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Abstract
This paper addresses the problem of approximating smooth bivariate functions from the samples
of their partial derivatives. The approximation is carried out under the assumption that the
subspace to which the functions to be recovered are supposed to belong, possesses an approximant
in the form of a principal shift-invariant (PSI) subspace. Subsequently, the desired approximation
is found as the element of the PSI subspace that fits the data the best in the 2-sense. In order to
alleviate the ill-posedness of the process of finding such a solution, we take advantage of the
discrete nature of the problem under consideration. The proposed approach allows the explicit
construction of a projection operator which maps the measured derivatives into a stable and
unique approximation of the corresponding function. Moreover, the paper develops the concept of
discrete PSI subspaces, which may be of relevance for several practical settings where one is
given samples of a function instead of its continuously defined values. As a final point, the
application of the proposed method to the problem of phase unwrapping in homomorphic
deconvolution is described.
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1. Introduction
Medical imaging optics, acoustics, communications, and control are only a few key
examples of scientific fields in which the convolution model of signal formation has long
been used to account for the effect of measurement systems on signals of interest [1–5]. In
all these cases, a measured signal is assumed to be a result of convolution of the original
signal with the point spread function (PSF) of the measurement system. Since the
convolution with the PSF affects the properties of the original signals, the latter needs to be
recovered via an inverse procedure known as deconvolution, the most challenging version of
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which—termed blind deconvolution—refers to the case when no a priori knowledge about
the PSF is available [6].

A variety of approaches has been proposed to cope with the task of concurrently estimating
the PSF and the original signal [7]. Among these methods, an optimal balance between
accuracy and computational simplicity seems to be realized by homomorphic deconvolution
[8, Chapter 10]. The main difficultly with this approach, however, stems from the necessity
to evaluate the original phase of the Fourier transform of the convolution mixture given a set
of its measurements wrapped into the interval (−π, π]. Unfortunately, phase unwrapping [9]
is known to be a difficult reconstruction problem, which often results in sizeable errors in
the phase estimation, thereby deteriorating the overall deconvolution performance.

To avoid the unwrapping step in homomorphic deconvolution, Tribolet [10] was the first to
propose the recovery of the phase of a convolution mixture by numerically integrating its
first derivative. His idea has inspired a number of studies, and, in particular, the
development in [11] where the original phase is recovered as the solution to a continuous-
domain Poisson equation. It is important to note that the approach of [11] combines the
process of integration with a smoothing procedure, thereby being capable of directly
recovering the Fourier phase of the PSF (rather than that of the convolution mixture)
according to the basic concept of homomorphic deconvolution.1

A practical limitation of the approach of [11] is the use of second-order partial derivatives as
the input data. As a general rule, the higher the order of the derivative, the higher is its
susceptibility to aliasing errors. Moreover, selecting a higher sampling rate by refining the
lattice in the Fourier domain (so as to decrease the effect of aliasing) may result in an
intolerable computational burden. Consequently, it is tempting to find a method that can
recover a smoothed version of the Fourier phase of the convolution mixture from the
samples of its first-order partial derivatives.

The deconvolution application considered above has been an impetus for the developments
reported in this paper. In particular, the paper introduces an explicit algorithm for
approximating smooth bivariate functions2 from noisy samples of their first-order partial
derivatives. Although the proposed method has been primarily aimed at solving the problem
of recovering the Fourier phases, it is believed that the method presented in this paper can be
used for a wider spectrum of applications. For this reason, the developments below are
carried out in a general form until the experimental part of the paper, where the application
of the method to the problem of (blind) homomorphic deconvolution is demonstrated.

The technique described in this paper is based on the assumption that the subspace, to which
the functions of interest are supposed to belong, possesses an approximant in the form of a
principal shift-invariant (PSI) subspace [12,13], and, hence, the desired solution can be
found as an orthogonal projection onto this subspace. Unfortunately, in the continuous-
domain formulation, such a projection cannot be computed in a stable way. Nevertheless, we
show that a remedy can come from the fact that the problem of approximating a function
from the samples of its derivatives is naturally a discrete problem. This viewpoint leads to
the concept of discrete PSI subspaces, which admit somewhat weaker construction
requirements than those used in the continuous formulation. Consequently, the discrete

1In homomorphic (blind) deconvolution, the PSF is recovered through estimating its log-spectrum as a smoothed version of the log-
spectrum of corresponding convolution mixture. In particular, the phase of the PSF is estimated via smoothing the phase of the
mixture.
2We restrict ourselves to the two-dimensional (2-D) case; however, this is not a serious limitation. All of the results presented below
can be extended in a straightforward manner to arbitrary dimensions, but to avoid unnecessary mathematical abstraction we have not
done so here.
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approach makes it possible to perform the reconstruction in a stable and computationally
efficient way.

The organization of the remainder of this paper is as follows. In Section 2, we briefly survey
some basic properties of PSI subspaces. Many points raised in this section are well
understood, and they are reviewed in order to establish the necessary notation and
background for subsequent material. Section 3 introduces the notion of a discrete PSI
subspace and provides a number of theoretical results serving as a basis for the proposed
approximation algorithm which is specified in Section 4. A numerical implementation of the
algorithm is discussed in this section as well. Finally, Section 5 gives an example of
application of the method to the problem of homomorphic deconvolution, while Section 6
concludes the paper by recapping its main results.

2. Preliminaries: approximation in PSI subspaces
The concept of PSI subspaces has been extensively studied as a specific example of shift-
invariant subspaces [12,13]. Given a subset Φ ⊂ 2(ℝd), the shift-invariant subspace
generated by Φ is the smallest closed subspace of 2(ℝd) that contains the set of all integer
shifts of Φ, viz. span{φ(· − k) | φ ∈ Φ}, with k ∈ ℤd. When Φ is a singleton, i.e., Φ ≡ {φ},
the resulted subspace is referred to as principal and the function φ is referred to as its
generator. The theory of shift-invariant spaces nowadays plays an essential role in a variety
of scientific fields including approximation theory [14], multiresolution approximations and
wavelets [15], finite elements [16], and sampling theory [17].

