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Abstra
t

We 
onsider zero-for
ing equalization of frequen
y sele
tive MIMO 
hannels by


ausal and linear time-invariant pre
oders in the presen
e of intersymbol interfer-

en
e. Our motivation is twofold. First, we are 
on
erned with the optimal perfor-

man
e of 
ausal pre
oders from a worst 
ase point of view. Therefore we 
onstru
t

an optimal 
ausal pre
oder, whereas 
ontrary to other works our 
onstru
tion is not

limited to �nite or rational impulse responses. Moreover we derive a novel numeri
al

approa
h to 
omputation of the optimal perfoman
e index a
hievable by 
ausal pre-


oders for given 
hannels. This quantity is important in the numeri
al determination

of optimal pre
oders.
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1 Introdu
tion

Many of todays state-of-the-art wireless systems adopt multiple-input

multiple-output (MIMO) transmission to in
rease spe
tral e�
ien
y together

with multi-
arrier methods to 
ope with intersymbol interferen
e (ISI). Multi-


arrier methods simplify 
hannel equalization be
ause they de
ompose fre-

quen
y sele
tive 
hannels into multiple �at fading 
hannels (the so 
alled 
ar-

riers), whi
h 
an be easily equalized. While multi-
arrier transmission o�ers

many advantages in
luding e�e
tive 
hannel equalization, it also exhibits some

drawba
ks regarding the peak-to-average power ratio (PAPR). Often single-


arrier transmission, where the frequen
y sele
tive 
hannel is approa
hed di-

re
tly, is 
onsidered as an alternative to multi-
arrier transmission [1,2,3℄.

While therefore single-
arrier transmission is interesting on its own, it has been

further shown in [4,5℄, that in fa
t many 
ommon multi-
arrier, 
ode-multiplex

and spa
e-time blo
k-
ode systems 
an be modeled as single-
arrier systems

by virtual enhan
ement of the MIMO system. Various authors used this ap-

proa
h to derive new equalization methods based on single-
arrier equalization

in order to exploit joint equalization of spatial, time and 
ode or frequen
y

domains [4,5,6,7℄. There, and generally for linear time-invariant (LTI) equal-

ization of single-
arrier systems with zero-for
ing and 
ausality 
onstraint, one

usually solves the so-
alled Bezout Identity

H(eiθ)G(eiθ) = I (0 ≤ θ < 2π),

where the matrix-valued transfer fun
tion H of a stable and 
ausal LTI system

(the frequen
y sele
tive MIMO 
hannel) is given, and a transfer fun
tion G
of a stable and 
ausal LTI pre
oder, whi
h equalizes H , has to be 
omputed

[8℄. Transmitters may use su
h G to pre-equalize the 
hannel. Alternatively,

re
eivers 
an also solve the Bezout Identity for the transposed 
hannel HT
(i.e.

HTG = I) and equalize the 
hannel H with the transposed solution GT
. The

main di�
ulty in solving the Bezout Identity is the 
ausality of G, be
ause
the naive approa
h

G(eiθ) = H(eiθ)∗[H(eiθ)H(eiθ)∗]−1 (0 ≤ θ < 2π)

of a pseudoinverse generally results in a non-
ausal pre
oder [9℄. If the number

of 
hannel inputs equals the number of 
hannel outputs, the pseudoinverse is

the unique solution to the Bezout Identity. The situation 
hanges if the num-

ber of inputs of H is larger than the number of outputs. Now pre
oders for H
no longer have to be unique. Usually this non-uniqueness then is exploited to


hoose a 
ausal G that is optimal in some sense. The two 
ommon optimal-

ity 
onditions are minimality of the equalizers energy and minimality of the

equalizers peak value, respe
tively. The minimal energy 
ondition 
orresponds

to the 
lassi
al approa
h of signal-to-noise ratio (SNR) maximization [5,7,10℄.

However, this approa
h is only feasible if the statisti
al properties of the noise
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are known. For unknown noise statisti
s, it 
annot be applied. Pi
king up an

idea from robust 
ontrol (see e.g. [11℄), where one is 
on
erned with unpre-

di
table errors that arise e.g. due to un
ertain modeling, instead minimization

of the equalizers peak value has been proposed [6℄. As we shall see later, this

minimizes the worst 
ase error instead of the average error, whi
h 
annot be

determined due to the unknown noise statisti
s.

In this paper we are interested in the optimal performan
e that 
ausal pre-


oders and equalizers 
an ar
hive regarding the worst 
ase error. Therefore

we show how a solution to the Bezout Identity with minimal peak value 
an

be 
onstru
ted. We dis
uss why this gives the best upper bounds on various

perturbations in the system. Contrary to other ways to solve the Bezout Iden-

tity, our 
onstru
tion holds for the most general 
ase of systems with in�nite

impulse responses (whi
h are not required to be rational) and even in�nite

input and output ve
tors, i.e. we allow systems to have in�nite temporal as

well as in�nite spatial dimension. We further give a new result on the numer-

i
al 
omputation of the minimum peak value a
hievable by 
ausal solutions

to the Bezout Identity if the numbers of inputs and outputs are �nite. This

is important be
ause for all methods known to the authors that solve the Be-

zout Identity with minimal peak value in a numeri
ally exploitable way, the

minimal peak value has to be known in advan
e [6,12℄. Therefore e�
ient 
om-

putation of the minimal peak value is important for numeri
al solution of the

Bezout Identity. We point out that the optimization approa
h in [13℄ requires

no prior knowledge of the minimal peak value. However, it only 
omputes

�nite impulse response solutions to the Bezout Identity, whi
h are generally

suboptimal.

