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a b s t r a c t

A two-stage clustering-then-‘1-optimization approach has been often used for sparse

component analysis (SCA). The first challenging task of this approach is to estimate the

basis matrix by cluster analysis. In this paper, a robust K-hyperline clustering (K-HLC)

algorithm is developed for this task. The novelty of our method is that it is not only able

to implement hyperline clustering, but also is capable of detecting the number of hidden

hyperlines (or sparse components). K-HLC seamlessly integrates ‘‘the hyperline

clustering’’ and ‘‘hyperline number detection’’ in the same algorithm. In addition, three

strategies are proposed to tackle this problem: (1) reject the outliers by overestimating

the number of hyperlines; (2) escape from local minima by using a multilayer

initialization and (3) suppress the noise by a multilayer K-HLC. By taking these

strategies into account, the robust K-HLC procedure can be briefly described as follows:

first, we overestimate the number of hyperlines; then, a confidence index is given to

evaluate the significance of each hyperline. Subsequently, we determine the number of

hyperlines by checking the gap in the sorted confidence indices. Moreover, we select

those hyperlines corresponding to large confidence indices with high rank priority and

remove spurious ones with small confidence indices. The high performance of our

clustering scheme is illustrated by extensive numerical experiments including some

challenging benchmarks, e.g., very ill-conditioned basis matrix (Hilbert matrix), or the

observations with strong outliers.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

Sparse component analysis (SCA), also known as
sparse coding or sparse representations (SR), can be
modeled as

xðtÞ ¼ AsðtÞ þ eðtÞ or X ¼ AS þ E, (1)

where X ¼ ½xð1Þ; . . . ; xðTÞ� 2 Rm�T
ðTbmÞ is an observable

data matrix, A ¼ ½a1; . . . ;an� 2 R
m�n is an unknown full
ll rights reserved.

nced Brain Signal

10198, Japan.
row rank basis matrix, which contains n basis vectors
a1; . . . ;an, and S 2 Rn�T is an unknown matrix which
represents n sparse sources or hidden sparse compo-
nents. E 2 Rm�T is the noise matrix, where eðtÞ ¼
ðe1ðtÞ; . . . ; emðtÞÞ

T; t ¼ 1; . . . ; T , T is the number of samples,
m is the number of observations and n is the number of
sources. Note that n is generally unknown. When mon,
the columns of A form a set of overcomplete bases in Rm

so that the linear model (1) is underdetermined. The main
objective of SCA is to estimate the basis matrix A and the
sources S such that S is as sparse as possible or has
specified sparsity profile. Without loss of generality,
assume that the columns of A are normalized [1–3], i.e.,
kaik2 ¼ 1; i ¼ 1; . . . ;n.
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www.elsevier.com/locate/sigpro
dx.doi.org/10.1016/j.sigpro.2008.12.005
mailto:he_shui@tom.com


ARTICLE IN PRESS

Z. He et al. / Signal Processing 89 (2009) 1011–10221012
SCA has already found many applications such as
electromagnetic and biomagnetic imaging, feature extrac-
tion, filtering, wavelet denoising, time–frequency repre-
sentation, image processing, neural and speech coding,
spectral estimation, estimation of direction of arrival
(DOA), vector quantization, and fault diagnosis [4–9].
Especially, SCA can be applied in the underdetermined
blind source separation (BSS), where the sparsity of
sources is used as the additional information to achieve
BSS in the case that the number of observations is less
than the number of sources. A typical example was given
by Bofill and Zibulevsky [10]: six flute signals were
separated from only two observations. Regarding the
applications of SCA in BSS, more results were reported in
[1,5,10–16].

Notice that when the sources sðtÞ are sparse enough to
approximately satisfy disjoint orthogonality condition

[15,17], i.e., siðtÞ � sjðtÞ ¼ 0 (or siðtÞ � sjðtÞ � 0 in noisy case),
then there will be at most only one significantly nonzero
source in s1ðtÞ; . . . ; snðtÞ. Without loss of generality,
suppose that only siðtÞ is significant at time instant t, i.e.,
siðtÞa0 and sjðtÞ ¼ 0, jai, j ¼ 1; . . . ;n. In the noise-free
case, model (1) can be simplified as follows:

xðtÞ ¼ AsðtÞ ¼ a1 � s1ðtÞ þ � � � þ an � snðtÞ ¼ ai � siðtÞ. (2)

Eq. (2) can be re-written as

x1ðtÞ

ai1
¼

x2ðtÞ

ai2
¼ � � � ¼

xmðtÞ

aim
¼ siðtÞ, (3)

where ai ¼ ½ai1; . . . ; aim�
T. Obviously, formula (3) is a linear

equation, which means that all columns a1; . . . ;am of A are
the hyperline directions in the scatter plot of the observed
data xðtÞ.

In this case, finding the basis matrix A can be cast into
a hyperline clustering problem [5,10]. Hence a two-stage
framework ‘‘cluster-then-‘1-optimization’’ is developed
[1,5,10,14]: in the first stage, the basis matrix A is first
identified by hyperline clustering; in the second stage, the
sparse components are estimated using other methods
such as linear programming (LP) [1,5,18–20], FOCUSS
algorithms [6,8,21,22] or shortest path decomposition
[10,20]. So the hyperline clustering plays an important
role in SCA.

There have been several clustering methods to find A in
the two-stage SCA, e.g., K-means, fuzzy-C clustering
[5,23], median-based clustering [24], linear geometric
ICA-based method [25]. However, as mentioned in [14],
these methods require the sources to be very sparse, so
that they well satisfy the disjoint orthogonality condition
in the analyzed transformed domain. By extending the
‘‘degenerate unmixing estimation technique’’ (DUET) and
the method called ‘‘time–frequency ratio of mixtures
(TIFROM)’’, Li et al. [14] proposed a new algorithm in
which the precondition of sparseness can be considerably
relaxed. The disadvantage of this method is that it has five
free unknown parameters or thresholds which need to be
determined in advance or found empirically. Generally, it
is not easy to set these parameters. Recently, principle
component analysis (PCA) was employed to identify the
basis matrix in SCA [26–30]: first, the samples of the
observed data are partitioned into several clusters; then
for each cluster, the PCA is applied and the eigenvector
corresponding to the largest eigenvalue is chosen as the
estimate of a basis vector. When the samples of
observed data are correctly partitioned, PCA can find the
right estimation of the basis matrix A. Furthermore,
several confidence indices based on eigenanalysis were
constructed to evaluate the validity of the clusters
[27–29].

