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Abstract

Based on the equation-error approach, two constrained weighted least squares algorithms are
developed for unbiased infinite impulse response system identification. Both white input and output
noise are present, and the ratio of the noise powers is known. Through a weighting matrix, the first
algorithm uses a generalized unit-norm constraint which is a generalization of the Koopmans-Levin
method. The second method employs a monic constraint which in fact is a relaxation algorithm
for maximum likelihood estimation in Gaussian noise. Algorithm modifications for the input-noise-
only or output-noise-only cases are also given. Via computer simulations, the effectiveness of the
proposed estimators is demonstrated by contrasting with conventional benchmarks in different

signal-to-noise ratio and data length conditions.

Corresponding Author

H. C. So

Department of Electronic Engineering
City University of Hong Kong

Tat Chee Avenue, Kowloon, Hong Kong
Tel. : (852) 2788 7780

Fax: (852) 2788 7791

email: hcso@ee.cityu.edu.hk



1 Introduction

The problem of identifying linear systems from their input and output measurements has received
significant attention because of its important applications in signal processing, communications and
control [1]-[4]. In this study, we consider infinite impulse response (IIR) system identification in
the presence of white input and/or output measurement noise, which is also known as the errors-in-
variables (EIV) problem [4]. Standard techniques for system identification include joint output (JO)
approach [5], Frisch scheme [6]-[7], structured total least squares (STLS) [8]-[10] and Koopmans-Levin
(KL) [11]-[14] approach. One major advantage of the JO and Frisch methods are that they can estimate
the unknown input and output noise powers as well. While the STLS and KL methods assume that
the ratio of the noise powers is available. In this paper, we will formulate the EIV problem using the
equation-error (EE) [15]-[16] approach which has the major advantage of global convergence, although
compensation of the parameter bias is required to achieve unbiased estimation.

In the presence of white output noise only, Regalia [16] has proposed to minimize the EE cost
function subject to a unit-norm constraint. Recently, it has been shown [17]-[18] that the constrained
EE optimization can be formulated in a mixed least squares (LS)-total least squares framework.
Furthermore, the KL scheme, which can also be cast in the EE framework, provides unbiased estimates
by finding the eigenvector corresponding to the minimum eigenvalue of the sample covariance matrix
[12], or the right singular vector corresponding to the smallest singular value of the data matrix [13]-
[14]. However, all the above EE schemes only use standard LS optimization and they generally cannot
produce optimum estimation performance, that is, minimum achievable mean square errors of the
parameter estimates. In this paper, our major contribution is to utilize the technique of weighted
least squares (WLS), together with appropriate constraints, to boost the estimation accuracy of the
EE approach for system identification.

The rest of the paper is organized as follows. In Section 2, we first consider solving the EIV
problem with the use of LS, assuming that the noise power ratio is available. An improvement to the
LS solution is then devised by minimizing a WLS cost function subject to a generalized unit-norm
constraint, where the weighting matrix is determined iteratively. The second algorithm we develop also
employs WLS but with the monic constraint. Simulation results are presented in Section 3 to evaluate
the proposed algorithms by comparing with different benchmarks, namely, the LS, KL, output-error
(OE) [3], prediction-error (PE) [2] and STLS methods [9] as well as the asymptotic Cramér-Rao lower
bound (CRLB) for infinite measurements [20]. It is shown that the mean square errors of the proposed
WLS algorithms attain the CRLB for sufficiently high signal-to-noise ratios (SNRs) and/or large data

lengths. Finally, concluding remarks are drawn in Section 4.



2 Algorithm Development

In the following, the problem of IIR system identification in the presence of input and output noise
based on the EE formulation is first reviewed. A unit-norm LS solution via minimization of the EE-
based LS cost function subject to a generalized unit-norm constraint is obtained, which is identical
to the KL, method. This approach is then improved by using WLS with an iterative procedure. The
second approach also employs WLS but with the monic constraint. Finally, we present the required
modifications of the proposed unit-norm WLS algorithm for the output-noise-only systems and the

results can be readily applied to the input-noise-only systems as well as to the monic WLS algorithm.

