
HAL Id: hal-00420044
https://hal.science/hal-00420044

Submitted on 27 Sep 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Blind identification of MISO-FIR channels
Carlos Estêvão Rolim Fernandes, Pierre Comon, Gérard Favier

To cite this version:
Carlos Estêvão Rolim Fernandes, Pierre Comon, Gérard Favier. Blind identification of MISO-FIR
channels. Signal Processing, 2010, 90, pp.490-503. �10.1016/j.sigpro.2009.07.023�. �hal-00420044�

https://hal.science/hal-00420044
https://hal.archives-ouvertes.fr


Blind identification of MISO-FIR channels
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Abstract

In this paper, we address the problem of determining the order of MISO channels by means of a

series of hypothesis tests based on scalar statistics. Using estimated 4th-order output cumulants, we

exploit the sensitiveness of a Chi-square test statistic to the non Gaussianity of a stochastic process.

This property enables us to detect the order of a linear finite impulse response (FIR) channel. Our

approach leads to a new channel order detection method and we provide a performance analysis

along with a criterion to establish a decision threshold, according to a desired level of tolerance

to false alarm. Afterwards, we introduce the concept of MISO channel nested detectors based on

a deflation-type procedure using the 4th-order output cumulants. The nested detector is combined

with an estimation algorithm to select the order and estimate the parameters associated with different

transmitters composing the MISO channel. By treating successively shorter and shorter channels, it

is also possible to determine the number of sources.

Index terms: Blind channel parameter estimation, channel order detection, Chi-square test, high-

order statistics, MISO channels.
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University of Ceará, Fortaleza, Brazil.

1



1 Introduction

Convolutive propagation channels are typical in wireless, satellite and radiocommunication systems. The

channel memory is known to be closely related to the delay spread profile produced by the multipath

propagation scenario and it indicates the length of the channel impulse response. Long delay spread

profiles characterize highly frequency-selective channels and introduce intersymbol interference (ISI) in

the sampling process. The order of the radio mobile channel relates the length of the channel impulse

response with the symbol period by indicating the number of past symbols being convolved with the

current one. In practice, the channel order is given by the number of symbol periods fitting the (truncated)

channel delay spread profile. Most channel parameter estimation algorithms require the knowledge of

the channel order or, at least an upper bound of it [31]. Channel order mismatches may have very costly

consequences, including bit error rate (BER) floors, signal-to-noise ratio (SNR) penalties and numerical

instabilities [28, 29, 18, 11].

In this paper, we address the problem of determining the order of finite impulse response (FIR)

channels in the context of a multiple-input single-output (MISO) communication system, using only the

4th-order cumulants of the received signal. Channel order estimation is a classic model selection problem

strongly related to determining the number of signals embedded in noisy observations in narrow-band

array processing. This has been often referred to as the signal (or source) detection problem [4, 11, 10].

Classical procedures for model order determination are based on multiple hypothesis testing and make

use of the eigenvalues of a sample correlation matrix. This is the case of the well-known sphericity test

[32, 30], which estimates the number of model parameters by testing on adjacent groups of eigenvalues, in

the case of a Gaussian process [37]. This approach has been widely used for solving the signal detection

problem in the context of passive arrays [50, 51]. Other traditional techniques are based on information

theoretic criteria that minimize the information lost due to the model approximation [44, 47]. The

Akaike’s Information Criterion (AIC) [1] as well as the Rissanen’s Minimum Description Length (MDL)

[42], also known as the Schwarz Bayesian Criterion (SBC) [43], can both be used to test the equality

of the smallest eigenvalues of the sample correlation matrix. Since AIC is not consistent [43], it tends

to overestimate the model order, even for high SNR values [25]. In general, MDL performs better than

AIC, but it tends to an underestimation at low and medium SNR [26]. Similar results have also been

demonstrated in the context of source detection in passive arrays [48, 49].

Unlike previous works, the order detection method proposed in this paper is based on a scalar Chi-

square test statistic that is sensitive to the non Gaussianity of a stochastic process, since it is derived

from the multivariate estimator of the 4th-order output cumulants. Exploiting this property enables us

to detect the order of a single-input single-output (SISO) communication channel. Making use of existing

results on the asymptotic variance of the test variable, we present a performance analysis of the proposed

detector. In addition, we establish a criterion for fixing the decision threshold based on a given level

of tolerance to false alarm. Some implementations of the proposed method are provided in the context

of radiocommunication channels demonstrating very good fit between the empirical and the theoretical

results.

In the case of MISO communication channels, the propagation scenario can be viewed as a highly

underdetermined convolutive mixture (more sources than sensors). Overdetermined mixtures have been

exhaustively studied in the literature, including instantaneous [7, 8, 12] as well as convolutive mixtures

(c.f. [33, 34, 35, 36, 45, 46] and references therein). The case of underdetermined mixtures, on the other

hand, has only recently been treated [3, 16, 17, 21, 52], and systems with one single output sensor have

received considerably less attention. In this work, we introduce a deflation-type approach to solve the
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MISO channel order detection and identification problem. The proposed method is based on the use

of a combined procedure that jointly selects the order, detects the number of sources and estimates

the parameters of the MISO channel. The so-called HOS-based nested detector searches for the longest

channel, determines its order and estimates its coefficients. Then, based on the deflation principle, it

successively tests and detects the presence of shorter and shorter channels. Our detector makes use of a

Chi-square test for the channel order selection and of blind identification techniques for estimating the

MISO channel coefficients using 4th-order cumulants. A preliminary version of this deflation approach

was introduced in [20], where only the case of 2 × 1 MISO systems has been considered and the order

detection test statistics were based on the eigenvalues of 4th-order output cumulant matrices.

The main contributions of this work can be summarized as follows: i.) determination of a Chi-square

test statistic based on 4th-order output cumulants; ii.) introduction of a blind method for determining

the order of a SISO channel; iii.) proposition of a blind channel identification method based on a rank-one

approximation of a 4th-order cumulant matrix; iv.) development of a combined blind procedure for order

detection and channel identification in the context of MISO channels.

The rest of this paper is organized as follows: in section 2, we derive a Chi-square test statistic based

on 4th-order output cumulant information; the principles underlying our SISO channel order detector are

introduced and an asymptotic performance analysis is carried out. Then, in section 3, we introduce the

concept of nested detectors for combined order detection and blind identification in the context of con-

volutive MISO communication channels; this idea exploits the residual 4th-order information remaining

after subtraction of the reconstructed cumulants of previously estimated sources. In section 4, computer

simulation results are provided to illustrate the performance obtained in terms of channel order detection

and identification. We finally draw our conclusions in section 5 along with some perspectives for future

works.

2 HOS-based Chi-square test for SISO channel order detection

In order to introduce the main ideas behind our channel order detector, we first consider the case of a

single source and a single receive antenna. In section 2.1, we present the SISO channel model and the

associated assumptions. Then, we define the 4th-order output cumulants and give the expressions for the

(circular and noncircular) covariance matrices of the cumulant estimators, which are important for the

calculation of the Chi-Square test variable, introduced in section 2.2. The SISO channel order detection

algorithm is presented in section 2.3, under the form of a hypothesis test. A performance analysis of the

test is provided and the determination of the decision threshold is addressed making use of the probability

distribution function of the test variable.

