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1 Introduction

Many of todays state-of-the-art wireless systems adopt multiple-input
multiple-output (MIMO) transmission to increase spectral efficiency together
with multi-carrier methods to cope with intersymbol interference (ISI). Multi-
carrier methods simplify channel equalization because they decompose fre-
quency selective channels into multiple flat fading channels (the so called car-
riers), which can be easily equalized. While multi-carrier transmission offers
many advantages including effective channel equalization, it also exhibits some
drawbacks regarding the peak-to-average power ratio (PAPR). Often single-
carrier transmission, where the frequency selective channel is approached di-
rectly, is considered as an alternative to multi-carrier transmission [T2I3].
While therefore single-carrier transmission is interesting on its own, it has been
further shown in [45], that in fact many common multi-carrier, code-multiplex
and space-time block-code systems can be modeled as single-carrier systems
by virtual enhancement of the MIMO system. Various authors used this ap-
proach to derive new equalization methods based on single-carrier equalization
in order to exploit joint equalization of spatial, time and code or frequency
domains [4J5]6l[7]. There, and generally for linear time-invariant (LTI) equal-
ization of single-carrier systems with zero-forcing and causality constraint, one
usually solves the so-called Bezout Identity

H(eG () =1 (0 <0 <2n),

where the matrix-valued transfer function H of a stable and causal LTI system
(the frequency selective MIMO channel) is given, and a transfer function G
of a stable and causal LTI precoder, which equalizes H, has to be computed
[8]. Transmitters may use such G to pre-equalize the channel. Alternatively,
receivers can also solve the Bezout Identity for the transposed channel H” (i.e.
HTG = I) and equalize the channel H with the transposed solution G*. The
main difficulty in solving the Bezout Identity is the causality of G, because
the naive approach

G(e®) = H(e®) [H(e) H(e?) ™ (0< 0 < 2n)

of a pseudoinverse generally results in a non-causal precoder [9). If the number
of channel inputs equals the number of channel outputs, the pseudoinverse is
the unique solution to the Bezout Identity. The situation changes if the num-
ber of inputs of H is larger than the number of outputs. Now precoders for H
no longer have to be unique. Usually this non-uniqueness then is exploited to
choose a causal G that is optimal in some sense. The two common optimal-
ity conditions are minimality of the equalizers energy and minimality of the
equalizers peak value, respectively. The minimal energy condition corresponds
to the classical approach of signal-to-noise ratio (SNR) maximization [5J7/10].
However, this approach is only feasible if the statistical properties of the noise



are known. For unknown noise statistics, it cannot be applied. Picking up an
idea from robust control (see e.g. [11]), where one is concerned with unpre-
dictable errors that arise e.g. due to uncertain modeling, instead minimization
of the equalizers peak value has been proposed [6]. As we shall see later, this
minimizes the worst case error instead of the average error, which cannot be
determined due to the unknown noise statistics.

In this paper we are interested in the optimal performance that causal pre-
coders and equalizers can archive regarding the worst case error. Therefore
we show how a solution to the Bezout Identity with minimal peak value can
be constructed. We discuss why this gives the best upper bounds on various
perturbations in the system. Contrary to other ways to solve the Bezout Iden-
tity, our construction holds for the most general case of systems with infinite
impulse responses (which are not required to be rational) and even infinite
input and output vectors, i.e. we allow systems to have infinite temporal as
well as infinite spatial dimension. We further give a new result on the numer-
ical computation of the minimum peak value achievable by causal solutions
to the Bezout Identity if the numbers of inputs and outputs are finite. This
is important because for all methods known to the authors that solve the Be-
zout Identity with minimal peak value in a numerically exploitable way, the
minimal peak value has to be known in advance [6/12]. Therefore efficient com-
putation of the minimal peak value is important for numerical solution of the
Bezout Identity. We point out that the optimization approach in [13] requires
no prior knowledge of the minimal peak value. However, it only computes
finite impulse response solutions to the Bezout Identity, which are generally
suboptimal.

