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Abstract

A conventional approach for source localization is to utilize time delay measurements of the emitted

signal received at an array of sensors. The time delay information is then employed to construct a set of

hyperbolic equations from which the target position can be determined. In this paper, we utilize semi-

definite programming (SDP) technique to derive a passive source localization algorithm which can integrate

the available 𝑎 𝑝𝑟𝑖𝑜𝑟𝑖 knowledge such as admissible target range and other cues. It is shown that the SDP

method is superior to the well-known two-step weighted least squares method at lower signal-to-noise

ratio conditions.
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I. INTRODUCTION

Passive source localization has been an important research topic in signal processing because of its

many applications such as search-and-rescue [1], speaker tracking [2], mobile phone location [3] and

navigation [4]. Time delay estimation method [2]-[3] is a popular positioning strategy and it proceeds in

a two-step fashion. First, a set of time-difference-of-arrival (TDOA) measurements of the passive signal

received at spatially separated receivers is obtained. In the second step, we multiply the measured time
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delays by the known signal propagation speed to give the range difference information for constructing a

set of hyperbolic equations that are highly nonlinear, from which the source position can be determined

with the knowledge of the sensor array geometry.

An optimum approach for determining the source location is to solve the hyperbolic equations using

nonlinear least squares (NLS) [5] where Taylor-series expansion is utilized for linearization and the

solution is obtained in an iterative manner. However, the NLS scheme cannot guarantee global convergence

unless the initial guess is sufficiently close to the true position. Alternatively, the nonlinear equations

can be reorganized into a set of linear equations via introducing an intermediate variable, which is a

function of the source position, so that a global solution can be acquired. The two-step weighted least

squares (WLS) algorithm [6] is a representative example of this approach which involves two WLS

operations: the first is to solve the linear equations while the second is to utilize the known relationship

between the introduced variable and position coordinates. However, the two-step WLS method is able

to provide optimum estimation performance only when the measurement errors are sufficiently small.

In this paper, we base on the second approach to derive a semi-definite programming (SDP) [7] source

positioning algorithm, which allows integration of available prior knowledge such as admissible source

range and other cues. Simulation results illustrate that the proposed algorithm outperforms [6] at larger

noise conditions and its estimation performance can approach Cramér-Rao lower bound (CRLB).

II. ALGORITHM DEVELOPMENT

We first introduce the notations. Bold upper case symbols denote matrices and bold lower case symbols

denote vectors. The 0𝑚×𝑛 is the 𝑚×𝑛 zero matrix, I𝑚 is the 𝑚×𝑚 identity matrix, 𝑇 denotes transpose

operator, −1 represents matrix inverse, Tr is the trace operator, vec is the vectorization operator,
∩

is the

intersection operator, 𝔼 is the expectation operator and ∥x∥ 2 represents the 2-norm of a vector x. For two

symmetric matrices A and B, A ર B means that A−B is positive semi-definite. While for two vectors

a and b, a ર b means that the former is element-wisely greater or equal to the latter. Let x = [𝑥, 𝑦, 𝑧] 𝑇

and x𝑖 = [𝑥𝑖, 𝑦𝑖, 𝑧𝑖]
𝑇 , 𝑖 = 1, 2, ⋅ ⋅ ⋅ ,𝑀 , be the unknown source location and known receiver positions

with 𝑀 ≥ 4, respectively. A total of 𝑀(𝑀 − 1)/2 TDOA measurements will be obtained and they are



3

then processed [8] to produce (𝑀 − 1) independent estimates which are relative to a particular receiver.

Multiplying by the known signal propagation speed, we have (𝑀 − 1) range difference measurements.