2.1. Estimation of smooth functions: continuous-domain formulation
We now consider the problem of estimating a uniformly regular function f ∈  with ⊂

2(ℝ), given its perturbed measurements g according to

(1)

In what follows, all functions under consideration are real-valued functions, with f
considered as a useful signal that needs to be recovered, whereas u is regarded as noise to be
rejected. Since, in most practical settings, one is usually concerned with signals of finite
length, we restrict the domain of definition of f to the interval Ω = [0, 1]. Moreover, the
functions in (1) are also assumed to be periodic, with their basic periods supported in Ω. It
should be noted that, even though the assumption of periodicity is consistent with the
application we have in mind (the phases of discrete Fourier transforms (DFTs) are periodic
functions), it might be a limitation in general. Fortunately, there is a way to overcome this
limitation, as it is discussed later in the paper.

The problem of recovering signals from their noisy measurements has been addressed by
many researches through a multitude of approaches [18]. In the current study, a linear
approach based on a uniform smoothing is exploited. It should be noted, however, that in the
case when the function to be recovered is not uniformly regular, a better solution can be
provided by non-linear smoothing operators which “do not cross” boundaries between
homogeneous regions of the function [19]. Nevertheless, whenever the signal to be
recovered does not have singularities, uniform smoothing still remains an attractive
alternative, especially from the computational point of view.

To recover a useful signal from its measurement, the signal and noise models need to be
specified. For the moment, the noise u in (1) is assumed to be an arbitrary member of 2(Ω).
On the other hand, the useful signal f is assumed to belong to a periodic PSI subspace Ω)
generated by a compactly supported generator φ and defined as
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(2)

where M = 2−J with J being a negative integer, i.e., J ∈ ℤ−. It should be noted that Ω) is a
finite dimensional subspace, since for any J there exist exactly M basis functions.

The subspace Ω) can be thought of as an approximant subspace for functions in 2(Ω),
where the approximation is achieved by orthogonally projecting such functions onto Ω). In
order for this projection to be stable and unique, the generator φ has to satisfy the
admissibility condition which requires it to be chosen in such a way that the set {φ(· −k)}k∈ℤ

is linearly independent, and therefore constitutes a Riesz basis in the subspace it spans. This
requirement is known to be fulfilled when the Fourier transform φ̂ of φ does not possess 2π-
periodic zeros [13]. Moreover, if φ̂ has p-order zeros at each ω ∈ 2πℤ\{0} (while being non-
zero everywhere else), then Ω) can be used to stably represent polynomials of degree (p −
1) on the intervals [2Jk, 2J(k + 1)], where k = 0, 1,…, M − 1 [20]. It is worthwhile noting that
from this perspective, the parameter J can be thought of as a resolution parameter in the

sense that the smaller J is, the narrower is the support of , and therefore the higher is the
approximation order of Ω).

The properties of Ω) as an approximant are closely related to those of φ [12]. For the case
at hand, we note that for an arbitrary s ∈ 2(Ω), the error of its approximation in Ω) can be
shown to behave like ∥s − {s}∥ = 2Jp), where  denotes the operator of orthogonal
projection onto Ω) [20]. Moreover, provided φ is admissible, there exists a unique dual

generator ψ such that the sets  and  are orthogonal, and any s ∈ Ω)
can be represented as [17]

(3)

where 〈·, ·〉 stands for the standard inner product in 2(Ω). Note that the uniqueness of the
construction of the dual generator ψ is guaranteed provided it obeys ψ ∈ span{φ(· − k)}
[13,17].

The constructions in (3) are essential in defining orthogonal projections onto the target space
Ω)—the standard way to perform approximations [21, Chapter X]. Moreover, in many

cases of practical interest, (3) provides a relatively simple and useful estimation scheme,
whose properties and features have been comprehensively studied [12].

2.2. Estimation of smooth functions from noisy derivatives
The point to be addressed next is that of recovering the useful signal f from the noisy

measurements q of its first-order derivative f. Denoting by  the first-order derivative

, the model equation is now given by

(4)

where, as previously, u stands for the noise to be rejected.
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Let Ω) denote a periodic PSI subspace spanned by . Then, the problem of
estimating the useful signal f could be solved by first recovering the representation
coefficients {ck} via projecting q onto Ω), followed by reconstructing f as

. In order to compute an orthogonal projection onto Ω), a basis dual to

 should be first defined. Unfortunately, such a dual basis cannot be defined in a
stable manner, inasmuch as the primal set is not a Riesz basis in the space it spans. This is
because the derivative operator introduces a linear dependency between the functions of the

“parent” set . Specifically, the operator imposes a first-order zero on the Fourier
transform of φ at ω = 0 that makes the zeros of φ̂ be 2π-periodic. As a result, by the property
known as “the curse of zeros” [22,23], the function φ̇ cannot be an admissible generator.
However, under certain conditions, the above deficiency can be alleviated within the
discrete framework, as is shown in the sections that follow.

3. Discrete PSI subspaces in ℝN

3.1. Approximation of vectors in discrete PSI subspaces
From now on, it is assumed that the values of the functions under consideration are available

only at the points of the set . (For the sake of
convenience, N is defined to be equal to N = 2L with L being a positive integer, i.e., L ∈ ℤ+.)
Accordingly, we reformulate the results of the preceding section for the discrete case.

Let H = {hn,k} be an N × M matrix, whose columns are formed by the values of 

sampled at the points of ΩN, namely . Then, denoting by gN, fN, and uN the
column vectors which are comprised of the values of g, f, and u, respectively, evaluated at
the points of ΩN, the discrete measurement model can be defined as

(5)

where cM ∈ ℝM denotes a (column) vector of the representation coefficients. We note that
assuming f to be a member of Ω) implies that fN lies in the column space of H. Moreover,
the projection of an arbitrary sN ∈ ℝN onto this space is stable and unique provided that the
columns of H are linearly independent.

To find conditions which the columns of H have to fulfill in order to be linearly
independent, we need to first introduce some more notation. Specifically, let hk ∈ ℝN be the
kth column of H, with k = 0, 1,…,M − 1. Then, denoting by m: ℝN → ℝN the operator of a

left circular shift in ℝN by m discrete points, the vectors  can be generated from the
first column h0 of H as hk = kΔ{h0}, where3 Δ = N/M = 2J+L. The following proposition

establishes the necessary and sufficient condition for the set  to constitute a Riesz
basis in the subspace it spans [24, Chapter 1].

