8 

fold. For complex spatial domains, such as map-based interaction where disfluencies are 

concentrated more heavily on spatial location constituents, a highly structured map has been shown 

to significantly reduce disfluencies [34]. In this context, a structured map may be a detailed 

reference map that displays the full network of roadways, buildings, and labels that are 

conventionally found on hard-copy reference maps; whereas, a less structured map would be a 

minimalist version of the reference map that displays only a streamlined network of roads. 

Finally, spoken disfluencies can also be reduced by designing multimodal interfaces that include 

another adapted modality, which can be used complementarily or redundantly with speech [36]. 

According to [34], for map-based interactions, pen input can be used more effectively than speech to 

indicate points, lines, and abstract areas, and contribute to reduce spoken disfluencies to just 50% of 

the rate that would have occurred for the same speaker completing the same task in a speech-only 

interface. In particular, the speech modality is well suited for specifying commands (“calculate the 

distance”) and degrees (“at least a mile away”), but less so for articulating spatially-oriented 

descriptions (e.g. “ the handicapped center that is east of Deer Creek School”) [34]. In this case, a 

pen is more adequate as the lengthy spoken input can be easily replaced by a simple manual 

selection. More generally, an adapted modality is a modality that is best suited for a particular type 

of content (e.g. verbal versus spatial content), for a specific category of users, or for a particular 

context of interaction. “Adapted modalities” and “structured graphics” have been shown to combine 

their effects to create the best conditions for robust multimodal interaction [34].  

 

To summarise, “error reduction by design” techniques exercise various levels of control and 

influence on user actions and behaviour. Error prevention is achieved by leading users towards the 

production of inputs that are easier to recognise by machines. Ultimately, these techniques contribute 

to reducing possible mismatch between a user’s mental model of how a recognition-based system 

works and the system’s model of the users. They also contribute to adjusting user expectations to the 

real capabilities of a system and establishing grounding between the interaction participants.  

These techniques include: (1) isolated characters, (2) single-stroke alphabets, (3) tap-to-speak 

interfaces, (4) restricted grammars, (5) guided dialogues, (6) context-sensitive cues, (7) consistency 

and symmetry, (8) structured graphics, and (9) adapted modalities.  

 

2.2. Error reduction by context 



 

“Error reduction by context” achieves error reduction by augmenting user inputs with contextual 

information. Some multimodal systems, called feature level multimodal systems, are capable of 

integrating multiple tightly coupled inputs at very low levels of processing, so that the recognition 

process in one modality influences the course of recognition in the other modality. For example, 

“Machine lip reading” achieves speech recognition by combining acoustic information from the 

speech signal with visual information from the shapes of the speaker’s lips. Computer vision 

techniques are used to extract information about the speaker’s lip shapes, and this information is 

interpreted in terms of “visemes” (by analogy with the phonemes in the acoustic signal). 

Comparisons are then made between the visemes and phonemes that have been recognized to 

determine the most probable speech recognition output [37]. Lip reading has been shown to 

significantly improve automatic speech recognition accuracy, especially when the auditory speech is 

degraded [38]. However, feature level multimodal integration is only applicable to closely coupled 

and synchronised modalities, such as speech and lip movements for which both input channels 

provide corresponding information about the same content. Moreover, modelling complexity, 

computational intensity and training difficulty are typical problems associated with this approach. 

For example, a large amount of training data is required to build this type of systems, and 

multimodal training corpora are not readily available [39]. 

A more promising approach has recently emerged from two areas of computer science: ubiquitous 

computing and context-aware systems. Ubiquitous computing (or “pervasive computing”) 

integrates computation into the environment. One of its goals is to enable devices to sense changes 

in their environment, which opens the access to a plethora of contextual information [40]. Systems 

that exploit such contextual information are said to be “context-aware”. Context-aware systems can 

incorporate knowledge about lightning, noise level, location, time, people other than the user, as well 

as many other pieces of information to adjust their model of the user’s environment. More robust 

interaction is then obtained by fusing explicit user inputs and implicit contextual information. For 

example, in a video conferencing setting, combining carefully placed multiple distributed 

microphone pairs with calibrated cameras to identify the current speaker and their location, allows a 

finer control of the speech recognition process [41]. In a speaker localisation task, [42] shows that 

exploiting contextual audio information gives 65% accuracy versus 50% for a video-only baseline 

technique. Context is also becoming increasingly important in mobile computing (e.g. mobile 

guides) where the user’s context often changes quickly [43], and has also been applied to “smart 

home” environments [44]. However, the concept of context in computing is still largely under-

specified and the process of capturing and modelling contextual information for use in multimodal 

applications is currently the object of intensive research. 

 



“Error reduction by context” techniques encompass two classes of systems: (10) feature level 

multimodal systems that can integrate tightly coupled interaction modalities to enhance signal 

recognition, and (11) context-aware systems, capable of sensing a user’s environment and exploiting 

multiple contextual information to achieve greater interaction robustness. 