2.1 Channel model and 4th-order output cumulants

Let us consider the baseband representation of a radiocommunication channel in which the output signal

y(n), after sampling at the symbol rate, is written as follows:

x(n) =
L∑

ℓ=0

h(ℓ)s(n− ℓ),

y(n) = x(n) + υ(n),

(1)

where h(0) = 1 and the complex coefficients h(ℓ) represent the equivalent discrete impulse response of

the channel, including pulse shaping and receiving filters. Throughout the rest of this work, we denote
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the channel order by L, and the superscripts (·)∗, (·)T and (·)H denote the complex-conjugate, matrix

transpose and matrix conjugate-transpose (Hermitian), respectively. The following assumptions hold:

A1 : The non-observable discrete input sequence s(n) is complex-valued, ergodic, stationary, inde-

pendent and identically distributed (iid) with symmetric distribution, zero-mean, unit variance

(E
{
|s(n)|2

}
= 1) and nonzero Kurtosis given by:

γ4,s = E
{
|s(n)|4

}
− |E

{
s(n)2

}
|2 − 2, (2)

where E {·} denotes the expectation operator.

A2 : The additive noise sequence υ(n) is normally distributed with zero-mean and unknown autocor-

relation function. It is assumed to be independent from s(n).

A3 : The FIR filter representing the channel is assumed to be causal with memory L + 1, i.e. h(ℓ) = 0,

∀ ℓ /∈ [0, L], and h(ℓ) 6= 0 for ℓ = L and ℓ = 0.

A4 : The channel order is bounded by a known value K, i.e. K > L.

The 4th-order output cumulants are defined as follows (see [5] for a definition of cumulant):

c4,y(i, j, k) , cum
[
y∗(n), y(n + i), y∗(n + j), y(n + k)

]
. (3)

Using the channel model (1), taking assumptions A1 and A2 into account and making use of the multi-

linearity property of cumulants, we get [6, 5]:

c4,y(i, j, k) = γ4,s

L∑

ℓ=0

h∗(ℓ)h(ℓ + i)h∗(ℓ + j)h(ℓ + k) (4)

where γ4,s, defined in A1, is nothing else but c4,s(0, 0, 0). Let us define the 4th-order output cumulant

vectors ck ∈ CP×1, for k ∈ [1, K], with elements given by

[
ck

]
p

= C
(p)
k , p ∈ [1, P ], (5)

where

C
(p)
k , c4,y(ip − 1, jp − 1, k − 1), (ip, jp) ∈ J , (6)

and each pair (ip, jp) is formed of strictly positive integer numbers, with ip, jp ≤ K, belonging to the

index set

J = {(i1, j1); . . . ; (iP , jP )}, (7)

with cardinality P . The choice of the index set J is postponed to section 3.1, in the context of the blind

identification of MISO channels. Due to (4) and assumption A3, we have:

C
(p)
k = 0, ∀ ip, jp, k > L + 1. (8)

Hence, the 4th-order output cumulants are zero whenever either ip, jp, or k are larger than the channel

memory L + 1. Furthermore, from the above definitions, we also note that ck can include some purely

real-valued components. More precisely, we have:

C
(p)
k = C

(p)∗

k

{
if k = 1 and jp = ip; or,

if ip = 1 and jp = k;
(9)
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In most of the real-life situations, the true values of the output cumulants are not available and have to

be estimated from the output signal samples y(n), n = 0, . . . , N − 1. Due to the ergodicity assumption,

the 2nd- and 4th-order moments can be estimated by means of time averages. The cumulant estima-

tors obtained using the ergodic moment estimates are asymptotically unbiased [5, 27]. The cumulant

estimators are also consistent, since their variance is asymptotically zero.

We define the complex-valued estimator ĉk as:

ĉk =
[
Ĉ

(1)
k · · · Ĉ

(P )
k

]T
. (10)

Let Vk and Wk be the P ×P complex-valued positive-definite Hermitian and complex symmetric covari-

ance matrices of the estimator ĉk, defined as the so-called circular and noncircular 2nd order moments,

respectively, as follows:

Vk , E

{(
ĉk − ck

)(
ĉk − ck

)H
}

; (11)

Wk , E

{(
ĉk − ck

)(
ĉk − ck

)T
}

. (12)

Exact expressions for computing Vk and Wk in the case of input signals with discrete probability dis-

tributions and spatially uncorrelated Gaussian noise have been given in [41]. Other expressions for the

computation of these covariance matrices are available in the literature for symmetrically distributed

sources and also in the general case (c.f. [2] for the former and [14] for the latter). These expressions

are very important for the theoretical analysis of the estimator when the model parameters are assumed

known, but they have also found application in the context of Gaussianity tests [15]. On the other hand,

they can be useful for algorithmic purposes when only output measurements are available. In this case,

moments and cumulants can be estimated from time averages, assuming ergodicity.

Let us now define the following real-valued vector:

zk =
[
Re(ck)T Im(ck)T

]T
∈ R

2P×1, (13)

where the operators Re(·) and Im(·) return the real and imaginary parts of the vector argument, respec-

tively. Consider the estimator ẑk with covariance matrix Σk ∈ R
2P×2P , defined as:

Σk , E

{(
ẑk − zk

)(
ẑk − zk

)T
}

, (14)

which can be readily deduced from (11) and (12), as follows:

Σk =
1

2

(
Re
(
Vk + Wk

)
Im
(
Vk + Wk

)T

Im
(
Vk + Wk

)
Re
(
Vk −Wk

)

)
. (15)

We can now define the following scalar multivariate function:

ρk =
(
ẑk − zk

)T
Σ−1

k

(
ẑk − zk

)
(16)

which depends, though omitted here, on the channel coefficient vector h = [h(0) . . . h(L)]T. Porat and

Friedlander have been the first to use the above function in the context of channel parameter estimation

[39]. Actually, it has been shown that if the estimated parameter vector ĥ corresponds to a global

minimum of ρk, then ĥ asymptotically tends to the minimum variance estimate [40]. This approach

requires the calculation of the covariance matrix Σk, which depends on h and involves knowledge of
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exact output cumulants of order up to eight. Due to the huge computational complexity involved in

calculating Σk, a simpler solution has been proposed in [22] based on an estimated covariance matrix.

Finally, note that zk may have some zero elements corresponding to the entries
[
zk

]
P+p

for which

p and k are such that the conditions stated in (9) are satisfied. Each zero element in zk induces a

zero row and a zero column in Σk. To avoid singularity of the covariance matrix, we need to eliminate

the element in position P + p of the vector zk for each triplet (ip, jp, k) satisfying (9). This yields a

reduced vector zk ∈ R2P−mk , where mk is the number of purely real-valued elements in ck, which gives

a (2P −mk) × (2P −mk) covariance matrix. This is an important step in order to ensure the non-

singularity of Σk. Throughout the rest of this paper, we denote by zk and Σk the reduced versions of

these variables, thus assuming that the covariance matrix is nonsingular.