We pro
eed as follows. In Se
tion 2 we give our problem statement after we

have introdu
ed some notation and ne
essary basi
 mathemati
al 
on
epts.

We further dis
uss the pra
ti
al interpretation of our problem statement. In

Se
tion 3 we derive our results on the numeri
al 
omputation of the minimal

peak value a
hievable by 
ausal solutions to the Bezout Identity. Then a op-

timal 
ausal pre
oder is 
onstru
ted in Se
tion 4. We �nally draw 
on
lusions

in Se
tion 5.

2 Preliminaries

2.1 Notation

We denote the 
omplex numbers by C, the 
omplex matri
es with m rows and

n 
olumns by Cm×n
and the 
omplex 
olumn ve
tors by Cm := Cm×1

. The


omplex unit dis
 is given as D := {z ∈ C : |z| < 1}, its border is the unit 
ir
le
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T := {z ∈ C : |z| = 1}. Complex 
onjugation is denoted by (̄·), taking adjoints
in a Hilbert spa
e by (·)∗. Furthermore H,E and E∗ denote separable Hilbert

spa
es with s
alar produ
ts 〈·, ·〉H, 〈·, ·〉E and 〈·, ·〉E∗, respe
tively. By H⊕E we

mean the dire
t Hilbert sum, i.e. the spa
e H×E equipped with s
alar produ
t

〈h⊕ e, g ⊕ f〉H⊕E := 〈h, g〉H + 〈e, f〉E . The spa
e of bounded linear operators

between E and E∗ is denoted by L(E , E∗). It is equipped with the operator

norm ‖T‖op := supe∈E,‖e‖E=1 ‖Te‖E∗ . On any spa
e the identity operator is

written as I. For matri
es A ∈ Cm×n
the smallest and largest singular value

will be denoted by σmin(A) and σmax(A), respe
tively. The 
losure of a set M
is denoted by closureM , the spa
e spanned by all linear 
ombinations of its

elements by spanM .

As usual, Lp
T
(X) denotes the spa
e of (equivalen
e 
lasses of) p-integrable

fun
tions on T with values in a Bana
h spa
e X . The norm in Lp
T(X) is

‖f‖pp :=
∫ 2π
θ=0 ‖f(e

iθ)‖pX
dθ
2π

for 1 ≤ p < ∞ and ‖f‖∞ := esssupζ∈T ‖f(ζ)‖X =
inf {m > 0 : µ({ζ ∈ T : ‖f(ζ)‖X > m}) = 0} for p = ∞, where µ denotes the

Lebesgue measure. We refer to [14, Se
tion 3.11℄ and the referen
es therein

for details on integration of ve
tor- and operator-valued fun
tions. If p = 2,
L2
T(E) equipped with the s
alar produ
t 〈f, g〉2 :=

∫ 2π
θ=0〈f(e

iθ), g(eiθ)〉E
dθ
2π

is a

Hilbert spa
e. For F ∈ L∞
T
(L(E , E∗)) we denote the point-wise adjoint by F ∗

,

i.e. F ∗(ζ) = (F (ζ))∗ almost everywhere on the unit 
ir
le.

2.2 Basi
 Results and Con
epts

2.2.1 Hardy Spa
es and Toeplitz Operators

We introdu
e the usual Hardy spa
es on the dis
 by

H2
D
(E) :=

{
u : D → E : u analyti
, ‖u‖22 := sup

0<r<1

∫ 2π

θ=0
‖u(reiθ)‖2E

dθ

2π
< ∞

}
,

H∞
D
(E , E∗) :=

{
F : D → L(E , E∗) : F analyti
, ‖F‖∞ := sup

z∈D
‖F (z)‖op < ∞

}
.

The Hardy spa
es play an important role in systems theory, sin
e they are

the set of transfer fun
tions of 
ausal �nite energy signals and 
ausal and

energy-stable transfer fun
tions for LTI systems, respe
tively [15℄. De�nition

is also possible on the upper half plane instead of the unit dis
. On both

domains, the Hardy fun
tions are 
ompletely determined by their values on

the borders of the domain. Therefore, ea
h Hardy fun
tion on the unit dis


has a 
orresponding fun
tion on the 
ir
le. The spa
e of those 
orresponding

fun
tions 
an be given as follows.
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For fun
tions f ∈ L1
T
(E) or f ∈ L1

T
(L(E , E∗)) the k-th Fourier 
oe�
ient is

f̂k :=
∫ 2π

θ=0
f(eiθ)e−ikθ dθ

2π
(k ∈ Z).