We proceed as follows. In Section 2 we give our problem statement after we
have introduced some notation and necessary basic mathematical concepts.
We further discuss the practical interpretation of our problem statement. In
Section 3 we derive our results on the numerical computation of the minimal
peak value achievable by causal solutions to the Bezout Identity. Then a op-
timal causal precoder is constructed in Section 4. We finally draw conclusions
in Section 5.

2 Preliminaries

2.1 Notation

We denote the complex numbers by C, the complex matrices with m rows and
n columns by C™ " and the complex column vectors by C™ := C™*!. The
complex unit disc is given as D := {z € C : |z| < 1}, its border is the unit circle



T :={z € C: |z| = 1}. Complex conjugation is denoted by (-), taking adjoints
in a Hilbert space by (-)*. Furthermore H,€ and &, denote separable Hilbert
spaces with scalar products (-, )3, (-, )¢ and (-, -)¢,, respectively. By HHE we
mean the direct Hilbert sum, i.e. the space H x £ equipped with scalar product
(hde,g® fluae == (h,g)n + (e, f)e. The space of bounded linear operators
between £ and &, is denoted by L(&,&,). It is equipped with the operator
norm ||T|op := SuPeeg o1 IT€lle,- On any space the identity operator is
written as /. For matrices A € C™*" the smallest and largest singular value
will be denoted by o,in(A) and oyax(A), respectively. The closure of a set M
is denoted by closure M, the space spanned by all linear combinations of its
elements by span M.

As usual, L4 (X) denotes the space of (equivalence classes of) p-integrable
functions on T with values in a Banach space X. The norm in L4 (X) is
IFIIE = JoZo ILF ()5 57 for 1 < p < oo and || fl|ec = esssupeer [ f(O)lx =
inf{m >0:pu({CeT:|f({)]x >m}) =0} for p = o0, where p denotes the
Lebesgue measure. We refer to |14, Section 3.11] and the references therein
for details on integration of vector- and operator-valued functions. If p = 2,
L2(&) equipped with the scalar product (f,g)s := [i7o(f(e?), g(e?))e L is a
Hilbert space. For F' € L¥(L(E, L)) we denote the point-wise adjoint by F™,
i.e. F*(¢) = (F(¢))* almost everywhere on the unit circle.

2.2 Basic Results and Concepts

2.2.1 Hardy Spaces and Toeplitz Operators

We introduce the usual Hardy spaces on the disc by

2m . do
HZ(E):= {u :D — & : w analytic, ||ul|3 ;= sup |u(re?)|2== < oo} ,
0<r<1J60=0 27
Hy(E,&):= {F D — L(E,€,) : F analytic, || F||e := sup || F(2)||op < oo} :
zeD

The Hardy spaces play an important role in systems theory, since they are
the set of transfer functions of causal finite energy signals and causal and
energy-stable transfer functions for LTI systems, respectively [15]. Definition
is also possible on the upper half plane instead of the unit disc. On both
domains, the Hardy functions are completely determined by their values on
the borders of the domain. Therefore, each Hardy function on the unit disc
has a corresponding function on the circle. The space of those corresponding
functions can be given as follows.



For functions f € LL(E) or f € LL(L(E,E.)) the k-th Fourier coefficient is

T aedf
foi= [ fEMe ™= (ke )

Therewith, the Hardy spaces on the circle are given by

HZ(E) = {u € LA(&) i, =0for k < 0} :
HE(E,E,):={F € L¥(L(£,£.)) : Fi, =0 for k < 0} .

It is important to know that the two notions of Hardy spaces on disc and
circle are equivalent, since by Fatou’s Theorem the radial limit (bu)(e®) :=
lim,. /1u(7’ei9) exists almost everywhere and the mapping b is an isometric
isometry between the Hardy spaces on disc and circle (see |14, Th. 3.11.7,
3.11.10]). Therefore we will only explicitly distinguish between those spaces if
necessary, and simply write H*(€) and H* (&, E,) otherwise.

An important property of L4(&) is Parseval’s Relation (|16, p. 184]), by which

ull3 = > |lax||? for all u € L3(E).

k=—o00

We will now introduce Toeplitz operators, which are the standard example for
operators on Hardy spaces and which will also play an important role in what
follows. The orthogonal projection (Pyu)(¢) = 322, uxC* from L2(€) into
H2(E) is called the Riesz Projection. The projection from H2(E) into the space
of degree N polynomials is (Pyu)(¢) := S, uxC*. Now for F' € L(E,E,)
the Toeplitz operator with symbol F is the operator which maps H2(E) into
H2(E,) via Tpu := P (Fu).

