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Filtering for Uncertain Two-dimensional

Discrete Systems with State Delays
Ligang Wu, Zidong Wang∗ , Huijun Gao and Changhong Wang

Abstract

This paper is concerned with the problem of robust H∞ filtering for two-dimensional (2-D) discrete systems with time

delays in states. The 2-D systems under consideration are described in terms of the well-known Fornasini-Marchesini

local state-space (FMLSS) models with time-delays. Our attention is focused on the design of a full-order filter such

that the filtering error system is guaranteed to be asymptotically stable with a prescribed H∞ disturbance attenuation

performance. Sufficient conditions for the existence of desired filters are established by using a linear matrix inequality

(LMI) approach, and the corresponding filter design problem is then cast into a convex optimization problem that can

be efficiently solved by resorting to some standard numerical software. Furthermore, the obtained results are extended

to more general cases where the system matrices contain either polytopic or norm-bounded parameter uncertainties. A

simulation example is provided to illustrate the effectiveness of the proposed design method.
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I. Introduction

In the past few decades, two-dimensional (2-D) discrete-time systems have received considerable research

attention since 2-D systems have extensive applications in image processing, seismographic data processing,

thermal processes, water stream heating, etc., see [13]. So far, many important results have been reported in

the literature. For example, the stability analysis problem for 2-D systems has been investigated in [8, 15],

the controller and filter design problems have been considered in [4, 5, 19, 26], and the model approximation

problem for 2-D digital filters has been studied in [7].

On the other hand, in the signal processing and control communities, the H∞ filtering problem has recently

drawn a great deal of research interests. The aim of H∞ filtering problem is basically to find a full-order

(or reduced-order) filter such that the associated filtering error system satisfies a prescribed H∞ norm bound

constraint. Much work has been done for H∞ filtering problem, see e.g. [1, 3, 10, 11, 22–24] and references

therein. It has also been well recognized that time delay exists commonly in dynamic systems and is frequently

a source of instability and poor performance. Therefore, the last ten years have witnessed significant advances

in dealing with analysis and design problems for time-delay systems. In particular, the H∞ filtering problem

has been thoroughly studied for various time-delay systems, see e.g. [9,14,18,25,27–29] for some recent papers.

However, the aforementioned results are only concerned with one-dimensional (1-D) time-delay systems. When

it comes to the 2-D systems, most published results have been restricted to the 2-D discrete-time delay free

systems, see [4,12,20]. In the simultaneous presence of time-delays and parameter uncertainties, unfortunately,

the robust H∞ filtering problem for 2-D discrete-time systems has not gained enough research attention mainly

due to the complexity in the stability analysis, despite its potential in engineering applications. This situation

motivates our current investigation.
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It is, therefore, our intention in this paper to investigate the problem of H∞ filtering for 2-D systems with

time-delay in states. The mathematical model of the 2-D systems is established in terms of the well-known

Fornasini-Marchesini local state-space (FMLSS) model incorporating time delays. We aim at designing a full-

order filter that guarantees the asymptotic stability of the filtering error system while keeping the prescribed

H∞ disturbance attenuation performance. By using a linear matrix inequality (LMI) approach, we derive

the existence conditions of the desired filters, and convert the corresponding filter design problem into a

convex optimization one that can then be efficiently handled with help from available numerical software [2].

Furthermore, the obtained results are extended to some more general cases where the system matrices also

contain uncertain parameters. Most frequently used descriptions for the parameter uncertainties, including

polytopic and norm-bounded characterizations, are taken into consideration within the unified LMI framework.

A numerical example is provided to demonstrate the effectiveness of the proposed filter design procedures.

The remainder of this paper is organized as follows. The problems of H∞ filtering for 2-D discrete state-

delayed systems is formulated in Section II. Section III presents our main results of filtering for 2-D discrete-

time systems with state delays, and the results obtained are further extended in Section IV to more general

cases where the parameter uncertainties are considered. Section V provides an illustrative example and we

conclude this paper in Section VI.

Notations. The notations used throughout the paper are fairly standard. The superscript “T” stands

for matrix transposition; Rn denotes the n-dimensional Euclidean space; Rm×n is the set of all real matrices

of dimension m × n and the notation P > 0 means that P is real symmetric and positive definite; I and 0

represent identity matrix and zero matrix; | · | refers to the Euclidean vector norm; and λmin(·), λmax(·) denote

the minimum and the maximum eigenvalues of a real symmetric matrix, respectively. In symmetric block

matrices or long matrix expressions, we use an asterisk (∗) to represent a term that is induced by symmetry,

and diag{. . .} stands for a block-diagonal matrix. ln2 {[0,∞), [0,∞)} denotes the space of square summable

sequences on {[0,∞), [0,∞)} with values on Rn. Matrices, if their dimensions are not explicitly stated, are

assumed to be compatible for algebraic operations.

II. Problem Formulation

Consider the following state delayed 2-D system ΣFM described by the FMLSS model [6] with delays in

the states:

ΣFM : x(i + 1, j + 1) = A1x(i, j + 1) + A2x(i + 1, j) + Ad1x(i − d1, j + 1) + Ad2x(i + 1, j − d2)

+B1ω(i, j + 1) + B2ω(i + 1, j)

y(i, j) = Cx(i, j) + Dω(i, j)

z(i, j) = Ex(i, j) (1)

where x(i, j) ∈ Rn is the state; ω(i, j) ∈ ll2 {[0,∞), [0,∞)} is the disturbance input; y(i, j) ∈ Rm is the

measured output; z(i, j) ∈ Rp is the signal to be estimated with i, j ∈ Z+; and d1 and d2 are constant positive

integers representing delays along vertical and horizontal directions, respectively. A1, A2, Ad1, Ad2, B1, B2,

C, D and E are constant matrices with compatible dimensions. The boundary conditions are given by

{x(φ, j) = 0} , ∀ j ≥ 0, φ = −d1,−d1 + 1, . . . , 0;

{x(i, ϕ) = 0} , ∀ i ≥ 0, ϕ = −d2,−d2 + 1, . . . , 0 (2)

Throughout this paper, the following assumptions are made.

Assumption 1: System ΣFM in (1) is asymptotically stable.
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Assumption 2: The boundary condition is assumed to satisfy

lim
N→∞

N
∑

k=0

(|x0,k|
2 + |xk,0|

2) < ∞ (3)

The aim of the robust H∞ filtering problem addressed in this paper is to estimate the signal z(i, j) by a

linear, full-order, dynamic filter of the structure described by Σ̂FM :

Σ̂FM : xf (i + 1, j + 1) = A1fxf (i, j + 1) + A2fxf (i + 1, j) + B1fy(i, j + 1) + B2fy(i + 1, j)

zf (i, j) = Cfxf (i, j)

xf (i, j) = 0 for i = 0 or j = 0 (4)

where xf (i, j) ∈ Rn is the filter state vector, and A1f , A2f , B1f , B2f and Cf are appropriately dimensioned

constant matrices to be determined.

