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Abstract : In this paper, the problem of joint time-delay and frequency estimation of multiple

sinusoidal signals received at two separated sensors is addressed. By formulating the estimation

problem with the use of the parallel factor analysis framework, the corresponding state transition

and observation matrices are updated in an iterative manner according to alternating least squares,

from which the time-delay and frequencies are then estimated. Computer simulations are included

to demonstrate the effectiveness of the proposed algorithm.

Indexing terms : frequency estimation, time-delay estimation, fast algorithm, parallel factor anal-

ysis
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1 Introduction

Time-delay estimation between noisy versions of a source signal received at spatially separated

sensors has been an active research topic in the literature [1]. In this paper, we consider that

the source signal is a sinusoidal signal and the objective is to find the time-delay and frequency

parameters from the received sensor outputs [2]-[3]. The joint time-delay and frequency estimation

problem has applications such as analysis of thalamocortical seizure pathways [4], frequency-shift

keying demodulation using multiple data segments [5] and speaker localization [6]. Without loss

of generality, we consider two sensor outputs which are modeled as:

r1(n) = s(n) + q1(n)

r2(n) = s(n − D) + q2(n), n = 0, 1, · · · , N − 1
(1)

where s(n) =
∑P

m=1 αm exp(jωmn) consists of P complex sinusoids. The P is assumed known,

the complex amplitudes and frequencies are denoted by {αm} and {ωm}, respectively, which are

unknown deterministic constants, with ωi �= ωj for i �= j. The additive noises q1(n) and q2(n)

are uncorrelated zero-mean complex white Gaussian processes with unknown variances σ2
q . The

parameter D represents the difference in arrival times at the two receivers and N is the number of

samples collected at each channel. Given r1(n) and r2(n), the task is to estimate D and {ωm}.

A subspace-based method [2] has been developed for joint delay and frequency estimation

and the estimates are obtained using the eigenvalues and eigenvectors of a matrix derived from

the covariance matrices of the received signals. By utilizing the state-space parameterization, an

improved joint estimator which provides higher accuracy at the expense of larger computational

complexity is devised in [3]. Parallel factor (PARAFAC) analysis [7], which is rooted in psychomet-

rics and chemometrics, is a useful tool for low-rank decomposition of three- and higher way arrays.

In this paper, we show that the state-space realization [3] of (1) can be modeled as a third-order

tensor, which fits into the PARAFAC model. With the use of alternating least squares (ALS) on

the trilinear PARAFAC model, we estimate the corresponding state transition and observation

matrices from which the time-delay and frequencies are then obtained. It is demonstrated that
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the PARAFAC method is superior to [3] in terms of threshold performance and computational

complexity.

2 Proposed Method

Given the two sensor outputs, we construct x(n) which has the form of

x(n) = [r1(n), r1(n + 1), · · · , r1(n + M − 1), r2(n), r2(n + 1), · · · , r2(n + M − 1)]T ,

n = 0, 1, · · · , K − 1 (2)

where K = N − M + 1 and 2M is the vector length, and both M and K are larger than P .

Following [3], the state-space model of (2) is

S(n + 1) = ΦS(n)

x(n) = BS(n) + Q(n)
(3)

where

S(n) =
[
α1e

jω1n, α2e
jω2n, · · · , αP ejωP n

]T

Φ = diag(ejω1 , ejω2 , · · · , ejωP )

B =
[
AT (AΔ)T

]T

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 · · · 1

ejω1 ejω2 · · · ejωP

...
...