The next result allows us to get an exact estimate of the minimum norm
achievable by solutions of the Bezout Identity.

Theorem 1 ([14, Th. 9.2.1]) Let FF € H>(E,&,) and 6 > 0. Then some
G € H®(E,,E) with ||G|lee < 6% and F(2)G(2) = I for all = € D emists if

and only if
| Treulla > S||lullz for all u € H?(E,).

2.2.2  Schur Class
Functions in the unit ball of H*(&, £,), the so-called Schur class

S(E.E) = {F e H*(,£): |Fllw <1},



have some special properties, which will turn out to be useful in the construc-
tion of a minimum norm right inverse. Every Schur function can be factorized
as follows.

Theorem 2 ([17, Th. 2.1]) Let F : D — L(E,&,). Then F € S(E,&,) if
and only if there exists a holomorphic function W : D — L(H,E,) such that

I —F)F(w)" =1 —z2z0)W(z)W(w)* (z,w € D).

Note that W can be given explicitly, see [I7, Sec. 3.3]. We finish with the
observation that also certain block operators define Schur functions.

Lemma 3 ([12, Lem. 2]) Let T € LIH @ E, H & E,) with ||T||op < 1. Then
T has a unique block matrixz representation

A B H H
T = : —
C D E Ex

and the function
F:D— L(EE), F(z):=D+Cz(I —2A)"'B
is Schur, i.e. F'€ S(E,E,).

Functions defined as F' in the Lemma above are known in operator theory as
characteristic functions, while unitary operators like 7" are known as unitary
colligations. Those concepts resemble much the concept of a transfer function
and a state-space realization in control theory. We refer to [I7/18] for details.

2.8  Problem Formulation

Before we give an exact problem formulation we introduce and discuss the
target objective

Yopt (H) :=1nf ({||G||c : G € H*®(E,, ), H(2)G(2) = I for all z € D} U {o0}),

which is, as we will see, a tight lower bound on the worst-case transmit energy
enhancement of causal precoders for the channel H, and a measure for the
achievable robustness against imperfectly known channel transfer functions.
Note that in particular yop(H) = oo if and only if H has no right inverse in
H*>. We always assume H € H>*(E, £,) unless we explicitly mention otherwise.

It was shown in [19] that if dim &, < oo, existence of a right inverse in H> is



further equivalent to
H(2)H(z)* > 61 for some § > 0 and all z € D.

It is somewhat surprising that although by the result from [19] yope < oo if
and only if

d 1= sup {5 >0 | H(z)H(2)* > 61 for all z € ]D} > 0,

0. has no direct connection to Yopt, i.e. Yopt cannot be computed from 9,
[9]. However, as we will see, it is important to know v,y in advance of the
construction of an optimal precoder. Therefore we derive a new method for
numerical computation of v, and then solve the following problem.

Problem 4 Let yopi(H) < 00. How can G € H*®(E,,E) with H(2)G(z) = I
for all z € D and ||G||loo = Yopt(H) be constructed?

We close this section with a short discussion in which sense minimization of
the infinity norm in Problem [ gives optimal filters. The input-output relation
of a frequency selective MIMO channel is given by

y(Q) = H(Qz(()+n(C)  (CeT),

where [ denotes the channel, z the transmitted signals and y and n the
received signals and additive noise, respectively. If a precoder G for H is used
to pre-distort the transmitted signals, this input-output relation changes to

y(€) = H(O)G(Q)z(€) +n(¢) = 2(Q) +n(¢) (¢ €T).

There are two advantages in minimizing the infinity norm of the precoder.