Now, augmenting the model of ΣFM to include the states of filter Σ̂FM , we obtain the following filtering

error system Σ̃FM :

Σ̃FM : ξ(i + 1, j + 1) = Ã1ξ(i, j + 1) + Ã2ξ(i + 1, j) + Ãd1ξ(i − d1, j + 1) + Ãd2ξ(i + 1, j − d2)

+B̃1ω(i, j + 1) + B̃2ω(i + 1, j)

e(i, j) = C̃ξ(i, j) (5)

where ξ(i, j) ,

[

xT (i, j) xT
f (i, j)

]T

, e(i, j) , z(i, j) − zf (i, j) and

Ã1 ,

[

A1 0

B1fC A1f

]

, Ã2 ,

[

A2 0

B2fC A2f

]

, Ãd1 ,

[

Ad1 0

0 0

]

,

Ãd2 ,

[

Ad2 0

0 0

]

, B̃1 ,

[

B1

B1fD

]

, B̃2 ,

[

B2

B2fD

]

, C̃ ,

[

E −Cf

]

(6)

Before problem formulating, we give the following definitions.

Definition 1: Consider the filtering error system Σ̃FM in (5). Given a scalar γ > 0 and constant weighting

matrices P̃ > 0, Q̃ > 0, Q̃1 > 0 and Q̃2 > 0, the system Σ̃FM is said to have an H∞ performance level γ if it

is asymptotically stable and satisfies

‖ē(i, j)‖2

2
[

‖ω̄(i, j)‖2

2
+

∞
∑

j=0

ξT
01(0, j)P̃ ξ01(0, j) +

∞
∑

i=0

ξT
10(i, 0)Q̃ξ10(i, 0)

+
∞
∑

j=0

−1
∑

κ=−d1

ξT
κ1(0, j)Q̃1ξκ1(0, j) +

∞
∑

i=0

−1
∑

κ=−d2

ξT
1κ(i, 0)Q̃2ξ1κ(i, 0)

]

< γ2 (7)

where ξαβ(i, j) , ξ(i + α, j + β). In the case of the zero boundary conditions as in (2), the above H∞

performance measure (7) reduces to

‖ē(i, j)‖
2

< γ ‖ω̄(i, j)‖
2

(γ > 0) (8)

where ē(i, j) ,

[

eT (i, j + 1) eT (i + 1, j)
]T

, ω̄(i, j) ,

[

ωT (i, j + 1) ωT (i + 1, j)
]T

and ‖·‖
2

is l2 norm

defined by

‖ē(i, j)‖2

2
,

∞
∑

i=0

∞
∑

j=0

[

eT (i, j + 1)e(i, j + 1) + eT (i + 1, j)e(i + 1, j)
]

‖ω̄(i, j)‖2

2
,

∞
∑

i=0

∞
∑

j=0

[

ωT (i, j + 1)ω(i, j + 1) + ωT (i + 1, j)ω(i + 1, j)
]
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Definition 2: The filter Σ̂FM in (4) is said to be an H∞ filter if the filtering error system Σ̃FM in (5) is

asymptotically stable and satisfies H∞ performance in (8) with zero boundary conditions as in (2).

The objective of this paper is to find the matrices A1f , A2f , B1f , B2f and Cf of the full-order H∞ filter

Σ̂FM in (4) for the 2-D state-delayed system ΣFM in (1), such that for any nonzero ω(i, j) ∈ l2 {[0,∞), [0,∞)}

the filtering error system Σ̃FM in (5) is asymptotically stable and satisfies (8).

III. Main Results

A. Filter Analysis

In this subsection, we shall analyze the stability and H∞ performance for the filtering error system Σ̃FM .

The following lemma is essential in establishing our stability results.

Lemma 1: (Theorem 3 of [19]) The 2D state-delayed system Σ̃FM in (5) with ωi,j ≡ 0 is asymptotically

stable if there exist matrices P > 0, Q > 0, Q1 > 0 and Q2 > 0 such that the following LMI holds:











ÃT
1

ÃT
2

ÃT
d1

ÃT
d2











P
[

Ã1 Ã2 Ãd1 Ãd2

]

−











P − Q − Q1 0 0 0

∗ Q − Q2 0 0

∗ ∗ Q1 0

∗ ∗ ∗ Q2











< 0.

Next, the following Theorem provides a sufficient condition under which the filtering error system Σ̃FM in

(5) is asymptotically stable and the performance constraint (8) is satisfied.

Theorem 1: The filtering error system Σ̃FM in (5) is asymptotically stable with an H∞ disturbance atten-

uation level bound γ if there exist matrices P > 0, Q > 0, Q1 > 0 and Q2 > 0 such that the following LMI

holds:
































−P 0 0 PÃ1 PB̃1 PÃd1 PÃ2 PB̃2 PÃd2

∗ −I 0 C̃ 0 0 0 0 0

∗ ∗ −I 0 0 0 C̃ 0 0

∗ ∗ ∗ Q + Q1 − P 0 0 0 0 0

∗ ∗ ∗ ∗ −γ2I 0 0 0 0

∗ ∗ ∗ ∗ ∗ −Q1 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ Q2 − Q 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −γ2I 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −Q2

































< 0. (9)

Proof. See the Appendix.

For the delay free case, i.e., Ãd1 = 0 and Ãd2 = 0, according to the procedure of the proof of Theorem 1, it

is clear that setting Q1 = 0 and Q2 = 0 in Theorem 1 would yield the following Corollary.

Corollary 1: The filtering error system Σ̃FM in (5) is asymptotically stable with an H∞ disturbance atten-

uation level bound γ if there exist matrices P > 0 and Q > 0 such that the following LMI holds:

























−P 0 0 PĀ1 PB̄1 PĀ2 PB̄2

∗ −I 0 C̄ 0 0 0

∗ ∗ −I 0 0 C̄ 0

∗ ∗ ∗ Q − P 0 0 0

∗ ∗ ∗ ∗ −γ2I 0 0

∗ ∗ ∗ ∗ ∗ −Q 0

∗ ∗ ∗ ∗ ∗ ∗ −γ2I

























< 0

Remark 1: It should be pointed out that the result in Corollary 1 is actually the main result in [7]. In other

words, Theorem 1 in this paper is an extension of the main result of [7].
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B. Filter Synthesis

We are now ready to deal with the H∞ filter design problem in the following theorem.

