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Filtering for Uncertain Two-dimensional
Discrete Systems with State Delays

Ligang Wu, Zidong Wang*, Huijun Gao and Changhong Wang

Abstract

This paper is concerned with the problem of robust H filtering for two-dimensional (2-D) discrete systems with time
delays in states. The 2-D systems under consideration are described in terms of the well-known Fornasini-Marchesini
local state-space (FMLSS) models with time-delays. Our attention is focused on the design of a full-order filter such
that the filtering error system is guaranteed to be asymptotically stable with a prescribed H disturbance attenuation
performance. Sufficient conditions for the existence of desired filters are established by using a linear matrix inequality
(LMI) approach, and the corresponding filter design problem is then cast into a convex optimization problem that can
be efficiently solved by resorting to some standard numerical software. Furthermore, the obtained results are extended
to more general cases where the system matrices contain either polytopic or norm-bounded parameter uncertainties. A
simulation example is provided to illustrate the effectiveness of the proposed design method.
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I. INTRODUCTION

In the past few decades, two-dimensional (2-D) discrete-time systems have received considerable research
attention since 2-D systems have extensive applications in image processing, seismographic data processing,
thermal processes, water stream heating, etc., see [13]. So far, many important results have been reported in
the literature. For example, the stability analysis problem for 2-D systems has been investigated in [8,15],
the controller and filter design problems have been considered in [4,5,19,26], and the model approximation
problem for 2-D digital filters has been studied in [7].

On the other hand, in the signal processing and control communities, the Ho, filtering problem has recently
drawn a great deal of research interests. The aim of H, filtering problem is basically to find a full-order
(or reduced-order) filter such that the associated filtering error system satisfies a prescribed Ho, norm bound
constraint. Much work has been done for H filtering problem, see e.g. [1, 3,10, 11,22-24] and references
therein. It has also been well recognized that time delay exists commonly in dynamic systems and is frequently
a source of instability and poor performance. Therefore, the last ten years have witnessed significant advances
in dealing with analysis and design problems for time-delay systems. In particular, the H, filtering problem
has been thoroughly studied for various time-delay systems, see e.g. [9,14,18,25,27—-29] for some recent papers.
However, the aforementioned results are only concerned with one-dimensional (1-D) time-delay systems. When
it comes to the 2-D systems, most published results have been restricted to the 2-D discrete-time delay free
systems, see [4,12,20]. In the simultaneous presence of time-delays and parameter uncertainties, unfortunately,
the robust H, filtering problem for 2-D discrete-time systems has not gained enough research attention mainly
due to the complexity in the stability analysis, despite its potential in engineering applications. This situation
motivates our current investigation.
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It is, therefore, our intention in this paper to investigate the problem of H filtering for 2-D systems with
time-delay in states. The mathematical model of the 2-D systems is established in terms of the well-known
Fornasini-Marchesini local state-space (FMLSS) model incorporating time delays. We aim at designing a full-
order filter that guarantees the asymptotic stability of the filtering error system while keeping the prescribed
Hoo disturbance attenuation performance. By using a linear matrix inequality (LMI) approach, we derive
the existence conditions of the desired filters, and convert the corresponding filter design problem into a
convex optimization one that can then be efficiently handled with help from available numerical software [2].
Furthermore, the obtained results are extended to some more general cases where the system matrices also
contain uncertain parameters. Most frequently used descriptions for the parameter uncertainties, including
polytopic and norm-bounded characterizations, are taken into consideration within the unified LMI framework.
A numerical example is provided to demonstrate the effectiveness of the proposed filter design procedures.

The remainder of this paper is organized as follows. The problems of H, filtering for 2-D discrete state-
delayed systems is formulated in Section II. Section III presents our main results of filtering for 2-D discrete-
time systems with state delays, and the results obtained are further extended in Section IV to more general
cases where the parameter uncertainties are considered. Section V provides an illustrative example and we
conclude this paper in Section VI.

Notations. The notations used throughout the paper are fairly standard. The superscript “T” stands
for matrix transposition; R™ denotes the n-dimensional Euclidean space; R™*™ is the set of all real matrices
of dimension m x n and the notation P > 0 means that P is real symmetric and positive definite; I and 0
represent identity matrix and zero matrix; |- | refers to the Euclidean vector norm; and Apin(+), Amax (+) denote
the minimum and the maximum eigenvalues of a real symmetric matrix, respectively. In symmetric block
matrices or long matrix expressions, we use an asterisk (%) to represent a term that is induced by symmetry,
and diag{...} stands for a block-diagonal matrix. 5 {[0,00),[0,00)} denotes the space of square summable
sequences on {[0,00),[0,00)} with values on R™. Matrices, if their dimensions are not explicitly stated, are
assumed to be compatible for algebraic operations.