The first advantage is minimization of the transmit signals energy. The energy
necessary to transmit a signal x using the precoder G is given by |Gz||3.
Without loss of generality, let us assume that ||z||3 = 1. Then, it can be
shown that the transmit energy necessary in the worst case is exactly ||G/||%,
ie.
sup || Gzll; = |G
TEH2(E,),|[zlla=1

Thus, minimizing |G|« guarantees the lowest amount of necessary transmit
energy. If equalizers instead of precoders are considered, i.e.

y(Q) = G(OH(Oz(¢) +n(Q)] = z(¢) + G(On(¢) (€€ T),

this is equivalent to minimal worst case noise enhancement.

The second advantage of minimization of the infinity norm is robustness. As-
sume an imperfectly known channel transfer function Hx = H + A with right
inverse G, where H is the correct channel and A is a perturbation. Using



the same argument as before, we see that the energy of the worst error that
can result from the perturbation equals

sup o —HGazl;= sup  [|AGaz[l; = [AGA|.
zEH?(E.),[|z2=1 2€H2(E4),||z]l2=1

Since it holds ||AGA % < |A]%[|Gall%, and this inequality can become sharp
e.g. for A =01, we see that minimizing |G ||« also minimizes the worst case
error that results from an imperfectly known channel transfer function. This
argument applies to equalizers in the same way it applies to precoders.

3 Computation of the Optimal Norm

This section deals with the computation of the optimal norm ~,,; achievable
by solutions to the Bezout Identity. Since many algorithms which directly
solve Problem [4] only compute suboptimal solutions, i.e. given 7 > v, they
compute a right inverse G, with norm ||G, ||« < 7, it is important to know the
optimal value for v in advance [6/12]. We point out that computation of yopt
also arises in other contexts, see e.g. Remark 1 in [20] (with the next corollary
in mind).

We start with an exact (but incomputable) formula for ... The next two
corollaries are direct consequences of Theorem [Tl

Corollary 5 For p(H) = infi,cpe,) jujo=t |Ta-ul2, it holds ~Yopi(H)
p(H)™.

Corollary 6 If o (H) < 00, a right inverse G € H®(E,, &) with |G|« =
Yopt (H) ewists.

The interesting thing about Corollary [bl is that it shows us why the optimal
causal equalizer cannot perform better than the optimal non-causal one. Note
that the optimal norm for non-causal equalizers is given by

1
inf |l
u€H2(Ey),||ull2=1

(see [9]), which is the same formula as Corollary Bl except for the additional
Riesz projection P,:

Yopt (1) = ( inf ||P+(H*U)||z>_ :

uEH? (&), |lufl2=1

It is now clear that causal equalizers perform worse because the signal energy
of u which is mapped into the non-causal part of H*u is cut off. How much



energy is shifted into the non-causal part thereby depends on the Fourier
coefficients of H*, which are related to H by H*, = H*, for k € Z.

We now derive a computable approximation of 7. The main idea will be to
approximate the relation o, = p~* from Corollary Bl In order to compute
Yopt, We try to approximate p with

pn(H) := inf | PnT g2,

in
uEPN H2(Ex),[lull2=1

i.e. we restrict domain and image of T+ to polynomials of degree N and
take the infimum for this restriction. Because PxTg+Py is linear and finite
dimensional, it can be represented by a matrix.

The main result of this section is the following.

Theorem 7 The sequence {py(H)}n is monotonically decreasing and con-
verges with limat

Jim_px(H) = p(H) = ()"

If H € H(C™") with m < n[Y and

~

Wi E N i 5

FH,N = O HO e HA'T_l c Cn(N—I—l)Xm(N—I—l)

)

0 ... 0 M

pn can be computed as py(H) = omin(Cg n).

PROOF. We only sketch the proof here, the full proof is given in the ap-
pendix. It consists of three main steps. The first step is to show that the
sequence {py(H)}y is monotonically decreasing and lower bounded by p(H).
The main idea is that the relation

pn(H) = inf | PnTyul2 = inf | Tgul]o

i
uEPN H2(Ex),||ull2=1 uEPN H?(Ex),|lull2=1

holds for every N € N and thus the infimum is always taken over the same
target objective, but over a space which increases with N. This is done in the
appendix in Proposition T4l In a second step it is shown that the lower bound
p(H) for {pn(H)}y is sharp. Therefore for arbitrary € > 0 a sequence {uy}y
such that

un € PNH2(5*), ||UN||2 =1 and Nll_rgo ||PNTH*UN||2 < p(H) + €

1 Note that trivially yopt(H) = oo for m > n.



is constructed in the appendix in Proposition [[5l Thus py(H) converges to
p(H), which is equal to yep(H)™! by Corollary Bl Finally Proposition [ in
the appendix gives the formula for computation of py(H) via singular value
decomposition if H is matrix-valued. [