Without loss of generality, we let the first sensor be the reference and assume that it is closest to the

target. The range difference measurements with respect to x1, denoted by 𝑑𝑖1, is modeled as:

𝑑𝑖1 = 𝑑𝑜𝑖1 + 𝑛𝑖1, 𝑖 = 2, 3, ⋅ ⋅ ⋅ ,𝑀 (1)

where 𝑑𝑜𝑖1 = ∥x−x𝑖∥2−∥x−x1∥2 > 0 is the true range difference while the measurement error 𝑛 𝑖1 is a

zero-mean Gaussian process. The covariance of n = [𝑛21, 𝑛31, ⋅ ⋅ ⋅ , 𝑛𝑀1]
𝑇 , denoted by N = 𝔼{nn𝑇 } is

assumed known up to a scalar. The task is to find x using the (𝑀−1) measurements of {𝑑 𝑖1}. Following

[6], we introduce an intermediate variable, say, 𝑟, of the form:

𝑟 = ∥x− x1∥2 (2)

Assuming sufficiently small noise conditions such that the terms 𝑛2
𝑖1 and 2𝑛𝑖1∣x𝑖−x1∥2 can be neglected,

a set of linear equations is obtained by squaring both sides of (1) with the use of (2):

(x𝑖 − x1)
𝑇x+ 𝑑𝑖1𝑟 ≈ 1

2

(∥x𝑖 − x1∥22 − 𝑑2𝑖1
)
, 𝑖 = 2, 3, ⋅ ⋅ ⋅ ,𝑀 (3)

Denoting 𝜽 = [x𝑇 𝑟]𝑇 , we express (3) in matrix form:

G𝜽 ≈ h (4)

where

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x𝑇
2 − x𝑇

1 𝑑21

x𝑇
3 − x𝑇

1 𝑑31

...
...

x𝑇
𝑀 − x𝑇

1 𝑑𝑀1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and h =
1

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∥x2 − x1∥22 − 𝑑221

∥x3 − x1∥22 − 𝑑231

...

∥x𝑀 − x1∥22 − 𝑑2𝑀1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5)

In this work, we propose to minimize the following WLS cost function:

(G𝜽 − h)𝑇W(G𝜽 − h) (6)

where W is the optimum weighting matrix and its ideal form is [6]:

W = (B𝑇NB)−1 (7)
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with B = diag(𝑑𝑜21+𝑟, 𝑑𝑜31+𝑟, ⋅ ⋅ ⋅ , 𝑑𝑜𝑀1+𝑟), subject to equality and inequality constraints deduced from

all available information. The first constraint is the equality of (2) while the inequality constraints are

obtained by exploiting the admissible physical regions bounded by the environment and source, denoted

by P and S , as follows. First we consider to form a line whose endpoints are the reference sensor and

the 𝑖th sensor. The plane which is perpendicular to this line and contains its midpoint will divide the

space into 2 regions: one includes the 𝑖th sensor and the other contains the reference sensor, denoted by

R𝑖 and R1𝑖, respectively. Noting that the first sensor is closest to x, a more compact region in which the

source must be located, denoted by R, is determined as R = R12

∩
R13

∩ ⋅ ⋅ ⋅∩R1𝑀

∩
P . Together

with the additional cues derived from the target, namely, S , the lower and upper limits for x, denoted

by x𝑙 and x𝑢, will be

x𝑙 = arg min
p∈{R

∩
S }

{p}

x𝑢 = arg max
p∈{R

∩
S }

{p}
(8)

In a similar manner, the lower and upper bounds for 𝑟, denoted by 𝑟 𝑙 and 𝑟𝑢, are determined as

𝑟𝑙 = min
p∈{R

∩
S }

{∥p− x1∥2}

𝑟𝑢 = max
p∈{R

∩
S }

{∥p− x1∥2} (9)

Up to now, our optimization problem is:

min
𝜽
(G𝜽 − h)𝑇W(G𝜽 − h) (10)

s.t. 𝑟 = ∥x− x1∥2 (11)

𝜽𝑢 ર 𝜽 ર 𝜽𝑙 (12)

where 𝜽𝑢 = [x
𝑇
𝑢 , 𝑟𝑢]

𝑇 and 𝜽𝑙 = [x
𝑇
𝑙 , 𝑟𝑙]