II. PROBLEM FORMULATION

Consider the following state delayed 2-D system Y described by the FMLSS model [6] with delays in
the states:

Spar: w(i+1,j+1) = A, j+1)+ Asx(i+1,5) + Aga(i — di, j + 1) + Agx(i + 1,5 — do)
+Biw(i,j+ 1) + Bow(i + 1, 7)
y(i,j) = Cux(i,j) + Dw(i,j)
2(i,j) = Exz(i,j) (1)

where z(i,j) € R™ is the state; w(i,j) € 15{[0,00),[0,00)} is the disturbance input; y(i,7) € R™ is the
measured output; z(i,j) € RP is the signal to be estimated with i,j € Z,; and d; and dg are constant positive
integers representing delays along vertical and horizontal directions, respectively. A1, As, Ag1, Age, B1, Bo,
C, D and E are constant matrices with compatible dimensions. The boundary conditions are given by

{$(¢,]):0}, V]20,¢:—d1,—d1+1,,0,
{z(i,p) =0}, Vi>0, p=—dy,—da+1,...,0 (2)

Throughout this paper, the following assumptions are made.
Assumption 1: System X pps in (1) is asymptotically stable.
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Assumption 2: The boundary condition is assumed to satisfy
N

lim > (|lzo x| + zxol?) < oo (3)

N—oo
The aim of the robust H,, filtering pl”Oblel% addressed in this paper is to estimate the signal z(i,j) by a
linear, full-order, dynamic filter of the structure described by X g :

SFMi ﬂjf(i—l-l,j—l-l) = Alf:Ef(Z',j—i-1)+A2fﬂjf(i+1,j)+Blfy(i,j+1)+32fy(i+1,j)
zp(i,7) = Crays(i,))
xf(i,j) = 0 fori=0o0rj=0 (4)

where z¢(4,j) € R" is the filter state vector, and Ay, Aoy, Biy, Bay and C are appropriately dimensioned
constant matrices to be determined.

Now, augmenting the model of Xpy; to include the states of filter 37, we obtain the following filtering
error system by FM:

Spv: EG+Lj+1) = A(, 5+ 1)+ Aok +1,5) + Aq€(i —di,j + 1) + A€ (i + 1, — do)
+B1w(i, j + 1) + Bow(i + 1, j)
e(i,j) = C&(i,j) (5)
T
where £(3,7) 2 | aT(i,j) #F(i.j) | . e(i,d) £ 2(.j) - 2, ) and
! By;C Ay BoyC Ay |7 T 0 0]
1 Ad2 0 A Bl A B2 N A
@ 0 o| ' | ByD 2=\ gp | © [E Ci ] ©)

Before problem formulating, we give the following definitions.

Definition 1: Consider the filtering error system Xy in (5). Given a scalar v > 0 and constant weighting
matrices P >0, Q >0, Q1 > 0 and Q5 > 0, the system Y pa is said to have an Ho, performance level ~ if it
is asymptotically stable and satisfies

Hé(z .7)”3 < ,72 (7)
e, 4)115 + Z (0, 5) P01 (0, 5) + Zf 0(i,0)Q&10(4,0)

7=0 =0

YT 0,)006m0.) + 3 S 5&(@0)@&4@0)]

7=0 k=—d; =0 k=—d2

where &,5(i,5) = £(i + «,j + ). In the case of the zero boundary conditions as in (2), the above Huo
performance measure (7) reduces to

e(i, i)y < yllwl@ )y  (v>0) (8)
T T
where &(i,7) 2 | ¢T(i,5+1) eT(i+1,) } Lol g) 2| Wi +1) W6+ 1,5) ] and |, is I» norm
defined by

e, 5)3 = Z T(i,j+De(i,j + 1) +eT (i +1,5)ei + 1,5)]

(e eXNe o]

(1>

[wh (i, 5 + Dw(i,j + 1) +w (i + 1, j)w(i + 1, 5)]
0

a2
|’w(z7])”2

=0 7
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Definition 2: The filter Spy in (4) is said to be an H filter if the filtering error system Ypp in (5) is
asymptotically stable and satisfies Ho, performance in (8) with zero boundary conditions as in (2).

The objective of this paper is to find the matrices Ay, Aoy, Biy, Bay and Cy of the full-order H, filter
S par in (4) for the 2-D state-delayed system Yz, in (1), such that for any nonzero w(i, j) € Iy {[0, 00), [0, 00)}
the filtering error system Yy in (5) is asymptotically stable and satisfies (8).

III. MAIN RESULTS
A. Filter Analysis

In this subsection, we shall analyze the stability and Ho, performance for the filtering error system gy

The following lemma is essential in establishing our stability results.

Lemma 1: (Theorem 3 of [19]) The 2D state-delayed system Xpps in (5) with w;; = 0 is asymptotically
stable if there exist matrices P > 0, Q > 0, )1 > 0 and @2 > 0 such that the following LMI holds:

AT P-Q—-Q 0 0 0

AT o * — 0 0
Bl A A An A |- : @ *QQ 0 o | <0
1

AdT2 * * x Qo

Next, the following Theorem provides a sufficient condition under which the filtering error system X g/ in
(5) is asymptotically stable and the performance constraint (8) is satisfied.