Since the arguments used to prove Theorem [ hold analogously if we approx-
imate

|2 = ([T

sup [ Teu op = [ Tsllop = [Tt llop = [[H |

ueH?(Cm), [|ull2=1

instead of py(H) = inf,ep2cm) |jufo=1 [|THull2, Wwe also see that for H €
H>(C™*™) the sequence {omax(I'm )} N is monotonically increasing and con-
verges with limit

]\}l_rgo Umax(FH,N) = ||H||OO

We note that the well-known fact that the limit || H||s of omax(I'mn) can be
found by performing a grid search over all frequencies, i.e.

]\}E}}X’ Omax(LaN) = [[Hl[oo = €SSSUP e omax (H (C)),

does not carry over to computation of y.p(H ). Here, in general we have

]\}E%o Umin(FH,N) = fYopt(H>_1 7A eSSinfCE']T O'mm(H(g»

This dichotomy results from the fact that while indeed

sup — |[Hrulla = sup [Py (H ),
u€H2 (&), |[ull2=1 u€H2 (&), |[ull2=1

in general we have

[1H |2 7 nf P (H )]

inf 1
uwEH2(E,),||ull2=1 wEH2(E,),||ull2=

This can be easily seen in the next example.

Example 8 Set H(¢) = ¢ for ( € T. Then by Parseval’s Relation

inf |H*ulls = inf |lul2 =1,
weH2(C), |Jul|2=1 wEH2(C), |[ulla=1

however for u(z) = 1 we have (H*u)(¢) = ¢ and therefore
1P+ (H )|z = [|0f]2 = 0.
It is also important to note that Theorem [0 does not generalize to the case

H € L. We give an example where p(H) = 1, a inverse in H> exists, but
the smallest singular values of the finite sections do not converge to p(H).

10



Example 9 Set H(() :=( for ( € T. Then by Parseval’s Relation

H) = inf Ty-ulls = inf Trul|ls = inf ullo = 1.
p( ) u€H?2(C),||lul|2=1 || " |2 u€H?2(C),||lul|2=1 || ¢ ||2 u€H2((C),||u||2=1|| ||2
Further, H has a inverse in H*, i.e. G(¢) = (. However,

H; Hr ... Hj 0... ... 0
H* Hf . 1
Umin N - Umln - 0
SRR -+ .
| H*y ... H*y, H | i 10|

for all N € N.

4 Construction of the Optimal Causal Precoder

In this section we construct a minimum norm solution to the Bezout Identity,
i.e. we solve Problem [ The major idea of the proof is the following. We
first show how to construct right inverses with norm at most one. Then given
any H € H*(&,E,), we apply this technique to the scaled function ~vyoueH.
Appropriate rescaling of the obtained inverse will result in a minimum norm
right inverse.

4.1 Schur Right Inverse

The first step is construction of a Schur right inverse. Therefore we factorize
the function to be inverted similar to Theorem [2] and use this factorization
to construct a contraction of the form of 7" in Lemma Bl The characteristic
function of this contraction then is the wanted right inverse. This is a variant of
the technique known as “lurking isometry method”, which has been introduced
by Ball and Trent [I7, Th. 5.2] and independently Agler and McCarthy [21]
to solve the Bezout Identity.

We start with the factorization.

Lemma 10 Let H have a right inverse G € S(E.,E). Then there ezits a
holomorphic function W : D — L(H,E.) such that

HHw) — 1= (1-20)W()W(w) (2w eD). (1)

11



PROOF. By Theorem [ there exists a holomorphic function W :D -
L(H,E) such that I — G(2)G(w)* = (1 — zw)W (z)W (w)*. Thus

H(2)H(w)" — H(2)G(2)G(w)* H(w)" = (1 — 2@)H ()W ()W (w)*H (w)".