Although the methods mentioned above are promising,
their performance may not be perfect due to the following
factors in practice: noise, outliers, insufficient sparseness
of the sources (e.g., only a small fraction of the samples
well satisfy the disjoint orthogonality condition), ill-
conditioned basis matrix A, high dimensional basis matrix
A, etc. In addition, the performance of these methods is
often limited because of the local minima. Moreover,
another problem is that the dimension of basis matrix A
(or the number of sources) is probably unknown. If the
number of sources is underestimated, it will be impossible
to obtain satisfactory results.

In order to solve such problems, the hyperline cluster-
ing is studied in this paper. A robust K-hyperline
clustering (K-HLC) method is implemented by improving
the K-SVD method for hyperline clustering [9]. It is easy
to implement. The remainder of this paper is organized
as follows: First, we discuss the basic K-HLC in
Section 2. The robust K-HLC and its extensions are given
in Section 3. Simulation examples are provided in
Section 4. The conclusions and discussion are presented
in Section 5.
2. K-hyperline clustering

Consider the K-HLC problem as: given a set of m-
dimensional points fxtg

T
t¼1 drawn from some unknown

hyperlines, how to find these hyperlines and group these
points into them? This problem can be divided into three
sub-problems:
(1)
 Detect the number K of the hyperlines;

(2)
 Determine the K hyperlines LðlkÞ; k ¼ 1; . . . ;K , where

LðlkÞ:¼fxj x 2 R
m; x1=lk1 ¼ x2=lk2¼� � �¼xm=lkm ¼ ck; ck 2

Rg, lk ¼ ½lk1; . . . ; lkm� 2 R
m is the directional vector of

hyperline LðlkÞ;

(3)
 Partition fxtg

T
t¼1 into K different hyperlines

LðlkÞ; k ¼ 1; . . . ;K.
2.1. Distance formula from a point to a hyperline

Given a point Pðp1; . . . ; pmÞ and a hyperline LðlÞ in the
m-dimensional space, of which the direction vector is
l ¼ ðl1; . . . ; lmÞ

T
2 Rm, the distance dðp; lÞ from P to LðlÞ is

d2
ðp; lÞ ¼ hp;pi �

hl;pi2

hl; li
, (4)

where h�; �i denotes inner product. Especially, d2
ðp; lÞ ¼

hp;pi � hl;pi2 when hl; li ¼ 1 and d2
ðp; lÞ ¼ 1� hl;pi2 when

hl; li ¼ 1 and hp;pi ¼ 1.
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2.2. The basic K-HLC algorithm

In this subsection, the ‘‘basic K-HLC algorithm’’ is
presented. The complete K-HLC algorithm will be given
later in Section 3. The basic K-HLC algorithm is as follows:

The Basic K-HLC Algorithm.
½flkg

K
k¼1; ff kg

K
k¼1� ¼ Basic- KHLCðX;K ; Lð0ÞÞ

Step 1: Initialization. Initialize the direction matrix as

Lð0Þ ¼ ½lð0Þ1 ; . . . ; lð0ÞK �. The initialization is flexible. We will

discuss it in more details later.

Step 2: Extract a submatrix X̃ from X ¼ ½xð1Þ; . . . ; xðTÞ� 2

Rm�T such that the norm of its each column is greater than

a specific threshold x, where x is a positive constant chosen

in advance. Suppose that T̃ columns of X are extracted.

As mentioned in [14], the purpose of this step is twofold:

first, it can reduce the computational burden of the

estimation process, and second, it removes those columns

that are disproportionately influenced by noise or outliers.

This step can be omitted if the data are not very noisy.

Step 3: To suppress the outliers, normalize X̃ such that

each column kx̃ðtÞk2 ¼ 1; t ¼ 1; . . . ; T̃ if x̃ðtÞa0.

Step 3 is also optional and we can directly go to step 4.

However, this step is essential if the sources are not very

sparse or they are corrupted by outliers (see Examples 2

and 3).

Step 4: Cluster assignment. Assign the sample points

fxtg
T
t¼1 into K different clustering sets Ok, k ¼ 1; . . . ;K ,

where Ok is a vector set. The estimation of line direction of

set Ok is lk, k ¼ 1; . . . ;K. Based on the distance formula (4),

compute each distance dðx̃ðtÞ; lkÞ from x̃ðtÞ; t ¼ 1; . . . ; T̃ to

lk; k ¼ 1; . . . ;K. The sample time index t 2 Ok if and only if

it satisfies k ¼ arg mini¼1;...;K fd
2
ðx̃ðtÞ; liÞg. Suppose that T̃k

points x̃ðtk
1Þ; . . . ; x̃ðt

k
T̃k
Þ are assigned to set Ok, respectively.

So we obtain a set of submatrices X̃k ¼ ½x̃ðt
k
1Þ; . . . ;

x̃ðtk
T̃ k
Þ�; k ¼ 1; . . . ;K .

In step 4, the ‘‘hard assignment’’ strategy is used, where the

winner hyperline takes all.

Step 5: Direction vector update. Update lk; k ¼ 1; . . . ;K

and their corresponding confidence indices f k as follows:

For k ¼ 1; . . . ;K
Compute the first eigenvector and its corresponding
largest eigenvalue of the matrix X̃k � ðX̃kÞ

T=T . Apply-
ing eigenvalue decomposition (EVD) or singular
value decomposition (SVD), we have X̃k � ðX̃kÞ

T=T ¼

UkKkðUkÞ
T, where Uk ¼ ½u1k; . . . ;umk� are the set of

eigenvectors.

End

Denote Kk ¼ diagðl1k; . . . ; lmkÞ and suppose l1kX � � �

Xlmk, where eigenvalues l1k; . . . ; lmk correspond to

u1k; . . . ;umk, respectively. It should be noted that for each

cluster, the eigenvectors u1k corresponding to the largest

eigenvalue l1k, are only used to update the line directions

lk of cluster Ok, i.e., lk ¼ u1k. So we have

lk  u1k; f k  l1k; k ¼ 1; . . . ;K . (5)
Step 6: Return to step 4, and repeat step 4, 5 until

convergence.

Step 7: Output the estimated hyperlines lk; k ¼ 1; . . . ;K

and their corresponding confidence indices f k; k ¼ 1; . . . ;K.

So we have L ¼ ½l1; . . . ; lK � and f ¼ ½f 1; . . . ; f K �
T.

