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Abstract

Time-frequency masking has evolved as a powerful tool for tackling blind source separation problems. In previous work, mask
estimation was performed with the help of well-known standard cluster algorithms. Spatial observation vectors, extracted from
a set of microphones, were grouped into separate clusters, each representing a particular source. However, most off-the-shelf
clustering methods are not very robust to outliers or noise in the data. This lack of robustness often leads to incorrect localization and
partitioning results, particularly for reverberant speech mixtures. To address this issue, we investigate the use of observation weights
and context information as means to improve the clustering performance under reverberant conditions. While the observation
weights improve the localization accuracy by ignoring noisy observations, context information smoothes the cluster membership
levels by exploiting the highly structured nature of speech signals in the time-frequency domain. In a number of experiments, we
demonstrate the superiority of the proposed method over conventional fuzzy clustering, both in terms of localization accuracy as
well as speech separation performance.
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1. Introduction

The goal of any source separation method is the recovery of
the sources from a given set of mixture observations. When
this problem is tackled without prior knowledge about the mix-
ing process or the original source signals it is usually referred
to as blind source separation (BSS). The algorithmic solution
to the BSS problem is of great importance in a number of dif-
ferent fields, such as speech processing, seismology, remote
sensing, econometrics, medical imaging and communication
systems. The classical example for acoustic signals is the so-
called "cocktail party problem" [1], where a number of peo-
ple talk simultaneously in a room and the task is to extract one
or more target speakers amidst other interfering speakers and
background noise.

In recent years, the concept of time-frequency (TF) mask-
ing has evolved as a popular tool for tackling the BSS prob-
lem [2, 3, 4, 5, 6, 7]. Separation of the sources is achieved
by exploiting a specific property of the sources, called spar-
sity or sparseness [2]. For example, it has been shown that
speech signals hardly overlap in their short-time-Fourier trans-
form (STFT) representation, or more formally stated, their
STFT supports are approximately disjoint [2, 8]. This discovery
has motivated a demixing approach, where a particular source
is separated from the mixture simply by masking all coefficients
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not belonging to its STFT support. Because this procedure does
not depend on matrix inversion it can be applied even for the
under-determined BSS case, e.g., when there are more sources
than mixtures.

Several practical algorithms that implement the TF masking
concept have been proposed in the literature. One of the first
was the degenerate unmixing estimation technique (DUET) for
anechoic mixtures [2, 8]. DUET operates on stereo data and
employs a histogram technique for mask estimation. Later, an
extension, called DUET-ESPRIT (DESPRIT) [9], was devel-
oped in order to handle the echoic mixing case by combining
DUET with the estimation of signal parameters via rotational
invariance technique (ESPRIT) [10]. DESPRIT operates on
multi-channel data recorded by a uniform linear microphone
array but localization performance is still subject to front-back
confusions. The MENUET (Multiple sENsor dUET) algorithm
[11] further extended the sensor arrangement to arbitrarily
non-linear array geometries allowing for full three-dimensional
source localization. In order to fully automate the process of
TF mask estimation, the application of well-known cluster al-
gorithms, such as k-means [12], was introduced in [11, 13].
In this line of research, the observation vectors are grouped
into separate clusters, each representing a particular source. If
the observation vectors embody spatial information each clus-
ter center represents a location estimate of the source’s posi-
tion. The cluster memberships, on the other hand, can be inter-
preted as TF localization masks marking the dominant points
of each source in the TF plane. While a hard clustering algo-
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rithm, like k-means, produces binary membership masks other
research has concentrated on fuzzy clustering methods [14] or
the probabilistic expectation-maximization (EM) algorithm for
soft TF mask estimation [5, 6, 7, 15].

Although the introduction of standard clustering techniques
has certainly advanced the field of TF masking it is not without
its shortcomings. Unfortunately, most off-the-shelf methods,
such as k-means and fuzzy c-means (FCM), are not very robust
to outliers or noise in the data. This lack of robustness often
leads to incorrect localization and partitioning results under re-
verberant conditions. In previous work [14], we have partly
addressed this issue by extending the standard FCM to cope
with unreliable data through the use of observation weights.
This weighted fuzzy c-means (wFCM) algorithm improves the
localization performance by down-weighting unreliable data
points during the cluster centroid computation. However, like
FCM and k-means, the wFCM technique completely ignores
the highly structured nature of speech signals in the TF domain.
The cluster membership value at a particular TF point is still as-
signed in isolation of its context or surroundings making the TF
mask estimation extremely vulnerable to noise.

Context or neighborhood information has long been estab-
lished as a suitable tool for increasing the noise robustness of
image segmentation algorithms [16, 17, 18, 19, 20, 21]. Natu-
ral images often exhibit a high correlation between neighboring
points due to the fact that objects are formed through patches of
connected pixels [22]. By the same argument, it is reasonable
to assume that the dominant parts of speech signals also form
patches and are not randomly scattered across the TF plane.
Given the lack of robustness in conventional clustering tech-
niques it seems promising to integrate such a structural con-
straint into the TF mask estimation procedure for improving the
separation performance under noisy and reverberant conditions.

