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Asymptotic optimal SINR performance bound

for space-time beamformers
Marc Oudin and Jean Pierre Delmas

Abstract

In many detection applications, the main performance criterion is the Signal to Interference plus Noise

Ratio (SINR). After linear filtering, the optimal SINR corresponds to the maximum value of a Rayleigh

quotient, which can be interpreted as the largest generalized eigenvalue of two covariance matrices. Using

an extension of Szegö’s theorem for the generalized eigenvalues of Hermitian block Toeplitz matrices, an

expression of the theoretical asymptotic optimal SINR w.r.t. the number of taps is derived for arbitrary

arrays with a limited but arbitrary number of sensors and arbitrary spectra. This bound is interpreted as

an optimal zero-bandwidth spatial SINR in some sense. Finally, the speed of convergence of the optimal

wideband SINR for a limited number of taps is analyzed for several interference scenarios.

Index Terms

Space-time beamforming, asymptotic SINR, performance analysis generalized eigenvalues, block

Toeplitz matrix, Szegö’s theorem.

I. INTRODUCTION

Beamforming is used in many applications. It consists of spatially filtering signals, thanks to an array of

sensors, and allows one to form “nulls” in the direction of interfering sources while maintaining a given

gain in a desired direction. Usually, signals are narrowband [1] and spatial processing alone is sufficient

(e.g., see [2]). However, in many applications, such as sonar, radar or communications, broadband signals

are required to achieve desired performance, for instance in terms of range resolution or channel capacity.

The counterpart is that it also leads to a loss in interference rejection performance (e.g., see [1], [3]) and
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some sort of frequency compensation is required to keep good nulling performance. Therefore, space-

time processing algorithms, which can be based on time or frequency-domain implementations, are used.

Most of these algorithms are designed with the constraint that the signal is preserved through optimization

criteria such as Linearly Constrained Minimum Variance (LCMV). However, since those algorithms are

optimized under constraints, they are not optimal from the Signal to Interference plus Noise Ratio (SINR)

point of view, which is the main performance criterion used for detection problems. Indeed, after linear

filtering and under the current assumption that observation data are composed of signal of interest and

additive Gaussian interference and noise, maximizing the SINR is equivalent to the Neyman-Pearson

criterion. In this paper, we consider this context of detection problems. Thus, the objective of this paper

is to study the performance of the optimal processing in the sense of SINR maximization.

When a linear filter is applied to observation data, the SINR corresponds to a Rayleigh quotient,

associated with the covariance matrices of the signal of interest and interference plus noise components.

Therefore, the optimal SINR corresponds to the maximum value of a Rayleigh quotient and can then

be interpreted as the largest generalized eigenvalue of the two matrices. Thus, the problem of the

optimal SINR computation is closely related to the generalized eigenvalue problem. However, since the

interpretation of the generalized eigenvalues of space-time covariance matrices with a finite number of

taps is difficult, the analysis of the optimal SINR broadband beamforming does not easily lead to explicit

expressions of the optimal SINR. This difficulty to analyse the performance of broadband beamformers

with a finite number of taps has also been noted for optimal processing in the sense of other criteria such

as Minimum Mean Squared Error (MMSE) or Minimum Variance Distortionless Response (MVDR).

Many authors have studied the performance of time domain (e.g., see [5], [6]) or frequency domain

implementations (e.g., see [12], [7]) but, to the best of our knowledge, most analyses have been done

through numerical simulations (e.g., see [5], [6], [8], [9]) or for particular cases of arrays with temporally

white signals (e.g., see [10]). However, we note that in some applications, the number of taps may be

much larger than the number of sensors. For instance, in microphone array processing, where acoustic

echoes of loudspeakers corrupt the desired signal, acoustic echo cancellers are often used, requiring a

great number of taps (about 1000 taps or more), whereas the number of microphones is most of the time

moderate (often less than 10 microphones, e.g., see [11]). Furthermore, if technology constraints impose

the number of sensors, time filtering may be realized by different means, e.g., by recursive or subband

filtering with different complexity/performance tradeoffs. In these conditions, an asymptotic approach in

the number of taps seems justified. Moreover, contrary to the previous studies, this approach allows us

to consider arrays of arbitrary geometry with a limited but arbitrary number of sensors and arbitrary
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interference and signal of interest spectra. Thus, we can compute a theoretical upper bound associated

with an infinite number of taps, useful for comparisons with the SINR obtained after different space-time

processing algorithms based for instance on FIR (e.g., see [4]), subband decomposition (e.g., see [12],

[13]), or IIR filters (e.g., see [14]).