Therewith, the Hardy spa
es on the 
ir
le are given by

H2
T
(E) :=

{
u ∈ L2

T
(E) : ûk = 0 for k < 0

}
,

H∞
T (E , E∗) :=

{
F ∈ L∞

T (L(E , E∗)) : F̂k = 0 for k < 0
}
.

It is important to know that the two notions of Hardy spa
es on dis
 and


ir
le are equivalent, sin
e by Fatou's Theorem the radial limit (bu)(eiθ) :=
limrր1 u(re

iθ) exists almost everywhere and the mapping b is an isometri


isometry between the Hardy spa
es on dis
 and 
ir
le (see [14, Th. 3.11.7,

3.11.10℄). Therefore we will only expli
itly distinguish between those spa
es if

ne
essary, and simply write H2(E) and H∞(E , E∗) otherwise.

An important property of L2
T
(E) is Parseval's Relation ([16, p. 184℄), by whi
h

‖u‖22 =
∞∑

k=−∞

‖ûk‖
2
E for all u ∈ L2

T(E).

We will now introdu
e Toeplitz operators, whi
h are the standard example for

operators on Hardy spa
es and whi
h will also play an important role in what

follows. The orthogonal proje
tion (P+u)(ζ) :=
∑∞

k=0 ûkζ
k
from L2

T
(E) into

H2
T
(E) is 
alled the Riesz Proje
tion. The proje
tion fromH2

T
(E) into the spa
e

of degree N polynomials is (PNu)(ζ) :=
∑N

k=0 ûkζ
k
. Now for F ∈ L∞

T (E , E∗)
the Toeplitz operator with symbol F is the operator whi
h maps H2

T
(E) into

H2
T(E∗) via TFu := P+(Fu).

The next result allows us to get an exa
t estimate of the minimum norm

a
hievable by solutions of the Bezout Identity.

Theorem 1 ([14, Th. 9.2.1℄) Let F ∈ H∞(E , E∗) and δ > 0. Then some

G ∈ H∞(E∗, E) with ‖G‖∞ ≤ δ−1
and F (z)G(z) = I for all z ∈ D exists if

and only if

‖TF ∗u‖2 ≥ δ‖u‖2 for all u ∈ H2(E∗).

2.2.2 S
hur Class

Fun
tions in the unit ball of H∞(E , E∗), the so-
alled S
hur 
lass

S(E , E∗) := {F ∈ H∞(E , E∗) : ‖F‖∞ ≤ 1} ,
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have some spe
ial properties, whi
h will turn out to be useful in the 
onstru
-

tion of a minimum norm right inverse. Every S
hur fun
tion 
an be fa
torized

as follows.

Theorem 2 ([17, Th. 2.1℄) Let F : D → L(E , E∗). Then F ∈ S(E , E∗) if

and only if there exists a holomorphi
 fun
tion W : D → L(H, E∗) su
h that

I − F (z)F (w)∗ = (1− zw̄)W (z)W (w)∗ (z, w ∈ D).

Note that W 
an be given expli
itly, see [17, Se
. 3.3℄. We �nish with the

observation that also 
ertain blo
k operators de�ne S
hur fun
tions.

Lemma 3 ([12, Lem. 2℄) Let T ∈ L(H⊕ E ,H⊕ E∗) with ‖T‖op ≤ 1. Then
T has a unique blo
k matrix representation

T =



A B

C D


 :



H

E


→



H

E∗




and the fun
tion

F : D → L(E , E∗), F (z) := D + Cz(I − zA)−1B

is S
hur, i.e. F ∈ S(E , E∗).

Fun
tions de�ned as F in the Lemma above are known in operator theory as


hara
teristi
 fun
tions, while unitary operators like T are known as unitary


olligations. Those 
on
epts resemble mu
h the 
on
ept of a transfer fun
tion

and a state-spa
e realization in 
ontrol theory. We refer to [17,18℄ for details.

2.3 Problem Formulation

Before we give an exa
t problem formulation we introdu
e and dis
uss the

target obje
tive

γopt(H) := inf ({‖G‖∞ : G ∈ H∞(E∗, E), H(z)G(z) = I for all z ∈ D} ∪ {∞}) ,

whi
h is, as we will see, a tight lower bound on the worst-
ase transmit energy

enhan
ement of 
ausal pre
oders for the 
hannel H , and a measure for the

a
hievable robustness against imperfe
tly known 
hannel transfer fun
tions.

Note that in parti
ular γopt(H) = ∞ if and only if H has no right inverse in

H∞
. We always assumeH ∈ H∞(E , E∗) unless we expli
itly mention otherwise.

It was shown in [19℄ that if dim E∗ < ∞, existen
e of a right inverse in H∞
is

6



further equivalent to

H(z)H(z)∗ ≥ δ2I for some δ > 0 and all z ∈ D.