The basic K-HLC is equivalent to solve the following
optimization problem:

min
lk ;Ok ; k¼1;...;K

Jðlk;Ok; k ¼ 1; . . . ;KÞ

¼ min
lk ;Ok ; k¼1;...;K

XT

t¼1

XK

k¼1

d2
ðx̃ðtÞ; lkÞ � It2Ok

, (6)

where the indicator function It2Ok
is given as

It2Ok
¼

1; t 2 Ok;

0; teOk; k ¼ 1; . . . ;K:

(
(7)

It works in a similar way as expectation maximization

(EM) algorithm [31,32]. The cost function Jð�Þ in (6)
decreases monotonically with the number of iterations
until convergence is achieved. We stop the iterative
procedure when kLðiterÞ

� Lðiter�1Þ
ko�.

Remark. It is worth mentioning that the K-SVD also can
be adopted for hyperline clustering by setting T0 ¼ 1 [9].
Furthermore, similar to the basic K-HLC, the largest
singular values of SVD can be analogously used as the
confidence indices to evaluate the significance of each
hyperline although this point is not discussed in [9]. From
this point of view, the basic K-HLC algorithm can be seen
as an improved version of K-SVD for hyperline clustering.
However, K-SVD contains two alternating steps in each
iteration: basis vector update and coefficient update
(sparse coding). The sparse coding stage of K-SVD
corresponds to ‘‘clustering assignment step’’ in the basic
K-HLC. The first difference between K-SVD and K-HLC is
that K-HLC and K-SVD perform EVD or SVD on different
matrices, respectively. In more details, for a given m� T

matrix X, the K-SVD directly performs SVD on X as
SVDðXÞ ¼ URVT, where U is m�m, R is m� T and V is
T � T. Then matrix U is used to update the dictionary and
matrix V is used to update the sources. However, for K-
HLC, we do not calculate V . The K-HLC just performs
EVD or SVD on a relatively small-dimensional symme-
trical matrix X � XT to derive EVDðXXT

Þ ¼ UKUT or
SVDðXXT

Þ ¼ UKUT. For K-HLC, there is no need to compute
the high dimensional matrix V in each iteration, which
causes K-HLC to be computationally more efficient and
saves storage space especially when Tbm, which happens
often for hyperline clustering. As an example, it cost more
than 56.41 seconds in Example 1 of this work using K-SVD,
whereas it took only about 26.875 seconds by K-HLC. In
addition, since only the eigenvector corresponding to the
largest eigenvalue is used in the K-HLC, we can compute it
without performing full EVD/SVD decomposition.

The basic K-HLC algorithm is available under the
condition that the number of hyperlines is exactly known
(or given). Next, we would like to discuss the robust
hyperline clustering and how to detect the number of
hyperlines.
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3. Robust hyperline clustering

In this section, we consider the practical implementa-
tion of the robust hyperline clustering, which is concerned
with the following issues:
(i)
 Detection of the number of the hyperlines;

(ii)
 Development of efficient method to escape from the

local minima;

(iii)
 Initialization of the K-HLC.

(iv)
 Suppression of the noise.
3.1. Robust K-HLC method

The largest eigenvalues l1k; k ¼ 1; . . . ;K in (5) can be
chosen as the confidence index to evaluate how significant
the corresponding identified hyperlines LðlkÞ; k ¼ 1; . . . ;n
are. Moreover, we have the following theorem:

Theorem 1. For SCA problem (1), suppose the following

conditions:
(i)
 the sparse components s1ðtÞ; . . . ; snðtÞ satisfy disjoint

orthogonality condition and have the same second-

order moment s2
s ;
(ii)
 the noises e1ðtÞ; . . . ; emðtÞ are zero-mean and statistically

independent with the same second-order moment s2
e

(s2
eos2

s );

(iii)
 for arbitrary i (i ¼ 1; . . . ;n) and j (j ¼ 1; . . . ;m), siðtÞ and

ejðtÞ are mutually independent;

(iv)
 a1; . . . ;an are accurately identified by the basic K-HLC

algorithm, i.e., fa1; . . . ;ang � fl1; . . . ; lKg ðKXnÞ. In other

words, n of K hyperlines l1; . . . ; lK correspond to true

ones and they are a1; . . . ;an, respectively; the remaining

K � n hyperlines of l1; . . . ; lK are spurious.
Then we have the following conclusions: (i) if LðliÞ

corresponds to a true hyperline, i.e., li 2 fa1; . . . ;ang, then

s2
s pf ips2

s þ s2
e ; (ii) if LðljÞ is a spurious estimation, i.e.,

ljefa1; . . . ;ang, then f jps2
e .

Proof. see Appendix A.

Remark. Suppose that LðliÞ is a true hyperline and LðljÞ

corresponds to a spurious one. Since s2
s 4s2

e , we have
f iXs2

s 4s2
eXf j. For simplicity, suppose Lðl1Þ; . . . ; LðlnÞ cor-

respond to n true hyperlines and the remaining
Lðlnþ1Þ; . . . ; LðlK Þ are spurious. Then we have f 1 ¼ � � � ¼

f nXs2
s 4s2

eXf nþ1 ¼ � � � ¼ f K , which means that there will
be a gap in the sorted confidence indices between f n and
f nþ1 (see Figs. 2, 5 and 6). In fact, the gap is still noticeable
even if the sparse sources do not perfectly satisfy disjoint
orthogonality condition or data are corrupted by noise and
outliers (see Example 2). If the gap is not very significant,
we suggest to determine the number of hyperlines more
precisely by means of computing the difference
gapðkÞ ¼ f k � f kþ1; k ¼ 1; . . . ;Kmax � 1, of the confidence
indices.

As mentioned in Section 1, usually we have no
information about the number of the hidden hyperlines.
For this reason, we overestimate the number of hyperlines
first. From Theorem 1, we select only those hyperlines
with larger confidence indices. Furthermore, we derive the
‘‘complete K-HLC algorithm’’ or ‘‘robust K-HLC algorithm’’:

The Complete K-HLC Algorithm.
½flkg

K
k¼1; ff kg

K
k¼1;n� ¼ K-HLCðX;K; Lð0ÞÞ

Step 1: Overestimate the number of hyperlines by

setting a large K (typically, K410n, where n is the rough

estimation of the number of the hyperlines).

Step 2: Apply ‘‘the basic K-HLC algorithm’’ on the

observed data set X and obtain

½flkg
K
k¼1; ff kg

K
k¼1� ¼ Basic-KHLCðX;K; Lð0ÞÞ.

Step 3: Determine the number n of hyperlines by

searching the gap in the plot of the sorted confidence

indices ff kg
K
k¼1.