Proposition 1—Let h ∈ ℝN and  be a set of vectors generated as hk = kΔ{h}
with Δ = N/M being a positive integer. Also let ℱ : ℝN → ℂN denote the operator of DFT.

Then, the set  is linearly independent and, hence, constitutes a Riesz basis in the
subspace it spans if and only if there exist two positive constants A>0 and B<∞ such that

3Note that L should be greater than −J, otherwise Δ is not an integer and the system is undersampled.
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(6)

where |ℱ{h}|2 is the vector obtained by point-wise absolute squaring of the values of,ℱ{h).

Moreover, provided  is a Riesz basis, there exists a unique dual generator d ∈ ℝN,
which is defined by its DFT as4

(7)

such that k1Δ{h}T
k2Δ{d} = δk1,k2, with δ being the Kronecker delta function. (Notice that

the inverse in (7) is applied pointwisely.) Hence, the orthogonal projection H of an

arbitrary s ∈ ℝN onto span  is given by

(8)

Proof—The proposition is proven by showing that the matrix D ∈ ℝN × M, with its kth
column given by kΔ{d} (where d is defined via (7)), constitutes a left inverse for H, viz.
DTH = IM × M, where IM × M is an M × M identity matrix. To this end, let H̃ and D̃ be two N
× N circulant matrices corresponding to the vectors h and d, respectively. In addition, let W̃

be another circulant matrix defined as W̃ = D ̃TH̃. It is straightforward to verify that the first
column of W̃ is given by the circular cross-correlation of the vectors d and h. Moreover,
being a circulant matrix, W̃ is diagonalizable by the operator of DFT, while the eigenvalues
of W̃ are equal to the DFT of its first column w. The above considerations imply that

(9)

where * stands for the complex conjugate.

Given W̃, the matrix DTH can be obtained by downsampling the columns and rows of W̃ by
the factor of Δ. Therefore, DTH is a circulant matrix as well, with its first diagonal being a
downsampled version of w. Hence, the vector of eigenvalues v of DTH is an aliased version
of ℱ{w}. More specifically, the vector ν is equal to the first M components of the vector ν̃

given by

4Here and from now on, the dot stands for the point-wise product of vectors and matrices.

Michailovich and Tannenbaum Page 6

Signal Processing. Author manuscript; available in PMC 2009 December 29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(10)

where 1N ∈ ℝN is a column vector of ones. Therefore, ν = 1M implying that DTH = IM × M,
and, hence, D is indeed a left inverse of H. Consequently, we conclude that (8) defines an

orthogonal projection onto span  (or, equivalently, onto the column space of H),
which is well-defined and unique, provided (6) holds.

Remark—Clearly, the roles played by h and d can be interchanged. This stems directly
from the fact that W̃ = D̃TH̃ = H ̃TD̃, and, hence, HTD = DTH = IM × M.

Proposition 1 asserts that an estimate of the useful signal fN in (5) may be obtained as

(11)

How close the values of the estimate are to those of the original function depends on the
amplitude of the additive noise uN as well as on the aliasing error. Whereas the amplitude of
uN depends on the measurement conditions (and is thus not controllable), the aliasing error
can be minimized by increasing N, and selecting φ with higher a zero-order p. In particular,
for fixed N and J, the aliasing error can be reduced via choosing a compactly supported
scaling function with maximal possible p, subject to supp{φ(2−Jx)} ⊆ Ω. Thus, for example,
if φ is chosen to be a minimum-phase scaling function of Daubechies [25, Chapter 6], the
maximal p allowed in this case can be shown to be ⌊(2−J + 1)/2⌋. This makes it possible to
preset the parameter p automatically given a suitable value of J.

An important fact about the estimate given by (11) is that it is not invariant to cyclical shifts
of the data gN, implying that the estimate generally depends on the linear phase with which
the input is received. To overcome this deficiency of (11), the cycle-spinning method of [26]
may be employed. In this case, the estimation is performed for all significant shifts, followed
by back-shifting, and subsequently, averaging all the results thus obtained. In the discrete
case, the total number of such shifts is obviously equal to Δ. Moreover, it can be easily

shown [27] that the translation-invariant estimate  may be obtained by simply
convoluting gN with the filter w (whose DFT is given by (9)) normalized by Δ. Formally,

(12)

It worthwhile noting that the filter ω is always symmetric by construction, even if the
generator φ(x) is not.

Finally, we note that from the statistical point of view, (11) can be shown to be the maximum
likelihood (ML) estimate of f N, provided that the noise uN is Gaussian and white [28]. If the

noise covariance was equal to , the definition of the ML estimate would
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require replacing the standard norm  by the weighted norm . In such a case, the

estimate  given by (12) would be given by convoluting gN with a filter depending on both
φ and U. In this work, however, only the basic case of white Gaussian noise is addressed,
since incorporating the case of correlated noises would further complicate the discussion
with more technical details, while contributing little to the essence of the proposed
methodology.

3.2. Estimation from sampled derivative
In what follows, we extend the results of the preceding section to the case in which a useful
signal fN has to be reconstructed from discrete noisy measurements of its first derivative. To
this end, let υ0 denote the column vector whose coordinates are equal to the values of φ̇

J,0
computed at the points of ΩN. Further, let K denote an N × M matrix with columns defined

by the vectors of the set . Then, a discrete version of the continuous model
(4) is given by

(13)

where qN stands for a discretized version of q, and cM is a vector of the representation
coefficients of fN in the column space of H. Consequently, in the case of (13), the problem
of recovering fN amounts to the problem of estimating cM from qN.