...
...

ejω1(M−1) ejω2(M−1) · · · ejωP (M−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Δ = diag(e−jDω1 , e−jDω2 , · · · , e−jDωP )

Q(n) = [q1(n), q1(n + 1), · · · , q1(n + M − 1), q2(n), q2(n + 1), · · · , q2(n + M − 1)]T
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Denoting Xl(n) = x(n + l), n = 1, · · · , K − L + 1, we can express (3) as:

Xl(n) = BΦlS(n) + Q(n + l), l = 0, 1, · · · , L − 1 (4)

where Φl = Φl = diag(ejlω1 , · · · , ejlωP ). To utilize the PARAFAC analysis, we let H be the L×P

matrix whose (l+1)-th row is the diagonal element of Φl, and denote Dl(H) as the diagonal matrix

containing the (l + 1)-th row of H, that is, Dl(H) = Φl, to rewrite (4) as

Xl(n) = BDl(H)S(n) + Q(l + n), l = 0, · · · , L − 1. (5)

Assuming that L > P so that H is a tall matrix. Temporarily ignoring the noise term, and letting

xl,k,i be the (k, i) entry of Xl(n), we have:

xl,k,i =
P∑

m=1

bk,mhl,msm,i (6)

where bk,m, hl,m and sm,i represent the (k, m) entry of B, (l, m) entry of H and (m, i) entry

of S(n), respectively. The form of (6) is commonly known as the PARAFAC model [7]. The

perfect symmetry of the trilinearity of (6) allows two revealing data rearrangements, which can be

interpreted as ”slicing” the L × 2M × (K − L + 1) three-way array X(l, k, i) � Xl(k, i) along

different dimensions. In particular, we have

Yk � X(:, k, :) = S(n)T Dl(B)HT , k = 1, 2, · · · , 2M (7)

and

Zi � X(:, :, i) = HDi(S(n)T )AT i = 1, · · · , K − L + 1 (8)

We employ the ALS technique to fit the trilinear models of (5), (7) and (8), because of its ad-

vantages of guaranteed convergence, relative simplicity and accurate estimation performance when

the data are not ill-conditioned [7]. From the first way of slicing the data, the least squares (LS)

fit corresponds to minimizing:
∥∥∥∥∥∥∥∥∥∥∥∥

⎡
⎢⎢⎢⎢⎢⎢⎣

X0(n)

...

XL−1(n)

⎤
⎥⎥⎥⎥⎥⎥⎦
−

⎡
⎢⎢⎢⎢⎢⎢⎣

BD0(H)

...

BDL−1(H)

⎤
⎥⎥⎥⎥⎥⎥⎦

S(n)

∥∥∥∥∥∥∥∥∥∥∥∥

2

(9)
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It follows that the conditional LS estimate of S(n), denoted by Ŝ(n), is:

Ŝ(n) =

⎡
⎢⎢⎢⎢⎢⎢⎣

B̂D0(Ĥ)

...

B̂DL−1(Ĥ)

⎤
⎥⎥⎥⎥⎥⎥⎦

# ⎡
⎢⎢⎢⎢⎢⎢⎣

X0(n)

...

XL−1(n)

⎤
⎥⎥⎥⎥⎥⎥⎦

(10)

where (.)# stands for pseudo-inverse while B̂ and Ĥ represent the previously obtained estimates

of B and H, respectively. Similarly, from the second way of slicing the three-dimensional data, the

conditional LS estimate of H is determined from:

ĤT =

⎡
⎢⎢⎢⎢⎢⎢⎣

Ŝ(n)TD0(B̂)

...

Ŝ(n)T DL−1(B̂)

⎤
⎥⎥⎥⎥⎥⎥⎦

# ⎡
⎢⎢⎢⎢⎢⎢⎣

Y1

...

Y2M

⎤
⎥⎥⎥⎥⎥⎥⎦

(11)

Finally, from the third way of slicing the data, it follows that the conditional LS update for B is:

B̂T =

⎡
⎢⎢⎢⎢⎢⎢⎣

ĤD1(Ŝ(n)T )

...

ĤDK−L+1(Ŝ(n)T )

⎤
⎥⎥⎥⎥⎥⎥⎦

# ⎡
⎢⎢⎢⎢⎢⎢⎣

Z1

...