Step 4: Extract n significant hyperlines from flkg
K
k¼1

according to their confidence indices ff kg
K
k¼1 and remove

the spurious ones.

Since the cost function Jðlk;Ok; k ¼ 1; . . . ;KÞ in (6) is not
globally convex, the local minima occur very often. For the
hyperline clustering, in addition to help detection of the
number of hyperlines, overestimating the number of
hyperlines is also helpful to escape from local minima
actually, which is due to the fact that generally the larger
the pre-specified number K is, the larger the possibility,
that all true hyperlines are involved in the m� K

initialization matrix Lð0Þ, is.
3.2. Fast multilayer initialization (FMI)

Generally speaking, the hyperline LðlkÞ can be
easily identified by the basic K-HLC algorithm if lk falls
into the �-neighborhood of a certain initial point
Lðlð0Þi Þ; i ¼ 1; . . . ;K , i.e., lk 2 Oðlð0Þi ; �Þ. From (6), we know
that, although the basic K-HLC algorithm cannot guaran-
tee the global minima, it can decrease the value of cost
function in (6) monotonically. So the basic K-HLC algo-
rithm can find the local minima after sufficient number of
iterations and keep them during the iterative procedure.
Since the true hyperline LðlkÞ is optimal, it also
corresponds to a certain local minimum. The basic K-
HLC algorithm will keep LðlkÞ, once the hyperline lk

falls into the �-neighborhood of a certain initial
point Lðlð0Þi Þ.

The number of true hyperlines LðlkÞ; k ¼ 1; . . . ;n is
finite and fixed. Theoretically, we are always able to cover
all lk; k ¼ 1; . . . ;n by �-net

SK
k¼1 Oðlð0Þk ; �Þ by setting a very

large K (typically, K4T=2). Without loss of generality, we
assume that the entries l1k; . . . ; lmk of direction vector lk to
be in the interval [�1, 1], i.e., lk 2 ½�1; 1�m, because we can
always do this by normalization. So we can sufficiently
segment the m-dimensional geometrical body ½�1;1�m to
obtain a very dense �-grid, in which each node corre-
sponds to an initial vector lð0Þk . In this way, n true direction
vectors lk; k ¼ 1; . . . ;n theoretically will be covered by
�-net

SK
k¼1Oðlð0Þk ; �Þ if K is sufficiently large so that n
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hyperlines LðlkÞ; k ¼ 1; . . . ;n could be identified by the
K-HLC.

In practice, we have several ways to produce such an �-
net. First, we consider the following well-known simple
initialization schemes:

Scheme 1: Extract a submatrix Lð0Þ ¼ ½xðt1Þ; . . . ; xðtK Þ�m�K

from X as an initial value of L, i.e., select K column vectors
from X.

Scheme 2: Uniformly and randomly generate an m by K

matrix as the initial value Lð0Þ, whose entries are uniformly
valued in the interval [�1, 1]. This scheme is simple, but
works well.

Scheme 3: The K-HLC can work with other existing
clustering algorithms. For example, we can use other
clustering algorithms to roughly estimate the direction
matrix Lð0Þ (with sufficiently high dimension) of the
hyperlines as the initial value. Then we further precisely
refine the hyperlines and determine the dimension of the
direction matrix by the K-HLC.

Scheme 4: In order to considerably increase the
possibility of covering all true line directions lk; k ¼

1; . . . ;n by the �-net
SK

k¼1 Oðlð0Þk ; �Þ, it is better to set a very
large K, for example, K ¼ T=2. However, for large T (e.g.,
K42000), the computational cost would be high and also
it would requires large storage space. To overcome this
problem, we employ the idea of multilayer or hierarchical
system with some rough analogy to [33,34] and imple-
ment this idea in our ‘‘fast multilayer initialization (FMI)’’
method to produce a more efficient initialization Lð0Þ for
the K-HLC.

Suppose that we have a high dimensional pre-initial
direction matrix L̄ð0Þ ¼ ½l̄

ð0Þ

1 ; . . . ; l̄
ð0Þ

N �, whose size is m� N

(usually Nbn and NbK , typically, N ¼ 100 000; K ¼ 400
and n ¼ 6). In many situations, we can take L̄ð0Þ ¼ X. In
this case, N ¼ T . We also can uniformly randomly generate
L̄ð0Þ in the interval [�1, 1]. For simplicity, we normalize
lð0Þk ; k ¼ 1; . . . ;K such that kl̄

ð0Þ

k k2 ¼ 1; k ¼ 1; . . . ;N. The
FMI algorithm is as follows:

The FMI algorithm. Step 1: Segmentation. The original
m� N direction matrix L̄ð0Þ is segmented into M lower
dimensional matrices L̄ð0Þ1 ; . . . ; L̄ð0ÞM , whose sizes are
m� N1; . . . ;m� NM , respectively. Obviously, L̄ð0Þ ¼
½L̄ð0Þ1 ; . . . ; L̄ð0ÞM � . Here, N1; . . . ;NM are much smaller than N.
For simplicity, we usually can take N1 ¼ � � � ¼ NM (e.g.,
N1 ¼ � � � ¼ NM ¼ 400).

Step 2: Normalization. Normalize the observed matrix X

to X̃ such that kx̃ðtÞk2 ¼ 1; t ¼ 1; . . . ; T̃ if x̃ðtÞa0.

Step 3: Searching direction matrix Lð0Þ. In this step, we

attempt to select K possibly optimal columns from L̄ð0Þ to

construct the direction matrix Lð0Þ.

Set Lð0Þ ¼ null;
For i ¼ 1; . . . ;M

Construct Lð0Þi ¼ ½L
ð0Þ; L̄ð0Þi �, where Lð0Þi is the m� ðK þ

NiÞ size;
Extract K possible columns (which are the candi-
dates of the optimal columns) from Lð0Þi to construct
Lð0Þ (the detailed operations are as follows);
End
To select K columns from Lð0Þi ¼ ½l
ð0Þ
i ð1Þ; . . . ; l

ð0Þ
i ðK þ NiÞ�, we

perform the following operations: compute all correlation

coefficients cðlð0Þi ðkÞ; x̃ðtÞÞ ¼ ½l
ð0Þ
i ðkÞ�

T½x̃ðtÞ�, t ¼ 1; . . . ; T; k ¼

1; . . . ; K þ Ni; assign all samples x̃ðtÞ; t ¼ 1; . . . ; T to the K þ

Ni different sets Oðlð0Þi ðkÞÞ; k ¼ 1; . . . ;K þ Ni; x̃ðtÞ 2 Oðlð0Þi ðkÞÞ

if and only if x̃ðtÞ satisfies k ¼ arg maxj¼1;...;KþNi

fjcðx̃ðtÞ; lð0Þi ðjÞÞjg, and compute the number of entries in each

set Oðlð0Þi ðkÞÞ; k ¼ 1; . . . ;K þ Ni. Extract K columns from Lð0Þi

to construct m� K matrix Lð0Þ, where these K columns

correspond to the K sets that have most number of entries.