2.1 Equation-Error Formulation

The unknown IIR system is stable and causal and has the form

where

L
A(z) =ao+ Z apz™!
=1

L
B(z) = - Z bz~
=0

with ag = 1. Let the orders of the denominator and numerator polynomials be known, and without

loss of generality, have identical values of L. The observed system input and output are

T = Sp + mg
(2)
re=dr+ng, k=0,1,--- . N—-1

where s, and di denote the noise-free input and output, respectively, and my and m; represent the
input and output measurement noise which are independent of s;. It is assumed that sj is a stochastic

process while my and ny are uncorrelated zero-mean white processes with unknown variances o2 and

2

2 respectively, but the ratio of the noise powers, say, o? = 02 /a2, is available [18], [13]-[14]. Given

o
the N samples of x} and ry, the task is to find a;, [ =1,2,---, L, and b;, L =0,1,---, L.

In the EE formulation, the error function e; has the form

L L
er =Y arp—i+ Y bz (3)
(=0 (=0

where {a;} and {b;} are optimization variables of {a;} and {b;} up to a scalar because we have not

assigned ag = 1.



2.2 Weighted Least Squares with Generalized Unit-Norm Constraint

The corresponding LS cost function is then

J(p)=ele=p"Y"Yp (4)
where
T
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and 7T denotes the transpose operation. It is easy to show that the expected value of J(p) is

E{J(p)} = E{(3p)"Sp}+ 5 E{Q"Q}p
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The S and Q represent the signal and noise components of Y, respectively, such that Y = S 4+ Q.
We observe that when {@;} and {b;} equal the true system parameters, then Sp is a zero vector.

However, the minimum of E{J(p)} will not correspond to the desired {a;} and {b;} in the presence of



input and/or output noise because the second term of (5) also contains the unknown parameters to
be estimated. Extending the idea of the unit-norm constraint approach for output-noise-only systems
[16] to noisy input-output systems, unbiased IR system identification can be achieved via minimizing

E{J(p)} subject to
prEp=1 (6)

This is a generalized unit-norm constraint and we refer this scheme to as the unit-norm LS method.
Using the technique of Lagrange multipliers, the constrained optimization problem can be solved by
computing the generalized eigenvector corresponding to the smallest generalized eigenvalue of the pair
(YTY,X). Comparing with [13]-[14], it is easy to see that the unit-norm LS method is in fact identical
to the KL solution computed from the data matrix, although we use eigenvalue decomposition while
the latter is realized by singular value decomposition (SVD).

Since it is well known [19] that the KL approach is inferior to the maximum likelihood (ML)
method, the unit-norm LS method will also produce suboptimum parameter estimates as well. Nev-
ertheless, the formulation of the unit-norm LS approach leads directly to an improvement through
adding a symmetric positive definite matrix, say, W, to the LS cost function. An optimal choice of
W is the Markov estimate [3]:

W =02 (E{e- 7)) (7)
where
€=[en—1,en—a, - er]”

and
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being the residual error. The inverse of W is shown to be

w-t=ag's,G (8)
where
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function is now:
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From (4), (5) and (9), it is easy to show that for WLS minimization, the corresponding constraint will

become:

where Y = E{QTWQ} /02 is a matrix of dimension (2L + 2) x (2L + 2) and has the form:
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(Wliit;s 7 = 0,1,---, L, with [W]; ; representing the (7, j)-entry of W. It is

observed that (4) and (6) are only a special case of (9) and (10) when W is the identity matrix. Since

W and Y are unknown, we propose to estimate p in an iterative manner as follows:

(i) Find an initial estimate of the system parameter vector, denoted by p, through computing

the generalized eigenvector corresponding to the minimum generalized eigenvalue of the pair

(Y'Y, ), which is the unbiased unit-norm LS solution.

(ii) Use the estimated p to construct W as well as T, which represent the estimates of W and T,

respectively, based on (8) and (11).

(iii) Compute the generalized eigenvector corresponding to the minimum generalized eigenvalue of

the pair (YTVAVY7 Y), which is the updated parameter estimate p.

(iv) Repeat Steps (ii) and (iii) for a few iterations until parameter convergence. Then divide the

eigenvector by ag to get the IIR coefficient estimates.