Theorem 2: Consider the 2-D state-delayed system ΣFM in (1) and let γ > 0 be a prescribed constant

scalar. Then there exists a full-order filter Σ̂FM in the form of (4) such that the filtering error system Σ̃FM

is asymptotically stable and (8) is satisfied if there exist matrices U > 0, V > 0, Q1 > 0, Q3 > 0, Q11 > 0,

Q13 > 0, Q21 > 0, Q23 > 0, Q2, Q12, Q22, A1f , A2f , B1f , B2f and Cf such that the following LMIs hold:

























































−U −V 0 0 UA1 + B1fC A1f UB1 + B1fD UAd1

∗ −V 0 0 VA1 + B1fC A1f VB1 + B1fD VAd1

∗ ∗ −I 0 E −Cf 0 0

∗ ∗ ∗ −I 0 0 0 0

∗ ∗ ∗ ∗ Q1 + Q11 − U Q2 + Q12 − V 0 0

∗ ∗ ∗ ∗ ∗ Q3 + Q13 − V 0 0

∗ ∗ ∗ ∗ ∗ ∗ −γ2I 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −Q11

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 UA2 + B2fC A2f UB2 + B2fD UAd2 0

0 VA2 + B2fC A2f VB2 + B2fD VAd2 0

0 0 0 0 0 0

0 E −Cf 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

−Q12 0 0 0 0 0

−Q13 0 0 0 0 0

∗ Q21 −Q1 Q22 −Q2 0 0 0

∗ ∗ Q23 −Q3 0 0 0

∗ ∗ ∗ −γ2I 0 0

∗ ∗ ∗ ∗ −Q21 −Q22

∗ ∗ ∗ ∗ ∗ −Q23

























































< 0, (10)

[

Q1 Q2

∗ Q3

]

> 0, (11)

[

Q11 Q12

∗ Q13

]

> 0, (12)

[

Q21 Q22

∗ Q23

]

> 0. (13)
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Moreover, the parameters of a desired H∞ filter of the form (4) can be computed from







A1f B1f

A2f B2f

Cf 0






=







V−1 0 0

∗ V−1 0

∗ ∗ I













A1f B1f

A2f B2f

Cf 0






. (14)

Proof. According to Theorem 1, if (9) holds P is nonsingular since P > 0. Now, partition P as

P ,

[

P1 P2

P T
2 P3

]

. (15)

Without loss of generality, we assume that P2 is nonsingular (if not, P2 may be perturbed by a matrix ∆P2

with sufficiently small norm such that P2+∆P2 is nonsingular and satisfies (9)). Define the following matrices:

Γ ,

[

I 0

0 P−1
3

P T
2

]

, U , P1 > 0, V , P2P
−1
3

P T
2 > 0,

Q , ΓTQΓ ,

[

Q1 Q2

∗ Q3

]

> 0, Q1 , ΓT Q1Γ ,

[

Q11 Q12

∗ Q13

]

> 0,

Q2 , ΓTQ2Γ ,

[

Q21 Q22

∗ Q23

]

> 0 (16)

and






A1f B1f

A2f B2f

Cf 0






,







P2 0 0

∗ P2 0

∗ ∗ I













A1f B1f

A2f B2f

Cf 0







[

P−1
3

P T
2 0

0 I

]

(17)

Performing congruence transformations to (9) by matrix diag{Γ, I, I , Γ, I, Γ, Γ, I, Γ}, we have

































−ΓTPΓ 0 0 ΓT PÃ1Γ ΓT PB̃1 ΓTPÃd1Γ ΓT PÃ2Γ ΓTPB̃2 ΓT PÃd2Γ

∗ −I 0 C̃Γ 0 0 0 0 0

∗ ∗ −I 0 0 0 C̃Γ 0 0

∗ ∗ ∗ Q + Q1 − ΓT PΓ 0 0 0 0 0

∗ ∗ ∗ ∗ −γ2I 0 0 0 0

∗ ∗ ∗ ∗ ∗ −Q1 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ Q2 − Q 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −γ2I 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −Q2

































< 0

(18)

in which

ΓT P T ÃjΓ =

[

P1Aj + P2BjfC P2AjfP−1

3
P T

2

P2P
−T
3

P T
2 Aj + P2BjfC P2AjfP−1

3
P T

2

]

, (j = 1, 2)

ΓT P T ÃdjΓ =

[

P1Adj 0

P2P
−T
3

P T
2 Adj 0

]

, ΓT P T B̃j =

[

P1Bj + P2BjfD

P2P
−T
3

P T
2 Bj + P2BjfD

]

,

ΓT P T Γ =

[

P1 P2P
−1

3
P T

2

P2P
−T
3

P T
2 P2P

−1

3
P T

2

]

, C̃Γ =
[

E −CfP−1

3
P T

2

]

(19)

Substituting (15)–(17) and (19) into (18), we can obtain (10). Also, from (16), we can obtain (11)–(13).
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On the other hand, (17) is equivalent to







A1f B1f

A2f B2f

Cf 0






=







P−1
2

0 0

∗ P−1
2

0

∗ ∗ I













A1f B1f

A2f B2f

Cf 0







[

P−T
2

P3 0

0 I

]

(20)

and it follows from (4) that the transfer function of filter Σ̂FM in (4) can be described by

T (z1, z2) = Cf [z1z2I − z1A1f − z2A2f ]−1 [z1B1f + z2B2f ] . (21)

Substituting (20) into (21) results in

T (z1, z2) = CfP−T
2

P3

[

z1z2I − z1P
−1
2

A1fP−T
2

P3 − z2P
−1
2

A2fP−T
2

P3

]

−1
[

z1P
−1
2

B1f + z2P
−1
2

B2f

]

= Cf

[

z1z2I − z1V
−1A1f − z2V

−1A2f

]

−1 [

z1V
−1B1f + z2V

−1B2f

]

.

Then, the realization of the filter in (14) can be readily established, which completes the proof. �

Remark 2: Note that Theorem 2 provides a sufficient condition for the solvability of H∞ filter design problem

for the 2-D state-delayed system. Since the obtained conditions are expressed by strict LMIs, the desired filter

can be determined by solving the following convex optimization problem:

min δ subject to (10)–(13) with δ , γ2. (22)

IV. Further Extensions

In this section, we further extend the results obtained so far to 2-D state-delayed systems with uncertain

model data, that is, the uncertain parameters are present in the system matrices A1, A2, Ad1, Ad2, B1, B2,

C, D and E. In the following, we will consider two types of parameter uncertainties: polytopic uncertainty

and norm-bounded uncertainty, which have been extensively used for studying robust control and filtering

problems in the literature (see, for instance, [21] and the references therein).