It is somewhat surprising that although by the result from [19℄ γopt < ∞ if

and only if

δc := sup
{
δ ≥ 0 | H(z)H(z)∗ ≥ δ2I for all z ∈ D

}
> 0,

δc has no dire
t 
onne
tion to γopt, i.e. γopt 
annot be 
omputed from δc
[9℄. However, as we will see, it is important to know γopt in advan
e of the


onstru
tion of an optimal pre
oder. Therefore we derive a new method for

numeri
al 
omputation of γopt and then solve the following problem.

Problem 4 Let γopt(H) < ∞. How 
an G ∈ H∞(E∗, E) with H(z)G(z) = I
for all z ∈ D and ‖G‖∞ = γopt(H) be 
onstru
ted?

We 
lose this se
tion with a short dis
ussion in whi
h sense minimization of

the in�nity norm in Problem 4 gives optimal �lters. The input-output relation

of a frequen
y sele
tive MIMO 
hannel is given by

y(ζ) = H(ζ)x(ζ) + n(ζ) (ζ ∈ T),

where H denotes the 
hannel, x the transmitted signals and y and n the

re
eived signals and additive noise, respe
tively. If a pre
oder G for H is used

to pre-distort the transmitted signals, this input-output relation 
hanges to

y(ζ) = H(ζ)G(ζ)x(ζ) + n(ζ) = x(ζ) + n(ζ) (ζ ∈ T).

There are two advantages in minimizing the in�nity norm of the pre
oder.

The �rst advantage is minimization of the transmit signals energy. The energy

ne
essary to transmit a signal x using the pre
oder G is given by ‖Gx‖22.
Without loss of generality, let us assume that ‖x‖22 = 1. Then, it 
an be

shown that the transmit energy ne
essary in the worst 
ase is exa
tly ‖G‖2∞,

i.e.

sup
x∈H2(E∗),‖x‖2=1

‖Gx‖22 = ‖G‖2∞.

Thus, minimizing ‖G‖∞ guarantees the lowest amount of ne
essary transmit

energy. If equalizers instead of pre
oders are 
onsidered, i.e.

y(ζ) = G(ζ)[H(ζ)x(ζ) + n(ζ)] = x(ζ) +G(ζ)n(ζ) (ζ ∈ T),

this is equivalent to minimal worst 
ase noise enhan
ement.

The se
ond advantage of minimization of the in�nity norm is robustness. As-

sume an imperfe
tly known 
hannel transfer fun
tion H∆ = H +∆ with right

inverse G∆, where H is the 
orre
t 
hannel and ∆ is a perturbation. Using

7



the same argument as before, we see that the energy of the worst error that


an result from the perturbation equals

sup
x∈H2(E∗),‖x‖2=1

‖x−HG∆x‖
2
2 = sup

x∈H2(E∗),‖x‖2=1

‖∆G∆x‖
2
2 = ‖∆G∆‖

2
∞.

Sin
e it holds ‖∆G∆‖
2
∞ ≤ ‖∆‖2∞‖G∆‖

2
∞, and this inequality 
an be
ome sharp

e.g. for ∆ = δI, we see that minimizing ‖G∆‖∞ also minimizes the worst 
ase

error that results from an imperfe
tly known 
hannel transfer fun
tion. This

argument applies to equalizers in the same way it applies to pre
oders.

3 Computation of the Optimal Norm

This se
tion deals with the 
omputation of the optimal norm γopt a
hievable
by solutions to the Bezout Identity. Sin
e many algorithms whi
h dire
tly

solve Problem 4 only 
ompute suboptimal solutions, i.e. given γ > γopt they

ompute a right inverse Gγ with norm ‖Gγ‖∞ < γ, it is important to know the

optimal value for γ in advan
e [6,12℄. We point out that 
omputation of γopt
also arises in other 
ontexts, see e.g. Remark 1 in [20℄ (with the next 
orollary

in mind).

We start with an exa
t (but in
omputable) formula for γopt. The next two


orollaries are dire
t 
onsequen
es of Theorem 1.

Corollary 5 For ρ(H) := infu∈H2(E∗),‖u‖2=1 ‖TH∗u‖2, it holds γopt(H) =
ρ(H)−1

.

Corollary 6 If γopt(H) < ∞, a right inverse G ∈ H∞(E∗, E) with ‖G‖∞ =
γopt(H) exists.

The interesting thing about Corollary 5 is that it shows us why the optimal


ausal equalizer 
annot perform better than the optimal non-
ausal one. Note

that the optimal norm for non-
ausal equalizers is given by

(
inf

u∈H2(E∗),‖u‖2=1
‖H∗u‖2

)−1

(see [9℄), whi
h is the same formula as Corollary 5, ex
ept for the additional

Riesz proje
tion P+:

γopt(H) =

(
inf

u∈H2(E∗),‖u‖2=1
‖P+(H

∗u)‖2

)−1

.

It is now 
lear that 
ausal equalizers perform worse be
ause the signal energy

of u whi
h is mapped into the non-
ausal part of H∗u is 
ut o�. How mu
h

8



energy is shifted into the non-
ausal part thereby depends on the Fourier


oe�
ients of H∗
, whi
h are related to H by Ĥ∗

k = Ĥ∗
−k for k ∈ Z.