Step 4: Output. Output the m� K initial direction matrix

Lð0Þ to the K-HLC.

SIRðA; bAÞ ¼ � 20 log10
1

n

Xn

i¼1

 

� min
j¼1;...;n

minfkai � bajk2; kai þ bajk2g

kaik2

�
ðdBÞ. (8)

The FMI method can rapidly scan the high dimensional
matrix Lð0Þ. It can be used to produce efficient initializa-
tions Lð0Þ for the relatively large scale K-HLC.

3.3. Multilayer K-HLC

In the noise-free case, the K-HLC works well. In order to
improve its robustness to noise, we consider a multilayer
K-HLC scheme: given an initialization Lð0Þ, the K-HLC
obtains a set of hyperlines Lð1Þ ¼ ½lð1Þ1 ; . . . ; lð1ÞK � and their
corresponding confidence indices f ð1Þ; then it removes the
spurious estimations according to their confidence in-
dices, and input the remaining hyperlines L̃ð1Þ ¼
½L̃ð1Þ1 ; . . . ; L̃ð1ÞK1� ðK1oKÞ as the new initial direction matrix,
the K-HLC will obtain another set of estimations and
their corresponding confidence indices. In this way, we
can refine the clustering results repeatedly until we
can see a relatively clear gap in the confidence indices.
The multilayer K-HLC is intuitive and heuristic. It
improves the performance in the hyperline clustering by
gradually decreasing the dimension of the problem (see
Example 3).

4. Numerical experiments and analysis of results

In this section, we demonstrate that the K-HLC algorithm
is used to identify the basis matrix A for SCA. We compare it
with some existing methods in Example 1. Next, from
Examples 2–5 we test the K-HLC only for some much more
challenging benchmarks that are not achievable or difficult
to achieve for the conventional methods. These examples
are challenging due to the following reasons:
(i)
 Only few samples satisfy disjoint orthogonality condi-
tion (typically, see Example 2);
(ii)
 The observations are contaminated by noises (e.g.,
Example 3);
(iii)
 The basis matrix A is very ill-conditioned (see
Example 4);
(iv)
 The problem is relatively large scale (see Example 5).
In all examples, the FMI is used to give the initializa-
tions, where the pre-initialized matrix L̄ð0Þ is set as L̄ð0Þ ¼ X
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Table 1
Comparison results of 50 Monte Carlo runs of the K-HLC and the K-

means (in dB).

Methods SIRmin SIRmax Average value

of 50 SIRs

K-means algorithm 11.96 33.85 20.64

K-HLC algorithm 33.77 43.64 38.03
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unless otherwise mentioned. One-layer K-HLC is used if
no specific information explanation is given. All examples
are performed on a PC with Intel Pentium 4 CPU 2.20 GHz.

To check how well the basis matrix is estimated, we
compute the signal to interference ratio (SIR) between the
true A and its estimation bA , which is defined in (8) at the
bottom of this page. The SIR between source s and its
estimate bs is calculated to measure the accuracy of the
estimations of the sparse components:

SIRðs;bsÞ ¼ 10 log10

PT
t¼1 s2ðtÞPT

t¼1 ðsðtÞ �bsðtÞÞ2 ðdBÞ. (9)

Since the estimated sparse source bs may have arbitrary
scale, we rescale bs to have the same energy level as s

before computing their SIR.

Example 1. We begin with an easy example of blind
speech separation in time–frequency domain. The con-
sidered four sources (65 536 samples in the time domain)
are from the experiment ‘‘FourVoices’’ in [10]. The
mixing matrix was randomly generated and followed by
normalization:

A ¼

�0:7798 �0:3703 0:1650 0:5585

�0:0753 0:8316 0:6263 0:3753

�0:6215 �0:4139 0:7619 �0:7398

264
375.

Three mixtures were obtained by X ¼ AS. To satisfy the
sparseness assumption, we performed SCA in the time–
frequency domain. A short time Fourier transform (STFT)
with Hanning window was used. The STFT parameters
were set to be the same as those in the experiment
‘‘FourVoices’’ in [10]: the window length of STFT was
2048, and the hop distance was d ¼ 614. In more details, a
3� T observed matrix X of the mixtures are first
segmented into a series of 3� 2048 frames Xi, i ¼

1;2; . . . ; then we perform STFT on each frame as
STFTðXi

Þ ¼ A � STFTðSi
Þ and denote it as Xi

f ¼ A � Si
f . In this

way, X ¼ AS was transformed to the time–frequency
domain as Xf ¼ ½X

1
f ;X

2
f ; . . .� ¼ A � ½S1

f ; S
2
f ; . . .� ¼ A � Sf . By

taking the real part and imaginary part, we have
RealðXf Þ ¼ A � RealðSf Þ and ImagðXf Þ ¼ A � ImagðSf Þ. They
Fig. 1. (a) The scatter plot of Xf in Example 1. (b) The scatter plot of X in Exa

between the first four and the others.
can be arranged in the format as the model (1):

Xf ¼ ½RealðXf Þ ImagðXf Þ�

¼ A � ½RealðSf Þ ImagðSf Þ� ¼ A � Sf . (10)

The scatter plot of Xf is shown in Fig. 1(a). We solved
this blind separation problem in the same way as in [10]
except that instead of the potential function-based
method, here the K-HLC is employed to estimate the
mixing matrix A from Xf in (10). K was set to K ¼ 30. So, bA
is 3� 30 (i.e., bA3�30) 50 Monte Carlo runs were conducted
using the K-HLC with random initializations. Thirty
corresponding sorted confidence indices of one of Monte
Carlo tests are shown in Fig. 1(c), where we can see that
the first 4 are significantly greater than the others. So the
first four columns bA3�4 of bA3�30 are chosen as the
estimation of mixing matrix A. The average SIR of 50
Monte Carlo tests is 38.03 dB.