A. Polytopic Uncertain Case

Theorem 2 addresses the H∞ filtering problem for system ΣFM in (1) where the system matrices are all

known. However, since LMIs (10)–(13) are affine in the system matrices, Theorem 2 can be directly used

to solve the H∞ filtering problem for the case where the system matrices are not exactly known but reside

within a given polytope.

Assumption 3: The matrices A1, A2, Ad1, Ad2, B1, B2, C, D and E of system ΣFM in (1) contain partially

unknown parameters. Assume that Ω , (A1, A2, Ad1, Ad2, B1, B2, C, D, E) ∈ χ, where χ is a given

convex bounded polyhedral domain described by s vertices:

χ ,

{

χ(λ)

∣

∣

∣

∣

∣

χ(λ) =
s

∑

i=1

λjχj ;
s

∑

i=1

λj = 1, λj ≥ 0

}

where χj , (A1j , A2j , Ad1j , Ad2j , B1j , B2j , Cj , Dj, Ej) denotes the jth vertex of the polytope χ.

We state the following theorem without proof, since the proof can be obtained along the same line of the

derivation of Theorem 2.

Theorem 3: Consider the 2-D state-delayed system ΣFM in (1) with Assumption 3 and let γ > 0 be a

prescribed constant scalar. Then there exists a full-order filter Σ̂FM in the form of (4) such that the filtering

error system Σ̃FM is asymptotically stable and (8) is satisfied if there exist matrices U > 0, V > 0, Q1j > 0,
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Q3j > 0, Q11j > 0, Q13j > 0, Q21j > 0, Q23j > 0, Q2j , Q12j , Q22j , A1f , A2f , B1f , B2f and Cf such that, for

j = 1, 2, . . . , s, the following LMIs (23)–(26) hold:

























































−U −V 0 0 UA1j + B1fCj A1f UB1j + B1fDj UAd1j

∗ −V 0 0 VA1j + B1fCj A1f VB1j + B1fDj VAd1j

∗ ∗ −I 0 Ej −Cf 0 0

∗ ∗ ∗ −I 0 0 0 0

∗ ∗ ∗ ∗ Q1j + Q11j − U Q2j + Q12j − V 0 0

∗ ∗ ∗ ∗ ∗ Q3j + Q13j − V 0 0

∗ ∗ ∗ ∗ ∗ ∗ −γ2I 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −Q11j

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 UA2j + B2fCj A2f UB2j + B2fDj UAd2j 0

0 VA2j + B2fCj A2f VB2j + B2fDj VAd2j 0

0 0 0 0 0 0

0 Ej −Cf 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

−Q12j 0 0 0 0 0

−Q13j 0 0 0 0 0

∗ Q21j −Q1j Q22j −Q2j 0 0 0

∗ ∗ Q23j −Q3j 0 0 0

∗ ∗ ∗ −γ2I 0 0

∗ ∗ ∗ ∗ −Q21j −Q22j

∗ ∗ ∗ ∗ ∗ −Q23j

























































< 0 (23)

[

Q1j Q2j

∗ Q3j

]

> 0 (24)

[

Q11j Q12j

∗ Q13j

]

> 0 (25)

[

Q21j Q22j

∗ Q23j

]

> 0 (26)

Moreover, a desired H∞ filter is given in the form of (4) with parameters can be computed from (14).

B. Norm-Bounded Uncertain Case

An alternative way of dealing with uncertain systems is to assume that the deviation of the system param-

eters from their nominal values is norm-bounded, which has also been widely used in the robust control and

filtering problems.

Assumption 4: The matrices A1, A2, Ad1, Ad2, B1, B2, C, D and E of system ΣFM in (1) are assumed to
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have the following form

A1 = Â1 + ∆A1, B1 = B̂1 + ∆B1, Ad1 = Âd1 + ∆Ad1,

A2 = Â2 + ∆A2, B2 = B̂2 + ∆B2, Ad2 = Âd2 + ∆Ad2,

C = Ĉ + ∆C, D = D̂ + ∆D, E = Ê + ∆E

(27)

where Â1, Â2, Âd1, Âd2, B̂1, B̂2, Ĉ, D̂ and Ê are known constant matrices with appropriate dimensions. ∆A1,

∆A2, ∆Ad1, ∆Ad2, ∆B1, ∆B2, ∆C, ∆D and ∆E are real-valued time-varying matrix functions representing

norm-bounded parameter uncertainties satisfying







∆A1 ∆B1 ∆Ad1

∆A2 ∆B2 ∆Ad2

∆C ∆D ∆E






=







M1

M2

M3






∆

[

N1 N2 N3

]

where ∆i,j is a real uncertain matrix function with Lebesgue measurable elements satisfying ∆T∆ ≤ I, and

M1, M2, M3, N1, N2 and N3 are known real constant matrices of appropriate dimensions.

Before proceeding further, we give the following lemma which will be used in the proof of this subsection

(see, for instance, [26]).

Lemma 2: Given appropriately dimensioned matrices Σ1, Σ2 and Σ3 with ΣT
1 = Σ1. Then

Σ1 + Σ2ΩΣ3 + ΣT
3 ΩT ΣT

2 < 0 (28)

holds for all Ω satisfying ΩT Ω ≤ I if and only if for some ǫ > 0

Σ1 + ǫ−1Σ2Σ
T
2 + ǫΣT

3 Σ3 < 0.

We now present the robust H∞ filtering result for the system ΣFM in (1) with norm-bounded uncertainties

in the following theorem.