We now derive a 
omputable approximation of γopt. The main idea will be to

approximate the relation γopt = ρ−1
from Corollary 5. In order to 
ompute

γopt, we try to approximate ρ with

ρN (H) := inf
u∈PNH2(E∗),‖u‖2=1

‖PNTH∗u‖2,

i.e. we restri
t domain and image of TH∗
to polynomials of degree N and

take the in�mum for this restri
tion. Be
ause PNTH∗PN is linear and �nite

dimensional, it 
an be represented by a matrix.

The main result of this se
tion is the following.

Theorem 7 The sequen
e {ρN (H)}N is monotoni
ally de
reasing and 
on-

verges with limit

lim
N→∞

ρN (H) = ρ(H) = γopt(H)−1.

If H ∈ H∞(Cm×n) with m ≤ n, 1 and

ΓH,N :=




Ĥ∗
0 Ĥ∗

1 . . . Ĥ∗
N

0 Ĥ∗
0 . . . Ĥ∗

N−1

.

.

.

.

.

.

.

.

.

.

.

.

0 . . . 0 Ĥ∗
0




∈ C
n(N+1)×m(N+1),

ρN 
an be 
omputed as ρN (H) = σmin(ΓH,N).

PROOF. We only sket
h the proof here, the full proof is given in the ap-

pendix. It 
onsists of three main steps. The �rst step is to show that the

sequen
e {ρN (H)}N is monotoni
ally de
reasing and lower bounded by ρ(H).
The main idea is that the relation

ρN (H) = inf
u∈PNH2(E∗),‖u‖2=1

‖PNTH∗u‖2 = inf
u∈PNH2(E∗),‖u‖2=1

‖TH∗u‖2

holds for every N ∈ N and thus the in�mum is always taken over the same

target obje
tive, but over a spa
e whi
h in
reases with N . This is done in the

appendix in Proposition 14. In a se
ond step it is shown that the lower bound

ρ(H) for {ρN(H)}N is sharp. Therefore for arbitrary ǫ > 0 a sequen
e {uN}N
su
h that

uN ∈ PNH
2(E∗), ‖uN‖2 = 1 and lim

N→∞
‖PNTH∗uN‖2 ≤ ρ(H) + ǫ

1
Note that trivially γopt(H) = ∞ for m > n.

9



is 
onstru
ted in the appendix in Proposition 15. Thus ρN(H) 
onverges to

ρ(H), whi
h is equal to γopt(H)−1
by Corollary 5. Finally Proposition 16 in

the appendix gives the formula for 
omputation of ρN(H) via singular value

de
omposition if H is matrix-valued. �

Sin
e the arguments used to prove Theorem 7 hold analogously if we approx-

imate

sup
u∈H2(Cm),‖u‖2=1

‖TH∗u‖2 = ‖TH∗‖op = ‖T ∗
H‖op = ‖TH‖op = ‖H‖∞

instead of ρN(H) = infu∈H2(Cm),‖u‖2=1 ‖TH∗u‖2, we also see that for H ∈
H∞(Cm×n) the sequen
e {σmax(ΓH,N)}N is monotoni
ally in
reasing and 
on-

verges with limit

lim
N→∞

σmax(ΓH,N) = ‖H‖∞.

We note that the well-known fa
t that the limit ‖H‖∞ of σmax(ΓH,N) 
an be

found by performing a grid sear
h over all frequen
ies, i.e.

lim
N→∞

σmax(ΓH,N) = ‖H‖∞ = esssupζ∈T σmax(H(ζ)),

does not 
arry over to 
omputation of γopt(H). Here, in general we have

lim
N→∞

σmin(ΓH,N) = γopt(H)−1 6= essinfζ∈T σmin(H(ζ)).

This di
hotomy results from the fa
t that while indeed

sup
u∈H2(E∗),‖u‖2=1

‖H∗u‖2 = sup
u∈H2(E∗),‖u‖2=1

‖P+(H
∗u)‖2,

in general we have

inf
u∈H2(E∗),‖u‖2=1

‖H∗u‖2 6= inf
u∈H2(E∗),‖u‖2=1

‖P+(H
∗u)‖2.

This 
an be easily seen in the next example.

Example 8 Set H(ζ) = ζ for ζ ∈ T. Then by Parseval's Relation

inf
u∈H2(C),‖u‖2=1

‖H∗u‖2 = inf
u∈H2(C),‖u‖2=1

‖u‖2 = 1,

however for u(z) = 1 we have (H∗u)(ζ) = ζ̄ and therefore

‖P+(H
∗u)‖2 = ‖0‖2 = 0.

It is also important to note that Theorem 7 does not generalize to the 
ase

H ∈ L∞
T
. We give an example where ρ(H) = 1, a inverse in H∞

exists, but

the smallest singular values of the �nite se
tions do not 
onverge to ρ(H).