In addition, we compare the K-HLC with the TIFROM
and the K-means algorithm in this example. TIFROM is an
algorithm to identify the mixing matrix in the time–
frequency domain for blind sparse source separation [16].
When the size of STFT is 2048 for this example, the
TIFROM algorithm achieved the best estimation with
SIR ¼ 30:59 dB. For K-means algorithm, 50 Monte Carlo
tests were also performed, where the SIRs of 12 Monte
Carlo runs were below 13 dB. More details are shown in
Table 1, where we can see that the estimation obtained by
the K-HLC is more reliable than those of TIFROM and K-
means algorithm.

Example 2. This example was originally given by Li
et al. [14] to test the robustness of SCA algorithms in
insufficient sparsity situation, where only 10% of samples
mple 2. (c) Twenty sorted confidence indices. There is a noticeable gap
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Table 2
Results of 50 Monte Carlo runs for different K in the noise free case.

K 5 6 8 10 20 50 100 200 300 500

SIR (dB) 11.0 12.8 12.3 11.7 13.8 35.0 42.7 49.8 54.4 60.3

Runtime (s) 2.4 2.5 4.0 4.4 9.8 17.3 36.8 53.7 84.0 122.8
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satisfy disjoint orthogonality condition [15,17]. The source
matrix S 2 R5�10 000 has two types of columns. That is,
9000 columns of S have their entries drawn from a
uniform distribution valued in [�5, 5]; the other 1000
columns have only one nonzero entry and four zero
entries. Furthermore, the 1000 columns are divided into
five sets, the ith set has 200 columns with their ith entries
being nonzeros (also drawn from the uniform distribu-
tion) (i ¼ 1; . . . ;5). The column indices of the 1000
columns in the matrix are disjoint. More precisely,
the column indices of the 200 columns of the ith set are
as follows: ði� 1Þ � 10þ 1; ði� 1Þ � 10þ 51; . . . ; ði� 1Þ �
10þ 9951; i ¼ 1; . . . ;5. The mixtures X ¼ AS, where the
randomly generated mixing matrix A 2 R3�5 was as
follows:

A ¼

0:8412 �0:0298 �0:0750 �0:1735 0:7240

�0:5025 0:8305 �0:8294 0:3621 0:4088

0:1997 0:5563 0:5536 0:9158 �0:5556

264
375.

Set K ¼ 200. We applied simply one-layer K-HLC
because of no noise. After 43 iterations, we obtainedbA3�200 and its corresponding 200 confidence indices. The
gap curve in Fig. 2 shows that the number of hyperlines
should be K ¼ 5. Hence we obtained the estimated bA3�5 as
follows:

bA ¼ 0:8424 �0:0281 �0:0749 �0:1777 �0:7241

�0:5002 0:8289 �0:8300 0:3598 �0:4084

0:2004 0:5586 0:5528 0:9159 0:5557

264
375,

with SIRðA; bA3�5Þ ¼ 52:0 dB.

In comparison to Example 1, this example is much
more challenging. There are only 10% of samples satisfying
disjoint orthogonality condition [15,17] and the other 90%
of samples are outliers. We cannot see any noticeable line
directions in the scatter plot in Fig. 1(b), whereas four
lines are clear in the scatter plot of Example 1 (see
Fig. 1(a)). Additionally, the sources are not sparse in the
time–frequency domain in this example. The TIFROM
algorithm cannot be used [14,16]. K-means clustering
algorithm also failed. We tried 50 Monte Carlo tests to
1 2 3 4 5 6 7 8 9
0.005

0.0075

0.01

0.0125

0.015

0.0175

0.02

0.0225

0.025

k=1,...,

f

Fig. 2. Distribution of the first 20 confidence indices. There are totally 200 confi

see a clear gap which shows that the first five columns ba1; . . . ; ba5 of bA3�200 cor
estimate A by the K-means clustering algorithm, where
the average SIR is only 7.00 dB. The algorithm proposed in
[14] is available for this example. Comparing with it,
K-HLC has fewer parameters (thresholds) to set. Relatively,
Li et al.’s algorithm [14] is advantageous when there are
only few samples in the observed data.

In order to test the robustness of our approach, we
further conducted the Monte Carlo tests. For each K, 50
Monte Carlo runs were conducted. In each Monte Carlo
run, the initial direction matrices were generated by the
FMI, where the elements of L̄ð0Þ were uniformly randomly
drawn from [�0:5, 0.5]. The results are shown in Table 2,
where we can see that the K-HLC consistently succeeded
in all Monte Carlo trials when KX50.

The overestimation of the number of hyperlines is
essential. If the pre-set K is too small, there may be no
clear gap (see Fig. 3) so that K-HLC may even fail. For
instance, we took K ¼ 20 and applied K-HLC. In this case,
SIRðA; bA3�5Þ ¼ 12:5 dB. Also, Table 2 showed that the
performance of K-HLC is not good when Kp20, while it
always succeeded when KX50. Generally speaking, the
larger the pre-set K is, the more accurate the estimation of
basis matrix is in the noise free case. For example, set
K ¼ 500, and we ran our algorithm again. A 3� 500
matrix bA3�500 was obtained. We chose again the first five
columns of bA3�500 as the estimation of A. In this case
SIRðA; bA3�5Þ ¼ 60:9 dB. However, as mentioned previously,
if K is large, the computational cost is relatively high.

Example 3. In this example, we perform multilayer K-HLC
for the noisy data. Here both the basis matrix A and the
sparse sources S are the same as Example 2, but the
different level (SNR) white Gaussian noises were added to
the observations X, respectively. A four-layer K-HLC was
10 11 12 13 14 15 16 17 18 19 20
20 (K=200)

dence indices associated with the columns of bA3�200, respectively. We can

respond to the mixing matrix.
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Fig. 3. The sorted confidence indices for K ¼ 20. In this case, we do not observe any significant gap.

Table 3

The average SIRðA; bA3�5Þ of 50 Monte Carlo runs in different noise level (in dB).

Noise level (dB) 20 25 30 35 40 Noiseless

The 1st layer (K ¼ 500) 5.8 9.4 18.7 36.4 48.1 58.7

The 2nd layer (K ¼ 200) 4.8 12.6 33.6 43.0 46.4 49.8

The 3rd layer (K ¼ 100) 6.9 13.9 36.5 39.0 40.1 41.5

The 4th layer (K ¼ 50) 11.2 29.2 32.9 34.0 35.0 35.9
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performed, where K ¼ 500, 200, 100 and 50, respectively.
For different noise level, 50 Monte Carlo runs were
conducted. In each Monte Carlo run, the initializations
were also generated by the proposed FMI, where the pre-
initial matrix L̄ð0Þ was also drawn from a uniform
distribution. The results are shown in Table 3, in which
the four-layer K-HLC worked well when SNR420 dB. It is
shown that the multilayer K-HLC can gradually improve
the performance in the higher noise level cases. It is
observed that for the noisy data, the gap of confidence
indices is less noticeable, but it is still possible to identify
them (see Fig. 4).