Theorem 4: Consider the 2-D state-delayed system ΣFM in (1) with Assumption 4 and let γ > 0 be a

prescribed constant scalar. Then there exists a full-order filter Σ̂FM in the form of (4) such that the filtering

error system Σ̃FM is asymptotically stable and (8) is satisfied if there exist matrices U > 0, V > 0, Q1 > 0,

Q3 > 0, Q11 > 0, Q13 > 0, Q21 > 0, Q23 > 0, Q2, Q12, Q22, A1f , A2f , B1f , B2f and Cf , scalars ǫj > 0

(j = 1, 2, . . . , 6) such that the LMIs (11)–(13) and LMI (29) (shown at the top of the next page) hold. In (29),

some notations are defined as follows:

Ψ55 , Q1 + Q11 − U + (ǫ1 + ǫ3) NT
1 N1 + ǫ5N

T
3 N3, Ψ56 , Q2 + Q12 − V

Ψ57 , (ǫ1 + ǫ3) NT
1 N2, Ψ66 , Q3 + Q13 − V, Ψ77 , (ǫ1 + ǫ3) NT

2 N2 − γ2I

Ψ88 , ǫ1N
T
3 N3 −Q11, Ψ1011 , Q22 −Q2, Ψ1111 , Q23 −Q3

Ψ1010 , Q21 −Q1 + (ǫ2 + ǫ4)NT
1 N1 + ǫ6N

T
3 N3, Ψ1012 , (ǫ2 + ǫ4)NT

1 N2

Ψ1212 , (ǫ2 + ǫ4) NT
2 N2 − γ2I, Ψ1313 , ǫ2N

T
3 N3 −Q21
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Moreover, a desired H∞ filter is given in the form of (4) with parameters can be computed from (14).



















































































−U −V 0 0 UÂ1 + B1f Ĉ A1f UB̂1 + B1fD̂ UÂd1 0 UÂ2 + B2f Ĉ

∗ −V 0 0 VÂ1 + B1f Ĉ A1f VB̂1 + B1f D̂ VÂd1 0 VÂ2 + B2f Ĉ

∗ ∗ −I 0 Ê −Cf 0 0 0 0

∗ ∗ ∗ −I 0 0 0 0 0 Ê

∗ ∗ ∗ ∗ Ψ55 Ψ56 Ψ57 ǫ1N
T
1 N3 0 0

∗ ∗ ∗ ∗ ∗ Ψ66 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ Ψ77 ǫ1N
T
2 N3 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ Ψ88 −Q12 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −Q13 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ψ1010

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

A2f UB̂2 + B2fD̂ UÂd2 0 UM1 UM2 B1fM3 B2fM3 0 0

A2f VB̂2 + B2fD̂ VÂd2 0 VM1 VM2 B1fM3 B2fM3 0 0

0 0 0 0 0 0 0 0 M3 0

−Cf 0 0 0 0 0 0 0 0 M3

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Ψ1011 Ψ1012 ǫ2N
T
1 N3 0 0 0 0 0 0 0

Ψ1111 0 0 0 0 0 0 0 0 0

∗ Ψ1212 ǫ2N
T
2 N3 0 0 0 0 0 0 0

∗ ∗ Ψ1313 −Q22 0 0 0 0 0 0

∗ ∗ ∗ −Q23 0 0 0 0 0 0

∗ ∗ ∗ ∗ −ǫ1I 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ −ǫ2I 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −ǫ3I 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −ǫ4I 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ǫ5I 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ǫ6I



















































































< 0

(29)
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Proof: With the result of Theorem 2, we substitute the norm-bounded uncertain matrices A1, A2, Ad1,

Ad2, B1, B2, C, D and E defined in (27) into (10) and obtain (28) where

Σ1 ,

























































−U −V 0 0 UÂ1 + B1f Ĉ A1f UB̂1 + B1fD̂ UÂd1

∗ −V 0 0 VÂ1 + B1f Ĉ A1f VB̂1 + B1f D̂ VÂd1

∗ ∗ −I 0 Ê −Cf 0 0

∗ ∗ ∗ −I 0 0 0 0

∗ ∗ ∗ ∗ Q1 + Q11 − U Q2 + Q12 − V 0 0

∗ ∗ ∗ ∗ ∗ Q3 + Q13 − V 0 0

∗ ∗ ∗ ∗ ∗ ∗ −γ2I 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −Q11

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 UÂ2 + B2f Ĉ A2f UB̂2 + B2fD̂ UÂd2 0

0 VÂ2 + B2f Ĉ A2f VB̂2 + B2f D̂ VÂd2 0

0 0 0 0 0 0

0 Ê −Cf 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

−Q12 0 0 0 0 0

−Q13 0 0 0 0 0

∗ Q21 −Q1 Q22 −Q2 0 0 0

∗ ∗ Q23 −Q3 0 0 0

∗ ∗ ∗ −γ2I 0 0

∗ ∗ ∗ ∗ −Q21 −Q22

∗ ∗ ∗ ∗ ∗ −Q23

























































,

Σ2 ,





















MT
1 U MT

1 V 0 0 0 0 0 0 0 0 0 0 0 0

MT
2 U MT

2 V 0 0 0 0 0 0 0 0 0 0 0 0

MT
3 BT

1f MT
3 BT

1f 0 0 0 0 0 0 0 0 0 0 0 0

MT
3 BT

2f MT
3 BT

2f 0 0 0 0 0 0 0 0 0 0 0 0

0 0 MT
3 0 0 0 0 0 0 0 0 0 0 0

0 0 0 MT
3 0 0 0 0 0 0 0 0 0 0





















T

,

Σ3 ,



















0 0 0 0 N1 0 N2 N3 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 N1 0 N2 N3 0

0 0 0 0 N1 0 N2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 N1 0 N2 0 0

0 0 0 0 N3 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 N3 0 0 0 0



















, Ω ,



















∆ 0 0 0 0 0

0 ∆ 0 0 0 0

0 0 ∆ 0 0 0

0 0 0 ∆ 0 0

0 0 0 0 ∆ 0

0 0 0 0 0 ∆



















.

By invoking Lemma 1 together with a Schur complement operation, (28) holds if and only if (29) holds,

which completes the proof. �
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V. Illustrative Example

In a real world, some dynamical processes in gas absorption, water stream heating and air drying can be

described by the Darboux equation with time-delays [16]:

∂2s(x, t)

∂x∂t
= a11

∂s(x, t)

∂t
+ a12

∂s(x, t − τ1)

∂t
+ a21

∂s(x, t)

∂x
+ a22

∂s(x, t − τ1)

∂x
+ a0s(x, t) + bf(x, t) (30)

y(x, t) = c1s(x, t) + c2

[

∂s(x, t)

∂t
− a21s(x, t)

]

(31)

where s(x, t) is an unknown function at x(space) ∈ [0, xf ] and t(time) ∈ [0,∞), τ1 is the time delay, a0, a11,

a12, a21, a22, b, c1 and c2 are real coefficients, f(x, t) is the input function, and y(x, t) is the measured output.

Note that (30)-(31) is a partial differential equation (PDE) and, in practice, it is often desired to predict the

unknown state function s(x, t) through the available measurement y(x, t), which renders the filtering problem.