Theorem 1: The filtering error system Yzps in (5) is asymptotically stable with an H, disturbance atten-
uation level bound = if there exist matrices P > 0, Q > 0, )1 > 0 and Q2 > 0 such that the following LMI
holds:

[ —-P 0 0 PA; P

Ejz
)
b
&

)
)
de
)

A Ag

x —I 0 C 0 0 0 0 0

« ox =1 0 0 0 C 0 0

* * * Q+Q1—P 0 0 0 0 0

x % % * I 0 0 0 0 < 0. (9)
* x % * * —Q1 0 0 0

* x % * * * Q2 —Q 0 0

* * * * * * * —'721 0

* * * * * * * * —Q2 |

Proof. See the Appendix.

For the delay free case, i.e., Ag; = 0 and Az = 0, according to the procedure of the proof of Theorem 1, it
is clear that setting Q1 = 0 and Q2 = 0 in Theorem 1 would yield the following Corollary.

Corollary 1: The filtering error system Yy in (5) is asymptotically stable with an H., disturbance atten-
uation level bound + if there exist matrices P > 0 and ) > 0 such that the following LMI holds:

[ P 0 0 PA, PB PAy, PB |
x =1 0 C 0 0 0
* o« —I 0 0 C 0
* * * Q—P 0 0 0 <0
* x 0k * —2I 0 0
* x % * * —-Q 0
* Xk * * * =20

Remark 1: Tt should be pointed out that the result in Corollary 1 is actually the main result in [7]. In other
words, Theorem 1 in this paper is an extension of the main result of [7].
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B. Filter Synthesis

We are now ready to deal with the H, filter design problem in the following theorem.

Theorem 2: Consider the 2-D state-delayed system Xpj; in (1) and let v > 0 be a prescribed constant
scalar. Then there exists a full-order filter 3y in the form of (4) such that the filtering error system Sra
is asymptotically stable and (8) is satisfied if there exist matrices 4 > 0, V > 0, Q; > 0, Q3 > 0, Q11 > 0,
Q13 >0, Q91 >0, Q23 >0, Qo, Qu2, Qo2, A1y, Aay, Biy, Boy and Cy such that the following LMIs hold:

[ U -V 0 0 UA +BC Ay UBy +BiyD UAp
* -y 0 0 VA + BlfC Alf VB + BlfD VAn
* * =1 0 E —Cy 0 0
* * x =1 0 0 0 0
x ok ok ok Q4+ O -—U Q+Qpp-V 0 0
kook k% * Q3+ Qi3 —V 0 0
* * * * * * —'721 0
* * * * * * * -9
* * * * * * * *
* * * * * * * *
* * * * * * * *
* * * * * * * *
* * * * * * * *
* * * * * * * *
0 UAQ—I-BQfC .Agf Z/[Bg+82fD UAg 0 1
0 VAs + BQfC .Agf VB, + Bng VAg 0
0 0 0 0 0 0
0 E —Cy 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
—Q19 0 0 0 0 0 <9 (10)
—0Q13 0 0 0 0 0
* Qo1 — Q1 Qo— Qo 0 0 0
* * Qo3 — O3 0 0 0
* * * —~21 0 0
* * * * Qo1 —Q2
* * * * * — Qo3
Q1 D
[ . O > 0, (11)
Q1 Q2
[ . Ou > 0, (12)
Qo1 Q2
[ . Oy > 0 (13)
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Moreover, the parameters of a desired Hoo filter of the form (4) can be computed from

Alf Blf y-1 0 0 Alf B1f
Agp Bop | =| x V10 Agp Bay |- (14)
Cy 0 * x 1 Cr 0
Proof. According to Theorem 1, if (9) holds P is nonsingular since P > 0. Now, partition P as
PP
pP= : 15
PP (15)

Without loss of generality, we assume that P is nonsingular (if not, P» may be perturbed by a matrix AP,
with sufficiently small norm such that P+ A Ps is nonsingular and satisfies (9)). Define the following matrices:

I 0
r £ UEP >0 VA pprtPl >0,
0 P3_1P2T ; 1 ’ 2473 2
Q & 17gra Q1 D =0, Q ATTOr2 O Q12 -0,
* Qg * Q13
Q, 2 17TQ,r2 [ Qo1 Q2 ] -0 (16)
* Qo
and
2 3 13
.Agf BQf = * P2 0 Agf Bgf 0 I ] (17)
c; 0 « o« Il c o
Performing congruence transformations to (9) by matrix diag{I', I, I , ', I, I, T, I, T'}, we have
[ —ITPT 0 0 I'TPAT I'T"PB, TTPA;T TTPA, T TTPBy TTPAgD |
% -1 0 CT 0 0 0 0 0
% =1 0 0 0 CT 0 0
* x % Q+Q —-rTpr 0 0 0 0 0
* x % * —2I 0 0 0 0 < 0
* * * * * —Q1 0 0 0
* * * * * * Q- Q 0 0
* * * * * * * —~21 0
i * * * * * * * * —Q ]
(18)
in which
. [ PlA; + PB;C PyA; PP
I’pTAT — J if Jjft3 42 —1.9
J PPy TPIA; + PyBj;C PoAj Py P | =12
. [ PAy 0 _ P,B; + PyB;D
FTPTA T = 1l FTPTB': J Jif
4 PP TP Ay 0| J PPy PIB; + PyBjfD |
P PPy P - B
rTpTr = 3 12 CT = [ E —C;P-'PT } 19
pP;TPr PP | R (19)