In beamforming problems, if the observation data are modelled by second-order temporally stationary

processes, space-time covariance matrices are block-Toeplitz structured. In this paper, we make use of

that property to derive a closed-form expression of the asymptotic optimal SINR space-time beamformers.

To proceed, we use an extension of the celebrated Szegö’s theorem given by Grenander and Szegö in

[15] and revisited by Gray [16] which asserts that the eigenvalues of a sequence of Hermitian Toeplitz

matrices asymptotically behave like the samples of the Fourier transform of its entries, to the generalized

eigenvalues of a pair of Hermitian matrices that has been derived in [17], [18]. This extended theorem

allows one to characterize the generalized eigenvalue distribution of Toeplitz matrices and consequently

many properties can be derived from it, such as for instance the asymptotic behavior of the minimum

and maximum generalized eigenvalues. Using this theorem, we derive in this paper the expression of the

asymptotic optimal space-time SINR w.r.t. the number of taps for a fixed number of sensors and give

interpretations of the result in particular scenarios. Then, we complement theoretical results by numerical

simulations that illustrate the convergence speed of the optimal SINR for a limited number of taps to its

asymptotic optimal value in those scenarios.

This paper is organized as follows. In Section II, the data model is presented and the expression and

structure of the signal and interference plus noise covariance matrices is derived. Then, in Section III,

Szegö’s theorem extended to the asymptotic behavior of the generalized eigenvalues of block Toeplitz

matrices is recalled and applied to the performance analysis of optimal SINR space-time beamforming.

Finally, in Section IV, illustrations by numerical examples are given to illustrate the convergence of the

optimal SINR with a finite number of taps to the asymptotic one.

The following notations are used throughout the paper. Matrices and vectors are represented by bold

upper case and bold lower case characters, respectively. Vectors are by default in column orientation,

H stands for conjugate transpose. Tr(.) and λ1(.) ≥ . . . ≥ λL(.) denote the trace of a matrix and the

decreasing ordered eigenvalues of an L× L matrix whose eigenvalues are real valued, respectively.
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II. DATA MODEL

A. Data model

Let us consider an array composed of L sensors. We denote by B the bandwidth of the signals

around the center frequency f0. Then, we consider an environment composed of a signal of interest,

a field of interference and thermal noise. These three signals are uncorrelated with each other. The

interference and the thermal noise are modelled by non-zero bandwidth second-order stationary processes

and furthermore the thermal noise is spatially and temporally white, with power σ2
n. The baseband,

possibly correlated J interferers1 have power spectral density (PSD) (Sj(f))j=1..J and cross power

spectral density (Sj,j′(f))j 6=j′=1..J . The interference plus noise L×L spatial covariance matrix associated

with the baseband received signal is equal to (e.g., see [4, chap.6]):

∫ B

2

−B

2




J∑

j=1

Sj(f)φ(θj , f)φ(θj , f)H +
∑

1≤j 6=j′≤J

Sj,j′(f)φ(θj , f)φ(θj′ , f)H


 df + σ2

nI

with φ(θj , f) = [ejprT
1 i(θj), ejprT

2 i(θj), ...., ejprT
Li(θj)]T where (r`)`=1..L denotes a vector pointing from the

origin to the `th sensor, i(θj) a unit length arrival vector for an interference j in the direction θj and

p = 2π f0+f
c with c denoting the propagation speed of the wave. The signal of interest is also modelled

by a non-zero bandwidth second-order stationary process with PSD Ss(f). It is assumed to have a known

direction of arrival (DOA) θs. Its L× L spatial covariance matrix may be written as

∫ B

2

−B

2

Ss(f)φ(θs, f)φ(θs, f)Hdf. (1)

B. Expression of the space-time covariance matrices

Let K denote the number of taps used for temporal processing at each sensor at Shannon sampling rate

T = 1
B . The interference plus noise and signal of interest space-time covariance matrices, respectively

R̄i+n,K and R̄s,K are of dimension KL ×KL. They are respectively Hermitian positive definite (due

to the presence of thermal noise) and Hermitian positive semidefinite. Then, due to the second-order

stationarity of the processes, these two space-time covariance matrices are block-Toeplitz structured and

1Note that this model includes arbitrary second-order stationary field of interference using specular approximations of diffuse
interference, e.g., see [4, Section 5.5].