ZK−L+1

⎤
⎥⎥⎥⎥⎥⎥⎦

(12)

The initial estimates in the iterative procedure of (10)−(12) can be provided by the single-invariance

ESPRIT [8] algorithm. Note that global monotone convergence to at least a local minimum is

guaranteed in the trilinear ALS regression [7]. Moreover, the matrices S(n), H and B are of full

rank of P when ωi �= ωj for i �= j, and hence the identifiability condition is satisfied [7].

Using the structure of Ĥ, the estimate of Φ, denoted by Φ̂, is obtained as:

Φ̂ = Ĥ#(1 : L − 1, :)Ĥ(2 : L, :) (13)

Then the frequency estimates, denoted by {ω̂m}, are given by the phases of the diagonal elements

of Φ̂:

ω̂m = ∠Φ̂(m, m), m = 1, 2, · · · , P (14)

On the other hand, the estimate of Δ, Δ̂, is calculated as

Δ̂ = B̂#(1 : M, :)B̂(M + 1 : 2M, :) (15)
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Finally, the delay estimate, denoted by D̂, is determined using the estimated frequencies and the

diagonal elements of Δ̂ in a weighted average manner:

D̂ =
∑P

m=1 ∠Δ̂(m, m)

−∑P
m=1 ω̂m

(16)

Regarding the main computational requirement, the complexity of the proposed algorithm is of

o(3I(P 3 + 2PLM(N − M − L + 2))) [7] where I denotes the number of iterations in (10)−(12).

While the computational complexity of the subspace-based method [3] is of o((2ML)2(N−M+1)+

8M3L3). When the value of I is small, the proposed method will be much more computationally

attractive than that of [3].

3 Simulation Results

Computer simulations have been conducted to evaluate the joint time-delay and frequency estima-

tion performance of the proposed scheme in the presence of white Gaussian noise by comparing

with the subspace-based method [3] and Cramér-Rao lower bound (CRLB). The number of itera-

tions in the PARAFAC algorithm is I = 5 and the initial parameter estimates are provided by the

ESPRIT algorithm [8]. Note that larger values for I have been tried but no significant improve-

ment is observed. The source signal is of the form s(n) = α1e
jω1n +α2e

jω2n with α1 = α2 = 1/
√

2,

ω1 = 0.2π rad/s and ω2 = 0.4π rad/s. The sampling interval is 1s and the time-delay D is selected

to be 1.7s. Different signal-to-noise ratio (SNR) conditions are obtained by proper scaling of the

noise sequences. The number of samples is N = 100, and M = 25 and L = 4 are assigned. All

results provided are averages of 500 independent runs. Figures 1 to 3 plot the mean square error

performance of the frequency and time-delay estimates versus SNR. At lower SNRs, the proposed

method is superior to the subspace scheme particularly for the frequency estimates. It is because

the latter approach is based on the splitting the measurement space into signal subspace and

noise subspace and generally gives a higher threshold SNR value. For higher SNRs, the proposed

and subspace algorithms have similar estimation performance which is close to the corresponding

CRLBs. Since the proposed method has a smaller threshold SNR, it has a larger SNR opera-
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tion range. The major complexities of the PARAFAC and subspace methods are o(438, 120) and

o(11, 040, 000), respectively, indicating that the former is much more computationally efficient.

4 Conclusion

A novel joint estimation algorithm for time-delay and frequencies of multiple sinusoidal signals

received at two sensors has been developed. Our approach combines the state-space model and

parallel factor (PARAFAC) analysis to form three-way arrays with the use of the array outputs.

The frequency estimates are obtained directly from the state transition matrix while the delay

is determined using the observation matrix and the estimated frequencies. It is shown that the

proposed PARAFAC is superior to the subspace-based method [3] in terms of threshold performance

and computational requirement.
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Fig.1 Mean square error for ω1 versus SNR
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Fig.1 Mean square error for ω2 versus SNR
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Fig.1 Mean square error for D versus SNR
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