2.2 A Chi-square statistic for channel order detection

Given a sample output data sequence y(n), n = 0, . . . , N − 1, it can be shown that, as N goes to infinity,

the estimator ĉk tends to a complex multivariate random variable that follows an approximate Gaussian

distribution with mean ck [5]. As a consequence, we have:

ẑk ∼ N
(
zk,Σk

)
, as N →∞. (17)

Hence, ẑk can be viewed as a realization of an asymptotically Gaussian random vector, which can be

standardized as follows:

ωk = Σ
−1/2
k (ẑk − zk) (18)

so that ωk ∈ R2P−mk is asymptotically normal with zero mean and an identity covariance matrix,

i.e. ωk ∼ N (0, I). The scalar random variable ρk defined in (16), can now be rewritten as:

ρk = ω
T
k ωk. (19)

The above results enable us to conclude that ρk asymptotically follows a Chi-square distribution with

dk = 2P −mk degrees of freedom [37], i.e.

ρk ∼ X
2
(dk). (20)

Therefore, its probability density function (pdf) is given by:

fρ(ρk) =

{
1

2dk/2Γ(dk/2)
ρ
(dk/2)−1
k e−ρk/2, for ρk > 0

0 for ρk ≤ 0,
(21)

where Γ(·) denotes the well-known Gamma function, defined as

Γ(z) =

∫ ∞

0

tz−1e−tdt. (22)

This yields:

µρk
= E {ρk} = dk (23)

and

σ2
ρk

= E
{
(ρk − µρk

)2
}

= 2dk. (24)
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2.3 Order detection algorithm

Contrary to the approach based on an exhaustive search for the minimum variance, our proposition

exploits the fact that zk = 0 if k > L + 1. Thus, replacing the covariance matrix Σk by its estimate,

equation (18) becomes:

ω̂k = Σ̂
−1/2
k ẑk, for k > L + 1, (25)

and we define

ρ̂k = ω̂
T
k ω̂k = ẑTk Σ̂−1

k ẑk, k > L + 1. (26)

The above defined variable can be viewed as a measure of the energy in the space of representation of the

4th-order cumulants. It means that, since ẑk is a consistent estimator with asymptotically zero bias, ρ̂k

can be used to detect the presence of source signals with nonzero 4th-order cumulants when k ≤ L + 1.

In the sequel, we formulate the problem of detecting the channel order as a series of successive

hypothesis tests on the estimated variables ρ̂k, k ∈ [1, K], K > L, aiming to determine whether k > L+1

or not. From definition (26), we conclude that, as the output data sequence length goes to infinity, ρ̂k

tends to be X 2
(dk), if k > L+1. In this case, the pdf of ρ̂k is given by (21). However, for k ≤ L+1, the true

cumulant vector zk is unknown and we cannot center the random vector ωk, hence ρ̂k has a non-central

Chi-square distribution, denoted by nCχ2
(dk)(λk), with dk degrees of freedom and λk = zTk Σ−1

k zk, related

to the mean of the test variable as follows:

E {ρ̂k} = λk + dk. (27)

From (26), we have:

ρ̂k ∼ nCχ2
(dk)(λk), with

{
λk = 0, k > L + 1,

λk 6= 0, k ≤ L + 1.
(28)

Remark on the number dk of degrees of freedom

Situations may arise where the estimated covariance matrix Σ̂k is ill-conditioned due, for instance, to

negligible values of the cross-correlation between the real and imaginary parts of some of the 4th-order

cumulants composing the test statistic ρ̂k. Such situations are difficult to predict and the literature lacks

guidelines on how to proceed in order to skip them. In spite of that, numerical instabilities can be avoided

by controlling the condition number of Σ̂k, i.e. the ratio between its largest and smallest eigenvalues.

In practice, when the condition number is high, we discard the smallest eigenvalues and the associated

eigenvectors, until the condition number becomes smaller than a certain threshold. Thus, we get the

following reduced eigenvalue decomposition (EVD) of Σ̂k ∈ R(2P−mk)×(2P−mk):

Σ̂k = UkDkU
T
k , (29)

where Dk = Diag (δ1, . . . , δ2P−mk−µk
) and Uk ∈ R(2P−mk)×(2P−mk−µk) is the matrix formed with the

eigenvectors of Σ̂k associated with its 2P −mk−µk largest eigenvalues, µk corresponding to the number

of smallest eigenvalues discarded in order to attain a moderate condition number. Therefore, the number

dk of degrees of freedom of the test statistic ρ̂k = ω̂
T
k ω̂k is reduced by µk, i.e.

dk = 2P −mk − µk. (30)

In order to show this, note from (29) that we have:

Σ̂
−1/2
k = D

−1/2
k UT

k ∈ R
dk×(2P−mk). (31)
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Replacing the above equation in (25), we get:

ω̂k = D
−1/2
k UT

k ẑk ∈ R
dk×1, (32)

and (30) follows from (26). The definition (30) will be used throughout the rest of this paper.

2.3.1 Hypothesis test and performance analysis

Let us build our channel order test by defining the null hypothesis H0(k) and the alternative hypothesis

H1(k) as follows:

H0(k) : k > L + 1 ⇒ ρ̂k ∼ X 2
(dk)

H1(k) : k = L + 1 ⇒ ρ̂k ∼nC χ2
(dk)(λk)

Under H0(k), we have E {ρ̂k} = dk and hence we should expect that ρ̂k < ηk, where ηk is a decision

threshold associated with the number dk of degrees of freedom of the test statistic ρ̂k. Under H1(k),

E {ρ̂k} = λk + dk, and we should get ρ̂k ≥ ηk. The test is successively performed for k = K,K − 1, . . . , 1.

Our goal is to find the largest value of k so that the null hypothesis H0(k) is rejected, i.e. ρ̂k ≥ ηk,

which implies L̂ = k − 1. The non-rejection of H0(k) for a given k induces a new test on ρ̂k−1. If the

null hypothesis is rejected only when k = 1, then L̂ = 0 and the channel is said to be memoryless. The

rejection of H0(k) for all k ∈ [1, K] indicates that no source signal is present (only Gaussian noise is

observed at the antenna output).

Let us denote by pk and qk the probabilities of the event ρ̂k ≥ ηk under hypotheses H0(k) and H1(k),

respectively. In other words, for each k ∈ [1, K], pk and qk are the probabilities of false alarme and

detection of the associated test, and are given by:

pk , P[ρ̂k ≥ ηk|H0(k)], k ∈ [1, K], (33)

qk , P[ρ̂k ≥ ηk|H1(k)], k ∈ [1, K]. (34)

In addition, we denote by P (k) the probability of getting L̂ = k − 1, k ∈ [1, K], which is defined as the

joint probability of the events ρ̂K < ηK , ρ̂K−1 < ηK−1, . . ., ρ̂k+1 < ηk+1 and ρ̂k ≥ ηk, i.e.