 

2.3. User prevention 

In natural multimodal interfaces, the availability of multiple “adapted modalities” allows users to 

exercise their natural intelligence about when and how to deploy input modalities effectively. This 

has been called “agent assignment” in the CARE (Complementarity, Assignment, Redundancy, and 

Equivalence) usability framework [36]. CARE describes two types of assignment: strict assignment 

and agent assignment. Strict assignment expresses the absence of choice, and is when some 

modalities have been dedicated to specific tasks by system design. Conversely, agent assignment 

corresponds to the situation whereby the user has a choice, but always opts to use the same modality 

for executing the same task. We prefer to describe agent assignment as the opportunistic decision 

made by a user to use a modality rather than another for the execution of a specific task, in a 

particular interaction context. Agent assignment can take three different forms and serve three 

different user strategies for error prevention.  

When users spontaneously select the interaction modality they believe is the most robust for a 

certain type of content, and avoid using the modalities that they believe are more error-prone, they 

can produce more robust inputs. In this case, modality selection is determined by recognition 

accuracy. For example, even if users initially prefer speech, they can learn with experience to avoid 

using speech when they are tired (speech recognition accuracy decreases with user physical exertion 

[3]), and decide to use keyboard entries instead for lengthy inputs. In the absence of a keyboard, 

when there is the choice of inputting data by voice or by handwriting, user preference will be 

influenced by how they perceive the reliability of the recognition result they are likely to obtain in 

each of the modalities. When the environment is noisy, handwriting will probably be preferred to 

speech.  

Alternatively, users can learn that the confusion matrices for different lexical content differ across 

modalities, i.e. that the words that are easily confusable tend to be different for different recognisers. 

They can then exploit the asymmetric nature of different modalities by producing complementary 

inputs [45]. Complementarity describes the conjoint use of two modalities, whereby each modality 

conveys only partial information, but the integration of the two results in a complete and 

comprehensible message [36]. To be complementary, both modalities must be semantically rich, i.e. 

they must both carry significant information. With complementary inputs, inputs that are hard to 

recognise in one modality can be disambiguated based on inputs in the other modality. This has been 



called “mutual disambiguation of input modes” in [23] and is explained in more details in the next 

section. 

Redundancy also describes the conjoint use of two modalities, but in this case the two modalities 

convey the same information [36]. For example, users produce redundant inputs when they choose 

to both speak and write the words of a message. As for complementary inputs, ambiguities in one 

modality can be resolved based on the second representation of the same information in the other 

modality. Redundancy implies that the two modalities are equivalent [36], which means that they are 

able to convey similar semantic content and can be used interchangeably. According to [45], 

equivalence fails to acknowledge the fact that different modalities are likely to differ in the type of 

information they transmit, their functionality during communication, and the way they are integrated 

with other modalities. Some modalities, for example speech and writing, may be relatively 

comparable, but most other modalities are not. Indeed, experimental evidence suggests that the 

dominant theme in users’ natural use of multimodal input is complementarity of content, not 

redundancy [45]. For example, in speech and pen interaction, it has been shown that speech and pen 

input consistently contribute different and complementary semantic information [34]. Even during 

multimodal correction of system errors, when users are highly motivated to clarify and reinforce 

their information delivery, speech and pen input rarely express redundant information [45].  

 

To summarise, “user prevention” strategies describe strategies spontaneously adopted by users to 

prevent recognition errors. They include: (12) modality selection, (13) complementary inputs, and 

(14) redundant inputs. 

 

2.4. Automatic detection 

Many recognition systems return with each recognition hypothesis a confidence score that is a 

measure of the probability that a user’s input was correctly recognised. If this confidence measure is 

below some pre-defined threshold, the system will normally assume that the hypothesis is incorrect. 

When a recognition system does not directly return confidence measures, they can be calculated a 

priori from a confusion matrix, built while the recognition system (speech or handwriting) is being 

trained [46]. However, sensitivity to the environment (e.g. background noise) that is characteristic of 

recognition technologies makes these confusion matrices highly unstable and hence unreliable. 

Deciding on a threshold is in many cases an ad hoc process, and unfortunately, thresholding 

sometimes provokes false rejection errors, and does not contribute to the automatic correction of the 

rejected input.  

A more sophisticated method has been suggested in [47], which consists in using a rule base to 

determine when errors may have occurred. Rules may be based on semantic, pragmatic or 

common sense knowledge. For example, a scheduling application might assume that an error has 



occurred if the user appears to want to schedule a meeting for 3 a.m. The Open Mind Common 

Sense Project [48] has collected common sense statements from the public since the fall of 2000, 

resulting in a database that currently contains more than 700,000 facts. The common sense 

statements have been used to reorder the recognition hypotheses returned by a speech recogniser and 

filter out possibilities that “don't make sense” [49]. The researchers found that their common sense 

speech recognition technique prevented 17 percent of the errors and reduced dictation time by 7.5 

percent. It was particular efficient at disambiguating between words that are phonetically identical 

(e.g. “break” and “brake”). 