April 4, 2009 DRAFT



5

may be written as: 


R0 RH
1 · · · RH

K−1

R1
. . . . . . RH

K−2
...

. . .
...

RK−1 RK−2 . . . R0




(2)

where matrices (Rk)k=0,...,K−1 are given for R̄i+n,K and R̄s,K respectively by

∫ B

2

−B

2




J∑

j=1

Sj(f)φ(θj , f)φ(θj , f)H +
∑

1≤j 6=j′≤J

Sj,j′(f)φ(θj , f)φ(θj′ , f)H +
σ2

n

B
I


e−i2πkfT df

and ∫ B

2

−B

2

Ss(f)φ(θs, f)φ(θs, f)He−i2πkfT df

Let us note that the blocks Rk are not necessarily Toeplitz, depending on the structure of the array.

To apply the extended Szegö’s theorem in the next Section, we remark that the sequences Rk associated

with the interference plus noise and the signal of interest are generated by the Fourier coefficients of the

L× L Hermitian matrix valued functions

Ri+n(f) =
J∑

j=1

Sj(f)φ(θj , f)φ(θj , f)H +
∑

1≤j 6=j′≤J

Sj,j′(f)φ(θj , f)φ(θj′ , f)H +
σ2

n

B
I (3)

and

Rs(f) = Ss (f) φ (θs, f) φ (θs, f)H , (4)

respectively.

III. EXPRESSION OF THE ASYMPTOTIC OPTIMAL SPACE-TIME SINR

A. Expression of the space-time optimal SINR

Space-time beamforming consists in linearly filtering the LK-dimensional space-time data by a tap-

stacked vector wK when K taps are used. The optimal space-time processing (in the sense of SINR

maximization) maximizes the generalized Rayleigh quotient:

SINR(K) def= max
wK

wH
KR̄s,KwK

wH
KR̄i+n,KwK

(5)

where R̄s,K and R̄i+n,K are the space-time covariance matrices for the signal of interest and interfer-

ence+noise signals, respectively, and given by (2). As noted in the previous Section, R̄s,K and R̄i+n,K
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are, respectively, Hermitian positive semidefinite and Hermitian positive definite matrices. Therefore, the

solution wK of this optimization problem is given by the generalized eigenvector associated with the

largest generalized eigenvalue of the couple (R̄s,K , R̄i+n,K). Then, the optimal space-time SINR is given

by the largest generalized eigenvalue of (R̄s,K , R̄i+n,K) also corresponding to the largest eigenvalue λ1

of R̄−1
i+n,KR̄s,K

SINR(K) = λ1(R̄−1
i+n,KR̄s,K).

The value of this optimal SINR is difficult to interpret. Furthermore, closed-form expressions are not

attainable, except in the trivial case of narrowband signals. Consequently, it will be insightful to consider

the asymptotic (w.r.t. the number of taps) optimal SINR that will be used as an approximation for the

upper bound of the SINR in the case of a finite number K of taps.

B. Expression of the asymptotic optimal SINR for arbitrary interference

To consider in the following the limit of the SINR w.r.t. K for arbitrary given interference and signal

of interest DOAs, we use the following extension of Szegö’s theorem (e.g., see [17, th.3.9] and [18, th.1])

that we recall for the convenience of the reader2.

Theorem 1: Let AK,L and BK,L be two L block Toeplitz KL×KL Hermitian matrices with L fixed,

such that BK,L is positive definite, generated by absolutely summable sequences {au,v
n }n=...,−1,0,1,... and

{bu,v
n }n=...,−1,0,1,... with u, v = 1, ..., L of Fourier transform au,v(ω) =

∑
n au,v

n e−inω and bu,v(ω) =
∑

n bu,v
n e−inω, respectively. Let A(ω) be the L× L matrix defined by

A(ω) =




a1,1(ω) a1,2(ω) · · · a1,L(ω)

a2,1(ω) a2,2(ω) . . . a2,L(ω)
...