From the previous discussion, it follows that a useful estimate of cM can be obtained by
projecting qN onto the column space of K. Moreover, such a projection is guaranteed to be
stable and unique if and only if there exits a dual generator z0 whose DFT is given by (7)
(under substitution of υ0 instead of h), such that the N × M matrix Z with its columns formed

by the vectors  will constitute a left inverse for K. Unfortunately, such a z0
is not guaranteed to exist. The main reason for this is “the curse of the zeros.” In particular,
the differentiation imposes a linear dependency on the columns of K which causes the

coordinates of |ℱ{υ0}| (as well as those of  to be zero for all

. As a result, the definition of ℱ{z0} using (7) is not possible in the case
of the derivative sampling.

A remedy to the above problem comes from the fact that for sufficiently large zero-orders p,
the Fourier transform φ̂ of φ is approximately “flat” in the vicinity of ω = 0. Hence, the
Fourier transform of φ̇ is expected to grow only linearly around ω = 0. This fact implies the
existence of two positive constants A>0, B<∞ such that A≤|ℱ{υ0}|≤B for all n ∈ Γ̄, where Γ̄
= {0, 1,…,N − 1}\Γ. This makes it possible to obtain a stable and unique approximation of
the useful signal in the subspace:

(14)

thereby suggesting that the estimation of fN is possible up to an additive constant. The
proposition below provides a formal description of this estimate.

Proposition 2—Let υ ∈ ℝN, such that . Also, let K be an N × M matrix with its

columns formed by the vectors , where Δ = N/M is a positive integer. Finally,

let Γ denote the set of indices  and Γ̄ be its complement in {0, 1,…,N − 1}. Then, if
there exist two real positive constants A>0 and B<∞, for which5
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(15)

then there exists a unique vector z ∈ ℝN, defined by its DFT as:

(16)

such that the orthogonal projection K of an arbitrary y ∈ ℝN onto

 is given by:

(17)

Proof—The proof of this proposition is similar to that of Proposition 1, and is accomplished
by showing that the matrix ZTK (where the columns of the N × M matrix Z are formed by

the vectors of the sets  constitutes an identity operator in

. We note that the latter can be defined as JM × M = IM × M − M−1

1M × M, where 1M × M is an M × M matrix of ones. Following exactly the same scheme that
has been employed in the proof of Proposition 1, one can show that the matrix ZTK is
circulant (and, hence, diagonalizable by DFT), and that all but one of its eigenvalues are
equal to 1, while the remaining eigenvalue (which corresponds to the constant eigenvector)
is equal to zero. Therefore, multiplication of an arbitrary vector by ZTK (or, equivalently, by
KTZ) results in subtracting its mean value—the result that is obtained when multiplying the
vector by JM × M. This concludes the proof.

Proposition 2 provides the necessary tools with which a zero-mean version of the vector fN
can be estimated. Specifically, in the case when uN is a white Gaussian noise and fN belongs
to the subspace defined by (14), the ML-optimal estimate f̃N of fN can now be obtained by

(18)

If the mean value of fN was different from zero, then it could be represented as f N = HcM,
where the coefficients cM could be decomposed as cM = α1M+ bM, with bM ∈ ∏ and α ∈ ℝ.
In this case, given the vector qN = KcM, the estimate of fN would be given by

(19)

If the generator φ obeys Σk∈ℤ φ(· − k) = 1 (i.e., the shifts of φ form a partition of unity—the
condition that is necessary for the corresponding PSI subspace to represent zero-degree
polynomials), then H1M = 1N, so that f̃N = fN − α1N. Moreover, since (HbM)T1N = 0, it

follows that . In order words, in the case  the estimator (18)
reconstructs the vector fN with subtracted mean value.

5Here and from now on, n denotes the nth coordinate of a vector in ℝN.
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Note that the above property of (18) is not a result of using a particularly poor solution
method, but is inherent in the problem itself. The differentiation “filters out” the constant
component of the useful signal f, so that its derivative contains no information about the
mean value of f. This makes the problem of recovering f from its first derivative ill-posed, in
the sense that an ambiguity arises when reconstructing the constant component of f.
Consequently, the estimator (18) resolves this ambiguity by finding a solution that has a
minimal ℓ2-norm, which is the solution with zero mean value.

Additionally, we note that the estimate (18) is not invariant to translations of the data qN. To
overcome this difficulty, the same cycle-spinning method described in the previous section

may be employed. In this case, the translation-invariant estimate  of fN can be obtained as

(20)

where

(21)

with h0 and υ0 denoting the first columns of H and K, respectively, and ★ standing for the
complex conjugation.

Finally, the definition of the reconstruction filter r requires one to compute the vectors h0
and υ0. In the case when the generator φ is defined analytically, this computation is
straightforward. Perhaps, the most widespread example here is the family of B-splines [29].
Another important class of generators is the class of refinable functions. The functions of
this class are known to obey the two-scale equation φ(x) = 2Σk akφ(2x − k) for appropriate
interscale coefficients {ak}. In this case, the vectors h0 and υ0 may be computed as follows.
Let A denote the convolution matrix associated with the coefficients {ak}, and (⇓ 2)A be the
operator which removes from the matrix A its odd-numbered rows. Then, it can be
rigorously proven that the integer values of the scaling function and its derivatives are given
by the components of the eigenvectors of operator 2(⇓ 2)A associated with the eigenvalues 1
and 0.5, respectively [30, Chapter 11]. The uniqueness of the above eigenvalue problem can
be guaranteed, as shown, e.g., in [31]. Subsequently, the cascade algorithm [25] can be
employed to compute the values of φ and φ̇ at all xn = 2−Δn, ∀n ∈ ℤ.

4. Reconstruction from samples of partial derivatives: 2-D case
In this section, the results derived above for the 1-D case are extended to the 2-D case. Here
the useful signal is assumed to be well approximable by its projection onto the subspace

2(Ω × Ω) given by

(22)

Note that in (22) the functions  and  are assumed to have the same resolution
parameter J = −log2M. This is done in order to keep the indexing as simple as possible,
though in general, the resolutions along the x- and y-axes may be different.
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From the discussion of the previous section, we know that recovering a function from the
samples of its derivative is an ill-posed problem due to the loss of the information about the
constant component of the function. In order resolve the ambiguity in recovering the
constant component, the useful signal f is assumed to have zero mean value, implying that
∬f(x, y) dxdy = 0. It is worthwhile noting that the latter property of f is equivalent to
requiring that the M × M matrix C = {Ck1,k1} of its representation coefficients in 2(Ω × Ω)
obeys

(23)

In the discrete case, the sampled values of the partial derivatives qx and qy of f over the set

ΩN × N = ΩN × ΩN can be arranged as two N × N matrices  and , respectively,
which are given by

(24)

where  and  are noise terms which we assume to be mutually independent and
identically distributed. Thus, the problem of estimating the samples fN × N of the useful
signal f amounts to the problem of estimating the representation coefficients C. In order to
proceed further, the following lemma is needed.