In section 2.2, it was explained that feature level multimodal systems were capable of integrating 

multiple inputs at very low levels of processing, but were only suitable for tightly coupled modalities 

such as speech and lip movements. The other fundamental type of multimodal architecture is called 

“semantic level architecture”, and is more appropriate for modalities less tightly coupled such as 

speech and pen [39]. In this type of architecture, information is typically integrated at the semantic 

or pragmatic level [50]. Data structures called frames [51] are used to represent meaning and to 

merge information that result from different modality streams in a process called “semantic fusion” 

[52]. The automatic recovery from recognition errors and false interpretations can be achieved 

during this process, when complementary or redundant inputs (for example a speech utterance and a 

hand gesture) are combined. During semantic fusion, lists of possible interpretations provided by the 

speech and the gesture recognition system are compared, and interpretations that cannot be 

combined are filtered out [52]. The phenomenon in which an input signal in one modality allows the 

automatic discovery of impossible interpretations in a second signal in a different modality is called 

mutual disambiguation of input modes. It has been shown that the rate of mutual disambiguation 

achievable in a multimodal interface is particularly high for non-native speaker users of speech 

recognition systems [23]. 

In a similar but slightly different approach, synchronisation relationships between sets of modalities 

have been used to automatically detect and correct recognition errors. For example, timing 

information from 3D hand pointing gestures has been used to automatically detect recognition errors 

in speech [53][54]. Experimental studies have shown that, during speech and gesture multimodal 

interaction, 3D hand pointing gestures tend to be synchronised with either the nominal or the deictic 

("this", "that", "here", etc.) expression of a phrase [53]. It has also been shown that the timing of the 

gesture is predictable in a [-200 ms, 400 ms] time interval around the beginning of the nominal or 

deictic expression. This quantitative synchronisation model of speech and gesture integration has 

then been used to predict the position of the nominal and deictic expressions in the user’s speech. 

The speech interpretation that best verifies the speech-gesture synchronisation requirements 

described in the model, would have its rank in the list of possible interpretations and its confidence 

score increased. In [54], it is shown that the use of a speech and hand gestures synchronisation 



model can result in the recovery of up to a third of speech recognition errors.  

 

In summary, techniques for the automatic detection of errors can be further classified into statistical 

((15) thresholding), rule-based ((16) semantic, pragmatic and common sense knowledge), and 

multimodal ((17) mutual disambiguation and (18) synchronisation models) methods. Rule-based and 

multimodal methods in particular allow for not only the automatic detection of errors, but also, in 

some circumstances (i.e. when the correct output is present in one of the alternative hypotheses on 

the recogniser’s list) for their automatic correction. 

 

2.5. Machine-led discovery 

When the machine leaves the error-handling process in the hands of the user, the best way it can 

facilitate error discovery is by providing adequate feedback on the recognition process and on its 

beliefs about what the user said or did.  

In speech-only interfaces, one way of providing feedback is by repeating the user’s input. This 

technique is called implicit confirmation. For example, if the user asks for a weather forecast for 

Boston for Tuesday, the system might respond "Tomorrow's weather for Boston is..." A flexible 

correction mechanism could then allow the user to contradict the system by saying "No, I said 

Tuesday". However, when compared with other strategies, implicit confirmation has been shown to 

result both in the longest time for the dialog to get back on track and the lowest rate of getting back 

on track [55]. 

In situations where the cost of recognition errors is particularly high (e.g. safety critical tasks), the 

use of explicit confirmation will allow a user to detect an error before the machine commits any 

action based on the misrecognised input. When using explicit confirmation, the system asks the user 

to confirm that what has been recognized or understood matches the user speech (e.g. “Do you really 

want to delete the file?”). Confirmations will help prevent the consequences of recognition errors 

from occurring. Explicit confirmation is particularly important for safety critical tasks (e.g. the 

piloting of an airplane) and in any situation where the risk of recognition errors cannot be afforded 

(e.g. a “delete all” command). However, the systematic use of confirmations can rapidly become 

very cumbersome and considerably slow down the interaction. In addition, if the confirmation is 

given by speech, it can be the carrier of further recognition errors.  

Just as errors can be prevented by designing interfaces capable of influencing human actions and 

behaviour, systems can also employ a number of mediation strategies to lead users towards error 

discovery and correction [29][56]. Yankelovich et al [16], for example, introduce the idea of 

progressive assistance as a way of addressing repeated problems, such as repeated rejection errors, 

using increasingly targeted feedback. [29] lists a rich set of mediation strategies for resolving 

complications and errors: freshness (avoiding repeated utterances), method shifts (when one form of 



instruction fails, trying another), modality shifts (switching or augmenting the modalities of 

communication, e.g. using visual rather than auditory cues), level of discourse (simplifying the 

vocabulary and language structure), backtracking (backtracking to the last state of mutual 

understanding), and graceful failure (offering natural exits for the user, such as time outs). 

Multimodal speech systems that can visually display a recognition result make it easier for users to 

detect errors. If a rejection error occurs, no text will appear in the area where recognition results are 

displayed. If the recogniser makes a misrecognition or misfire error, the user can see what the 

recogniser thinks was said and correct any errors. With visual feedback, errors can also be identified 

by the system by highlighting words with low confidence scores or by the user by pointing at 

erroneous words. 