10



Example 9 Set H(ζ) := ζ̄ for ζ ∈ T. Then by Parseval's Relation

ρ(H) = inf
u∈H2(C),‖u‖2=1

‖TH∗u‖2 = inf
u∈H2(C),‖u‖2=1

‖Tζu‖2 = inf
u∈H2(C),‖u‖2=1

‖u‖2 = 1.

Further, H has a inverse in H∞
, i.e. G(ζ) = ζ. However,

σmin







Ĥ∗
0 Ĥ∗

1 . . . Ĥ∗
N

Ĥ∗
−1 Ĥ∗

0
.

.

.

.

.

.

.

.

.

.

.

.

.

.

. Ĥ∗
1

Ĥ∗
−N . . . Ĥ∗

−1 Ĥ∗
0







= σmin







0 . . . . . . 0

1
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1 0







= 0

for all N ∈ N.

4 Constru
tion of the Optimal Causal Pre
oder

In this se
tion we 
onstru
t a minimum norm solution to the Bezout Identity,

i.e. we solve Problem 4. The major idea of the proof is the following. We

�rst show how to 
onstru
t right inverses with norm at most one. Then given

any H ∈ H∞(E , E∗), we apply this te
hnique to the s
aled fun
tion γoptH .

Appropriate res
aling of the obtained inverse will result in a minimum norm

right inverse.

4.1 S
hur Right Inverse

The �rst step is 
onstru
tion of a S
hur right inverse. Therefore we fa
torize

the fun
tion to be inverted similar to Theorem 2 and use this fa
torization

to 
onstru
t a 
ontra
tion of the form of T in Lemma 3. The 
hara
teristi


fun
tion of this 
ontra
tion then is the wanted right inverse. This is a variant of

the te
hnique known as �lurking isometry method�, whi
h has been introdu
ed

by Ball and Trent [17, Th. 5.2℄ and independently Agler and M
Carthy [21℄

to solve the Bezout Identity.

We start with the fa
torization.

Lemma 10 Let H have a right inverse G ∈ S(E∗, E). Then there exits a

holomorphi
 fun
tion W : D → L(H, E∗) su
h that

H(z)H(w)∗ − I = (1− zw̄)W (z)W (w)∗ (z, w ∈ D). (1)

11



PROOF. By Theorem 2 there exists a holomorphi
 fun
tion W̃ : D →
L(H̃, E) su
h that I −G(z)G(w)∗ = (1− zw̄)W̃ (z)W̃ (w)∗. Thus

H(z)H(w)∗ −H(z)G(z)G(w)∗H(w)∗ = (1− zw̄)H(z)W̃ (z)W̃ (w)∗H(w)∗.

Sin
e HG = I we obtain with W (z) := H(z)W̃ (z) that

H(z)H(w)∗ − I = (1− zw̄)W (z)W (w)∗.

�

We 
an now introdu
e the appropriate blo
k operator.

De�nition 11 Let H have a de
omposition like (1) in Lemma 10. We de�ne

the sets

D0 := closure


span







w̄W (w)∗

H(w)∗


 e∗ : w ∈ D, e∗ ∈ E∗






 ⊂ H⊕ E ,

R0 := closure


span







W (w)∗

I


 e∗ : w ∈ D, e∗ ∈ E∗






 ⊂ H⊕ E∗,

and a fun
tion V0 : D0 → R0 by

∞∑

k=0

ck



w̄W (w)∗

H(w)∗


 e∗k 7→

∞∑

k=0

ck



W (w)∗

I


 e∗k.

Note that it 
an be easily shown with (1) that V0 is a isometry, i.e.

〈
V0



h

e


 , V0



h

e



〉

H⊕E∗

=

〈

h

e


 ,



h

e



〉

H⊕E

for all



h

e


 ∈ H ⊕ E .

Later we will use this fa
t when we apply Lemma 3 to an extension of V0. The

wanted right inverse 
an now be given expli
itly.

Theorem 12 Let H have a de
omposition like (1) in Lemma 10 and 
onstru
t

V0 as in De�nition 11. Denote by

V00 =



A B

C D


 :



H

E


→



H

E∗




12



the 
ontinuation of V0 with zero, i.e.

V00d =




V0d , d ∈ D0

0 , d /∈ D0

.

Then the fun
tion

G(z) := D∗ +B∗(I − zA∗)−1zC∗ (z ∈ D)

is a S
hur right inverse of H, i.e. G ∈ S(E∗, E) and HG = I.

PROOF. Let w ∈ D. By 
onstru
tion of V00 it holds



A B

C D






w̄W (w)∗

H(w)∗


 e∗ =



W (w)∗

I


 e∗,

for all e∗ ∈ E∗, whi
h is equivalent to

Aw̄W (w)∗ +BH(w)∗ = W (w)∗ (2)

and

Cw̄W (w)∗ +DH(w)∗ = I. (3)

Sin
e ‖V00‖op ≤ ‖V0‖op = 1 be
ause V0 is an isometry, we have ‖A‖op ≤ 1 and

thus ‖Aw̄‖op < 1. Thus I − Aw̄ is invertible, and (2) yields

W (w)∗ = (I −Aw̄)−1BH(w)∗.