Lemma 1

Let C ∈ ℝM × M be such that . Then

(25)

Proof
The proof of the lemma is very simple, and, for this reason, only the validity of the leftmost
equality will be shown below. Note that the property of C being a zero-mean matrix implies
that 1M × MC1M × M = 0. Consequently, using the definition of JM × M one can see that

(26)

Now, suppose for the moment that the noise terms in (24) are equal to zero. Then,

multiplying  by ZT and D on the left and the right, respectively, would result in the

matrix JM × M C. Analogously, multiplying  by DT and Z on the left and the right,
respectively, would result in CJM × M. Consequently, using the results of Lemma 1, in the
noise-free case, the coefficients of (zero-mean) C can be uniquely recovered using either of
the following two relations:

(27)
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or

(28)

When the noises  and  are different from zero, the estimates of C given by (27)
and (28) are not in general equal. In this case, an average estimate of C which is obtained as
the arithmetic mean of (27) and (28) seems to be a reasonable solution, under the conditions

that the noises  and  have comparable variances. The average estimate C̄ can be
shown to be given by

(29)

where J̃M × M = IM × M + M−1 1M × M. As a result, the discrete values of the useful signal at
the points of ΩN × N can be estimated as

(30)

Note that the estimate (30) can be proven to be optimal in the ML sense provided that the

noises  and  are independent and identically distributed white Gaussian noise
processes.

Once again, we note that the estimate (30) has the drawback of being non-invariant to
translations (shifts) of data. In the 2-D case, the total number of such shifts concurrently

applied to  and  is equal to Δ2. In order to render the estimate of fN × N translation
invariant, the cycle-spinning method from the previous section can be used once again. As
in the 1-D case, the translation-invariant estimation can be computed via linear filtering. The
derivation of this result is somewhat tedious, and for this reason it is omitted here. Hence,
only the final formulas, needed for practical implementation of the proposed method, are
provided below.

Let  be an N × N matrix with identical rows equal to , where r is

defined by (21). In the same manner, let  be an N × N matrix having identical columns

equal to . Then, the translation-invariant estimate  of fN × N can be
shown to be given by

(31)

where the filters χx and χy are defined via their 2-D DFT (denoted below by ℱ2-D) as
follows:

(32)

The above expressions imply that the overall complexity of computing the translation-
invariant estimate of fN × N from the samples of its partial derivatives is logarithmic, i.e., 
N2log2N).
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The filters χx and χy are supposed to be pre-computed and stored before the estimate of
fN × N is initialized. Note that the properties of these filters are defined by those of the
generator φ as well as by the parameter J. In most of the experimental results of the
following section, the cubic B3-spline was used as a generator (suggesting p = 4).

5. Results: phase unwrapping for homomorphic deconvolution
As it was mentioned in Introduction, the proposed method for estimating bivariate functions
from the samples of their partial derivatives originated from a practical problem of
recovering the Fourier phases of PSFs as part of homomorphic deconvolution. Accordingly,
the experimental results reported in this section are related to this application.

5.1. Reference methods for phase unwrapping
Let ΦN × N be a matrix of discrete values of the phase of a complex function evaluated over
ΩN × N. In addition, let ΨN × N be a wrapped version of ΦN × N defined as ΨN × N = 
ΦN × N} with being the wrapping operator. Then, denoting by x and y the operators of
the “column” and “row” partial differencing, respectively, it can be shown that if

(33)

then the partial differences of ΦN × N can be recovered from those of ΨN × N as [9]

(34)

Consequently, the estimated partial differences x{ΦN × N} and y{ΦN × N} can be used to
compute the Laplacian of ΦN × N, followed by estimating the latter as the solution to a
discrete-domain Laplace equation subject to periodic boundary conditions. Note that this
solution is unique provided ΦN × N has zero-mean, and, moreover, the solution can be shown
to globally minimize the ℓ2-norm between its partial differences and the partial differences
estimated according to (34) [32]. For the latter reason, the above approach to phase
unwrapping is commonly referred to as the least squares (LS) method.

Note that in the case of Fourier phases, the LS method is capable of recovering the values of
ΦN × N precisely provided the condition (33) is met. Consequently, if ΦN × N was the Fourier
phase of a convolution mixture, then its LS-estimate could be further used to estimate the
phase of the associated PSF by properly smoothing the former (as it is envisaged within the
framework of homomorphic deconvolution). The smoothing, in turn, could be achieved
through projecting the LS-estimate of ΦN × N onto the subspace (22), which would have
amounted to multiplying the DFT of the estimate by ℱ{w}, ℱ{w}T (with w defined via (9)),
had one required the result to be translation invariant. (In the sequel, we refer to such a
solution as a smoothed least squares (SLS) solution.)

Unfortunately, the performance of both LS and SLS methods deteriorates dramatically,
when the condition (33) breaks down. Some standard ways to circumvent this difficulty
include either “masking out” or “going round” the points, at which the condition (33)
appears to be violated, when the Laplace equation is being integrated [9]. Neither of these
solutions, however, is known to be reliable and computationally efficient at the same time.
On the other hand, as long as Fourier phases are considered, a much simpler alternative
would be to recover ΦN × N from the samples of its partial derivatives, as it is described in
this paper. We note that the partial derivatives of the phase Φ of a 2-D Fourier transform f̂

can be computed in their unwrapped form according to
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(35)

where ℑ stands for the imaginary part.6 Since the proposed method is designed to integrate
the partial derivatives directly over a subspace of smooth functions (which seems to be an
additional advantage in the context of homomorphic deconvolution), it is referred below to
as the smoothing integration (SI) method.