Taking advantage of the fact that most recognition systems can provide a ranked list of several input 

interpretations, some multimodal systems give to users the opportunity to select the correct 

recognition result from a list of alternative hypotheses [57]. In this strategy, rather than providing 

the single most likely result, a voice recogniser provides to the graphical user interface (GUI) a list 

of multiple, likely possibilities, known as an n-best list. According to [58], however, the problem 

with allowing users to correct a word by choosing from a list of the computer's top ten or so 

possibilities is that the correct word or phrase is often not listed, and when this happens, it slows 

correction down considerably. Similarly, [59] proposes for graphics a drawing understanding system 

that displays for each input stroke, a bold line that represents the system's top guess, and dotted lines 

representing potential alternatives. If the user continues input as normal, the system implicitly 

accepts the default choice. For handwriting, [60] proposed an interface where the most likely choice 

of character is displayed in large font, with the two most likely alternatives displayed in smaller font 

below. However, this technique actually failed to be of any use in user tests due to the high cognitive 

overheads. 

 

All of the strategies listed in this section are for the purpose of helping users to become aware of 

recognition errors and to facilitate their corrections. They include: (19) implicit confirmation, (20) 

explicit confirmation, (21) mediation strategies, (22) visual display of recognition results and (23) 

list of alternative hypotheses. 

 

2.6. User correction 

Most studies into human strategies for error correction in spoken interfaces have found that the most 

instinctive way for humans to correct mistakes using speech is to repeat. In handwriting, a similar 

strategy is to overwrite a misrecognised word. However, although repeating might be the most 

obvious way to correct when the system mishears, it is often the worse for the system [58][61]. The 

main reason for this is that a misheard word is likely to be a difficult one to understand in the first 



place. Moreover, continuous speech recognition systems are designed to understand a word in 

context, when a word is said in isolation it sounds very different. Finally, when repeating, users tend 

to adjust their way of speaking (e.g. by over-articulating) to what they believe is easier for the 

recogniser to interpret, which often has the opposite effect. However, [62] suggests that the situation 

can be improved by correlating repair input with the context of repair, i.e. instead of interpreting 

repair input as an independent event, other words that were correctly recognised in the vicinity of the 

error might be used in the process. 

Another strategy for correcting errors in speech interfaces is to spell out the misrecognised words. 

But there is also a catch to using speech to spell a word in order to correct it. The main problem is 

that systems are not very good at recognising the switch to spelling [58]. Users must explicitly tell 

the system, for example through a dedicated command, that they are going to spell. This has the 

effect of slowing down the correction process. Moreover, in the context of a multimodal interface, 

spelling is not a natural method of error resolution, as users usually prefer to change modality if the 

repeat strategy has failed to work [63]. 

In [64] the author reports cases of linguistic adaptation, where users choose to rephrase their 

speech, in the belief that it can influence error resolution. A word may be substituted for another, or a 

simpler syntactic structure may be chosen. In response to an implicit confirmation, users may also 

contradict the system. In order to support linguistic adaptation and contradiction, systems must 

implement large vocabularies and flexible grammars.  

Experimental research has found that the two most common correction strategies when the system is 

cognisant of an error are rephrasing and repeating, and that they contribute to 82% of all user 

responses under error [55]. When the system is not necessarily cognisant of an error (such as when 

using an implicit confirmation strategy), users are most likely to contradict the erroneous system 

behaviour. 

In multimodal systems, when recognition errors occur, [63] suggests that users are willing to repeat 

their input at least once, after which they will tend to switch to another modality. For example, if 

speech input failed repeatedly when entering data in a form, users may switch to the keyboard in 

order to type their entry. This strategy implies that users renounce their initial modality selection 

choice. In 1999, Halverson et al investigated three commercially available speech recognition 

systems and compared error-correction strategies of first time users versus experienced users [12]. 

They found that, with experience, users learn to switch modalities. Inexperienced users, meanwhile, 

tend to stay with the speech modality and re-dictate the same word several times before switching 

techniques, incurring “re-dictation spirals” that considerably slow down text entry speed. In the 

study of an in-car system interface for controlling infotainment and communication services, which 

can be operated using speech, head, and hand gestures, as well as a touch panel and a key pad, it was 

found that when the system works properly, most users prefer tactile or speech interaction to head 



and hand gestures [65]. In case of hidden system errors (i.e. when users are unable to identify the 

cause of an interaction problem) changes from speech to tactile interaction and vice versa were 

observed, but none of the subjects selected head or hand gesture input as the leading fallback 

modality. 

Modality switch is to be distinguished from what we will call cross-modal correction, which has 

often been referred to as “multimodal correction”. Cross-modal correction involves the switch to 

another modality, not to re-enter a misrecognised input, but to select and/or correct the wrong output. 

For example, Suhm describes in [66] an experimental “multimodal listening typewriter”, which 

implements four modalities: continuous speech, spelling, handwriting, and pen gestures. The user 

locates recognition errors by touching misrecognised words on a writing-sensitive screen where 

recognition output is displayed. Correcting errors can then be done by re-speaking, spelling, 

choosing from alternative words, typing, handwriting, and editing using gestures drawn on the 

display. Partial word repair is also supported, which allows a user to correct part of a word when it is 

almost correct, by replacing, inserting, or deleting letters with a pen or with spoken input. A user 

study on the use of the prototype showed that cross-modal correction makes it possible to input text 

at a faster speed than unskilled typing, including the time necessary to correct errors.  