P (k) =

{
P[ρ̂K ≥ ηK ]; for k = K,

P
[
ρ̂K < ηK ; ρ̂K−1 < ηK−1; . . . ; ρ̂k+1 < ηk+1; ρ̂k ≥ ηk

]
; for 1 ≤ k < K.

(35)

For each k ∈ [1, K], we have one of the two following situations:

i. ρ̂k < ηk ⇒ L̂ < k − 1. The test continues. This happens with probability 1− pk (under hypothesis

H0). The next step is to test ρ̂k−1. In this case, if L ≥ k − 1, we underestimate the channel order

(missed detection) with unknown probability 1− qk.

ii. ρ̂k ≥ ηk ⇒ L̂ = k − 1. The test stops. This happens with probability qk if L = k − 1. In this case,

the channel order is correctly detected. Otherwise, if L < k− 1, we overestimate the channel order

with probability pk.

Theorem 1 The total probability of false alarm (overestimation of the channel order) is given by:

PF = pK +

K−1∑

k=L+2

(1 − pK) . . . (1− pk+1)pk. (36)

8



Proof: Overestimation happens when we get L̂ = k − 1 for any k > L + 1. Hence, the total probability

of channel order overestimation is given by:

PF =
K∑

k=L+2

P[L̂ = k − 1] =
K−L−1∑

q=1

P (K + 1− q). (37)

Assuming that the events ρ̂k > ηk, for all k ∈ [1, K], are mutually independent, the joint probability

given in (35) can be written as a product of the marginal probabilities of the involved events. Hence,

(35) yields:

P (k) =

{
pK , k = K,

(1 − pK) . . . (1 − pk+1)pk, k = K − 1, . . . , L + 2
(38)

Replacing (38) into (37), equation (36) follows straightforwardly.

�

Theorem 2 The probability of detection of the channel order is given by:

PD = (1 − pK)(1 − pK−1) . . . (1− pL+2)qL+1 (39)

Proof: In order to correctly detect the channel order, we need:

ρ̂K < ηK , ρ̂K−1 < ηK−1, . . . and ρ̂L+2 < ηL+2 under H0(k) and

ρ̂L+1 ≥ ηL+1 under H1(k).

The marginal probability of each of these events can be deduced from (33) for k = L + 2, . . . , K − 1, K

and from (34) for k = L + 1. The joint probability of these events is the product of their marginal

probabilities, which yields (39).

�

Theorem 3 The probability of missing the channel order detection (underestimation) is given as follows:

PM = (1 − pK)(1 − pK−1) . . . (1− pL+2)(1 − qL+1) (40)

Proof: If the hypothesis H0(k) is not rejected for k = L + 1, then the channel order is underestimated.

This means that PM = P
[
ρ̂K < ηK ; ρ̂K−1 < ηK−1; . . . ; ρ̂L+2 < ηL+2; ρ̂L+1 < ηL+1

]
, which yields (40).

�

The total probability of error in the order detection is given by PE = PF + PM .

2.3.2 Decision threshold

According to the Neyman-Pearson criterion [47, 38], a decision rule can be established in order to maximize

the probability of detection PD while not allowing the probability of false alarm PF to exceed a certain

value. However, in our case, PF and PD can not be computed explicitly as in (36) and (39), respectively,

because we do not know the channel order L. We can nevertheless limit the tolerance of each ρ̂k-test, by

establishing a bound α for an acceptable level of the probability pk, defined in (33), so that a decision

threshold ηk can be established in order to ensure that P[ρ̂k ≥ ηk] ≤ α, k ∈ [L + 2, K].

Considering definition (26), with dk defined in (30), and under the null-hypothesis (k > L+1), the test

variable ρ̂k is asymptotically Chi-square distributed with dk degrees of freedom, since zk is theoretically

zero for all k > L + 1. Otherwise, ρ̂k follows a non-central Chi-square distribution, also with dk degrees

of freedom, but with mean equal to dk + λk, where λk = zTk Σ−1
k zk is an unknown parameter, the value

9
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Figure 1: Probability P [ρ̂k ≥ ηk] as a function of the

decision threshold ηk for different degrees of freedom.

α = 1% α = 0.5%

dk = 3 ηk = 11.35 ηk = 12.86

dk = 4 ηk = 13.28 ηk = 14.87

dk = 5 ηk = 15.09 ηk = 16.75

dk = 6 ηk = 16.81 ηk = 18.55

dk = 7 ηk = 18.47 ηk = 20.29

dk = 8 ηk = 20.11 ηk = 21.97

Table 1: Decision thresholds for two tolerance

levels α.

of which depends on the true real-valued vector zk. In other words, the distribution of the test variable

ρ̂k under the null hypothesis is given by (21), for a given choice of the index set J . Thus, equation (33)

becomes:

pk =

∫ +∞

ηk

fρ̂(ρ̂k)dρ̂k, k ∈ [1, K]

=
1

2dk/2Γ(dk/2)

∫ +∞

ηk

ρ̂
(dk/2)−1
k e−ρ̂k/2dρ̂k (41)

Substituting ρ̂k = 2t, we have:

pk =
1

Γ(dk/2)

∫ +∞

ηk/2

t(dk/2)−1e−tdt,

=
Γ̄(dk/2, ηk/2)

Γ(dk/2)
, (42)

where Γ̄(dk/2, ηk/2) is the upper incomplete Gamma function [24], defined as

Γ̄(z, n) =

∫ ∞

n

tz−1e−tdt. (43)

Equation (42) enables us to plot the probability curves of the marginal events ρ̂k ≥ ηk for different values

of the parameter dk, as illustrated in fig. 1.

The decision threshold ηk can now be established by fixing an acceptable level of tolerance α for the

probability of false alarm pk at each k > L + 1, while allowing P[ρ̂L+1 ≥ ηL+1] to be as high as possible,

depending on the value of zk. In other words, we need pk ≤ α for k > L + 1. Using (42) we conclude

that ηk can be chosen so that

Γ̄(dk/2, ηk/2) ≤ αΓ(dk/2). (44)

In fig. 1, we plot the probability pk as as a function of ηk/2 using (42), for different values of the number

dk of degrees of freedom of the test variable ρ̂k. In this example, the tolerance level α has been fixed at

two values: α = 1% and α = 0.5%. The decision threshold can be determined for a given dk by taking

the value of ηk at the point where the corresponding curve crosses a given tolerance level. Values of the

decision threshold for the considered values of dk and α are given in Table 1.