Since HG = I we obtain with W(z) := H(z)W (z) that

We can now introduce the appropriate block operator.

Definition 11 Let H have a decomposition like ({l) in Lemmal[I0. We define
the sets

oW (w)*
Dy := closure | span ex:weD e, €8, CH®DE,
H(w)*

I

W (w)”
Ry :=closure | span e cweD e, €8, CH®PE,,

and a function Vo : Dy — Ry by

o0

e,
k=0

wW (w)*
H(w)*

Cxk-

Note that it can be easily shown with (II) that V; is a isometry, i.e.

el le) =) e

HBEx
Later we will use this fact when we apply Lemma 3l to an extension of V4. The
wanted right inverse can now be given explicitly.

h h

Vo EHDE.

(& (&

HDE

Theorem 12 Let H have a decomposition like (Il) in LemmalIll and construct
Vo as in Definition[I1. Denote by

H
Es

%

12



the continuation of Vi with zero, i.e.

Then the function
G(z) := D* + B*(I — zA*) 120" (z e D)

is a Schur right inverse of H, i.e. G € S(E,,&) and HG = I.

PROOF. Let w € D. By construction of Vyq it holds

wW (w)* . W (w)* .

AB
C D

for all e, € &,, which is equivalent to
AoW (w)* + BH(w)* = W(w)* (2)

and

CuW (w)* + DH(w)* = 1. (3)
Since ||[Voollop < |[Vollop = 1 because V; is an isometry, we have ||Al[o, < 1 and
thus ||Aw||,p < 1. Thus I — Aw is invertible, and (2]) yields

W(w)* = (I — Aw)'BH(w)*.
Plugging this representation of W(w)* into (3)) results in
Cw(l — Aw) 'BH(w)* + DH(w)* = 1.
Taking adjoints and replacing w by z shows that
H(z) D"+ B*(I — 2A")7'2C*| = I

This right inverse is Schur by Lemma [3l [
4.2 Minimum Norm Right Inverse

The extension of Theorem from an upper bound one on right inverses
to arbitrary bounds is a simple scaling argument. Note that in particular the
upper bound v = yopt (H) is valid due to Corollary[@], and results in a minimum
norm right inverse of H.

13



Corollary 13 Let vopi(H) < v < 00. Denote by G e S(&Ex, €) the right in-
verse to H := vH as given by Theorem [12. Then G := G is a right inverse
of H with |Gllec < -

PROOF. Since yop(H) < v < 00, a right inverse G € H®(E,, &) of H with
IG|s < 7 exists by Corollary 6l Thus

YHy 'G=1, |7 'Glx <1,

which shows that H = vH has a right inverse in S(&.,€). Let G e S, €)
denote the right inverse of H given by Theorem Then G = ~G holds
1Gllse = Y[IGlloe < v as well as

HG =~"'HyG =1.

5 Conclusions

In this paper we considered the problem of the construction of a causal pre-
coder with optimal robustness for a stable and causal LTI system with multi-
ple inputs and outputs. This problem is equivalent to finding a solution to the
Bezout Identity with minimized peak value, for which we gave an explicit con-
struction. We derived a novel method for numerical computation of the lowest
peak value achievable in this problem, because it has to be known prior to the
construction of the optimal precoder. This method is based on computation of
a singular value decomposition of the finite section of a certain infinite block
Toeplitz matrix, which is directly constructed from the Fourier coefficients of
the systems transfer function.

Appendix

The complete proof of Theorem [1] follows splitted in three propositions.

The first proposition shows that {py(H)}y is monotonically decreasing and
converges with a limit not lower than p(H).

Proposition 14 [t holds
pn(H) > pni(H) > p(H)

for all N € N.

14



PROOF. Let u € H?*(&,). We set v := Pyu and w := Ty«v. A simple
computation shows that the Fourier coefficients of w = Py (H*v) are given by

) S0 Hitpry k>0
Wp = .
0 k<0

Since by construction v, = 0 for £ > N, we see that wy = 0 for £ > N. Thus

00 N
| T Pyully = [[wllz = > lokllz = D lliwll3 = [[Pywll = [|PyTa-Pyull;

k=0 k=0
(4)
holds by Parseval’s Relation for every u € H?(E,).