A particular case of cross-modal correction is when users select the correct output from a list of 

alternative hypotheses displayed on a GUI. The preferred method of error correction is normally to 

repeat the misrecognised input, but Larson and Mowatt found that when the n-best list option is 

improved by making it easier to access and dismiss, and by increasing its accuracy, a large increase 

in its frequency of use can be observed [67]. Eventually, the most popular repair strategy is to try the 

n-best list first and then switch to repeating if the correct alternative is not on the list. 

Huerst et al. [68] have experimented with a handwriting pre-processor which looks for user 

correction marks on their own handwriting, such as crossing out a letter, and applies these 

corrections before sending handwriting to a recogniser. As speech recognition systems become more 

sophisticated and capable of recognising spontaneous speech, they will also eventually become 

capable of finding in user speech natural marks of self-correction such as pauses and word repetition. 

 

Strategies for error correction include: (24) repeat, (25) spell out, (26) rephrase, (27) contradict, (28) 

modality switch, and (29) cross-modal correction. Finally, as recognition systems become more 

sophisticated, they may be able to interpret user natural (30) correction marks. 

 

3. Taxonomy 

 

In this section, we further classify the error-handling strategies into a taxonomy based on the 

following three dimensions: the main actor in the error-handling process (machine versus human), 



the purpose of the strategy (error prevention, discovery, or correction), and the use of different 

modalities of interaction. 

 

3.1. Classification based on actor and purpose 

Figure 2 shows all the strategies mentioned previously according to the two following variables: 

actor and purpose. According to these two variables, we define six categories of error-handling 

strategies: error prevention by machine, error prevention by users, error discovery by machine, error 

discovery by users, error correction by machine, and error correction by users. 

 

Figure 2. Taxonomy of error-handling strategies based on actor and purpose. 

 

3.1.1. Error prevention by machine or by users 

Most strategies for error prevention can be attributed to the machine. They work in two possible 

ways: either the interface is designed to influence or constrain user behaviour into less error-prone 

interaction, or greater recognition accuracy is achieved through the use of additional or contextual 

information. In the first case (reduction by design), error prevention is the result of improved user 

behaviour, such as shorter or less disfluent speech. This improved user behaviour is obtained thanks 

to interface design techniques, which is why the error-handling process is attributed to the machine. 

In contrast, the category “error prevention by users” comprises three strategies that rely on users 



spontaneously adapting their behaviour towards less error-prone interaction. User prevention 

strategies may sound like strategies on which the system has no control. In fact, nothing could be 

less true than that. These user strategies will only be applicable if they are adequately supported by 

system design. For example, we mentioned earlier (section 2.3) that adapted modalities had to be 

made available in the user interface, so users could exercise their natural intelligence on when and 

how to deploy input modalities effectively [45], through agent assignment. This has strong 

implications on multimodal interaction design and is discussed further in section 4. 

 

3.1.2. Error discovery and error correction by machine 

Error discovery by machine works in three possible ways: by using statistical data, by applying 

knowledge-based rules, or by exploiting cross-modal information. 

There is an overlap between strategies by machine for error discovery and for error correction. With 

knowledge-based and multimodal strategies, the automatic discovery of recognition errors can 

sometimes lead to automatic correction as well. This is generally true if the correct output figures in 

the list of alternative hypotheses produced during the recognition process. For example, if a domain 

knowledge-based rule tells the machine that a meeting is unlikely to be scheduled at 3 a.m., but 

likely to be scheduled at 3 p.m., and that both times appear in the recogniser’s list of possible 

outputs, 3 p.m. will be chosen even if its accompanying confidence score is less than for the 3 a.m. 

hypothesis. Similarly, the mutual disambiguation and synchronisation models strategies can help 

recover from recognition errors when confidence scores are re-calculated based on the confidence 

scores of matching hypotheses in other recognisers’ lists of possible outputs. Error correction by 

machine is thus dependent on the capacity of recognition systems to provide a ranked list of 

alternative hypotheses. 

 

3.1.3. Error discovery and error correction by users 

When a recognition error occurs, users are normally in charge of notifying the machine. It is crucial, 

however, that the machine facilitates error discovery through techniques such as the ones presented 

in section 2.5. (machine-led discovery). Although users are primarily responsible for finding errors, 

the machine holds a primary responsibility in enabling error discovery. Once errors have been found, 

users can effectively help the machine resolve them, usually by producing additional inputs. 

It cannot be stressed enough that the quality (readily availability, ease of use, robustness and speed) 

of error correction mechanisms is of paramount importance for error correction success and for 

improving user experience with recognition-based systems. No perfect error correction mechanism 

has yet been proposed and error correction success and speed are very dependent on user ability to 

select and apply the most appropriate mechanism for the current type of error or context of 

interaction. There is a learning curve and experienced users have been shown to develop the 



appropriate automatisms or knowledge that considerably improve error correction success rate and 

speed [12]. The question on how to best support the development of these automatisms remains an 

important challenge in research on error correction. 