...
...

aL,1(ω) aL,2(ω) · · · aL,L(ω)




,

B(ω) is defined in the same way from bu,v(ω), with minω λL {B(ω)} = mb > 0. Then, for all continuous

functions F on Iω = [m,M ] with m
def= minω, λL(B−1(ω)A(ω)) and M

def= maxω λ1(B−1(ω)A(ω))

limK→∞
1
K

KL∑

u=1

F (λu(B−1
K,LAK,L)) =

1
2π

∫ π

−π

L∑

u=1

F (λu(B−1(ω)A(ω))dω.

2We note that the highly sophisticated mathematical tools employed in [17] are sometimes beyond the grasp of the engineering
community. Consequently the results obtained in this paper have not received appreciation they deserve in the signal processing
literature. Whereas, based on the hypothesis of absolutely summable elements, which relies on an extension of the notion of
asymptotic equivalence between matrix sequences established by Gray in [16], the proof given in [18] is within the reach of
most of the readers.
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From this theorem, we prove the following corollary in Appendix A:

Corollary 1: The largest generalized eigenvalue of (AK,L,BK,L) is convergent in K and

lim
K→∞

λ1(B−1
K,LAK,L) = max

ω
λ1(B−1(ω)A(ω)).

The assumptions of Theorem 1 and Corollary 1 apply for the sequence of the space-time covariance

matrices (R̄s,K , R̄i+n,K) w.r.t. the number K of taps:

lim
K→∞

SINR(K) = max
f∈[−B

2
; B

2
]
{λ1(R−1

i+n(f)Rs(f))}.

Then, since R−1
i+n(f)Rs(f) has rank one, it has the following single non-zero eigenvalue

Ss (f) φ (θs, f)H R−1
i+n(f)φ (θs, f)

associated with the eigenvector R−1
i+n(f)φ (θs, f) and we obtain the following result:

Result 1: For optimal space-time beamforming sampled at the Shannon rate, the SINR tends to the

following expression when the number K of taps increases to infinity

lim
K→∞

SINR(K) = max
f∈If

{Ss (f) φ (θs, f)H R−1
i+n(f)φ (θs, f)} (6)

where Ri+n(f) is defined by (3) and where If = [−B
2 ; B

2 ].

At first glance, this SINR tends to the maximum zero-bandwidth optimal spatial SINR associated with

a frequency fm in the band If . And consequently, this optimal asymptotic space-time beamformer has

the same behavior as an infinitely narrow band-pass filter at fm followed by an optimal zero-bandwidth

spatial beamformer.

But, we have to elaborate a little bit. Thus, let us compare this optimal asymptotic space-time SINR

(6) obtained for f = fm ∈ If with the zero-bandwidth optimal spatial SINR corresponding to the

demodulation frequency f0+fm associated with the same signal of interest, interference and noise powers

σ2
s , σ2

j and σ2
n. We see from (3) that this optimal asymptotic space-time SINR (6) is associated with a

zero-bandwidth optimal spatial SINR corresponding to signal, interference and noise powers BSs(fm),

BSj(fm) and σ2
n, respectively. Furthermore, the associated steering vectors φ(θs, fm) and φ(θj , fm)

depend on the inter-element spacing of the array which generally is related to f0 + B
2 (Shannon sampling

condition) or sometimes to f0 for the space-time SINR, whereas this inter-element spacing would have

probably been chosen as a function of f0 + fm in the context of narrowband beamforming around

frequency f0 + fm. However for temporally white signals of interest, some properties can be proved.
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In the case of oversampling with respect to Shannon rate (T < 1
B ), the spectral matrices Rs(f) and

Ri+n(f) are both bandlimited to [−B/2, B/2] ⊂ [−1/2T, 1/2T ], and consequently minf λL(Ri+n(f)) =

0 and the technical condition on which Theorem 1 is derived is no longer valid. Furthermore, in this case,

Theorem 1 has no meaning because the generalized eigenvalues of (Rs(f),Ri+n(f)) are not defined

for B/2 < |f | ≤ 1/2T . In these conditions, proving Result 1 is an open problem which is challenging.