We refer this algorithm to as the unit-norm WLS estimator.

Although there is no guarantee of

convergence for the above relaxation algorithm [21], our simulation studies in Section 3 demonstrate

that the unit-norm WLS estimator is able to achieve global convergence with optimum estimates for

sufficiently large SNRs and/or data lengths.

2.3 Weighted Least Squares with Monic Constraint

In the literature, another commonly used constraint for linear system identification is the monic

constraint [15]-[16], [22]-[23]. In the following, the WLS algorithm with monic constraint of ao = 1 for



IIR estimation is developed based on (9). First, we partition p and Y as

p=[18"" (12)
where
o= [d17d27“‘751L7“‘7607617“‘7I;L]T
and
Y =[Y; Y] (13)
where
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Substituting (12) and (13) into (9) yields the monic WLS cost function

Jmonic(B) = (Y1 + Y28)" W (Y1 + Y29) (14)
where g = 1 in W as well. It can be shown that the minimum of (14) corresponds to the ML
estimate of @ = [ay,ag, -, ap, -+, bo, by, ---,br]’ in white Gaussian noise. However, ML estimation

will involve extensive computation as W is a function of @ as well. In our study, we substitute A%
for W so that Jyonic(8) is now a quadratic function in @. Differentiating the approximate version of
Jmonic(8) with respect to @ and then setting the resultant expression to zero, we obtain our monic

WLS solution:
6=—(Y2ITWY5) 1Y, TWY, (15)

It is expected that the WLS estimator with the monic constraint will attain nearly optimum perfor-
mance when W — W. As in the unit-norm WLS algorithm, W is not available at the beginning and

we propose the following iterative estimation procedure:



(i) Use the unbiased unit-norm LS solution as the initial estimate of the system parameter vector
p. Normalize the first element of p to be unity. Note that it is possible to substitute A%
with the identity matrix in (15) for parameter initialization [21]. However, the corresponding
solution is biased because Y is correlated with Yy [3], which may increase the possibility of
local convergence and subsequently results in a smaller SNR operation range than that of the

unit-norm LS solution.
(ii) Use the estimated @ to construct W based on (8).
(iii) Compute an improved g using (15).

(iv) Repeat Steps (ii) and (iii) for a few iterations until parameter convergence. It is worthy to men-
tion that the iterative reweighting procedure can eliminate the estimator bias upon convergence,

even though the initial parameter estimates may be biased.

We refer this algorithm to as the monic WLS algorithm. Again, we are not aware [21] of the exis-
tence of a proof of global convergence for the above relaxation algorithm but its excellent estimation

performance has been demonstrated via computer simulations in Section 3.

2.4 Modifications for Output-Noise-Only Systems

In this Section, we modify the unit-norm WLS algorithm for the output-noise-only case and the results
can be straightforwardly applied to the input-noise-only case as well as to the monic WLS algorithm.
In fact, system identification with only output noise is also frequently addressed in the literature [1],
[16] and commercial available algorithms [24] for this problem including the OE and PE methods,
where the former is optimum only for white Gaussian distributed data while the optimality of the
latter holds for general Gaussian processes [3]. As a result, the following development also allows us
to compare the proposed WLS approach with the OE and PE algorithms.

The weighting matrix W is now

w-l=aGTG (16)
where
ary, LNIL_l . LNZO 0 0 0
Gl — 0 ar, a, ag O 0
0 0 ay do

2

~. Following Section 2.2, the generalized unit-norm

which does not involve the unknown parameter o



constraint becomes

O

Yo 04 a) 17
o ol||b| 17

where & = [ag, g, ---,ar]”, b = [bo, by, - -+, br]T, O represents a zero matrix of dimension (L+1) x