Substituting (15)—(17) and (19) into (18), we can obtain (10). Also, from (16), we can obtain (11)—(13).
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On the other hand, (17) is equivalent to

Ay By P00 Aip Biy

Asg Bap | =| % Pl 0| | Ay By P2_;FP3 3 (20)

Cy 0 * x 1 Cr O
and it follows from (4) that the transfer function of filter Sz in (4) can be described by

T (21,22) = Cf [z120] — 21 A1 — nggf]_l [z1B1f + 22Bay] . (21)
Substituting (20) into (21) results in
T(z1,20) = C;Py Py [zlzgf — 2 Py APy TPy - z2P2—1A2fP2—TP3] - [21P5 ' B1y + 20Py ' Bay]
= Cf[nzml — 21V M Ayp — 29V M Aop] T [V Bus + 20V Bay]

Then, the realization of the filter in (14) can be readily established, which completes the proof. O

Remark 2: Note that Theorem 2 provides a sufficient condition for the solvability of H filter design problem
for the 2-D state-delayed system. Since the obtained conditions are expressed by strict LMIs, the desired filter
can be determined by solving the following convex optimization problem:

min § subject to (10)-(138) with § £ ~2. (22)

IV. FURTHER EXTENSIONS

In this section, we further extend the results obtained so far to 2-D state-delayed systems with uncertain
model data, that is, the uncertain parameters are present in the system matrices A1, Ao, Ag1, Ago, B1, Bo,
C, D and FE. In the following, we will consider two types of parameter uncertainties: polytopic uncertainty
and norm-bounded uncertainty, which have been extensively used for studying robust control and filtering
problems in the literature (see, for instance, [21] and the references therein).

A. Polytopic Uncertain Case

Theorem 2 addresses the Ho, filtering problem for system Xpjs in (1) where the system matrices are all
known. However, since LMIs (10)—(13) are affine in the system matrices, Theorem 2 can be directly used
to solve the H filtering problem for the case where the system matrices are not exactly known but reside
within a given polytope.

Assumption 3: The matrices Ay, Aa, Ag1, A2, B1, B2, C, D and E of system X gy in (1) contain partially
unknown parameters. Assume that Q £ (Ay, Ao, Ag1, Age, B, B2, C, D, E) € x, where x is a given
convex bounded polyhedral domain described by s vertices:

XD =D AxGs DA =14 0}
i=1

i=1

xé{MM

where = (Avj, Azj, Ay, Aazj, Bij, Boj, Cj, Dj, Ej) denotes the jth vertex of the polytope x.

We state the following theorem without proof, since the proof can be obtained along the same line of the
derivation of Theorem 2.

Theorem 3: Consider the 2-D state-delayed system Xpps in (1) with Assumption 3 and let v > 0 be a
prescribed constant scalar. Then there exists a full-order filter 37 in the form of (4) such that the filtering
error system Spap is asymptotically stable and (8) is satisfied if there exist matrices & > 0, V > 0, Q15 > 0,
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Q3 >0, Q115 > 0, Qi35 > 0, Q215 > 0, Qoz; > 0, Qaj, Qua5, Qazj, A1y, Azf, Biy, Bay and Cy such that, for
j=1,2,...,s, the following LMIs (23)—(26) hold:

[ U -V 0 0 UAU + Blij .Alf UBU + Blij Z/{Adlj
* -V 0 0 VAlj + Blij .Alf VBU + Blij VAdlj
« o+ I 0 B ¢, 0 0
* * x =1 0 0 0 0
ok ok x Qi+ QiU Qo+ Qi —V 0 0
* I * Q3 + Qizj —V 0 0
* x % % s * —2I 0
* * * * * * * —Qllj
* x ok % * * * *
* x k% * * * *
* x k% * * * *
* x k% * * * *
* x ok % * * * *
* x k% * * * *
0 UAQj + BQij Agf Ung + Bngj UAdgj 0 1
0 VAgj + Bngj Agf Vng + Bngj VAdgj 0
0 0 0 0 0 0
0 E ¢ 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
— Q1 0 0 0 0 0 <0 (2
— Q135 0 0 0 0 0
* Qo1j — Q15 Qazj — Doy 0 0 0
* * Qa3j — 93 0 0 0
* * * —fy2I 0 0
* * * * —Qo1; —Qo9;
* * * * *  —Qagy
Qi Qoj
[ L Oy > 0 (24)
Qu; Q125
[ R I
Qo1 Dooj
[ s I

Moreover, a desired Hy filter is given in the form of (4) with parameters can be computed from (14).

B. Norm-Bounded Uncertain Case

An alternative way of dealing with uncertain systems is to assume that the deviation of the system param-
eters from their nominal values is norm-bounded, which has also been widely used in the robust control and
filtering problems.