Note that the multilayer approach did not improve the
performance, and even degraded the performance when
the noise level is 30 dB or higher. However, the SIR is
always higher than 32 dB in this case. In other words,
although the multilayer approach degrades the perfor-
mance to some extend, the performance is sufficiently
good in this case. The reason for this problem is that this
benchmark is very challenging because 90% of samples are
outliers (only 10% of samples are desirable). It is worth
noting that the number K of clusters was reduced from
500 to 50 layer by layer in the multilayer architecture. At
the same time, 90% outliers must be always assigned to K

clusters at each layer. If K is not large enough, it will be
difficult to suppress the outliers.

Example 4. A normalized 10� 10 Hilbert matrix with a
coherence parameter 0.99986 (the condition number
8:4797eþ 012) was chosen as the basis matrix generated
by MATLAB function ‘hilb’ [35]. Since the coherence

parameter of A is very close to ‘‘1’’, the angles between
certain columns ai of A are quite small [36]. The sources
S 2 R10�10 000are generated in the same way as in
Example 2. Similar to previous examples, only 10% of
samples of the sources satisfy the disjoint orthogonality

condition and the rest are corrupted by random outliers
or large noise. This example is much more challenging
than Example 2 because Hilbert matrix is extremely
ill-conditioned.

We set K ¼ 500, and performed K-HLC. The confidence
indices of the first 10 columns of bA10�500 are significantly
larger than the others. So, the first 10 columns of bA10�500 is
the estimation of A (see Fig. 5). SIRðA; bA10�10Þ ¼ 67:5 dB.
The SIRs between the sources and their estimations were
29.3, 25.8, 26.1, 23.2, 31.0, 27.4, 32.9, 26.7, 27.7, 27.3 dB,
respectively. Both the basis matrix and the sparse
components were well estimated.

Example 5. In this example, we consider a medium scale
SCA problem: the basis matrix A is 30� 50 and the sparse
source matrix S is 50� 10 000. Fifty Monte Carlo runs
were conducted for this example. In each Monte Carlo run,
A was randomly generated with different seed by MATLAB
commands: ‘‘A ¼ randð30;50Þ � 0:5’’ and followed by
normalization. S 2 R50�10 000 was generated by the follow-
ing MATLAB command [35]:

S ¼ � logðrandð50;10 000ÞÞ

�maxð0; signðrandð50;10 000Þ � pÞÞ. (11)
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Fig. 4. The first 20 confidence indices of the four-layer K-HLC for the noisy data with SNR ¼ 25 dB. We still can extract five true hidden hyperlines

although there is no as clear gap as in noiseless case.
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Fig. 5. The first 20 largest confidence indices selected from the 500 confidence indices associated with the column vectors of bA10�500, where the first 10

confidence indices corresponding to ba1 ; . . . ; ba10 are very significant.

Table 4
The average SIR of 50 Monte Carlo runs of the two-layer K-HLC in noisy

SCA (dB).

Noise level (dB) 15 20 25 30 40 50 Noiseless

The 1st layer (K ¼ 1000) 18.5 24.7 29.0 31.0 33.2 34.0 34.2

The 2nd layer (K ¼ 500) 21.4 25.4 26.9 27.8 28.6 28.9 28.9

Z. He et al. / Signal Processing 89 (2009) 1011–1022 1019
By choosing different parameter p ð0ppp1Þ in (11), we
can obtain the sources with different sparseness degree.
The probability that a source entry is zero is p. In this
example, we set p ¼ 0:95. We generated the observations
as X ¼ A � S þ E, where the levels of white Gaussian noise
E are shown in Table 4.

In all Monte Carlo runs, the two-layer K-HLC was
performed with K ¼ 1000 and 500, respectively. The gap
curve of one of the Monte Carlo runs is plotted in Fig. 6.
The results are shown in Table 4. Even with relatively large
level SNR ¼ 15 dB, we still obtained satisfactory solutions.
The more detailed Monte Carlo results regarding SIR and
runtime are shown in Fig. 7. It is seen that comparing with
the single layer K-HLC, the two layer K-HLC gradually
improves the SIR as SNR of the mixtures decreases.
5. Conclusions

Hyperline clustering was discussed in this work. An
efficient hyperline clustering method ‘‘K-HLC’’ was pro-
posed. K-HLC is robust to the outliers. Interestingly, it also
can simultaneously detect the number of hyperlines
during searching the hyperlines. Based on K-HLC, a
multilayer K-HLC framework was further developed,
which can improve the performance in the noisy case. In
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Fig. 6. The first 80 largest confidence indices. There are totally 1000 confidence indices associated with the column vectors of bA30�1000. The first 50

confidence indices corresponding to ba1 ; . . . ; ba50 are greater than the others.
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Fig. 7. The results of 50 Monte Carlo runs. (a) The average SIR versus SNR of the mixtures. (b) The average runtime versus SNR.
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addition, the proposed FMI can seamlessly work with the
K-HLC and produces efficient initializations for the K-HLC.

The K-HLC-based SCA is applicable to those applica-
tions such as underdetermined BSS, in which the number
of the sources is unknown. Also it is suitable for those
cases where not all the hyperlines are equally important
and we need to extract only significant ones best
represented by a given data.
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Appendix A. Proof of Theorem 1

(1) We first prove the first part: if LðliÞ is a true
hyperline, i.e., li 2 fa1; . . . ;ang, then s2

s pf ips2
s þ s2

e .
In the K-HLC algorithm presented in Section 2.2, note
that f i is the largest eigenvalue of limT!þ1 X̃i � ðX̃iÞ

T=T.
Therefore, f i is the solution of the following optimization
problem (see [37, Chapter 4]):

f i ¼ l1i ¼max
ua0

uT � limT!þ1 ½X̃i � ðX̃iÞ
T=T� � u

uTu

¼ max
ua0

uT � limT!þ1 ½
P

t2Oi
x̃ðtÞ � x̃T

ðtÞ=T� � u

uTu
. (12)