Because trivially Py H?(E,) C Py H?*(E.) € H?(E,), we obtain with (d]), that

pN(H) mf ||PNTH*U||2

uEPN H?(Ex),[lull2=1

inf Tu
u€EPNH2(Ey),||lull2=1 || H ||2

UEPN 11 H?(Ex),||ull2=1

A%

|2 (= pn41(H))

vV

inf Tr
uEHQ(:‘}S,Hqu:l H H UH2

=p(H).

We now ensure that the limit of {pn(H)}xn also is not greater than p(H).
Proposition 15 For every € > 0 there exists K € N such that

pn(H) < p(H) + ¢
for all N > K.

PROOF. We assume H # 0 since the case H = 0 is trivially true. Let € > 0
and choose @ € H*(E,) with [|it]|; = 1 such that

- . €
I Ta-tlls = p(H)| = || Tl — N Th-ullz) < 2. (5)

inf
u€H2(Ex),|lull2=

Since @ € H?*(E,), Tg=u € H*(E) and ||i|ly = 1, Parseval’s Relation shows
that

Nh_r)réo | Pni — | = Nh_r)réo | PnTr+t — Ttz = 0, ]\}1_{%0 | Pnii||2 = 1.
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Thus K € N exists such that

. . € _
HPNU—U||2§5||TH* g (6)
PyTyeti — Tty < S and 7
6
. p(H) + 35
Pyil|; > 8

for all N > K.

Then for N > K it follows that

\|PNTy+ Pyt — Tyt

lo <||PnTy+(Pyt — 0)||2 + || Ta-t — PyTru
<||PnTy-

< Trxllop  <e/(6]|Ts|lop) by (6) <e/6 by (@)

B
op |[Pvu—ally  +|[Thtt — PyTy-il]

IN
wlm

(9)

and therefore

u€H?2(E4),llull2=1
< IPnTy-Pyalls — [Tyl + || Ta-all2 — inf [ T-ulf2
u€H? (), ||ull2=1
<e/3 by @
<e¢/6 by (B)
€
< —.
-2
We see that
€ €
P T *P U < 1 f T * - — H . ]_0
| PN Ty Pyialla < ee @ am1 [ Trull2 + 5 p(H) + 5 (10)

Since ||Pyiilla > 0 for N > K by (&), the sequence {ty}n>x given by

y Pyt
un

= Py H? i
[Py, © V(6

is well-defined. We obtain the intended result

16



inf | PnTu|2

ue Py H?(€.),[ull2=1

pn(H)

< ||PnTa-tnl|2
| PnTr+ Pyt
[ Praf2
(bygn)) p(H) + %
[ Pvalls

(by @)
< p(H)+e

for all N > K. ]

We know now by the Propositions[I4]and [I5l that the sequence py converges to
p for N — oo. However it is still unclear, how py can be computed explicitly.
The next proposition gives a simple formula for the numerical computation of

PN -

Proposition 16 Let H € H>*(C™*") with m <n and set

I Hr L. I
FH,N _ 0 HO o HN—l c Cn(N—l—l)Xm(N—l—l).
0 0 H |

Then pn(H) = omin(Ta,n).

PROOF. Let USV* = I'y x denote a singular value decomposition of I'y y
with singular values

o1 2 2 Om(n+1) = 0.
Then U € CPWN+xnN+D apd vV ¢ CmV+HD)xm(N+1) are unitary matrices and
S € CrIWVHD)XmN+D) §g of the form

01

S = Om(N+1)

Let u € PyH?*(C") and set v := PyTy-u. We saw already in the proof of

17



Proposition [[4], that the non-zero Fourier coefficients of v are uniquely deter-
mined by the relation

o H: Hr .o Hy || a i
i 0 Hy ... Hy || iy
= . . . . . = FH’N
o 0 0 H ||ay iy

Thus by Parseval’s Relation

pn(H)=
= ll’lf ||FH7NU||2
weCMNED) [lufo=1

= inf | Sul|2

w€CMN+D) |jyll2=1
= Om(N+1)
= Umin(FH,N> .

inf Py
uePNH2<1<:3m>,||u||2:1” N Tl
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