However, extensive numerical experiments show that Result 1 extends to that case (see Subsection IV-C).

C. Expression of the asymptotic SINR for temporally white signals of interest

Suppose now that the signal of interest and the multichannel interferer are temporally white. With

Sj(f) = σ2
j

B and Sj,j′(f) = σj,j′
B , the generating function Ri+n(f) defined in (3) can be written at

frequency f = 0 as:

Ri+n(0) =
1
B




J∑

j=1

σ2
j φ(θj , 0)φ(θj , 0)H +

∑

1≤j 6=j′≤J

σj,j′φ(θj , 0)φ(θj′ , 0)H + σ2
nI


 ,

which is (up to the multiplicative term 1/B), the interference plus noise spatial covariance matrix Ri+n

associated with zero-bandwidth signals around frequency f0 with the same powers and correlations.

Consequently from (6), we obtain:

lim
K→∞

SINR(K) ≥ σ2
sφ(θs)HR−1

i+nφ(θs),

with φ(θs)
def= φ(θs, 0), which is the optimal SINR given for zero-bandwidth spatial beamformers around

f0 (e.g., see [4, rel.6.66]). Thus, we have proved the following result:

Result 2: For temporally white signal of interest and multichannel interferer, the asymptotic SINR at

the output of the optimal space-time beamformer is larger than the SINR at the output of the optimal spatial

beamformer associated with zero-bandwidth signals around frequency f0 with same spatial correlations

and powers.

Therefore, for a finite number K of taps, the optimal space-time beamformer can outperform the zero-

bandwidth optimal spatial SINR. This point that has never been reported in the literature, will be illustrated

in Subsection IV-A.

We now analyze the particular situation of interference whose spectra cancel at least at a common

frequency. In this particular case, the following result is proved in Appendix B:

Result 3: In the presence of several interferers whose spectra share at least a common frequency null
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ν0 and a temporally white signal of interest of power σ2
s , we have

lim
K→∞

SINR(K) =
σ2

s

σ2
n

L.

This result means that in the presence of interference with at least one common zero in their spectra,

space-time processing allows one to reach asymptotically the SINR corresponding to an interference-free

context. Let us note that though the asymptotic notion is purely theoretical, we will see in Subsection

IV-B that in most practical cases, a small value of the number of taps is sufficient to reach near optimal

performance.

IV. ILLUSTRATIVE EXAMPLES

This section illustrates Result 2 through numerical experiments and complements the last two results by

exhibiting the speed of convergence of the optimal SINR for a limited number of taps to its asymptotic

value for both white and bandlimited interference. Moreover, in the latter case, the influence of the

fractional bandwidth is examined. Finally, we examine the influence of the time sampling rate on the

optimal space-time SINR. We consider throughout this section a uniform linear array with only one

interference source where

φ(θ, f) = [1, e
jπ

f0+f

f0
u
, ..., e

j(L−1)π
f0+f

f0
u]T

with u = sin(θ) (us = sin(θs) and uj = sin(θj) for the signal of interest and the interference respectively).

The signal of interest is white in the band [−B
2 ; B

2 ]. In all the simulations, uj = 0.3, σ2
n = 0 dB and

σ2
s = 0 dB.

A. White interference case

In this Section, we suppose that the interference is white in the band [−B
2 ; B

2 ]. Thus

lim
K→∞

SINR(K) = max
f∈If

{σ2
s

σ2
n

L(1− σ2
j |φ(θ1, f)Hφ(θs, f)|2

L(σ2
n + Lσ2

j )
)}. (7)

Fig.1 exhibits the asymptotic optimal space-time SINR for different values of the fractional band-

width B/f0 and the optimal spatial zero-bandwidth SINR in the conditions of Result 2, with L = 4

and σ2
j = 10. We check that the increase of the fractional bandwidth leads to a reduction of the

SINR loss width around the interferer. More precisely, it is straightforward from (7) to prove, that

the asymptotic optimal space-time SINR presents a notch behavior around the signal of interest’s DOA,
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whose width 4
L(1+ B