10



Table 2: HOS-based channel order detection algorithm

Define J and α and initialize the algorithm with k = K:

1. Estimate the 8th-, 6th-, 4th-, and 2nd-order output cumulants corresponding to

the indices (ip, jp, k), with (ip, jp) ∈ J ;

2. Form ĉk ∈ CP×1 as in (10) using the 4th-order cumulant estimates obtained in

step 1;

2. Determine mk as the number of real-valued cumulants in ĉk; compose the real-

valued vector ẑk ∈ R(2P−mk)×1

3. Using all the cumulant estimates obtained in step 1, compute the approximate cir-

cular and non-circular covariance matrices defined in (11) and (12), respectively;

4. Deduce Σ̂k from (15), take its EVD and test its condition number; determine µk

as the number of discarded eigenvalues;

5. Determine the number of degrees of freedom dk = 2P −mk − µk and compute ω̂k

using (32);

6. Compute ρ̂k = ω̂
T
k ω̂k and derive ηk from (44) using the value of dk determined in

step 5;

7. Test the hypotheses:

• if ρ̂k < ηk, repeat the procedure from step 1 with k← k − 1.

• if ρ̂k ≥ ηk, then L̂ = k − 1 and the algorithm is stopped.

Notice from (37) that the probability of false alarm still depends on α and K−L so that a bad choice

of K may reduce the power of the test (increased PF is expected for K ≫ L). Possible solutions to this

drawback include the use of the Benjamini-Hochberg procedure for controlling the global level of false

alarm (c.f. [10, 11, 9] and references therein). This approach will not be discussed here. The proposed

channel order detection algorithm is summarized in Table 2.

2.3.3 Simulation example

Let us consider a channel with L = 2 constant random coefficients drawn from a complex Gaussian

distribution. Using N noiseless output data samples, we estimate the 4th-order output cumulants to

form the vector ĉk, defined in (10), for (ip, jp) ∈ J and k = 1, . . . , K. In this example, we take

J = {(1, 1); (1, 2); . . . ; (1, P )} and P = K = 4. After that, we compose the vector ẑk by taking the

real and imaginary parts of ĉk, as in (13), and then we discard the zero components corresponding to the

imaginary part of the purely real-valued cumulants. Any triplet (ip, jp, k) satisfying the conditions given

in (9) yields a purely real-valued cumulant, and we denote by mk the number of such components in the

vector ĉk. For k = 4 and k = 3, due to our choice of J , we have m4 = m3 = 1 (since C
(3)
3 and C

(4)
4 are

purely real-valued) and hence d4 = d3 = 7 (µ3 = µ4 = 0 in this example).

In order to validate the test variable, we repeated the above described experiment by performing

11
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Figure 2: Histogram curves of ρ̂3 and ρ̂4 (left) in a noiseless SISO channel scenario with L = 2; detail

on the area associated with the null-hypothesis (right). Solid lines correspond to the histogram curves,

while dotted lined are the theoretical pdf curves of the associated test variables

3000 Monte Carlo simulations, varying the input data sequence s(n) from one simulation to another, but

keeping the same channel parameters over all the simulations (time-invariant channel scenario). In this

case, we used N = 10000 and fig. 2 shows the histogram curves for the test variables ρ̂4 and ρ̂3 (solid

lines). The figure on the right consists in a zoom on the area of the ρ̂4 pdf curve on the left. Decision

thresholds for α = 1% and α = 5% are depicted. The dotted lines correspond to the theoretical pdf

curves of the associated variables. The curves for k < 3 have been omitted from fig. 2 because for k = 1

and k = 2 we have λk ≫ ηk (none underestimation cases occurred).

3 Blind MISO channel Order detection and parameter estima-

tion

In this section, we consider several source signals sharing the same carrier frequency at the neighborhood

of the receive antenna. We are interested in estimating the number of sources and the respective channel

parameters. In this context, the radiocommunication channel can be modeled as a MISO system. First,

we reformulate the cumulant vector definitions for the MISO case, and then we show that the SISO

channel detection order method introduced in the last section can be used to determine the order of

the longest channel in the MISO model. After that, we introduce two channel parameter estimation

algorithms that allow us to reconstruct the output cumulants. Using a deflation-based approach, the

procedure iterates by restarting the order detection method on the second longest channel in the MISO

model.

We assume that an unknown number Q of co-channel users are located far apart from each other,

hence utilizing physically different channels. The signal measured at time instant n at the receive antenna,

is written as:

xq(n) =
Lq∑
ℓ=0

hq(ℓ)sq(n− ℓ),

y(n) =
Q∑

q=1
xq(n) + υ(n),

(45)
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where

hq(0) = 1 (46)

and each channel q ∈ [1, Q] has memory Lq + 1. Assumptions A1 to A4 from section 2 still hold for each

source sq(n) and their respective channel coefficients hq(ℓ). Here, we further assume that

A5 : The input signals sq(n) are mutually (spatially and temporally) independent with nonzero Kur-

toses.

A6 : The channel orders are not equal and all bounded by a known K; without loss of generality, we

consider that K > L1 > . . . > LQ, so that L1 = max
1≤q≤Q

(Lq).

The case where some channels have the same length will be briefly discussed in section 3.3.

Taking the above assumptions into account and using the multilinearity property of cumulants, the

4th-order cumulant of the output signal y(n), defined in (3), can be expressed as the sum of the marginal

cumulant contributions of each source, as follows:

c4,y(i, j, k) =

Q∑

q=1

Cq(i, j, k) (47)

in which Cq(i, j, k) depends on the unknown channel parameters hq(ℓ) and can be written as in (4):

Cq(i, j, k) = γ4,sq

Lq∑

ℓ=0

h∗
q(ℓ)hq(ℓ + i)h∗

q(ℓ + j)hq(ℓ + k), q ∈ [1, Q], (48)

where γ4,sq = c4,sq(0, 0, 0). Since we assume that hq(ℓ) = 0, ∀ ℓ /∈ [0, Lq], we have:

Cq(i, j, k) = 0, ∀ |i|, |j|, |k| > Lq. (49)

Using (47), we can define the 4th-order output cumulant vector, as follows:

ck ,

Q∑

q=1

ck,q ∈ C
P×1, for each k ∈ [1, K], (50)

where
[
ck,q

]
p

, Cq(ip − 1, jp − 1, k − 1), with q ∈ [1, Q], p ∈ [1, P ], and (ip, jp) ∈ J , (51)

the index set J = {(i1, j1); . . . ; (iP , jP )} being formed of strictly positive integer numbers ip, jp ≤ K.

Note from (49) that

ck,q = 0P , ∀ k > Lq + 1. (52)

Hence, since we have assumed L1 > . . . > LQ, we have:

ck =






0P , if k > L1 + 1

ck,1, if L2 + 1 < k ≤ L1 + 1

ck,1 + ck,2, if L3 + 1 < k ≤ L2 + 1
...

...

ck,1 + . . . + ck,Q, if k ≤ LQ + 1.