Assumption 4: The matrices Ay, Aa, Ag1, Aa2, B1, B2, C, D and E of system Y gy in (1) are assumed to
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have the following form

A = 1211 + AA;, By = Bl + AB1, Ay = Adl + AAg,
Ay =As+ AAy, By=DBy+ ABy, Agp = Ap+ AAgp, (27)
C=C+AC, D=D+AD, E=FE+AE

where Ay, Ay, Ag1, Ago, B, Bs, C, D and E are known constant matrices with appropriate dimensions. AA;,
AAy, AAp, AAgp, ABy, ABy, AC, AD and AFE are real-valued time-varying matrix functions representing
norm-bounded parameter uncertainties satisfying

AA, AB, AAy M,
AAy, ABy, AAgy | = | M, A[Nl N, Ng]
AC AD AE M,

where A; ; is a real uncertain matrix function with Lebesgue measurable elements satisfying ATA <1, and
My, My, M3, N1, Ny and N3 are known real constant matrices of appropriate dimensions.

Before proceeding further, we give the following lemma which will be used in the proof of this subsection
(see, for instance, [26]).

Lemma 2: Given appropriately dimensioned matrices 21, 9 and X3 with ¥7 = 3. Then

Y14 2083 + 20Tyl < o (28)
holds for all Q satisfying Q7Q < I if and only if for some € > 0

Y1+ e 'S +exiv; <o,

We now present the robust He filtering result for the system ¥ s in (1) with norm-bounded uncertainties
in the following theorem.

Theorem 4: Consider the 2-D state-delayed system X pp; in (1) with Assumption 4 and let v > 0 be a
prescribed constant scalar. Then there exists a full-order filter 3y in the form of (4) such that the filtering
error system Yy is asymptotically stable and (8) is satisfied if there exist matrices Y > 0, V > 0, Q1 > 0,
QO3 >0, Q11 >0, Q13 >0, Q21 > 0, Qo3 > 0, Qo, Q19, oo, Alf, .Agf, Blf, Bgf and Cf, scalars €; >0
(j =1,2,...,6) such that the LMIs (11)—(13) and LMI (29) (shown at the top of the next page) hold. In (29),
some notations are defined as follows:

Uss £ Qi+ Qu—U+(a+e) N[N +esNj N3, Usg2 Qo+ Qup—V
Usr 2 (e1+e3) N{Noy Ve 2 Q3+ Q13— V, U 2 (61 +e3) Ny Ny — 42T
Ugs 2 e NIN3— Qui, Uigr 2 Qo — Qa, Uyip1 2 Qo3 — Q3
Uio10 = Qo1 — Q1+ (e2+ea) N{ Ny +€6N§ N3, Wig1a 2 (e2 + €4) NI No
Uig12 2 (e2+€1) Ny No—~%I, Wi313 2 eaNg Ny — Qo
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Moreover, a desired Ho, filter is given in the form of (4) with parameters can be computed from (14).
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Proof: With the result of Theorem 2, we substitute the norm-bounded uncertain matrices Ay, As, Ay,
Ago, By, By, C, D and E defined in (27) into (10) and obtain (28) where

(1>

b

[I>

23

&
=

O O O O O O

U

*

*OOK K K K K X X X X X K

SO O oo oo o oo

Ny —
=i

O O O O O O

4

% % % % % % % % % % % |
<

O O O O O O

0
0

|
~

KK K K K K X X X X X

0
0
0
0
0
0

|
Doocoocoocooo * ¥ ¥ %X % %X % % % X
&
(Y]

0
0
0

Z/[Al + Blfé
V/Ah + Blfé

Q1 +9n1—-U

E

0

*

EEE S S SR SRR SR

Z/{AQ + Bgfé
szlg + Bgfé

o O O O O

o O O O

o O O O

O O O O O O

A
A
_Cf

0

Qo+ Q12 =V
Qs+ Qi3 —V

O O O O O O

k

L R T T S

Agj
Agj

Qos — Do
Qo3 — Q3

k

k

O O O O O O

O O O O O O

o O O O

O O O O O O

UBl + Blff) L{Adl
VBl + BlfD VAdl

0
0
0
0

—2I

k

I S S S S

******N)OOOOO
—
—_

Z/{BQ + Bgff) Z/{Adg
VBQ + Bgff) szldg

O O O O O O

O O O O O O

0

¥ ¥ 2R OO0 o000 o0 oo

O O O O O O

* Qoo ocoocoococooooo

o o o o o >

21

o o o o P o

—Q2
— Qa3 |

o oo P oo

O O O O O O o o o oo

[en}

o o b o oo

o b o o oo

D oo ooo

By invoking Lemma 1 together with a Schur complement operation, (28) holds if and only if (29) holds,

which completes the proof.