Similar to the technique used in [5], we define

r(x, t) :=
∂s(x, t)

∂t
− a21s(x, t) +

∂s(x, t − τ1)

∂t
− a22s(x, t − τ1)

x1(i, j) := r(i, j) := r(i∆x, j∆t), x2(i, j) := s(i, j) := s(i∆x, j∆t),

and then the PDE model (30)-(31) can be converted into the form of a state delayed 2-D system ΣFM in (1).

As discussed in [5], the discrepancy between the PDE model and its 2-D difference approximation depends

on the step sizes ∆x and ∆t which may be treated as uncertainty in the difference model. Obviously, the

smaller the step sizes ∆x and ∆t, the closer between the PDE model and the difference model.

Now, subject to the selection of the parameters a0, a11, a12, a21, a22, b, c1 and c2, we let the system matrices

be given as follows:

A1 =

[

0.3 0

0.2 0.1 + 0.02δ

]

, B1 =

[

0.3

0.5 + 0.01δ

]

, Ad1 =

[

0.2 0

0 0.1 + 0.02δ

]

A2 =

[

0.1 0

0.2 0.2 + 0.02δ

]

, B2 =

[

0.2

0.4 + 0.01δ

]

, Ad2 =

[

0 0.1

0 0.2 + 0.02δ

]

C =

[

1.0 0

1.0 0.6 + 0.02δ

]

, D =

[

0

0.3 + 0.01δ

]

, E =

[

−1.0 1.0

0 −0.8 + 0.02δ

]

First, we assume that the system matrices are perfectly known, that is, δ = 0. Solving the LMIs condition

obtained in Theorem 2 by applying the well-developed LMI-Toolbox in the MATLAB environment directly,

we obtain that the minimum γ is γ∗ = 3.8207 and

A1f =

[

−0.0117 0.0086

0.0086 −0.0063

]

, B1f =

[

−2.1209 1.0000

1.5539 −0.7343

]

A2f =

[

−0.0101 0.0074

0.0072 −0.0053

]

, B2f =

[

−1.5607 1.9339

1.1429 −1.4179

]

, Cf =

[

1.3918 −1.0222

−1.1895 0.8761

]

.

Now, we assume |δ| ≤ 1, that is, the system considered has parameter uncertainties. As mentioned in the

previous section, there are two types of parameter uncertainties, namely, polytopic uncertainties and norm-

bounded uncertainties. In the following, firstly, we consider the polytopic uncertainties case. In this case,

according to Assumption 3, the parameter uncertainties can be represented by a two-vertex polytope. Using

Theorem 3, the minimum γ obtained is γ∗ = 5.4379, and the obtained filter parameter matrices are given as
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follows:

A1f =

[

−0.0661 0.0378

0.0375 −0.0215

]

, B1f =

[

−6.3037 2.3277

3.6136 −1.3374

]

A2f =

[

−0.0428 0.0245

0.0237 −0.0136

]

, B2f =

[

−4.6924 4.1119

2.6911 −2.3608

]

, Cf =

[

1.8108 −1.0445

−1.5350 0.8889

]

.

Finally, we consider the norm-bounded uncertainties case, and the uncertainties are characterized as follows

according to Assumption 4:

Â1 =

[

0.3 0

0.2 0.1

]

, Â2 =

[

0.1 0

0.2 0.2

]

, Âd1 =

[

0.2 0

0 0.1

]

, Âd2 =

[

0 0.1

0 0.2

]

B̂1 =

[

0.3

0.5

]

, B̂2 =

[

0.2

0.4

]

, Ĉ =

[

1.0 0

1.0 0.6

]

, D̂ =

[

0

0.3

]

, Ê =

[

−1.0 1.0

0 −0.8

]

M1 = M2 = M3 =

[

0

1

]

, N1 = N3 =
[

0 0.02
]

, N2 = 0.02.

Using Theorem 4, the minimum γ is obtained as γ∗ = 5.2074, and the obtained filter parameter matrices are

given as follows:

A1f =

[

0.6830 −0.4439

−0.4496 0.2917

]

, B1f =

[

−2.2071 0.4063

1.4350 −0.2651

]

(32)

A2f =

[

1.8433 −1.2020

−1.2065 0.7864

]

, B2f =

[

4.4037 0.6876

−2.8895 −0.4487

]

, Cf =

[

1.6334 −1.0734

−1.4913 0.9842

]

Let the disturbance input ω(i, j) be

ω(i, j) =

{

0.05, 3 ≤ i, j ≤ 19

0, otherwise

In the following, we shall show the usefulness of the designed H∞ filters by presenting simulation results. To

show the asymptotic stability of the filtering error system, let the initial and boundary conditions be

x(0, i) = x(i, 0) =



















[

1 1.5
]T

, 0 ≤ i ≤ 15

[

0 0
]T

, i > 15

The state response of the designed H∞ filter in (4) with (32) are given in Figures 1 and 2, and Figures 3 and

4 are the error response for e(i, j). It can be seen from Figures 3 and 4 that the designed H∞ filter guarantees

that e(i, j) converges to zero under the above conditions.

VI. Concluding Remarks

In this paper, the problem of robust H∞ filtering for a class of 2-D delayed systems has been studied. Some

sufficient conditions have been proposed for the existences of robust H∞ filter in terms of LMI. The designed

robust H∞ filter guarantees robust asymptotic stability and a prescribed H∞ performance of the filtering

error system, and the desired filter can be found by solving a convex optimization problem. In addition, the

obtained results have been further extended to more general cases where the system matrices also contain
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uncertain parameters. The most frequently used methods of dealing with parameter uncertainties, including

polytopic and norm-bounded characterizations, have been taken into consideration. An illustrative example

has been presented to demonstrate the effectiveness of the proposed methods. One of the future research

topics would be the further investigation on the time-varying time delays case [17].

VII. Appendix

The proof of Theorem 1.