Since LðliÞ is a true hyperline (i.e., li 2 fa1; . . . ;ang),
without loss of generality, suppose li ¼ ar . Then we have
stðtÞ ¼ 0 if tar; t 2 Oi for all t ¼ 1; . . . ;n and t ¼ 1; . . . ; T
under the assumption that the sparse components
s1ðtÞ; . . . ; snðtÞ; t ¼ 1; . . . ; T satisfy disjoint orthogonality

condition and a1; . . . ;an are accurately identified by the
K-HLC. So we can derive

x̃ðtÞ ¼
Xn

t¼1

at � stðtÞ þ eðtÞ ¼ ar � srðtÞ þ eðtÞ,

t 2 Oi and li ¼ ar . (13)
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From (13), we have

x̃ðtÞ � x̃T
ðtÞ ¼ ara

T
r � s

2
r ðtÞ þ 2ar � e

TðtÞ � srðtÞ

þ eðtÞ � eTðtÞ; t 2 Oi and li ¼ ar . (14)

Then

1

T

X
t2Oi

x̃ðtÞ � x̃T
ðtÞ

¼
1

T

X
t2Oi

½araT
r � s

2
r ðtÞ þ 2ar � e

TðtÞ � srðtÞ þ eðtÞ � eTðtÞ�. (15)

Since srðtÞ ¼ 0 if teOi, we have
P

teOi
t¼1;...;T

araT
r � s

2
r ðtÞ ¼ 0.

Thus, we can get

1

T

X
t2Oi

araT
r � s

2
r ðtÞ ¼

1

T

X
t2Oi

t¼1;...;T

ara
T
r � s

2
r ðtÞ þ

1

T

X
teOi

t¼1;...;T

araT
r � s

2
r ðtÞ

¼
1

T

XT

t¼1

ara
T
r � s

2
r ðtÞ. (16)

From the supposed condition (i) of Theorem 1, the second-
order moment of the sparse component srðtÞ is s2

s . Thus

lim
T!þ1

1

T

X
t2Oi

ara
T
r � s

2
r ðtÞ

¼ lim
T!þ1

1

T

XT

t¼1

araT
r � s

2
r ðtÞ

¼ araT
r � lim

T!þ1

1

T

XT

t¼1

s2
r ðtÞ

¼ araT
r � s

2
s . (17)

By analogy, we can obtain
P

t2Oi
eTðtÞ � srðtÞ ¼

PT
t¼1 eTðtÞ �

srðtÞ because srðtÞ ¼ 0 if teOi. From the supposed condi-
tions (ii) and (iii), srðtÞ is independent to noise vector eðtÞ
and the mean of eðtÞ is 0, i.e., E½eTðtÞ� ¼ 0T, where Eð�Þ

denotes mathematical expectation.1 So E½eTðtÞ � srðtÞ� ¼

E½eTðtÞ� � E½srðtÞ� ¼ 0. So we have

lim
T!þ1

1

T

X
t2Oi

ar � e
TðtÞ � srðtÞ

¼ ar � lim
T!þ1

1

T

XT

t¼1

eTðtÞ � srðtÞ

¼ ar � E½e
TðtÞ � srðtÞ� ¼ 0. (18)

From Eqs. (17) and (18), (15) can be simplified as

lim
T!þ1

1

T

X
t2Oi

x̃ðtÞ � x̃T
ðtÞ

¼ araT
r � s

2
s þ lim

T!þ1

1

T

X
t2Oi

½eðtÞ � eTðtÞ�. (19)

From the supposed condition (ii), we have

lim
T!þ1

1

T

XT

t¼1

eðtÞ � eTðtÞ ¼ E½eðtÞ � eTðtÞ�

¼ Im�m � s2
e . (20)
1 For simplicity, the mathematical expectation Eð�Þ of stochastic

process is calculated as the arithmetic mean of the samples in this paper.

For example, E½eðtÞ � eTðtÞ� ¼ limT!þ1 ð1=TÞ
PT

t¼1 eðtÞ � eTðtÞ.
From (20), we obtain

0p
uT � limT!þ1 ½

P
t2Oi

eðtÞ � eTðtÞ=T� � u

uTu

p
uT � limT!þ1 ½

PT
t¼1 eðtÞ � eTðtÞ=T� � u

uTu
¼ s2

e . (21)

From (19), (12) can lead to the following inequalities:

f i ¼ max
ua0

uT � limT!1 ½
P

t2Oi
x̃ðtÞ � x̃T

ðtÞ=T� � u

uTu

¼ max
ua0

uTlimT!1 faraT
r � s2

s þ ½
P

t2Oi
eðtÞ � eTðtÞ�=Tgu

uTu

pmax
ua0

s2
s �

uT � ½araT
r � � u

uTu

�
þ

uT � limT!1 ½
PT

t¼1 eðtÞ � eTðtÞ=T� � u

uTu

)
. (22)

Since araT
r is a rank-1 matrix and kark2 ¼ 1 (see the

assumption of model (1) in the Introduction section),

ar ¼ arg max
ua0

uT � ½araT
r � � u

uTu

and

max
ua0

uT � ½araT
r � � u

uTu
¼ 1

from [37, Chapter 4]. So, (22) can be re-written as

f ips2
s þmax

ua0

uT � limT!1 ½
PT

t¼1 eðtÞ � eTðtÞ=T� � u

uTu
. (23)

From Eqs. (21) and (23), we have

s2
s pf i

ps2
s þmax

ua0

uT � limT!1 ½
PT

t¼1 eðtÞ � eTðtÞ=T� � u

uTu

¼ s2
s þ s

2
e .

(2) Proof of the second part: if LðljÞ is a spurious
estimation, i.e., ljefa1; . . . ;ang, then f jps2

e .
Since LðljÞ is a spurious estimation (ljefa1; . . . ;ang), so

we have stðtÞ ¼ 0; t ¼ 1; . . . ;n; t 2 Oj. Then

x̃ðtÞ ¼
Xn

t¼1

at � stðtÞ þ eðtÞ ¼ eðtÞ,

t 2 Oj and ljefa1; . . . ;ang. (24)

Therefore,

f j ¼ l1j ¼ max
ua0

uT � limT!þ1 ½X̃j � ðX̃jÞ
T=T� � u

uTu

¼ max
ua0

uT � limT!þ1 ½
P

t2Oj
x̃ðtÞ � x̃T

ðtÞ=T� � u

uTu

¼ max
ua0

uT � limT!þ1 ½
P

t2Oj
eðtÞ � eTðtÞ=T� � u

uTu

pmax
ua0

uT � limT!þ1 ½
PT

t¼1 eðtÞ � eTðtÞ=T� � u

uTu
. (25)
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Combining Eqs. (20) and (25), we derive

f jps2
e .
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