𝑇 . It is worthy to point out that [6] solves (10) in an iterative

manner as W is a function of 𝜽 and (11) is exploited implicitly in its second step. Our major difference is

that we try to solve (10)−(11) in a more explicit manner and to further increase the estimation accuracy

with the use of (12). Note that it is impractical to tackle (10)−(12) using the Lagrange multipliers because

numerous variables will be introduced in the solving procedure. Instead, we approximate (10)−(12) with

the use of the SDP technique as follows. First, we introduce a variable matrix Θ = 𝜽𝜽 𝑇 and drop the
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constant term h𝑇Wh in (6) to rewrite the objective function as

G𝑇WGΘ− 2𝜽𝑇G𝑇Wh (13)

Squaring both sides of (11) and letting P = diag(1, 1, 1,−1) and Q = [I3,03×1], the equality constraint

is modified as:

𝑟2 = ∥x− x1∥22

⇒ 𝑟2 = x𝑇x− 2x𝑇
1 x+ x𝑇

1 x1

⇒ Tr(PΘ) + x𝑇
1 x1 − 2x𝑇

1 Q𝜽 = 0

(14)

In order to establish relations between Θ and 𝜽, we perform self-multiplication and cross-multiplication

on (12) to generate another set of linear constraints:

vec(𝜽𝑢𝜽
𝑇
𝑢 − 𝜽𝑢𝜽 − 𝜽𝜽𝑇

𝑢 ) ર vec(−Θ)

vec(−𝜽𝑙𝜽
𝑇 − 𝜽𝜽𝑇

𝑙 + 𝜽𝑙𝜽
𝑇
𝑙 ) ર vec(−Θ)

vec(𝜽𝑢𝜽
𝑇 − 𝜽𝑢𝜽

𝑇
𝑙 + 𝜽𝜽𝑇

𝑙 ) ર vec(Θ)

(15)

By relaxing Θ = 𝜽𝜽𝑇 as Θ ર 𝜽𝜽𝑇 [7], our proposed SDP algorithm is finalized as

min
𝜽,Θ

G𝑇WGΘ− 2𝜽𝑇G𝑇Wh

s.t. Tr(PΘ) + x𝑇
1 x1 − 2x𝑇

1 Q𝜽 = 0
⎡
⎢⎢⎣

Θ 𝜽

𝜽𝑇 1

⎤
⎥⎥⎦ ર 05×5

vec(𝜽𝑢𝜽
𝑇
𝑢 − 𝜽𝑢𝜽 − 𝜽𝜽𝑇

𝑢 ) ર vec(−Θ)

vec(−𝜽𝑙𝜽
𝑇 − 𝜽𝜽𝑇

𝑙 + 𝜽𝑙𝜽
𝑇
𝑙 ) ર vec(−Θ)

vec(𝜽𝑢𝜽
𝑇 − 𝜽𝑢𝜽

𝑇
𝑙 + 𝜽𝜽𝑇

𝑙 ) ર vec(Θ)

(16)

Results from our computer simulations show that the constraint of Θ ર 𝜽𝜽 𝑇 is tight, that is, the solution

provided by (16) is identical to that of (10)−(12) when the noise power is small enough such that (3)

holds. Note that in practice, we will employ B = diag(𝑑21 + 𝑟, 𝑑31 + 𝑟, ⋅ ⋅ ⋅ , 𝑑𝑀1 + 𝑟) to compute

W where 𝑟 is an estimate of 𝑟 which is obtained by minimizing (6) with W = I4. After getting a

more accurate 𝑟 from (16), we can update W and then iterate the SDP algorithm again to attain better
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estimation performance. Regarding the computational requirement, the major arithmetic operations of

the SDP approach come from the positive semi-definite constraint in (16) and the complexity is at least

𝑂(𝑚3) [12] where 𝑚 = 5 in our case.