Plugging this representation of W (w)∗ into (3) results in

Cw̄(I − Aw̄)−1BH(w)∗ +DH(w)∗ = I.

Taking adjoints and repla
ing w by z shows that

H(z)
[
D∗ +B∗(I − zA∗)−1zC∗

]
= I.

This right inverse is S
hur by Lemma 3. �

4.2 Minimum Norm Right Inverse

The extension of Theorem 12 from an upper bound one on right inverses

to arbitrary bounds is a simple s
aling argument. Note that in parti
ular the

upper bound γ = γopt(H) is valid due to Corollary 6, and results in a minimum

norm right inverse of H .

13



Corollary 13 Let γopt(H) ≤ γ < ∞. Denote by G̃ ∈ S(E∗, E) the right in-

verse to H̃ := γH as given by Theorem 12. Then G := γG̃ is a right inverse

of H with ‖G‖∞ ≤ γ.

PROOF. Sin
e γopt(H) ≤ γ < ∞, a right inverse Ǧ ∈ H∞(E∗, E) of H with

‖Ǧ‖∞ ≤ γ exists by Corollary 6. Thus

γHγ−1Ǧ = I, ‖γ−1Ǧ‖∞ ≤ 1,

whi
h shows that H̃ = γH has a right inverse in S(E∗, E). Let G̃ ∈ S(E∗, E)
denote the right inverse of H̃ given by Theorem 12. Then G = γG̃ holds

‖G‖∞ = γ‖G̃‖∞ ≤ γ as well as

HG = γ−1H̃γG̃ = I.

�

5 Con
lusions

In this paper we 
onsidered the problem of the 
onstru
tion of a 
ausal pre-


oder with optimal robustness for a stable and 
ausal LTI system with multi-

ple inputs and outputs. This problem is equivalent to �nding a solution to the

Bezout Identity with minimized peak value, for whi
h we gave an expli
it 
on-

stru
tion. We derived a novel method for numeri
al 
omputation of the lowest

peak value a
hievable in this problem, be
ause it has to be known prior to the


onstru
tion of the optimal pre
oder. This method is based on 
omputation of

a singular value de
omposition of the �nite se
tion of a 
ertain in�nite blo
k

Toeplitz matrix, whi
h is dire
tly 
onstru
ted from the Fourier 
oe�
ients of

the systems transfer fun
tion.

Appendix

The 
omplete proof of Theorem 7 follows splitted in three propositions.

The �rst proposition shows that {ρN (H)}N is monotoni
ally de
reasing and


onverges with a limit not lower than ρ(H).

Proposition 14 It holds

ρN(H) ≥ ρN+1(H) ≥ ρ(H)

for all N ∈ N.

14



PROOF. Let u ∈ H2(E∗). We set v := PNu and w := TH∗v. A simple


omputation shows that the Fourier 
oe�
ients of w = P+(H
∗v) are given by

ŵk =





∑∞
j=0 Ĥ

∗
j v̂k+j , k ≥ 0

0 , k < 0
.

Sin
e by 
onstru
tion v̂k = 0 for k > N , we see that ŵk = 0 for k > N . Thus

‖TH∗PNu‖
2
2 = ‖w‖22 =

∞∑

k=0

‖ŵk‖
2
2 =

N∑

k=0

‖ŵk‖
2
2 = ‖PNw‖

2
2 = ‖PNTH∗PNu‖

2
2

(4)

holds by Parseval's Relation for every u ∈ H2(E∗).

Be
ause trivially PNH
2(E∗) ⊂ PN+1H

2(E∗) ⊂ H2(E∗), we obtain with (4), that

ρN (H) = inf
u∈PNH2(E∗),‖u‖2=1

‖PNTH∗u‖2

= inf
u∈PNH2(E∗),‖u‖2=1

‖TH∗u‖2

≥ inf
u∈PN+1H2(E∗),‖u‖2=1

‖TH∗u‖2 (= ρN+1(H))

≥ inf
u∈H2(E∗),‖u‖2=1

‖TH∗u‖2

= ρ(H).

�

We now ensure that the limit of {ρN (H)}N also is not greater than ρ(H).

Proposition 15 For every ǫ > 0 there exists K ∈ N su
h that

ρN (H) ≤ ρ(H) + ǫ

for all N > K.

PROOF. We assume H 6= 0 sin
e the 
ase H = 0 is trivially true. Let ǫ > 0
and 
hoose ǔ ∈ H2(E∗) with ‖ǔ‖2 = 1 su
h that

|‖TH∗ǔ‖2 − ρ(H)| =

∣∣∣∣∣‖TH∗ǔ‖2 − inf
u∈H2(E∗),‖u‖2=1

‖TH∗u‖2

∣∣∣∣∣ ≤
ǫ

6
. (5)

Sin
e ǔ ∈ H2(E∗), TH∗ ǔ ∈ H2(E) and ‖ǔ‖2 = 1, Parseval's Relation shows

that

lim
N→∞

‖PN ǔ− ǔ‖2 = lim
N→∞

‖PNTH∗ ǔ− TH∗ǔ‖2 = 0, lim
N→∞

‖PN ǔ‖2 = 1.