 

3.2. Multimodal properties 

It is possible to further classify the error-handling strategies by considering their multimodal 

properties. A modality of interaction can be described in terms of two sub-components: the mode and 

the media. The mode of interaction refers to how information is encoded, for example, natural 

language, graphics, and pointing are all different modes of interaction. The media describes the 

physical support or sometimes the sensory channel onto which the mode is expressed, for example, 

speech, pen, and keyboard are three different media that can convey the same mode (natural 

language). Multimodal error-handling strategies, indicated in underlined text in figure 2, are 

strategies that involve different modalities of interaction, i.e. either different modes (multi-mode 

strategies), different media (multi-media strategies), or different modes and media (multi-modal 

strategies). When there is a unique mode and media involved, the strategy is said to be mono-modal. 

The terms multimodal, multi-mode, multi-media, multi-modal, and mono-modal are only used here 

for explanation purposes, and do not, in any way, belong to a shared terminology. Figure 3 shows 

another classification of error-handling strategies based on their multimodal properties. Strategies 

that appear in italic in the figure are strategies that have been simultaneously classified in more than 

one category. 

 

Figure 3. Multimodal properties: a) mono-modal strategies, b) multi-mode strategies, c) multi-media 



strategies, and d) multi-modal strategies. 

 

3.2.1. Mono-modal strategies 

In mono-modal strategies, there is only one mode and one media involved. Mono-modal strategies 

typically characterise speech-only interfaces, and include speech-only strategies like restricted 

grammars; guided dialogues (excluding form-based dialogues); consistency and symmetry; 

thresholding; semantic, pragmatic and common sense knowledge; implicit confirmation; explicit 

confirmation; mediation strategies; repeat; rephrase; and contradict. This rather long list of speech-

only strategies reveals two things about speech interaction. First, it is a testimony to the relatively 

long and strenuous history of speech recognition software, compared with more recent technologies 

such as pen computing and computer vision. Second, it shows that, even in a speech-only interface 

there is a large range of strategies available for handling recognition errors.  

When robustness is a high priority, restricted grammars supported by guided dialogues can 

contribute to minimising recognition errors, but at the price of a somewhat constrained and unnatural 

interaction. Consistency and symmetry aims at achieving the same result but in a less intrusive way, 

with also less guarantee of success. Common sense knowledge sounds like a very promising and 

seamless strategy, which is nevertheless dependent on the amount and quality of common sense that 

can be instilled into the system and on the system's capability to use it. Error discovery strategies 

such as implicit and explicit confirmation are very cumbersome. Explicit confirmation is nonetheless 

required in safety critical tasks. As far as the repeat user correction strategy is concerned, it has been 

shown to be inefficient because often leading to spiralling error situations. To avoid such situations, 

mediation strategies should be used in conjunction with Repeat. They are a form of guided 

dialogues, useful to get interaction back on track after a series of errors. They mostly consist in 

temporarily shifting dialogue control from the user to the machine.  

In brief, a speech-only interface should not rely on a unique error-handling mechanism, but should 

implement strategic sets of mechanisms that effectively support each others. Mono-modal strategies 

are not a monopoly of speech interfaces, they can also be found in pen computing (isolated 

characters and single-stroke alphabets).  

 

3.2.2. Multi-mode strategies 

Speech-only and pen-only interfaces are not limited to mono-modal error handling strategies, as 

speech and pen can be used through different modes [69], which makes multi-mode error handling 

strategies possible. 

The spell out strategy for error correction by users is a strategy that involves a single media (speech), 

which is used through two different modes (natural language and spelling). Although spelling has 

not usually been classified as a multimodal error-handling strategy in the literature, it does in effect 



force the system to recognise a second interaction mode that is different from the normal language of 

the application. Even the strategy contradict could be implemented as a multi-mode strategy, if the 

speech recognition system enters a special “contradiction mode” after an implicit confirmation, 

which enables it to recognise with better accuracy the specific constructions that typically enter in 

the formulation of contradiction. 

Similarly, the correction marks strategy for handwriting involves a single media (a pen) and two 

modes (writing and correction marks).  

Multi-mode strategies require that the unique media is capable of supporting several different 

encoding schemes or “modes”. Speech and pen are two media that are capable of this. Pen, for 

example, can be used for pointing, writing and drawing. However, in multi-mode interaction there is 

always a little danger of confusion: the system must be capable of recognising in which mode the 

user is operating, and vice versa. In particular, the system must be able to handle mode switch and be 

explicit in its reliance on specific modes. 

 

3.2.3. Multi-media strategies 

Multi-media strategies involve a unique mode that is expressed through different media. Guided 

dialogues (form-based); context-sensitive cues; feature level multimodal systems; modality selection; 

redundant inputs; visual display of results; list of alternative hypotheses; and modality switch can all 

be considered multi-media strategies. 