(L +1), and Yy is also of dimension (L 4 1) x (L + 1) and has the form

Dy Dy - Diy Dy
Dy Dy --- D Dp,
Y1 = (18)
| DL Dy -+ Dy Dy

Using the technique of Lagrange multipliers, the Lagrangian to be minimized is

5 A/ A o[ Yy 0] a
cEBN = EOBT] T T Y (i@t BTy M e
Z21 Za» b 0o o0 b

= &"Z118+ 28" Z1ob + BT Zagb + A (1 - &7 Y 114) (19)

where Zy1, Z12, Zis1 and Zss are partitioned matrices of YITWY with Zqs = Z21T7 and A is the La-
grange multiplier. Differentiating £(&, B, A) with respect to & and then setting the resultant expression

to zero yields
7118+ Zyab — AY114=0 (20)

where & and b are the estimates of a and b, respectively. Similarly, we differentiate L£(&, B, A) with

respect to b and set the resultant expression to zero to obtain
b=-Zy""Z1,"4 (21)
Substituting (21) into (20), we have
(Z11 - Z12Z22_1Z12T) A= AY14 (22)

That is, & is determined as the generalized eigenvector corresponding to the minimum generalized
eigenvalue of the pair (Zq11 — Z12Z22_1Z12T7 Y11). Once we have found &, b is then obtained from
(21). As a result, the relaxation algorithm of the unit-norm WLS estimator for output-noise-only

systems is given as follows:

(i) Find initial estimates of the system parameters by computing the generalized eigenvector corre-
sponding to the minimum generalized eigenvalue of the pair (Z11 — Z12Z22_1Z12T7 Y11) with

Y11 equal to the identity matrix, which are the unit-norm solution proposed in [16].

(ii) Use the estimated p to construct W as well as Y11 based on (16) and (18), respectively.



(iii) Compute the generalized eigenvector corresponding to the minimum generalized eigenvalue of

the pair (le — Z12Z22_1Z12T7 Tll)-
(iv) Repeat Steps (ii) and (iii) for a few iterations until parameter convergence.

(v) Normalize & with d@o = 1 and then compute b using (21).

3 Numerical Examples

Computer simulations using MATLAB had been performed to evaluate the performance of the two
proposed algorithms for estimating IIR system parameters. The noise-free input s was a sequence
of zero-mean, independent identically distributed Gaussian random variables with unity power while
my and np were also independent white Gaussian processes. The noisy input-output, and noisy
output only cases were considered. In the former, we assigned o = 20 and comparison was made
with the unit-norm LS, SVD-based KL [13]-[14] and STLS [9] methods as well as asymptotic CRLB
for Gaussian input and white Gaussian disturbances [20]. While for the latter, we contrasted the
developed estimators with several optimum output-noise-only system identification methods, namely,
the OE, PE [2]-[3] using [24] as well as the STLS scheme. The unknown system had the form

1
1=z 140.522

H{(z)

which was second order with parameters a; = —1, ag = 0.5 and by = —1. For the iterative procedures
of the unit-norm WLS and monic WLS algorithms, we stopped after three iterations because it was
found that the algorithms almost converged with this termination criterion. The standard performance
measures of mean and mean square error (MSE) were used and all results were obtained from 500
independent runs.

Figures 1 to 3 show the MSEs for ay, ay and by, respectively, of the unit-norm LS, unit-norm
WLS, monic WLS, KL. and STLS methods in estimating the noisy input-output system at output
noise power ranging from —30 dB to 20 dB with N = 50. When the output noise power was smaller
than —5 dB, the two WLS techniques had MSEs whose values were close to the CRLB, and their
improvement over the unit-norm LS and KL. methods was around 2 to 4 dB. As expected, we do not
observe any differences between the unit-norm LS and KL methods although the first used eigenvalue
decomposition while the second employed SVD realization. The WLS methods were also superior
to the STLS scheme because the latter could attain optimum performance only for very high SNRs.
Furthermore, the threshold performance of the monic WLS scheme was better than that of the unit-
norm WLS method which may be due to the numerical instability in performing the generalized
eigenvalue decomposition at larger noise conditions.

The corresponding biases, which were obtained by subtracting the true values from the mean

estimates, are plotted in Figures 4 to 6. It is seen that all methods except the STLS scheme were

10



approximately unbiased when the output noise level was less than 0 dB. The results suggest that the
STLS method is only suitable for use in very small noise conditions.