15



Thus K ∈ N exists su
h that

‖PN ǔ− ǔ‖2≤
ǫ

6
‖TH∗‖−1

op , (6)

‖PNTH∗ǔ− TH∗ǔ‖2≤
ǫ

6
and (7)

‖PN ǔ‖2≥
ρ(H) + ǫ

2

ρ(H) + ǫ
(8)

for all N > K.

Then for N > K it follows that

‖PNTH∗PN ǔ− TH∗ǔ‖2≤‖PNTH∗(PN ǔ− ǔ)‖2 + ‖TH∗ǔ− PNTH∗ǔ‖2
≤‖PNTH∗‖op︸ ︷︷ ︸

≤‖TH∗‖op

‖PN ǔ− ǔ‖2︸ ︷︷ ︸
≤ǫ/(6‖TH∗‖op) by (6)

+ ‖TH∗ǔ− PNTH∗ ǔ‖2︸ ︷︷ ︸
≤ǫ/6 by (7)

≤
ǫ

3
(9)

and therefore

∣∣∣∣∣‖PNTH∗PN ǔ‖ − inf
u∈H2(E∗),‖u‖2=1

‖TH∗u‖2

∣∣∣∣∣

≤ |‖PNTH∗PN ǔ‖2 − ‖TH∗ ǔ‖2|︸ ︷︷ ︸
≤ǫ/3 by (9)

+

∣∣∣∣∣‖TH∗ǔ‖2 − inf
u∈H2(E∗),‖u‖2=1

‖TH∗u‖2

∣∣∣∣∣
︸ ︷︷ ︸

≤ǫ/6 by (5)

≤
ǫ

2
.

We see that

‖PNTH∗PN ǔ‖2 ≤ inf
u∈H2(E∗),‖u‖2=1

‖TH∗u‖2 +
ǫ

2
= ρ(H) +

ǫ

2
. (10)

Sin
e ‖PN ǔ‖2 > 0 for N > K by (8), the sequen
e {ǔN}N>K given by

ǔN :=
PN ǔ

‖PN ǔ‖2
∈ PNH

2(E∗)

is well-de�ned. We obtain the intended result
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ρN (H) = inf
u∈PNH2(E∗),‖u‖2=1

‖PNTH∗u‖2

≤ ‖PNTH∗ǔN‖2

=
‖PNTH∗PN ǔ‖2

‖PN ǔ‖2
(by (10))

≤
ρ(H) + ǫ

2

‖PN ǔ‖2
(by (8))

≤ ρ(H) + ǫ

for all N > K. �

We know now by the Propositions 14 and 15 that the sequen
e ρN 
onverges to

ρ for N → ∞. However it is still un
lear, how ρN 
an be 
omputed expli
itly.

The next proposition gives a simple formula for the numeri
al 
omputation of

ρN .

Proposition 16 Let H ∈ H∞(Cm×n) with m ≤ n and set

ΓH,N :=




Ĥ∗
0 Ĥ∗

1 . . . Ĥ∗
N

0 Ĥ∗
0 . . . Ĥ∗

N−1

.

.

.

.

.

.

.

.

.

.

.

.

0 . . . 0 Ĥ∗
0




∈ C
n(N+1)×m(N+1).

Then ρN (H) = σmin(ΓH,N).

PROOF. Let USV ∗ = ΓH,N denote a singular value de
omposition of ΓH,N

with singular values

σ1 ≥ · · · ≥ σm(N+1) ≥ 0.

Then U ∈ Cn(N+1)×n(N+1)
and V ∈ Cm(N+1)×m(N+1)

are unitary matri
es and

S ∈ C
n(N+1)×m(N+1)

is of the form

S =




σ1

.

.

.

σm(N+1)




.

Let u ∈ PNH
2(Cn) and set v := PNTH∗u. We saw already in the proof of
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Proposition 14, that the non-zero Fourier 
oe�
ients of v are uniquely deter-

mined by the relation




v̂0

v̂1
.

.

.

v̂N




=




Ĥ∗
0 Ĥ∗

1 . . . Ĥ∗
N

0 Ĥ∗
0 . . . Ĥ∗

N−1

.

.

.

.

.

.

.

.

.

.

.

.

0 . . . 0 Ĥ∗
0







û0

û1

.

.

.

ûN




= ΓH,N




û0

û1

.

.

.

ûN




.

Thus by Parseval's Relation

ρN (H)= inf
u∈PNH2(Cm),‖u‖2=1

‖PNTH∗u‖2

= inf
u∈Cm(N+1),‖u‖2=1

‖ΓH,Nu‖2

= inf
u∈Cm(N+1),‖u‖2=1

‖Su‖2

=σm(N+1)

=σmin(ΓH,N).

�
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