In order to assess the experimental results in a quantitative manner, the normalized mean
squared error (NMSE) was employed as a comparative measure in this paper. Denoting by
sN × N the original 2-D discrete signal to be recovered, and by S̃N × N its estimate, the NMSE
can be defined as

(36)

with ∥·∥F standing for the Frobenius norm. Note that, in the current paper, each expectation
ℰ was approximated by corresponding sample mean based on the results of 200 independent
trials.

5.2. Estimation of simulated Fourier phases
In the experimental part of this paper, the performances of the LS, SLS, and SI methods are
first compared using the Fourier phases of computer-generated random sequences. We note
that, given an N1 × N2 sequence SN1 × N2, its Fourier phase can be defined as a restriction of
the corresponding z-transform to the unit sphere. As is well-known, it is generally
impossible to compute the original (i.e., unwrapped) Fourier phase of SN1 × N2 by means of
closed-form expressions. On the other hand, a univariate polynomial can always be
represented as a product of first-order factors, thus allowing its phase to be computed as the
sum of all the elementary phases “contributed” by the monomials. Moreover, as the phases
of the monomials admit a closed-form analytical expression, it is rarely a problem to
compute the Fourier phases of 1-D sequences in their original form [33]. For the above
reasons, the random sequences used in this part of the experimental study were generated in

a separable way, viz. in the form of  (where SN1 and SN2 are two random
column vectors of dimensions N1 and N2, respectively). Note that, in this case, the Fourier
phase of a 2-D sequence is completely defined by the phases of its 1-D “column” and “row”
components.

The size of the simulated sequences was taken to be 32 × 32. Moreover, since most of the
PSFs behave as band-pass filters, the zeros of their z-transforms should be distant from the
unit circle/sphere, as least within their pass-band. To mimic such a behavior, the zeros of the
z-transforms of the simulated sequences were not allowed to fall within the annulus 0.98 ≤ |
z| ≤ 1:02. Fig. 1 shows the distribution of the zeros of the z-transforms corresponding to the
“column” and “row” components of a typical simulated sequence.

Table 1 summarizes the results of phase estimation obtained by using the LS, SLS, and SI
methods for different values of SNR.7 In this experiment, the generator φ was defined to be
a cubic B3-spline, the resolution J was set to be equal to −5, and all the Fourier transforms

6The partial derivatives of f̂ can be efficiently computed by applying the DFT to linearly weighted versions of its spatial-domain
counterpart [8].
7Note that, throughout the simulation study, the additive noise was taken to be white and Gaussian.
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were evaluated over an N × N rectangular lattice with N = 256. One can see that the LS
method is capable of virtually perfectly recovering the original phase from its wrapped
values for relatively high values of SNR. However, when the increasing amplitudes of the
noise make the condition (33) fail, the performance of the LS method deteriorates
considerably, with its NMSE exceeding 32% at SNR = 10 dB. Analogously, the SLS
method results in relatively low values of NMSE (about 1%) for relatively high values of
SNR. It is worthwhile noting that the error here is mainly due to the approximation
associated with projecting the solution onto the predefined PSI subspace. Unfortunately, this
method is also susceptible to violation of the condition (33), with its error approaching 26%
when SNR goes down to 10 dB. On the other hand, the NMSE values of the proposed SI
method increase only moderately with decreasing of SNR, thereby exhibiting a dependency
on the noise level alone. Specifically, at 10 dB noise level, the error of the SI method is
about 1.6%.

Fig. 2 illustrates the above results by demonstrating the original phase of a simulated
random sequence, its noise-contaminated version (SNR = 40 dB), as well as the resulting
SLS and SI estimates in Subplots A1–A4, respectively. One can see that, for this level of
noise, both methods result in the estimates which are virtually indistinguishable from the
original phase. However, the results obtained for SNR = 10 dB (which are shown in
Subplots B1–B4 of Fig. 2) clearly demonstrate the drawbacks of the SLS approach that
provides a much noisier reconstruction as compared to the SI method.

Since there is little conceptual difference between the LS and SLS methods, and since the
latter is more relevant to the technique of smooth estimation which we will need for the
application we have in mind, only the SLS and SI methods will be compared from now on.
Specifically, the next question to be addressed is that of the influence of the parameter J on
the quality of phase reconstruction. It should be noted that, since J controls the “bandwidth”
of the estimation, the NMSE values are expected to increase whenever the corresponding
PSI subspace is either too “narrow-banded” or too “broad-banded” for representing a
specific phase at hand.

Table 2 shows the results obtained by using the SLS and SI methods for different values of
J. In this experiment, the generator φ was defined to be a cubic B3-spline, whereas N and
SNR were set to be equal to 256 and 15 dB, respectively. One can observe that both methods
minimize the NMSE at J = −5. At the same time, the error goes up for smaller values of J, as
the increased bandwidth allows too much noise into the solution. In a similar manner, the
error increases for higher values of J as a result of overly smoothing the solution. Thus, one
can conclude that the PSI subspace corresponding to J = −5 optimally represent the phases
used in this simulation study. We note that the above value of J can by no means be
regarded as universally optimal, as it strongly depends on the smoothness properties of the
function that needs to be recovered. Consequently, finding an optimal value of J turns out to
be an issue by itself. We discuss some possible solutions to this problem in the concluding
section of this paper.

From the above discussion, it stems that the main drawback of both the LS and SLS methods
is related to their property of being dependent on the condition (33) which requires the
absolute values of the partial differences of the original phase Φ to be smaller than π. Since
the differences can be made arbitrary small by refining the (sampling) lattice in the Fourier
domain, one can expect that for a sufficiently large value of N, the performances of the SLS
and SI methods should be similar. This expectation is supported by the results tabulated in
Table 3 that compares the performances of the SLS and SI methods for different values of N.
In this experiment, the generator was also defined as a cubic B3-spline, J was set to be equal
to −5, while SNR was taken to be 15 dB. One can see that, for N = 64, the SLS method
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performs considerably worse (NMSE is about 13%) as compared to the SI method (NMSE
is about 2.4%). Note that in the former case, the error is mainly caused by inaccuracies in
computing the partial differences of the phases (as a result of violation of the condition
(33)), while in the latter case, the error is predominantly due to aliasing. For N = 256, the SI
method still results in the NMSE value that is about three times smaller than the error
produced by the SLS approach. However, for N = 512, both methods achieve virtually
identical error rates. Since the computational complexity of all the methods under
consideration is logarithmic, one can conclude that the proposed SI approach may be
advantageous in situations when the computational time is of particular importance.