Form-based guided dialogues combine user spoken input and textual system output, where users and 

system share the same language (i.e. the same mode). The context-sensitive cues strategy, which 

consists in placing command names as visual labels in a 3D scene in order to inform users about 

possible spoken commands in the current context of interaction, uses a single mode (the language of 

the application) and two different media (visual labels and speech). Similarly, visual display of 

results and list of alternative hypotheses combine the uses of spoken input and visual output of the 

recognised utterances. All of these strategies require the availability of a visual display and thus are 

not applicable in a speech-only interface. 

Feature level multimodal systems, modality selection, redundant inputs, and modality switch, all 

require that several input media (e.g. speech and lips, or speech and pen) have similar powers of 

expression. The different media must be able to support similar input modes and convey similar 

information. As explained earlier, such media are more the exception than the norm, which 

considerably reduces the applicability of these four strategies (this is further discussed in section 4). 

 

3.2.4. Multi-modal strategies 

Multi-modal strategies, finally, are strategies that involve more than one mode and more than one 

media. They include: tap-to-speak interfaces; structured graphics; adapted modalities; context-



aware systems; complementary inputs; mutual disambiguation; synchronisation models; and cross-

modal correction. 

Tap-to-speak interfaces require a pen tap before each spoken input. If the pen is also used for other 

interaction modes such as handwriting, gestures, or drawing, the necessity of tapping before 

speaking can dramatically alter the way users combine pen inputs with speech. We see this as a 

major drawback of the strategy. 

Structured graphics combine spoken utterances with visual display of graphics. The degree of 

efficiency of the strategy is highly dependent on the nature of the task. Its efficiency has been 

demonstrated for interactive maps and for other tasks that are largely spatial in nature. 

Context-aware systems combine, for example, visual information captured by a camera, with user 

spoken utterances. This is a very promising strategy, which is still in its infancy. As explained earlier, 

the processes of capturing, representing and then exploiting contextual information are currently the 

objects of very intense research.  

The synchronisation model strategy is dependent on the availability of quantitative models that 

characterise timing relationships between sets of modalities. The model presented in section 2.4 

describes the synchronisation of speech and 3D hand pointing gestures, but very few other attempts 

at eliciting such models have been made. Speech and pen synchronisation provides another rare 

example, where pen input onset has been shown to consistently precede speech onset [70]. These 

models are the exception, and the synchronisation model strategy is dependent on more models 

being developed. 

Cross-modal correction expresses a shift of method for inputting information that usually involves 

several media and modes. Several user studies have shown that cross-modal correction is one of the 

most efficient and speedy method for correcting recognition errors, once users have learnt to use it. 

Finally, adapted modalities, complementary inputs and mutual disambiguation exploit the 

asymmetric natures of different input modes and media. These three strategies share complex 

relationships with different modality properties and modality combinations, which are discussed in 

details in the next section.  

 

4. Multimodal interaction design 

 

Many error-handling strategies originate from previous work on spoken dialogue systems, but more 

recently, strategies that specifically leverage from diverse combinations of modalities have emerged. 

It is thus important to understand the requirements these strategies have on different combinations of 

modalities and the implications of these requirements for multimodal interaction design. Especially, 

when designing a multimodal interface, careful consideration must be given to the choice of input 

and output modalities available in the interface, the allocation of modalities to tasks and information 



types, and the range of possible combinations of modalities. The requirements different multi-media 

and multi-modal error-handling strategies have on different sets of modalities have been summarized 

in figure 4.  

 

Figure 4. Multi-media and multi-modal error-handling strategies, and classes of multimodal 

interfaces. CARE = Complementarity, Assignment, redundancy, and Equivalence [36]. 

  

The availability of a visual display together with the speech input modality (column a of figure 4) 

opens the door to a number of error-handling strategies: form-based guided dialogues, context 

sensitive cues, visual display of results, list of alternative hypotheses, and structured graphics. In a 

multimodal interactive map for example (spatial task), context sensitive cues and structured graphics 

are particularly appropriate. In a speech dictation application (verbal task), visual display of results 

and list of alternative hypotheses are recommended. And for a dialogue application, form-based 

guided dialogues will guarantee a high level of robustness. 

When several input modalities are available (column b of figure 4), possible error-handling strategies 

will depend on the set of modalities available.  A framework for reasoning about different sets of 

modalities is thus necessary. To date, the most useful framework for reasoning about sets of 

modalities is the CARE (Complementarity, Assignment, Redundancy, and Equivalence) usability 

framework [36] introduced in section 2.3. The CARE framework is not perfect as it does not provide 



a clear distinction between the intrinsic properties of sets of modalities and modality usage. For 

example, Equivalence is a property, as two or more modalities can be described as being equivalent, 

independently of any particular use, whereas Redundancy describes the simultaneous use of two or 

more equivalent modalities. The CARE properties are not independent from each others and share 

complex relationships; nevertheless, they are useful for describing multimodal interaction.  