Proof: First, let us establish the asymptotic stability of the error system Σ̃FM in (5) with ωi,j ≡ 0. Denote

V11(i, j) , ξT
11(i, j)Pξ11(i, j) +

−1
∑

κ=−d1

ξT
κ1(i + 1, j)Q1ξκ1(i + 1, j)

+

−1
∑

κ=−d2

ξT
1κ(i, j + 1)Q2ξ1κ(i, j + 1)

Vd1(i, j) , ξT
01(i, j)(P − Q)ξ01(i, j) +

−1
∑

κ=−d1

ξT
κ1(i, j)Q1ξκ1(i, j)

Vd2(i, j) , ξT
10(i, j)Qξ10(i, j) +

−1
∑

κ=−d2

ξT
1κ(i, j)Q2ξ1κ(i, j) (33)

Consider the increment ∆V (i, j) given by

∆V (i, j) , V11(i, j) − V01(i, j) − V10(i, j) (34)

Then, along the solution of the filtering error system Σ̃FM , we have

∆V (i, j) =
[

Ã1ξ(i, j + 1) + Ã2ξ(i + 1, j) + Ãd1ξ(i − d1, j + 1) + Ãd2ξ(i + 1, j − d2)
]T

P

×
[

Ã1ξ(i, j + 1) + Ã2ξ(i + 1, j) + Ãd1ξ(i − d1, j + 1) + Ãd2ξ(i + 1, j − d2)
]

−ξT (i, j + 1)(P − Q − Q1)ξ(i, j + 1) − ξT (i + 1, j)(Q − Q2)ξ(i + 1, j)

−ξT (i − d1, j + 1)Q1ξ(i − d1, j + 1) − ξT (i + 1, j − d2)Q2ξ(i + 1, j − d2)

, ηT (i, j)Ψη(i, j), (35)

where η(i, j) ,
[

ξT (i, j + 1), ξT (i + 1, j), ξT (i − d1, j + 1), ξT (i + 1, j − d2)
]T

and

Ψ ,











ÃT
1

ÃT
2

ÃT
d1

ÃT
d2











P
[

Ã1 Ã2 Ãd1 Ãd2

]

−











P − Q − Q1 0 0 0

∗ Q − Q2 0 0

∗ ∗ Q1 0

∗ ∗ ∗ Q2











.

By Schur complement [2], LMI (9) implies Ψ < 0. It follows from Lemma 1 (Theorem 3 of [19]) that the 2-D

filtering error system Σ̃FM in (5) with ω(i, j) ≡ 0 is asymptotically stable.

Now, to establish the H∞ performance for the filtering error system Σ̃FM in (5), introduce the following

index:

J , ∆V (i, j) + ēT (i, j)ē(i, j) − γ2ω̄T (i, j)ω̄(i, j) (36)
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where

∆V (i, j) =
[

Ã1ξ(i, j + 1) + Ã2ξ(i + 1, j) + Ãd1ξ(i − d1, j + 1) + Ãd2ξ(i + 1, j − d2)

+B̃1ω(i, j + 1) + B̃2ω(i + 1, j)
]T

P
[

Ã1ξ(i, j + 1) + Ã2ξ(i + 1, j)

+Ãd1ξ(i − d1, j + 1) + Ãd2ξ(i + 1, j − d2) + B̃1ω(i, j + 1) + B̃2ω(i + 1, j)
]

−ξT (i, j + 1)(P − Q − Q1)ξ(i, j + 1) − ξT (i + 1, j)(Q − Q2)ξ(i + 1, j)

−ξT (i − d1, j + 1)Q1ξ(i − d1, j + 1) − ξT (i + 1, j − d2)Q2ξ(i + 1, j − d2) (37)

According to the stability of the system, we have

J =
[

Ã1ξ(i, j + 1) + Ã2ξ(i + 1, j) + Ãd1ξ(i − d1, j + 1) + Ãd2ξ(i + 1, j − d2)

+B̃1ω(i, j + 1) + B̃2ω(i + 1, j)
]T

P
[

Ã1ξ(i, j + 1) + Ã2ξ(i + 1, j)

+Ãd1ξ(i − d1, j + 1) + Ãd2ξ(i + 1, j − d2) + B̃1ω(i, j + 1) + B̃2ω(i + 1, j)
]

−ξT (i, j + 1)(P − Q − Q1)ξ(i, j + 1) − ξT (i + 1, j)(Q − Q2)ξ(i + 1, j)

−ξT (i − d1, j + 1)Q1ξ(i − d1, j + 1) − ξT (i + 1, j − d2)Q2ξ(i + 1, j − d2)

+ξT (i, j + 1)C̃T C̃ξ(i, j + 1) + ξT (i + 1, j)C̃T C̃ξ(i + 1, j)

−γ2ωT (i, j + 1)ω(i, j + 1) − γ2ωT (i + 1, j)ω(i + 1, j)

=
[

Ã1ξ(i, j + 1) + Ã2ξ(i + 1, j) + Ãd1ξ(i − d1, j + 1) + Ãd2ξ(i + 1, j − d2)
]T

P

×
[

Ã1ξ(i, j + 1) + Ã2ξ(i + 1, j) + Ãd1ξ(i − d1, j + 1) + Ãd2ξ(i + 1, j − d2)
]

−ξT (i, j + 1)(P − Q − Q1)ξ(i, j + 1) − ξT (i + 1, j)(Q − Q2)ξ(i + 1, j)

−ξT (i − d1, j + 1)Q1ξ(i − d1, j + 1) − ξT (i + 1, j − d2)Q2ξ(i + 1, j − d2)

+ξT (i, j + 1)C̃T C̃ξ(i, j + 1) + ξT (i + 1, j)C̃T C̃ξ(i + 1, j)

+2
[

Ã1ξ(i, j + 1) + Ã2ξ(i + 1, j) + Ãd1ξ(i − d1, j + 1) + Ãd2ξ(i + 1, j − d2)
]T

P

×
[

B̃1ω(i, j + 1) + B̃2ω(i + 1, j)
]

−
{

γ2ωT (i, j + 1)ω(i, j + 1) + γ2ωT (i + 1, j)ω(i + 1, j)

−
[

B̃1ω(i, j + 1) + B̃2ω(i + 1, j)
]T

P
[

B̃1ω(i, j + 1) + B̃2ω(i + 1, j)
]

}

, ηT (i, j)Πη(i, j) + 2ηT (i, j)Ωω̄(i, j) − ω̄T (i, j)Φω̄(i, j)

= ηT (i, j)Πη(i, j) + ηT (i, j)ΩΦ−1ΩT η(i, j) − ηT (i, j)ΩΦ−1ΩTη(i, j)

+2ηT (i, j)Ωω̄(i, j) − ω̄T (i, j)Φω̄(i, j)

= ηT (i, j)
(

Π + ΩΦ−1ΩT
)

η(i, j) −
[

ηT (i, j)ΩΦ−1ΩT η(i, j)

−2ηT (i, j)Ωω̄(i, j) + ω̄T (i, j)Φω̄(i, j)
]

= ηT (i, j)Ση(i, j) −
[

ω̄(i, j) − Φ−1ΩT η(i, j)
]T

Φ
[

ω̄(i, j) − Φ−1ΩT η(i, j)
]