2f0
)

shrinks when the fractional bandwidth increases. Furthermore from (7), the side-

lobe’s effects disappear for 1 + B
2f0

> 2(1 − B
2f0

), i.e., for B
f0

> 2
3 . Moreover, we see from Fig.1

that the asymptotic optimal space-time SINR outperforms the optimal spatial zero-bandwidth SINR

for all fractional bandwidths and signal of interest’s DOA, except at the DOA of the interferer. Nat-

urally the impact of these properties reduces for scenarios for which L(L + σ2
n

σ2
j
) À 1 (7), where

the two SINR are very close, as it will be illustrated in Fig.3. Fig.2 compares the optimal space-

time SINR to the optimal spatial SINR for B/f0 = 0.5 at different numbers K of taps. It shows

that the optimal space-time SINR begins outperforming the optimal spatial SINR from only 4 taps.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

u
S
 = sin( θ

S
)

S
IN

R

B/f
0
=2/3

B/f
0
=0.5

B/f
0
=0.3

B/f
0
=0

Fig.1 Optimal asymptotic space-time SINR for different values of the fractional bandwidth, and optimal spatial zero-bandwidth
SINR ( B

f0
= 0) as a function of the signal of interest’s DOA.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

u
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 = sin( θ

S
)

S
IN

R

 optimal spatial 
zero−bandwidth

K=∞

K=1

K=2 K=4

K=8
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Fig.2 Optimal space-time SINR for different values of the number of taps and optimal spatial zero-bandwidth SINR, as a
function of the signal of interest’s DOA.

From now on, L = 16 and σ2
j = 30dB. In Fig.3, we plot the optimal space-time SINR for different

values of the number K of taps, with B
f0

= 0.3. First we check that the SINR converges to the asymptotic

SINR given by Result 1, which is close to the associated optimal spatial SINR. Then, we notice that the

convergence is rapid, since the asymptotic bound is nearly reached with K = 4.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−35

−30

−25

−20

−15

−10

−5

0

5

10

15

u
S
 = sin( θ

S
)

S
IN

R
 (

d
B

)

K=1

K=2 K=4

optimal spatial
zero−bandwidth

K=∞

Fig.3 Optimal space-time SINR for different values of the number of taps and optimal spatial zero-bandwidth SINR, as a
function of the signal of interest’s DOA.

B. Bandlimited white interference case

Let us suppose that the interference has constant PSD in the band [− b
2 ; b

2 ] with b < B. We illustrate the

speed of convergence of the optimal space-time SINR for a given number of taps to the asymptotic upper-

bound given by Result 2. Thus, we plot in Figs.4 and 5 the optimal space-time SINRs for b = 3
4B and

b = B
2 respectively (dashed plots) at given numbers of taps and compare them to the asymptotic optimal

space-time SINR (solid plot). Let us note that the case K = 1 corresponds to spatial processing and that

the SINR degrades when b increases. In both figures, we check that the optimal SINR (asymptotically

w.r.t. the number of taps) is equal to σ2
s

σ2
n
L and that the optimal space-time SINRs converge with the

number of taps to the asymptotic optimal space-time SINR. Then, we note that the convergence speed

increases when the interference bandwidth decreases. For instance, we observe in Fig.5 (where b = B/2)

that the optimal space-time SINR with K = 4 taps outperforms the optimal space time-SINR with K = 8

taps of Fig.4 (where b = 3B/4).
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Fig.4 Optimal space-time SINR for different values of the
number of taps, as a function of the signal of interest’s DOA
for b = 3B/4.

Fig.5 Optimal space-time SINR for different values of the
number of taps, as a function of the signal of interest’s DOA
for b = B/2.

C. Influence of the time sampling frequency

Now, we examine the influence of the time sampling rate on the optimal space-time SINR. In Fig.6,

we plot the optimal space-time SINR for two values of the temporal sampling period, i.e., T = 1
B and

T = 1
2B and different values of the number of taps for a white interference in the band [−B

2 , B
2 ].
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Fig.6 Optimal space-time SINR with T = 1
B

(- -) and T = 1
2B

(-+-) for different values of the number of taps, as a function
of the target’s DOA.