(53)

In the sequel, we describe a deflation-type approach based on the use of nested channel order detectors,

in which the test statistics are formed from the residual 4th-order output cumulants, after subtracting

the contribution of the previously estimated channels. We remark that, in the context of 2 × 1 MISO

systems, a description of this deflation-based technique was proposed in [20], using a different order

detection method, with test statistics obtained from the eigenvalue decomposition of a cumulant matrix.
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3.1 Nested MISO order-detectors and blind channel identification

Equation (53) shows that, for an appropriate range of k, the output cumulant vector contains information

on the longest channel exclusively. More precisely, if k = L1 + 1, ck can be written only in terms

of the coefficients h1(ℓ). As a result, if we can determine the order L1 of the longest channel, then

ĉL1+1,1 = ĉL1+1 and we can estimate the channel coefficients associated with the source q = 1. After

that, using the estimated channel coefficients, the marginal cumulants associated with the detected source

can be reconstructed approximately for all k ∈ [1, L1 + 1]. To this end, Kurtosis estimation is also needed.

Then, by subtracting the contribution ĉk,1 from ĉk, we get an identical situation with Q− 1 sources and

the same processing can be repeated until the Q channels are identified. The algorithm is stopped when

no significant residual information remains in the estimated output cumulant vector.

The above suggested procedure summarizes the idea behind the proposed nested MISO detectors.

The three following main steps are repeated for each user q ∈ [1, Q]:

1. Channel order detection: determine Lq;

2. Blind channel identification: estimate channel coefficients ĥq(ℓ), ℓ ∈ [0, Lq];

3. Estimation of marginal cumulants: reconstruct ĉk,q for all k ∈ [1, Lq + 1] using the estimated chan-

nel coefficients.

Before proceeding to user q + 1, the marginal contribution of user q is subtracted from the estimated

output cumulant vector ĉk. Using the channel-order detection method proposed in section 2, we can

solve the problem of determining the channel order Lq by formulating a multiple hypothesis test based

on the variables ρ̂k that are computed from the estimated MISO channel output cumulant vectors, ĉk.

Details about these test variables (step 1) are postponed to section 3.2. In the sequel, we discuss the

estimation of the channel coefficients ĥq(ℓ) (step 2). Afterwards, we will show that the reconstruction of

the marginal cumulant vectors ĉk,q for all k ∈ [1, Lq + 1] (step 3) is straightforward.

3.1.1 MISO channel parameter estimation

In this section, we assume that the channel order Lq as well as the marginal 4th-order cumulants

Cq(ip − 1, jp − 1, Lq) are known, (ip, jp) ∈ J , q ∈ [1, Q]. In the following, we present two methods

for estimating the marginal channel parameters ĥq(ℓ) associated with the source q, ℓ ∈ [0, Lq].

A. Rank-1 approximation-based method

From (48), taking (ip, jp) ∈ J and k = Lq, we get:

Cq(ip − 1, jp − 1, Lq) = γ4,sq hq(ip − 1)h∗
q(jp − 1)hq(Lq), q ∈ [1, Q], (54)

where we have used the constraint (46). Hence,

cLq+1,q , γ4,sqhq(Lq)g
(q) ∈ C

P×1, (55)

where

[g(q)]p , hq(ip − 1)h∗
q(jp − 1), p ∈ [1, P ]. (56)

In order to recover the channel parameters, we need to impose some minimal conditions on the index set

J of the cumulants utilized by the algorithm. Simple conditions ensuring correct parameter estimation

are as follows: {
ip = p, ∀ p ∈ [1, P ], P = K,

jp = 1, ∀ p ∈ [1, P ], P = K.
(57)
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Satisfying the above conditions leads to

[g(q)]p = hq(p− 1), (58)

and, for p ∈ [1, P ], (55) becomes

cLq+1,q = γ4,sqhq(Lq)h
(q), (59)

with

h(q) = [1, hq(1), . . . , hq(Lq), 0, . . . , 0]T ∈ C
K×1. (60)

Thus we can construct the matrix Cq ∈ C
K×K , as follows:

Cq , cLq+1,qc
H
Lq+1,q = γ2

4,sq
|hq(Lq)|

2h(q)h(q)H , (61)

which is clearly a rank-1 matrix. Assuming that we know the channel order Lq, we can estimate the

vector h(q) ∈ CK×1, up to a complex scaling factor, by computing the eigenvector associated with the

sole nonzero eigenvalue of Cq. The constraint hq(0) = 1 imposed in (46) allows us to avoid the trivial

solution and eliminate the intrinsic scaling ambiguity. In practice, we only need to use the first Lq + 1

elements of ĉLq+1,q to compose Ĉq in order to avoid the zero-padding at the estimated channel tail.

By allowing for an increased set of 4th-order cumulants, we can improve the quality of the channel

parameter estimates. It can be particularly interesting to expand the index set J to the following:

J =
{

(1, 1) . . . (K, 1) . . . (1, K) . . . (K, K)
}

(62)

so that P = K2. Using the above index set, we get the following equation from (55):

Bq , unvec
(
cLq+1,q, K

)
= γ4,sqhq(Lq)G

(q), (63)

with G(q) = unvec
(
g(q), K

)
= h(q)h(q)H , where the notation unvec (x, n) stands for the unvectorization

operator, which builds a matrix X ∈ Cm×n from the vector argument x ∈ Cmn×1. As a result, we can

still use the rank-1 approximation solution to estimate the channel vector h(q) by taking the singular

vector associated with the largest singular value of Bq.

B. Optimal solution in the total least squares sense

Recalling (54), we notice that:

[cLq+1,q]p = Cq(ip − 1, jp − 1, Lq). (64)

Thus, another way to recover the channel coefficients consists of solving the following linear system of

equations, obtained from (54):

Cq(v − 1, u− 1, Lq)hq(w − 1)− Cq(w − 1, u− 1, Lq)hq(v − 1) = 0, (65)

with 1 ≤ v < w ≤ Lq + 1, and 1 ≤ u ≤ Lq + 1. (66)

From (65) we can build a set of up to Lq(Lq +1)2/2 equations with Lq unknowns, which can be rewritten

in a matrix form as follows:

Tqhq = 0, (67)
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where 0 is an all-zero vector, hq = [1, hq(1), . . . , hq(Lq)]
T and matrix Tq is composed of the output

cumulants with Lq + 1 columns and up to Lq(Lq + 1)2/2 rows, each row having only two nonzero elements

given by 




[
Tq

]
rv

= −Cq(w − 1, u− 1, Lq),
[
Tq

]
rw

= Cq(v − 1, u− 1, Lq),
(68)

where r = (Lq + 1)(v + w − 3) + u is the row number with v, w and u satisfying (66).

Equation (67) can be solved by computing the right singular vector of Tq associated with its smallest

singular value. Forming the index set J from (57), we have 1 ≤ v < w ≤ Lq + 1 and u = 1, and we may

get up to Lq(Lq + 1)/2 equations. The expanded index set given in (62) can also be used to improve the

estimation quality. This solution has been originally proposed in [13] and is shown to be optimal in the

total least squares (TLS) sense.