, ηT (i, j)Ση(i, j) − µT (i, j)µ(i, j) (38)
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where η(i, j) is defined in (35), µ(i, j) , Φ
1

2

[

ω̄(i, j) − Φ−1ΩT η(i, j)
]

and

Π ,











ÃT
1

ÃT
2

ÃT
d1

ÃT
d2











P











ÃT
1

ÃT
2

ÃT
d1

ÃT
d2











T

+











Q + Q1 − P + C̃T C̃ 0 0 0

∗ Q2 − Q + C̃T C̃ 0 0

∗ ∗ −Q1 0

∗ ∗ ∗ −Q2











Ω ,











ÃT
1

ÃT
2

ÃT
d1

ÃT
d2











P
[

B̃1 B̃2

]

, Φ , γ2I −

[

B̃T
1

B̃T
2

]

P
[

B̃1 B̃2

]

, Σ , Π + ΩΦ−1ΩT

By Schur complement, LMI (9) implies Σ < 0. This together with (36) and (38) yields

∆V (i, j) + ēT (i, j)ē(i, j) − γ2ω̄T (i, j)ω̄(i, j) < −µT (i, j)µ(i, j) (39)

Therefore we can sum both sides of (39) to obtain

∞
∑

i=0

∞
∑

j=0

[

∆V (i, j) + ēT (i, j)ē(i, j) − γ2ω̄T (i, j)ω̄(i, j)
]

< −
∞

∑

i=0

∞
∑

j=0

µT (i, j)µ(i, j) = −‖µ(i, j)‖2

2
(40)

For any integers p, q > 0, it follows from (34) that

p
∑

i=0

q
∑

j=0

∆V (i, j) =

q
∑

j=0

[

ξT
11(p, j)(P − Q)ξ11(p, j) − ξT

01(0, j)(P − Q)ξ01(0, j)
]

+

p
∑

i=0

[

ξT
11(i, q)Qξ11(i, q) − ξT

10(i, 0)Qξ10(i, 0)
]

+

q
∑

j=0





−1
∑

κ=−d1

ξT
κ1(p + 1, j)Q1ξκ1(p + 1, j) −

−1
∑

κ=−d1

ξT
κ1(0, j)Q1ξκ1(0, j)





+

p
∑

i=0





−1
∑

κ=−d2

ξT
1κ(i, q + 1)Q2ξ1κ(i, q + 1) −

−1
∑

κ=−d2

ξT
1κ(i, 0)Q2ξ1κ(i, 0)



 (41)

Thus, together with (40) implies that

‖ē(i, j)‖2

2
− γ2 ‖ω̄(i, j)‖2

2
+ ‖µ(i, j)‖2

2
<

∞
∑

j=0

ξT
01(0, j)(P − Q)ξ01(0, j) +

∞
∑

i=0

ξT
10(i, 0)Qξ10(i, 0)

+

∞
∑

j=0

−1
∑

κ=−d1

ξT
κ1(0, j)Q1ξκ1(0, j) +

∞
∑

i=0

−1
∑

κ=−d2

ξT
1κ(i, 0)Q2ξ1κ(i, 0)

(42)

which implies that

‖ē(i, j)‖2

2
+ ‖µ(i, j)‖2

2
< γ2



‖ω̄(i, j)‖2

2
+

∞
∑

j=0

ξT
01(0, j)P̃ ξ01(0, j) +

∞
∑

i=0

ξT
10(i, 0)Q̃ξ10(i, 0)

+

∞
∑

j=0

−1
∑

κ=−d1

ξT
κ1(0, j)Q̃1ξκ1(0, j) +

∞
∑

i=0

−1
∑

κ=−d2

ξT
1κ(i, 0)Q̃2ξ1κ(i, 0)



 (43)
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where P − Q < γ2P̃ , Q < γ2Q̃, Q1 < γ2Q̃1 and Q2 < γ2Q̃2. Now, to establish the H∞ performance, we show

that there exists a scalar α > 0 such that

‖µ(i, j)‖2

2
≥ α2



‖ω̄(i, j)‖2

2
+

∞
∑

j=0

ξT
01(0, j)P̃ ξ01(0, j) +

∞
∑

i=0

ξT
10(i, 0)Q̃ξ10(i, 0)

+

∞
∑

j=0

−1
∑

κ=−d1

ξT
κ1(0, j)Q̃1ξκ1(0, j) +

∞
∑

i=0

−1
∑

κ=−d2

ξT
1κ(i, 0)Q̃2ξ1κ(i, 0)



 (44)

Consider the inverse system of (5):

ξ(i + 1, j + 1) = Ã1ξ(i, j + 1) + Ã2ξ(i + 1, j) + Ãd1ξ(i − d1, j + 1) + Ãd2ξ(i + 1, j − d2)

+B̃1ω(i, j + 1) + B̃2ω(i + 1, j)

, Aη(i, j) + Bω̄(i, j)

=
(

A + BΦ−1ΩT
)

η(i, j) + BΦ−
1

2 µ(i, j) (45)

ω̄(i, j) = Φ−1ΩTη(i, j) + Φ−
1

2 µ(i, j) (46)

where A ,

[

Ã1 Ã2 Ãd1 Ãd2

]

, B ,

[

B̃1 B̃2

]

and η(i, j) has been defined before. It can be verified

from (9) that the system in (45) is asymptotically stable, thus there exists a bounded β > 0 such that

‖ω̄(i, j)‖2

2
+





∞
∑

j=0

ξT
01(0, j)(P̃ − Q̃)ξ01(0, j) +

∞
∑

i=0

ξT
10(i, 0)Q̃ξ10(i, 0)

+
∞
∑

j=0

−1
∑

κ=−d1

ξT
κ1(0, j)Q̃1ξκ1(0, j) +

∞
∑

i=0

−1
∑

κ=−d2

ξT
1κ(i, 0)Q̃2ξ1κ(i, 0)



 ≤ β2 ‖µ(i, j)‖2

2
(47)

This implies (44) with β = 1

α
. With zero boundary conditions as in (2), we can easily obtain (8), hence the

proof is completed. 2
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Fig. 1. State response of the H∞ filter xf1(i, j)

0

5

10

15

20

0

5

10

15

20
−1.5

−1

−0.5

0

0.5

1

i=1,2...j=1,2...

S
ta

te
 r

es
po

ns
e 

of
 H

−
in

fin
ity

 fi
lte

r

Fig. 2. State response of the H∞ filter xf2(i, j)
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Fig. 3. Error response e1(i, j)
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Fig. 4. Error response e2(i, j)