We conclude this part of the experimental study with investigating the dependency of the
performance of the SI method on the approximation power of the PSI subspace as controlled
by the parameter p. To this end, the values of N, J, and SNR were set to be equal to 256, −5,
and 15 dB, respectively, while the generator φ was defined in the form of B-splines of orders
2, 3, 4, and 5 (corresponding to p = 3,…,6, respectively) [34]. The resulting values of the
NMSE are shown in Table 4. One can see that, as predicted by the theory, the PSI subspaces
constructed using more regular splines are capable of better representing the simulated
phases. The dependency on p, however, seems to be relatively mild.

5.3. Phase reconstruction in ultrasound imaging
In this part of the experimental study, we restrict the discussion to a specific class of PSFs
which characterize the image formation in ultrasound imaging. In particular, we investigate
the influence of the phase estimation error on the shape of such PSFs in the spatial domain.
In order to generate these PSFs, the Field-II® software package was used [35].

A set of the PSFs corresponding to a typical configuration of a (phased-array) ultrasound
transducer were collected in the form of 64 × 64 matrices. Subsequently, the obtained PSFs
were contaminated by white Gaussian noise giving rise to the SNR of 15 dB. Finally, the
PSFs were recovered using the true magnitudes of their Fourier transforms, while the phases
of the estimated PSFs were reconstructed by means of the SLS and SI methods. The
reconstruction was performed with φ = B3 and J = 5, while N was varied between 64 and
512 samples. The NMSE values of the resulting PSF estimates are summarized in Table 5.
One can see that for N = 64 (i.e., in the case when no over-sampling is used), the errors of
the PSF estimation using the SLS approach is almost five times higher than the error related
to the SI method, which is equal to 4.76%. When the Fourier transforms are oversampled by
the factor of 4 (N = 256), the error of the SI-based reconstruction is still about two times
smaller than the error of the SLS-based reconstruction. It is only for N = 512 that both
methods result in almost identical error of about 1.3%. Apparently, in this case, the sampling
density in the Fourier domain becomes high enough for the condition (33) to hold. Hence,
one can conclude that the proposed SI method can be employed for recovering the PSF with
a relatively high accuracy for considerably lower values of N (as compared to the SLS
approach), which makes it more useful for applications in which the speed of computations
is a key issue. Fig. 3 exemplifies the above results by showing the original PSF (leftmost
subplot) and its estimates obtained using the SLS and SI methods (central and rightmost
subplots, respectively) for N = 128. (Note that the PSFs here are shown as gray-scale
images, with the black and white colors corresponding to their smallest negative and the
largest positive values, respectively.) In this case, a visual comparison easily reveals the fact
that, due to the errors in phase estimation, the SLS-based reconstruction fails to recover the
correct support of the PSF.

Finally, the phase estimation methods under consideration were compared using real-life
data. To this end, a set of ultrasound images were acquired from a tissue-mimicking
phantom using a single-element, 3.5MHz transducer (Panametrics V383, Waltham, MA) for
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both transmission and reception. The data acquisition was performed by steering the
transducer in the lateral direction with resolution of 0.5 mm. The acquired data were
sampled at 25MHz (using CompuScope 14100, GAGE Applied, Inc.) with 14 bits
resolution. An example of the demodulated envelope of a segment of an acquired image is
shown in the leftmost subplot of Fig. 4. In addition, measurements of the corresponding PSF
were performed by imaging a point target (a steel wire) in a water tank using the same
experimental setup. The measured PSF is shown in the upper subplot of the leftmost column
of subplots in Fig. 4.

Subsequently, the multitude of the Fourier transform of the PSF was estimated using the
method detailed in [36], while the phase of the PSF was recovered using both the SLS and
SI methods. The oversampling factor was set to be equal to 2 (implying twice as many
samples in the Fourier domain as it was in the spatial domain). The optimal value of −4 for
the resolution parameter J was found empirically as a minimizer of the resulting estimation
error. The generator φ was defined again to be a cubic B3-spline.

Two examples of the PSF estimation are depicted in the two lower (leftmost) subplots of
Fig. 4. One can see that while SI-based method succeeds well in recovering the PSF shape
and support information, the SLS-based method suffers from “phase” errors, which appear
as “warping” and “smearing” of the estimated PSF shape. For this case, the NMSE values
for the SLS and SI methods were found to be equal to 14.2% and 5.8%, respectively.

6. Discussion and conclusions
A method for estimating the values of smooth functions from the (noisy) samples of their
partial derivatives has been presented. The proposed estimation scheme is based on the
assumption that the function which needs to be recovered is approximable in a properly
defined PSI subspace. In this case, a reasonable solution to the estimation problem can be
found as the element of the PSI subspace that “fits” the data the best in the 2-sense.
Unfortunately, finding such a solution in the case of continuous-domain formulation is an
ill-posed problem, which is a direct consequence of the fact that the derivative operator is
generally not injective.

The above difficulty has been overcome by noting that as long as sampled signals are
considered, the corresponding reconstruction problem is discrete in nature. Consequently,
via appropriately adjusting the notion of PSI subspaces to the discrete setting, it becomes
possible to define a way to achieve a stable and unique reconstruction by means of only a
few filtering operations. Thus, besides introducing a computationally efficient method for
smooth integration, we believe that this study provides some useful insight into the problem
of the construction of discrete integrators with controllable smoothness properties.