O
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V. ILLUSTRATIVE EXAMPLE

In a real world, some dynamical processes in gas absorption, water stream heating and air drying can be
described by the Darboux equation with time-delays [16]:

*s(z,t) Js(x,t) Os(x,t —11) O0s(z,t) Os(z,t —11)
ot~ T + a1z 5 + a1 o + a o +ags(x,t) +0f(z,t) (30)
y(x,t) = cis(x,t) +co 8321; 2 as1s(x,t) (31)

where s(z,t) is an unknown function at x(space) € [0,z 7] and t(time) € [0,00), 7 is the time delay, ag, a11,
aia, as, as, b, ¢; and cy are real coefficients, f(z,t) is the input function, and y(x,t) is the measured output.

Note that (30)-(31) is a partial differential equation (PDE) and, in practice, it is often desired to predict the
unknown state function s(x,t) through the available measurement y(z,t), which renders the filtering problem.
Similar to the technique used in [5], we define

0s(x,t — 1)
ot
x1(1, ) := (i, J) = r(idz, jAL), x2(i,7) := s(i,j) = s(iAz, jAt),

_ 0s(z,t)

r(x,t) : T ag s(x,t) + — ages(z,t — 11)

and then the PDE model (30)-(31) can be converted into the form of a state delayed 2-D system Xgps in (1).
As discussed in [5], the discrepancy between the PDE model and its 2-D difference approximation depends
on the step sizes Az and At which may be treated as uncertainty in the difference model. Obviously, the
smaller the step sizes Ax and At, the closer between the PDE model and the difference model.
Now, subject to the selection of the parameters ag, a11, a12, as1, ase, b, c1 and co, we let the system matrices
be given as follows:

[ 0.3 0 | 0.3 0.2 0
! 02 014002 |° 1 0540015 |7 ¢ [ 0 0.14+0.020 ]
[ 0.1 0 | 0.2 0 0.1
2 02 024002 |° 2 0.4 4 0.016 ] o d2 [ 0 0.2+0.026 ]
o _ |1 0 b 0 g W 1.0
1.0 0.6 +0.026 0.3 +0.016 0 —0.8+0.020

First, we assume that the system matrices are perfectly known, that is, § = 0. Solving the LMIs condition
obtained in Theorem 2 by applying the well-developed LMI-Toolbox in the MATLAB environment directly,
we obtain that the minimum v is v* = 3.8207 and

A _ | 0017 0.0086 [ —2.1200  1.0000
= 0.0086 —0.0063 | Y T | 15539 —0.7343
A _ | 00101 0.0074 | 15607 1.9339 [ 13918 —1.0222
2= 0.0072 —0.0053 |* " 7| 11420 —1.4179 |’ F T | —1.1895 08761 |

Now, we assume |§| < 1, that is, the system considered has parameter uncertainties. As mentioned in the
previous section, there are two types of parameter uncertainties, namely, polytopic uncertainties and norm-
bounded uncertainties. In the following, firstly, we consider the polytopic uncertainties case. In this case,
according to Assumption 3, the parameter uncertainties can be represented by a two-vertex polytope. Using
Theorem 3, the minimum ~ obtained is v* = 5.4379, and the obtained filter parameter matrices are given as
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follows:
A _ | —o0s61 0.0378 [ —6.3037  2.3277
Vol 00375 —0.0215 |0 Y T | 36136 —1.3374
| —00a28 0.0245 [ —46924 41119 [ 18108 —1.0445
207 00237 —0.0136 |7 T¥ T 26911 —23608 |7 Y T | —1.5350  0.8889

Finally, we consider the norm-bounded uncertainties case, and the uncertainties are characterized as follows
according to Assumption 4:

A 03 0 A 01 0 A 02 0 A 0 0.1
! [0.2 0.1]’ 2 [0.2 0.2]’ dl [ 0 0.1]’ d2 [0 0.2]
B o |03 - 0.2 s 10 0 Che 0 e ~1.0 1.0
0.5 0.4 1.0 0.6 0.3 0 —08
0
M, = MQZMgzlll, leNgz[O 0.02], Ny = 0.02.

Using Theorem 4, the minimum ~ is obtained as v* = 5.2074, and the obtained filter parameter matrices are
given as follows:

0.6830 —0.4439 22071  0.4063

Ay = , By = (32)
—0.4496  0.2917 1.4350 —0.2651

e 18433 12020 | | 44037  0.6876 | 16334 —1.0734

27 | Z12065 07864 |0 T T | —2.8895 —04487 |7 T T | —1.4913  0.9842

Let the disturbance input w(i, j) be

w(i, j) = 0.05, 3<4, <19
3= 0, otherwise

In the following, we shall show the usefulness of the designed H, filters by presenting simulation results. To
show the asymptotic stability of the filtering error system, let the initial and boundary conditions be

[1 1.5}T, 0<i<15
z(0,7) = x(4,0) =
[0 O]T, i> 15

The state response of the designed Ho, filter in (4) with (32) are given in Figures 1 and 2, and Figures 3 and
4 are the error response for e(7, j). It can be seen from Figures 3 and 4 that the designed H, filter guarantees
that e(7,j) converges to zero under the above conditions.