Figures 7 to 12 plot the MSEs and mean errors for aq, a3 and by, respectively, of the unit-norm LS,
unit-norm WLS, monic WLS, OE, PE and STLS methods when the system consisted of output noise
only at N = 50. It is observed that the unit-norm WLS and monic WLS schemes were comparable
with the two realizable optimum benchmarks, namely, the OE and PE methods, particularly when
the noise level was less than 0 dB. As expected, the unit-norm LS approach performed the worst
among all other algorithms. We also observe that the two WLS methods were more robust than the
STLS scheme at larger noise conditions, although the monic scheme again had a better threshold
performance.

The above two tests were repeated for a larger sample size of N = 500 and the results are shown in
Figures 13 to 24. Again, the optimality of the unit-norm WLS and monic WLS estimators, in terms
of mean and mean square error performance, was illustrated for sufficiently small noise conditions.
Furthermore, we see that the MSEs of the WLS methods could reach the CRLB for larger noise levels

when N was increased from 50 to 500.

4 Concluding Remarks

The problem of unbiased system identification in the presence of white Gaussian input and output
noise, assuming that the noise power ratio is known, has been addressed. The relationship between
the unit-norm constraint approach and the Koopmans-Levin method for impulse response estimation
has been illustrated via the development of a unit-norm least squares algorithm. This algorithm is
then improved by using the technique of weighted least squares (WLS), and the resultant parameter
estimates are obtained via the minimization of a WLS cost function subject to a generalized unit-norm
constraint. The weighting matrix is the Markov estimate. We also derive another WLS method for
system identification based on the monic constraint, which is in fact a relaxation algorithm for solving
the maximum likelihood estimate. Computer simulations show that the estimation performance of the
two proposed algorithms is very similar and attains optimum performance in terms of mean square
errors for both noisy input-output and output-noise-only systems at sufficiently large signal-to-noise
ratio condition. Apparently, a challenging extension of this work is to study the convergence issues of
the iterative WLS algorithms.

In case of unknown noise power ratio, suitable candidates for the problem are joint output and
Frisch methods. The former can achieve maximum likelihood estimation performance but involves
extensive computations while the latter is relatively computationally attractive with suboptimum
performance [7]. For known ratio of white input and output noise powers, the monic and unit-

norm WLS methods outperform Koopmans-Levin (KL) and structured total least squares (STLS)

11



approaches in terms of mean square error and threshold SNR performance, respectively, although the
KL technique is the simplest while the computational complexities of proposed and STLS methods
are comparable. When there is either input or output noise, the proposed methods will be the proper
choices over the prediction error and output error approaches only when the data length is sufficiently
small because the computational load of the latter does not increase significantly with the number of

received samples while the WLS solutions do.
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Figure 7: Mean square errors of a;y for output-noise-only system at N = 50
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Figure 8: Mean square errors of a; for output-noise-only system at N = 50
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Figure 9: Mean square errors of by for output-noise-only system at N = 50
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Figure 10: Mean errors of a; for output-noise-only system at N = 50
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Figure 11: Mean errors of ag for output-noise-only system at N = 50

1.5 T T T T pm
1 L _
051 n 1
o o
o ofF - B B B & B 4.0 . g J
s § * % o ]
5 R
g -0.5 + 1
; +
. unit-norm LS
14 +  unit-norm WLS i
A monic WLS
*  STLS
—1 5 I O OE T
------- PE
_2 1 1 1 1 o
-30 -20 -10 0 10 20

output noise power

Figure 12: Mean errors of by for output-noise-only system at N = 50
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Figure 13: Mean square errors of ay for noisy input-output system at N = 500
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Figure 14: Mean square errors of ay for noisy input-output system at N = 500
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Figure 15: Mean square errors of bg for noisy input-output system at N = 500
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Figure 16: Mean errors of a; for noisy input-output system at N = 500
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Figure 19: Mean square errors of ay for output-noise-only system at N = 500
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Figure 20: Mean square errors of ay for output-noise-only system at N = 500
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Figure 21: Mean square errors of bg for output-noise-only system at N = 500
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Figure 22: Mean errors of a; for output-noise-only system at N = 500
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Figure 23: Mean errors of a for output-noise-only system at N = 500
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Figure 24: Mean errors of by for output-noise-only system at N = 500
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