The estimation error provided by the proposed method depends on the severity of both the
noise and aliasing. While the size of the noise depends on measurement conditions, the
effect of aliasing can be reduced via increasing the sampling rate as controlled by N. It
should be noted, however, that an unbounded increase of N can lead to instability, since the
discrete formulation converges to the continuous case as N → ∞. From the point of view of
the theory of Riesz bases, the instability is caused by the lower bound A in (15) approaching
zero. Therefore, it is interesting to find the rate at which the above convergence occurs. In

this connection, we note that the Fourier transform of  is equal to ,
with φ̂ denoting the Fourier transform of φ, as before. Since, for most of the generators φ
with sufficiently high orders p, their Fourier transforms are approximately constant in

vicinity of ω = 0, one has  in a small neighborhood
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of the origin, which implies that the Fourier transform of  changes linearly around ω = 0.
Therefore, for sufficiently high values of N, the lower bound A should be expected to be of
the order of N−1). Fortunately, in practical settings, the values of N are always finite, which
guarantees the stability of the reconstruction.

The proposed estimation method has been developed under the assumption that the
functions to be recovered are periodic. This assumption, however, might be a limitation in
the cases when the periodicity cannot be taken advantage of. To overcome this deficiency,
we first note that the proposed integration method is completely defined by the filters w and
r, as specified by (9) and (21), respectively. Given the DFTs of these filters, it is rarely a
problem to find either FIR or IIR filters of finite lengths, the transfer functions of which will
approximate ℱ{w} and ℱ{r} to a reasonably high precision [37]. Subsequently, such filters
could be used instead of w and r to perform the reconstruction subject to necessary boundary
conditions, as required by an application at hand. It should also be noted that the filters w
and r are low-pass filters by construction, and therefore they are capable of suppressing the
influence of out-of-band noises on the solution. Moreover, the absolute values of the
frequency responses of the filters can be shown to be bounded by 1, thereby suggesting that
the filters will never amplify the noise within their pass-bands. However, while the
frequency response of w is virtually “flat” within its pass-band, the frequency response of
the integrating filter r tends to amplify lower frequencies more than higher. Consequently,
the corresponding “coloring” of the within-band noise should be expected.

In the experimental part of this paper, the application of the proposed method to the problem
of phase unwrapping in homomorphic deconvolution was described. Since the method is
designed to integrate the partial derivatives of the phase over a subspace of smooth,
relatively slow-varying functions, it can be used to recover the phase of a PSF directly from
that of the corresponding convolution mixture. We have seen, however, that the phase
estimation error is generally dependent on the resolution parameter J. To predefine an
optimal value of J, one could first predict the shape of the PSF based on either preliminary
measurements or an analytical model. Given the predicted PSF, its separable approximation
could then be computed by means of the singular value decomposition, followed by
computing the Fourier phase of the approximation in the very same way as we used to
compute the test phases in Section 5.2. Finally, the optimal J could be found as a minimizer
of the distance between the approximated phase and its projection onto the corresponding
PSI subspace. Alternatively, an optimal value of J could be found by performing blind
deconvolution for a range of different values of J, followed by choosing the one that
provides the best deconvolution result. In practice, however, we observed that both above-
mentioned approaches resulted in the same optimal values of J, and, for this reason, we
preferred the first one for its being more direct and less time consuming.

Apart from testing the performance of the proposed method under different conditions, the
method has also been compared with the standard LS solution, which was recently applied
to the problem of homomorphic deconvolution in ultrasound imaging in [38]. It was
demonstrated that the proposed method is capable of recovering the Fourier phase of the
PSF of ultrasound scanners with a considerably higher accuracy as compared to [38]. This
suggests that the proposed method may be useful for some important practical applications
in medical imagery.
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Fig. 1.
(Left) The zeros of the “column” z-transform of a separable 32 × 32 sequence. (Right) The
zeros of the “row” z-transform of the same sequence.
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Fig. 2.
(Subplots A1–A4) The original Fourier phase of a simulated sequence, the phase
contaminated by 40 dB noise, the SLS and the SI estimate of the phase, respectively.
(Subplots B1–B4) The original Fourier phase of a simulated sequence, the phase
contaminated by 10 dB noise, the SLS and the SI estimate of the phase, respectively.
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Fig. 3.
(Left) Original PSF. (Center) PSF estimate computed using the SLS method for phase
estimation. (Right) PSF estimate computed using the SI method for phase estimation.
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Fig. 4.
(Leftmost subplot) A segment of the envelope of ultrasound data. (Right column of
subplots) The measured PSF and its estimates computed using the SLS and SI methods for
phase reconstruction.
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Table 1

NMSE (±1 standard deviation) of phase estimates obtained at different noise levels for φ = B3, J = − 5, and N
= 256

SNR = 60 dB SNR = 40 dB SNR = 20 dB SNR = 10 dB

LS 0.0001 ± 0.0000 0.0015 ± 0.0001 0.0222 ± 0.0045 0.3292 ± 0.1778

SLS 0.0111 ± 0.0045 0.0120 ± 0.0054 0.0211 ± 0.0098 0.2682 ± 0.0757

SI 0.0110 ± 0.0044 0.0120 ± 0.0052 0.0130 ± 0.0062 0.0164 ± 0.0076
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Table 3

NMSE (±1 standard deviation) of phases estimates obtained for different values of N and for φ = B3, J = −5,
and SNR = 15 dB

N = 64 N = 128 N = 256 N = 512

SLS 0.1302 ± 0.0460 0.0978 ± 0.0299 0.0387 ± 0.0107 0.0127 ± 0.0035

SI 0.0237 ± 0.0059 0.0182 ± 0.0048 0.0141 ± 0.0038 0.0122 ± 0.0034
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Table 4

NMSE (±1 standard deviation) of phases estimates obtained for different generators φ and for N = 256, J = −5,
and SNR = 15 dB

φ = B2 φ = B3 φ = B4 φ = B5

SI 0.0144 ± 0.0041 0.0142 ± 0.0039 0.0139 ± 0.0038 0.0134 ± 0.0033
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Table 5

NMSE (±1 standard deviation) of PSF estimation for different values of N and for φ = B3, J = −5, and SNR =
15 dB

N = 64 N = 128 N = 256 N = 512

SLS 0.2145 ± 0.0413 0.0912 ± 0.0290 0.0210 ± 0.0079 0.0131 ± 0.0023

SI 0.0476 ± 0.0102 0.0301 ± 0.0130 0.0132 ± 0.0031 0.0130 ± 0.0025
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