First, we observe that in both cases, the SINR seems to converge to the asymptotic SINR given by

Result 1, although this result has been proved only for T = 1
B . However, we note that the convergence is

much faster for T = 1
2B than for T = 1

B . Consequently, oversampling w.r.t. the Shannon sampling rate

allows one to improve the performance for a given number of taps. We note that extensive experiment

April 4, 2009 DRAFT



13

confirms these observations. Let us note that the influence of the time sampling rate has been analyzed

in [10] for a bandpass tapped delay line implementation of the MMSE algorithm in the case of a two-

sensor array. In this paper, the author has also noticed the improvement of performance in terms of

SINR due to the use of oversampling, for an array in which each element has only two weights. The

physical interpretation is that oversampling increases the correlation between interference components

which makes their nulling easier.

APPENDIX A: PROOF OF COROLLARY 1

We mimic here the approach of [16, Cor.4.2] that we recall for the convenience of the reader. First,

note that for all K, the KL eigenvalues of B−1
K,LAK,L lie in Iω and the L eigenvalues of B−1(ω)A(ω)

are continuous in [−π, π].

Define the complementary distribution eigenvalue function DK(x) def= number of λu(B−1
K,LAK,L)≥x

K which

is given by 1
K

∑KL
u=1 1[x,M ]

(
λu(B−1

K,LAK,L)
)

, where 1[x,M ](α) def=





1 for α ∈ [x,M ]

0 elsewhere
with x < M .

Using two continuous functions on Iω that provide upper and lower bounds to the indicator function

1[x,M ](α) and converge to it in the limit, and applying Theorem 1 to these two continuous functions, we

straightforwardly obtain

limK→∞DK(x) =
1
2π

L∑

u=1

∫

ω∈[−π,π], x≤λu(B−1(ω)A(ω))≤M
dω.

Consequently, limK→∞DK(M − ε) = 1
2π

∑L
u=1

∫
ω∈[−π,π], M−ε≤λu(B−1(ω)A(ω))≤M dω > 0 where the

strict inequality follows from the continuity of the L eigenvalues of B−1(ω)A(ω) in [−π, π]. Since

limK→∞
number of λu(B−1

K,LAK,L)∈[M−ε,M ]

K > 0, there must be eigenvalues of B−1
K,LAK,L in the interval

[M − ε,M ] for arbitrary small ε. Noting that the space-time setting with K taps is a special case of a

processor with K + 1 taps where the K + 1st tap weight is set to zero in each channel, we obtain by

the inclusion principle in (5) that the larger generalized eigenvalues of (AK,L,BK,L), λ1(B−1
K,LAK,L)

increases with K (L fixed). Consequently, this proves Corollary 1.

APPENDIX B: PROOF OF RESULT 2

First, note that if Sj(ν0) = 0 for j = 1, . . . , J with ν0 ∈ [−B
2 , B

2 ], using |Sj,j′(f)|2 ≤ Sj,(f)Sj′(f), the

different cross power spectral densities (Sj,j′(f))j 6=j′=1..J cancel at ν0 as well. Consequently Ri+n(ν0) =
σ2

n

B I from (3). Then from (6), we obtain

lim
K→∞

SINR(K) ≥ σ2
s

B
φ(θs, ν0)HR−1

i+n(ν0)φ(θs, ν0) =
σ2

s

σ2
n

‖φ(θs, ν0)‖2 =
σ2

s

σ2
n

L.
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Now, we prove that the limit of SINR(K) is upper bounded by σ2
s

σ2
n
L. Using R̄i+n,K ≥ σ2

nI, we have

SINR(K) ≤ wH
KR̄s,KwK

σ2
n‖wK‖2

≤ λ1(R̄s,K)
σ2

n

(8)

where R̄s,K is block Toeplitz structured. Applying [19, th. 3], dedicated to the limit of the largest

eigenvalue of block Toeplitz matrices with non-Toeplitz blocks where the number K of block tends to

infinity, we have3

lim
K→∞

λ1(R̄s,K) = Bλ1(Rs(f)),

where the largest eigenvalue of the rank one matrix Rs(f) (4) is σ2
s

B L. Consequently

lim
K→∞

SINR(K) ≤ σ2
s

σ2
n

L,

which proves Result 3.
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