In terms of computation burden both MISO channel parameter estimation methods presented in this

section have the cost of performing one SVD for each channel q ∈ [1, Q]. For comparison purposes,

consider in both cases the index set J formed from (57). The Rank-1 approximation-based method

performs the SVD of a Hermitian matrix of dimensions (Lq + 1) × (Lq + 1), while the TLS approach

computes the SVD of a complex-valued matrix of dimensions (Lq(Lq + 1)/2) × (Lq + 1). Due to the

larger number of equations used, the TLS method may theoretically give better results at the cost of an

increased complexity (except for the cases Lq = 1, Lq = 2). Results shown in section 4 indicate that, for

those particular cases, the performance gap between these two methods may be negligible.

3.1.2 Composition of marginal cumulants from estimated channel coefficients

Rewriting (53) for k = Lq + 1, q ∈ [1, Q], we have:

ck =






cL1+1,1 for k = L1 + 1

cL2+1,1 + cL2+1,2 for k = L2 + 1
...

...

cLQ+1,1 + . . . + cLQ+1,Q for k = LQ + 1.

(69)

so that we can estimate the marginal cumulant contribution of source q as follows:

ĉLq+1,q = ĉLq+1 −

q−1∑

i=1

c̄Lq+1,i. (70)

where c̄Lq+1,i are the reconstructed cumulant vectors obtained from (48) using the previously estimated

coefficient vectors ĥi, i ∈ [1, q− 1]. To achieve this step, we need to know the Kurtosis of source q. Note

that [ĉL̂q+1,q]p = Ĉq(ip − 1, jp − 1, L̂q). From (54), using the index set defined in (57) and imposing the

constraint (46), we get:

[ĉL̂q+1,q]p = γ̂4,sq ĥq(p− 1)ĥq(L̂q). (71)

Thus, an estimate of the source Kurtosis γ4,sq is given by the Least Squares solution:

γ̂4,sq =

∑
p ĥ∗

q(p− 1) [ĉL̂q+1,q]p

ĥq(L̂q)
∑

p

∣∣ĥq(p− 1)
∣∣2

, q ∈ [1, Q]. (72)
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3.2 Test statistics for MISO order-detection

To start with the MISO channel detection procedure proposed above, we must first determine the order of

each user channel, since all the subsequent steps depend on this parameter. Here, we treat this problem

as an FIR channel order selection problem and show that we can use the method proposed in section 2 by

computing the test variables from the estimated cumulants obtained at the output of the MISO channel.

Recalling definition (26), we can compute the test variable ρ̂k from the real-valued vector ẑk, which

is defined in (13) and consists of the real and imaginary parts of the vector ĉk of the estimated 4th-order

cumulants of the MISO channel output, defined in (50). Hence, we can write

ẑk ,

Q∑

q=1

ẑk,q (73)

and

ẑk,q , [Re(ĉk,q)
T Im(ĉk,q)

T]T, q ∈ [1, Q]. (74)

Thus, from (53), we deduce that

ẑk = ẑk,1, for k = L1 + 1. (75)

In addition, since zk = 0dk
for k > L1 + 1, we can use (26) to construct our test variable from the vector

ẑk, so that, for k > L1 +1, ρ̂k follows a Chi-square distribution with dk degrees of freedom, with dk given

by (30).

On the other hand, as long as zk is nonzero for k = L1 + 1, the variable ρ̂L1+1 has a non-central

Chi-square distribution with λL1+1 = zTL1+1,1Σ
−1
L1+1zL1+1,1, related to the mean of the test variable as

follows: E {ρ̂L1+1} = λL1+1 + dL1+1. We can hence denote:

ρ̂k = ẑTk Σ̂−1
k ẑk

{
∼ χ2

(dk), k > L1 + 1, N →∞

∼ nCχ2
(dk)(λk), k ≤ L1 + 1, N →∞.

(76)

Using (15), we can deduce Σ̂k for k ≥ L1 + 1 from the estimated circular and non-circular covariance

matrices, given in (11) and (12), respectively.

Equation (76) shows that the test statistic ρ̂k enables us to correctly detect the order of the longest

channel associated with the MISO mixture. After determining the order L1, we can use one of the

techniques described in section 3.1 to estimate the channel coefficients ĥ1(ℓ). Then, by replacing the

estimated coefficients in (48), we reconstruct the vectors c̄k,1 for all k ∈ [1, L1 + 1]. Subtracting c̄k,1

from ĉk allows for the computation of new test statistics leading to the detection of the next longest

channel. This deflation principle, discussed in section 3.1, allows us to successively extract the sources

from the MISO mixture. The algorithm continues until no significant residual information is detected in

the remaining cumulant vector. The nested MISO channel detection method is summarized in Table 3.

3.3 MISO channels with identical lengths

In the case where at least two channels, q1 and q2, have the same order, Lq1
= Lq2

= L, the proposed

MISO channel detection method does not fully apply because the residual cumulant ĉk for k = L + 1

contains information from both channels, i.e.

ĉL+1 = ĉL+1,q1
+ ĉL+1,q2

. (77)

As long as the marginal cumulants are not separable, the deflation technique is no longer suitable to

estimate the channel parameters. Hence, the hypothesis test for q1 should lead to the same result as
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Table 3: Nested MISO channel detection procedure

1. Estimate the 4th-order MISO channel output cumulants; compose

the real-valued vectors ẑk, and compute Σ̂k, k ∈ [1, K];

2. Initialize q = 1 and k = K;

3. Compute the test variables ρ̂k, defined in (26) using ẑk and Σ̂k;

determine the decision threshold using the procedure described in section 2

4. Run the order-detection algorithm by testing the hypotheses:

if ρ̂k < ηk then take k ← k − 1 and start over from step 3.

if ρ̂k ≥ ηk then L̂q = k − 1. Go to step 5.

if L̂q = 0, stop the procedure;

5. Compute ĥq(ℓ), ℓ ∈ [0, Lq], from ĉLq+1,q using one of two the blind channel

identification techniques described in section 3.1;

6. From (48), compute the entries of c̄k,q, for all k ∈ [1, Lq + 1],

using ĥq(ℓ) and γ̂4,sq , the latter being obtained from (72);

7. Update the output cumulant vector as ĉk ← ĉk − c̄k,q ;

8. Update q ← q + 1 and repeat steps 3 to 8 until hypothesis ρ̂k < ηk

is not rejected in step 4.

that of q2, i.e. L̂q1
= L̂q2

. In this case, the estimated parameters should be disregarded and the nested

detection procedure terminated. Therefore, the proposed approach can detect the order and estimate the

parameters of the channels having order higher than L + 1. The procedure is not able to identify the

number of channels with the same length L + 1, but can indicate that at least two sources are present in

the MISO mixture.

Nevertheless, cumulants are also sensitive to the nonlinearity of a stochastic process, in the sense

defined in [23]. Yet, the process obtained by MISO linear filtering of several i.i.d. sequences cannot be

obtained by linear filtering of a single i.i.d. sequence. This property will be used in a future paper to

detect the number of sources when channels may have the same length.