VI. CONCLUDING REMARKS

In this paper, the problem of robust H filtering for a class of 2-D delayed systems has been studied. Some
sufficient conditions have been proposed for the existences of robust H filter in terms of LMI. The designed
robust H,, filter guarantees robust asymptotic stability and a prescribed Ho, performance of the filtering
error system, and the desired filter can be found by solving a convex optimization problem. In addition, the
obtained results have been further extended to more general cases where the system matrices also contain
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uncertain parameters. The most frequently used methods of dealing with parameter uncertainties, including
polytopic and norm-bounded characterizations, have been taken into consideration. An illustrative example
has been presented to demonstrate the effectiveness of the proposed methods. One of the future research
topics would be the further investigation on the time-varying time delays case [17].

VII. APPENDIX

The proof of Theorem 1.
Proof: First, let us establish the asymptotic stability of the error system Xpps in (5) with w; ; = 0. Denote

V@i, j) £ &6, 5)Pén (i, j) Z Ehli+1,7)Qi&a(i+1,5)

k=—d1

-1
+ Y &5+ 1)Qabik(in g + 1)

K=—d2

Var(i,5) £ &01(0,5)(P — Q)ém (i, j) Z (i, 4) Q161 (i, 5)

r=—d1
Vaa(i,j) & €lo(i,5)Q60(i, 5) Z &1 (6, 5) Qa1 (i, 5) (33)
rk=—ds>
Consider the increment AV (i, j) given by
AV (i,5) = Vi1(5, §) = Vo (i, ) — Vio(i, §) (34)

Then, along the solution of the filtering error system Xz, we have

x [Alg(i,j 1) 4 Apb(i+ 1,§) + Aqi€(i—d,j+ 1)+ Ago€li + 1,5 — d2)]

—&T(6,j+ )P —Q — Q)5 +1) — €T(i + 1,/)(Q — Q2)&(i + 1, 5)
&M —dy, j+ 1D)Q€(i —dy, j+1) — €7 (i+ 1,5 — d2)Q26(i + 1,5 — do)
2 0T, 5)¥n(, ), (35)

where n(i, j) 2 [¢7(i,j +1), €7 +1,5), (i —di,j+1), €7+ 1,5 —dy)]" and

AT P-Q—- 0 0 0

A7 S * Q-Q 0 0
ve | 2 Pl A A Ay A —

Atji“l 1 2 dl a2 ] % ” Ql 0

;152 * * x Qo

By Schur complement [2], LMI (9) implies ¥ < 0. It follows from Lemma 1 (Theorem 3 of [19]) that the 2-D
filtering error system Xy in (5) with w(i,j) = 0 is asymptotically stable.

Now, to establish the Ho, performance for the filtering error system g in (5), introduce the following
index:

T 2 AV(,5) + (i, §)el, §) — v*&T (6, 5o, §) (36)
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where

AV (i, j)

= [12115(2},7' + 1) + Agl(i+ 1,5) + An&(i — dr, j + 1) + Ag(i + 1,5 — da)
N . T - _
+Brisj +1) + Baw(i +1,9)| P [Aig(ij +1) + Aot (i + 1,)
+AnE(i —dr,j+1) + Ag(i+ 1,5 — d2) + Biw(i, j + 1) + Baw(i + 1, )

&M+ 1)(P—Q —Q1)E(H,5 +1) — (i + 1,5)(Q — Q2)&(i + 1, )
(i —dy, j+ 1D)Q€(i —di,j+1) — €7 (i + 1,5 — d2)Q26(i + 1,5 — do)

According to the stability of the system, we have

J

| (1>

> 1l

Ar€(i, 5+ 1) + Asé(i+ 1,5) + An€(i — di,j + 1) + Ap€(i + 1,5 — da)
FBio(i,j + 1) + Bow(i - 1,9)] P [Aie g+ 1)+ Aotli+1,7)

FApEG —di i+ 1)+ Ag(i+1,§ —do) + Biw(i, j + 1) + Bow(i + 1,j)]
&M, i+ 1) (P —Q — Q)€ 5 +1) — €1 (i + 1,5)(Q — Q2)&(i + 1,5)
&M —dy, j+ 1D)Qu€(i —dv,j+1) — €7 (i + 1,5 — da)Q26(i + 1, — da)
+€7(6,5 + 1)CTCEG, § + 1) + &7 (i + 1,5)CTCEG + 1, )
—vwl (i, + Dw(i,j+ 1) — Yl (i + 1, j)w(i + 1, 5)

[2115(1}]' + 1)+ A2(i +1,5) + Amé(i —dr,j + 1) + Ap€(i + 1,5 — dz)}TP
% [A1€6,5 +1) + A€ +1,) + An&li = du,j + 1) + Akl + 1,5 — dy)|
—&T(, i+ 1) (P —Q— Q1)@ +1) — T (i + 1,5)(Q — Q2)&(i + 1, )
—&T(i—dy, j+ 1D)Qu€(i —dp, i+ 1) — €T (i + 1,j — d2)Q26(i + 1,5 — d)
+7(6, 5+ 1)CTCE,§ + 1) + (i + 1,5)CTCE(i + 1, )
+2 [12115(1}]' + 1)+ Al (i +1,5) + Ané(i — di,j +1) + Ap€(i + 1,5 — d2)]TP
x [ Bio(i, j + 1) + Baw(i +1,)]