Modality Equivalence is necessary if one wants to offer users the possibility of exercising their 

natural intelligence about which modality to use (modality selection), and of modifying their original 

choice when necessary (modality switch). Equivalent modalities are also required for the production 

of redundant inputs, which can then trigger mutual disambiguation; and for the feature level 

integration of tightly coupled multimodal inputs. Examples of equivalent modalities include: speech 

and lip movements (leading to feature level integration); speech and symbolic hand gestures (e.g. the 

word “five” accompanied by a gesture clearly showing the five fingers of the hand); and speech and 

typing or handwriting.  

Speech, drawing and pen gestures are more likely to be used complementarily than redundantly. In 

interactive maps, speech is used for entering commands, whereas pen gestures are used for 

designating geographical areas or graphical elements of the map. These modalities are 

complementary and not interchangeable (i.e. not equivalent). It has been shown in [71] that user 

attempts to self-manage limitations on working memory when task complexity increases is 

accomplished by distributing communicative information across modalities (i.e. by producing more 

complementary inputs). For example, during speech and pen interaction with a map, user combined 

use of both modalities increases as the task becomes more challenging. So ideally, a multimodal 

interface should implement a large number of semantically rich, heterogeneous and maximally 

complementary modalities [72]. Increased use of complementary inputs also increases the chance of 

successful mutual disambiguation in the multimodal architecture. However, it has been shown that 

the degree to with which mutual disambiguation of complementary inputs can operate in a given 

multimodal interface is dependent on the set of multimodal constructions that the system is able to 

interpret [73]. To determine how efficiently complementarity can lead to mutual disambiguation, a 

more practical approach to multimodal interaction design is necessary. For example, it is suggested 

in [74] that a simple formalism such as Finite State Machines (FSM) can be used to rapidly build 

several multimodal interaction designs and then assess their respective potential for mutual 

disambiguation of input signals.   

Context aware systems, synchronization models and tap-to-speak interfaces are special cases of 

modality complementarity, where only one modality conveys semantically rich content. For 

example, information captured by a camera about the location of a speaker will help managing the 

speech recognition process better and provide context to the speech, but speech is the only 

semantically significant input. Similarly, timing information provided by hand gestures can help 



locate in the speech signal the parts that are more semantically significant, without contributing any 

additional meaning. Tap-to-speak interfaces provide the only example of complementary modalities 

with strict assignment: users are required to tap with the pen before talking; the combination of the 

tap signal with the speech will then trigger the speech recognition process. In all three cases, the 

speech modality is said to be dominant. 

Simultaneity or some degree of synchronisation are required in the use of complementary modalities 

for complementary inputs, context aware systems, mutual disambiguation, and synchronisation 

models strategies. In contrast, the cross-modal correction strategy uses sequential complementary 

inputs, as the second input is entered only after the first input has been misrecognised. This 

particular property of cross-modal correction allows the conjoint use of modalities such as 

handwriting and pen gestures that can hardly be used simultaneously to produce complementary 

inputs, but that can enter in the formulation of sequential inputs (e.g. when a pen gesture is used to 

delete a character from a misrecognised handwritten input). 

 

5. Conclusion 

 

In recognition-based multimodal interfaces, the design of effective means of error prevention, 

detection, and correction remains one of the main determinant factors of usability and users’ 

acceptance. Many error-handling mechanisms have been proposed and tried. The main aim of the 

classification presented in this paper is to serve as a tool to guide the choice and design of adequate 

error-handling strategies in error-prone multimodal systems.  

One obvious way of using the taxonomy is to ensure that at least one error-handling strategy in each 

of the six categories defined in the classification is implemented. In systems where the strategies for 

error correction by users are likely to be inefficient (e.g. repeat in speech only interfaces in noisy 

environments), or where the potential costs for error correction and their consequences are high (e.g. 

safety critical systems), particular attention should be made to implementing strategic sets of error 

prevention strategies. 

The taxonomy also highlights important relationships between strategies that need to be taken into 

account when designing a system. For example, error correction strategies by users should be 

supported by adequate error discovery strategies. Similarly, some error-handling strategies rely on 

particular system’s characteristics such as the provision of a visual display or the availability of 

statistical data on the recognition process (e.g. confidence scores). 

The design of the language of the application (grammar and prompts) and the choice of modalities of 

interaction that are made available in the user interface are two critical issues for the handling of 

recognition errors. In particular, sensitive trade-offs need to be made between constraining the 

interaction to help error prevention by machine, and allowing more flexibility to enable error 



prevention and correction by users. Well adapted modalities of interaction for given types of inputs 

and situations have been shown to contribute to error reduction. One important challenge in 

multimodal interaction design is thus to select the best set of interaction modalities. Every effort 

should be made to implement both equivalent and complementary modalities in a multimodal 

interface. 

Two strategies seem particularly promising for future multimodal human-machine interfaces. 

Context-aware systems, capable of sensing a user’s environment, will be able to provide a plethora 

of useful information for error prevention and discovery. Much research is currently being done to 

define the “context of interaction” and to develop technologies for the automatic detection and 

understanding of this context. Recognition systems capable of recognising and interpreting natural 

users’ correction marks in speech and handwriting inputs constitute another promising technology. 

These systems will not only improve the robustness of multimodal interaction, but also, and maybe 

more importantly, its naturalness and spontaneity.  
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