III. SIMULATION RESULTS

Computation simulation has been performed to evaluate the positioning performance of the proposed

SDP algorithm by comparing with the two-step WLS technique [6] and CRLB. We utilize the MATLAB

toolbox YALMIP [9] to realize the SDP method where the solver SDPT3 [10]-[11] is employed. We

consider the scenario of speaker localization in a room where the room dimension and speaker height

range, 6m×4m×2m and 1m ≤ 𝑧 ≤ 2m, which correspond to P and S , respectively, are utilized

as available prior information. It is assumed that there are eight microphones with positions (0,0,0)m,

(6,0,0)m, (0,4,0)m, (6,4,0)m, (0,0,2)m, (6,0,2)m, (0,4,2)m and (6,4,2)m. The range errors are generated

using 𝑛𝑖1 = 𝑛𝑖 − 𝑛1 where all {𝑛𝑖} are zero-mean white Gaussian processes with identical variance 𝜎 2

[6]. The performance measure of mean square position error (MSPE) is considered and it is defined as

𝔼{(x − x̂)𝑇 (x − x̂)} where x̂ denotes the estimate of x. All results are averages of 500 independent

runs.

In first experiment, the speaker is located at x = [3.5, 2.5, 1.5]𝑇m, which corresponds to the central

area of the room, and Figure 1 shows the MSPE performance versus 𝜎 2 in dB scale. Three variants

of the proposed approach, with no iteration and with 1 and 2 iterations, are investigated. It is observed

that the SDP approach is superior to the two-step WLS method for larger noise conditions, that is,

𝜎2 ≥ −45dBm2, and is able to attain the CRLB for nearly the whole range of 𝜎 2. Furthermore, the

estimation performance of the SDP algorithm with one and two iterations can give a higher accuracy when

𝜎2 > −30dBm2, which implies that one iteration is sufficient for optimality and no further iteration is

required. As a result, we only show the results of no iteration and one iteration in the following. We also

see that the MSE of the proposed approach is smaller than CRLB when 𝜎 2 ≥ −5dBm2. As the CRLB is

a lower bound on the variance of any unbiased estimator, the only explanation for this phenomenon is that

the SDP method becomes a biased estimator for larger noise conditions due to the constraints constructed
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from the 𝑎 𝑝𝑟𝑖𝑜𝑟𝑖 position knowledge. The corresponding mean absolute position error, which is defined

as 𝔼{∥x− x̂∥1}, is plotted in Figure 2 to demonstrate the biasedness of the the proposed scheme when

the noise power is sufficiently large.

In second experiment, the speaker position is near to an edge of the room, namely, x =

[5.5, 3.5, 1.5]𝑇m, and the MSPE performance versus 𝜎2 is shown in Figure 3. The superiority of the

SDP approach over the 2-step WLS technique is again demonstrated, although the improvement is less

significant compared with Figure 1. It is also seen that the iterative SDP algorithm gives no obvious gain

over the standard one. Based on the numerical results, the small noise condition which makes (3) valid

is around 𝜎2 ≤ −30dBm2.

The computational complexity of the SDP approach in the first test has been studied. Based on a PC

computer with Inter(R) Core(TM)2 CPU 6300@1.86GHz and 2 GB memory, the average CPU times

for the SDP method with no iteration and two-step WLS technique are measured as 9.69× 10−4s and

5.91 × 10−2s, respectively, at 𝜎2 = −60dBm2. Although the latter involves a larger computational

requirement, it is worthy to note that a tailor-made interior point method should reduce the complexity.

IV. CONCLUSION

A convex optimization technique, namely, semi-definite programming (SDP) relaxation, has been

derived for speaker localization using time delay measurements as well as the 𝑎 𝑝𝑟𝑖𝑜𝑟𝑖 position bounds

deduced from the physical environment. The approximate optimality of the proposed positioning algorithm

is demonstrated via computer simulations. It is shown that the SDP scheme outperforms the conventional

two-step weighted least squares method in terms of threshold performance at the expense of a higher

computational requirement. Furthermore, it becomes a biased estimator for larger noise conditions due

to the constraints constructed from the prior position knowledge.
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Fig. 1. Mean square position error versus 𝜎2 at x = [3.5, 2.5, 1.5]𝑇 m
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Fig. 2. Mean absolute position error versus 𝜎2 at x = [3.5, 2.5, 1.5]𝑇 m
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Fig. 3. Mean square position error versus 𝜎2 at x = [5.5, 3.5, 1.5]𝑇 m