—{Yw" (i, + Dw(i,j+ 1) + " (i + 1, j)w(i + 1, 5)

Bl + 10+ Baoli+1,)] PB4 1)+ Bawoli +1,5)] }
0" (i, /)n(i, 5) + 20" (4, §)Qw(i, 5) — @ (i, j)®w (i, §)

" (4, )n(i, §) +n" (4, )2 QT (4, 5) — " (i,5)Q2@ 7' n(i, 5)

+2n" (i, §)Qw (4, §) — o (i, j) @@ (i, 5)

0’ (i, 5) (IL+ Q1QT) (i, 5) — [n" (i, 5)Q@ QT n(i, 5)

—2n"(i, §)Q@(i, 5) + @ (4, §)Pw (i, 5))

" (i, 5)Sn(i, 5) — [@(,5) — 271 06, )] @ [, 1) — QT (i, 5)]

0’ (i, )5 (3, §) — pt (i, 5)pli, )

15
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D=

where 7(i, j) is defined in (35), pu(i,j) £ @2 [0(i,5) — ©7'QTn(i,5)] and

- <m 9T

[ AT AT Q+Q,—P+CTC o 0 0
N {12T P fg N * Q—-Q+CTC 0 0
AL /}dT1 * * —Q1 0
| Al ] Al * * * Q2
Ap )
2 AT = A B 55 A 10T
Q2 | 92 Pl B By |, @24 o Pl B B |, z2m+0e7lo
dl 2
Al ]

By Schur complement, LMI (9) implies ¥ < 0. This together with (36) and (38) yields
AV (i, j) + " (i, 4)e(i, j) = v*0" (i, )@, §) < —p" (i, )u(i, )
Therefore we can sum both sides of (39) to obtain

SN [AV L) + TG el ) — T (6L ) ZZM i, )i, 5) = — ||, )3

=0 7=0 =0 7=0

For any integers p, ¢ > 0, it follows from (34) that

Z Z AV (i,j) =

(€10, 4)(P = Q)&11(p, §) — £51(0,5) (P — Q)€01(0, 4)]

M-

~
Il
o
<
Il
=)
<
Il
o

+ (€106, ) Q€11 (4, q) — €15(4,0)Q€10(i, 0)]

Z Ealp+1,)Qi&a(p+1,5) Z £01(0,/)Q1€4 (0, J)}

- 1%

-
T.
o

n——dl Kk=—d1

+ Z (i g +1)Q261k(i, g + 1) Z E1:(i,0) Q2814 (4, 0)]
Kk=—d>o K=—d2

'M“@

Il
o

)

Thus, together with (40) implies that

e, )13 = Y @G A3 + e )15 < D 0,5)(P — Q) (0,5) + Y £5(i,0)Q€10 (7, 0)

§=0 i=0

16

(40)

[e'¢) -1 o0 -1
+Z Z 651(07])Q1§n1(073)+z Z g?ﬁ(z7O)Q2§ln(Zao)

j=0 k=—d; i=0 k=—da
which implies that

(i, N+ ul D5 < A [lel )5+ 50,7 Péor(0,5) + > €14, 0)Qé10(i, 0)

j=0 i=0

0o -1 00 -1
+Z Z ggl(o7j)Q1§nl(Oaj)+Z Z gfn(i70)é2fln(iao)

7=0 k=—d1 1=0 k=—d2

(42)

(43)
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where P — Q < v2P, Q < v2Q, Q1 < v2Q1 and Q2 < v2Q». Now, to establish the Hoo performance, we show
that there exists a scalar o > 0 such that

el = o [@6 )5+ D &0, ) Péor(0,5) + Y £lo(E, 0)Qé10(i, 0)

j=0 =0
o] -1 ~ o) -1 ~
+3 > h0,)Q16a1(0,5) + > > €1(5,00Qa614(5, 0) (44)
jZO H:—dl =0 H:_d2
Consider the inverse system of (5):
Ei+1,5+1) = A€, j+ 1)+ A8(i+1,) + Ann€(i — di,j + 1) + Ap€(i + 1, — da)

+Bw(i,j + 1) + Bow(i + 1, 5)
L An(i, §) + Ba(i, )
— (A4 BT n(i,5) + BS 2 pu(i, ) (45)
o(i,j) = 0 03, 5) + 2 u(i, ) (46)

where A £ [ A Ay Ay A ] , B2 [ B, B, } and 7(i,j) has been defined before. It can be verified
from (9) that the system in (45) is asymptotically stable, thus there exists a bounded > 0 such that

o, )15 + | D 4610, 5)(P = Q)&01(0,5) + Y 1o(4,0)Q¢10(i, 0)

7=0 =0

o -1 oo -1
+ ) Eh(0,1)@16a1(0,5) + > > (6,0)Q061x(1,0) | < B ||l )13 (47)

7=0 k=—d; 1=0 k=—d>

This implies (44) with 3 = 1. With zero boundary conditions as in (2), we can easily obtain (8), hence the
proof is completed. O
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