4 Simulation results

In this section, we illustrate the performance of the nested detectors described in Table 3 by means of

some simulation results. In order to evaluate the proposed detection/identification method, we make use

of the two following criteria, which are defined for each signal source q ∈ [1, Q]:

i. The empirical probability of detection: it corresponds to the ratio between the number of Monte

Carlo simulations in which the detector results are consistent (L̂q = Lq) and the total number R of

realizations of the experiment;

ii The normalized mean squared error (NMSE) of the consistent results: this metric is computed for

each channel q as follows:

NMSE(q) =
1

Rq

Rq∑

r=1

∥∥∥ĥ〈r〉
q − hq

∥∥∥
2

‖hq‖
2 , (78)
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Figure 3: Empirical probability of detection (left) and NMSE (right) versus the sample data length, with

SNR=40dB (L1 = 2, L2 = 1 and K = 5).

where Rq is the number of consistent results obtained for source q over R realizations and ĥ
〈r〉
q is

the estimated channel vector associated with source q, obtained for the (consistent) realization r.

Both blind channel identification algorithms described in section 3.1 have been implemented (rank-1

approximation and TLS) using the index set defined in (62), assuming the input signal constellation is

known (none Kurtosis estimation). However, since the results are very close, we omitted here the curves

obtained with the rank-1 approximation solution.

Nested algorithm for blind order detection and parameter estimation of MISO channels

Let us consider a frequency-selective MISO communication channel with Q = 2 users and one single

receive antenna. A static multipath propagation scenario is assumed, which induces a delay spread of the

order of 3 symbol periods on the channel of source 1 (L1 = 2) and of the order of 2 symbol periods on

the channel of source 2 (L2 = 1). Channel coefficients have been randomly generated with a continuous

complex Gaussian distribution. The figures in the sequel have been obtained with the following coefficient

vectors:

h1 =
[
1.0, 1.35− 0.57, −0.72 + 1.49

]T
,

h2 =
[
1.0, −1.14 + 0.23

]T
.

(79)

A known upper bound of K = 5 is assumed for both channel orders. The source signals have been QPSK

modulated and 200 input data blocks have been independently generated, with N samples per block.

The results shown below have been averaged over the simulations for all received data blocks, using the

nested detection-estimation procedure presented in Table 3.

First, we fixed the SNR value at 40dB and considered an output sample data length (N) varying

from 103 to 104. At the left-hand side of fig. 3, we notice a poor detection performance for both sources

when the sample data length is smaller than N = 2000. The overall channel identification performance is

improved as the number of output data samples increases. This is an expected result due to the fact that

the cumulant estimators are biased, but the bias is asymptotically zero. Increased cumulant estimation

variance implies worse channel parameter estimation, specially for short data lengths. In addition, in

fig. 3, we observe a performance loss between sources 1 and 2, suggesting that the proposed algorithm
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Figure 4: Empirical probability of detection (left) and NMSE (right) versus the sample data length, with

SNR=40dB (L1 = 3, L2 = 2, L3 = 1 and K = 5).

suffers from error propagation, harming the identification of shorter channels.

Afterwards, we considered a channel scenario with Q = 3 sources, where L1 = 3, L2 = 2 and L3 = 1.

Representing the randomly generated channel coefficient vectors by g1, g2 and g3, we used:

g1 =
[
1.0, −0.5783 + 0.7291, 1.3820− 0.99, −0.6140 + 1.3799

]T
, (80)

g2 = h1, and g3 = h2. Again, the SNR value was fixed at 40dB and the output sample data length

(N) varied from 103 to 104. Fig. 4 (left) shows the empirical probability of detection for each source,

highlighting the fact that a too small data length entails performance degradations. We also verified

an improvement of channel identification performance as the sample data length increases, as it can be

seen at the right-hand side of fig. 4. Here again, we can observe the effects of error propagation on the

estimation of the shorter channel parameters. This behavior can be explained from the fact that shorter

channels are estimated from the residual 4th-order cumulants, i.e. the information remaining after the

subtraction of the reconstructed cumulants of longer channels, which are themselves estimated and hence

susceptible to errors.

In another simulation, we used channels h1 and h2 with a sample data length of N = 104 for SNR

values ranging from 5 to 40dB. As we can see in fig. 5, the nested detectors are quite robust with respect

to additive Gaussian noise, at moderate and high SNR levels. For low SNR levels the channel estimation

performance is significantly degraded. Notice that, although the proposed order detection technique is

based on the 4th-order output cumulants, the computation of ρ̂k involves the estimation of the covariance

matrix Σ̂k, which requires computing 2nd-order moments estimates. The overall detection performance

is therefore expected to suffer with increasing levels of Gaussian noise, as illustrated in fig. 5. We notice

that error propagation also affects the performance of the proposed method in a varying range of SNR.

Finally, we studied the case of two sources transmitting data over channels that share one common

zero, with L1 = 2, L2 = 1 and K = 5. In this case, the user channels have been generated by randomly

choosing a point within a unit-sided square centered at the origin of the Real × Imaginary plane, following

a bidimensional uniform distribution. The zero-pole plot of the channels used in this simulation is shown

in the right-hand side of fig. 6. The left-hand side of fig. 6 shows NMSE versus the sample data length

for SNR=40dB. Looking at these results, we notice a performance degradation with respect to the case

shown in fig. 3. This observation suggests that the proposed method performs better with channels that
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Figure 6: Left: NMSE versus the sample data length for SNR=40dB with L1 = 2, L2 = 1 and K = 5;

Right: Zero-pole plot for channels 1 and 2.

do not share common zeroes.

5 Conclusion

In this paper, a new solution has been proposed to jointly solve the problems of order detection and pa-

rameter estimation of FIR channels in the context of a frequency-selective MISO communication system.

We have proposed a channel order detection algorithm based on HOS hypothesis testing. A Chi-square

test variable has been introduced along with a discussion about the choice of the decision threshold. The

proposed detection algorithm relies on some properties of the 4th-order output cumulants. Exploiting

the proposed order selection method, a combined detection-estimation procedure has been introduced.

The new algorithm successively detects the source signals, determines the order of their individual trans-

mission channel and estimates the associated channel coefficients. The nested detectors are based on a

deflation approach, extracting from the output cumulants the marginal contributions of the previously

identified channels and testing for the presence of shorter and shorter channels. Using the residual cumu-
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lant vector, the order-detection problem is treated separately for each user. Computer simulations have

shown the good performance obtained for channel order detection and identification.

One main drawback of the proposed technique is the fact that it is based on a deflation technique, which

entails a high sensitiveness to cumulant estimation errors, leading to cumulative parameter estimation

errors. We currently workout a possible solution to mitigate or suppress the error propagation issue based

on a adapted deflation approach for referenced contrast optimization [19].

The case of channels with the same order still needs further investigation. Future works on this

subject include an implementation of the nested MISO detectors to the case of a multiple-input multiple-

output (MIMO) communication channel. In such a MIMO approach more information is available, which

should allow us to treat the case of same length channels, including the overdetermined as well as the

underdetermined mixtures.
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