This paper therefore presents a novel weighted contextual
fuzzy c-means (wCFCM) clustering technique for the prob-
lem of acoustic source separation. Motivated by the success
of neighborhood information in medical image segmentation
[21], we introduce a novel regularization term into the wFCM
objective function in order to model the context information
around a TF point. The term "context information" thereby
refers to available information about the cluster memberships of
adjacent observations gathered from a local TF neighborhood.
Using the same technique as in [21], the strength of the regu-
larization term is then automatically determined by employing
a pseudo-cross-validation scheme. The proposed contextually
constrained wCFCM algorithm biases the clustering solution
towards homogenous TF masks and is shown to be more robust
to reverberation than traditional approaches. To the best of the
authors’ knowledge, this is the first work studying the effect of
context information within the framework of clustering-based
acoustic source separation.

The remainder of this paper is organized as follows. Sec-
tion 2 starts with a short description of the convolutive BSS
problem. Section 3 presents an overview of the system archi-
tecture and briefly explains the main signal processing steps in-
volved. In Section 4, we briefly review the FCM and wFCM
clustering methods before describing the proposed wCFCM al-

gorithm in more detail. Section 5 reports on our experimental
evaluation and demonstrates that in comparison with conven-
tional fuzzy clustering the wCFCM algorithm leads to superior
speech separation performance, particularly in reverberant con-
ditions. The section also comments on several limitations in our
approach and points out some potential extensions for future
work. The paper concludes in Section 6 with a short summary.

2. Problem statement

Consider N sources in a reverberant enclosure impinging on
a uniform linear microphone array (ULA) made up of M identi-
cal, omnidirectional sensors with inter-element spacing d. The
sources are positioned stationary in the median plane (Fig. 1) at
unknown azimuth angles θ1, . . . , θN . It is further assumed that
each microphone observation can be modeled as a convolutive
sum

xm(t) =

N∑

n=1

∑

p

hmn(p) sn(t − p), m = 1, . . . ,M (1)

where xm(t) is the mixture observation at sensor m, sn(t) is the n-
th source signal and hmn(p) denotes the room impulse response
from source sn to microphone xm. We assume that N and M
as well as the sensor spacing d are known and that d is chosen
such that no spatial aliasing occurs. The goal is to recover an
estimate ŝn(t) for each source i ∈ {1, . . . ,N} from the M mixture
observations xm(t).
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θ
2
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Horizontal
plane

Figure 1: A uniform linear microphone array with j ∈ {1, 2, 3} sensor pairs
(X j,1, X j,2) and two sources S 1, S 2 located at azimuth angles θ1 and θ2.

3. System Overview

This section presents an overview about the source separa-
tion system utilized in our study (Fig. 2). We briefly discuss
each step of the model before describing the clustering stage
in detail in the subsequent section. Throughout the rest of the
paper, the following notations and definitions are adopted:

arg[·] phase of a complex number;
(·)T transpose;
(·)H Hermitian transpose;
(·)∗ optimal value;
|| · || Euclidean norm;
| · | absolute value or cardinality;
ˆ(·) estimated quantity;

(·)← (·) replacement of left hand side by right hand side;
 imaginary unit;
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Figure 2: Basic scheme of the time-frequency masking approach for blind source separation.

Step 1 - Short time spectral analysis. The first step converts the
time domain signals xm(t), sampled at frequency fs, into their
STFT representation

Xm(k, l) =

L/2−1∑

τ=−L/2

win(τ)xm(τ + kτ0)e− lω0τ, (2)

where k ∈ {0, . . . ,K−1} is a time frame index, l ∈ {0, . . . , L−1}
is a frequency bin index, win(τ) is a window function and τ0
and ω0 are appropriately chosen TF grid resolution parameters.
A L-point Hanning window

win(τ) = 0.5 − 0.5 cos
(

2πτ
L

)
, τ = 0, . . . , L − 1 (3)

was utilized in this paper for attenuating signal discontinuities
at the frame edges. By transforming (1) via (2) into the fre-
quency domain, the convolutive BSS problem can be approxi-
mated as an instantaneous mixing model

Xm(k, l) ≈
N∑

n=1

Hmn(l) S n(k, l), (4)

where Hmn(l) is the room impulse response from source S n to
sensor Xm at frequency bin l and Xm(k, l) and S n(k, l) are the
STFTs of the m-th microphone observation and the n-th source
signal, respectively. Another advantage of working in the STFT
domain is the ability to exploit the source sparseness by approx-
imating the sum in (4) with

Xm(k, l) ≈ Hmn(l) S n(k, l), ∃n ∈ {1, . . . ,N} (5)

where S n(k, l) is the dominant source at TF cell (k, l). While
this assumption holds well for anechoic speech mixtures [2],
it becomes increasingly unrealistic for long reverberation times
due to strong reflections from preceding sound events.

Step 2 - Spatial feature extraction. In the second step, instanta-
neous location features are extracted for each TF point. For that
purpose past research has identified a number of location cues
such as directions of arrival (DOA) as well as level ratios and/or
phase differences (see [11] for a review). According to [23], for
sparse sources in echoic environments, the longer the distance
d j is between a sensor pair (X j,1, X j,2) the better the DOA local-
ization performance will be. Hence, the instantaneous DOA at
TF point (k, l) is computed here as

ψ(k, l) = − 1
lω0d jmax c−1 arg

[
X jmax,1(k, l)
X jmax,2(k, l)

]
, (6)

where jmax denotes the index of the sensor pair with the biggest
spacing d jmax and c is the propagation velocity of sound [11, 23].
In order to avoid spatial aliasing when d jmax > c/ fs, we em-
ploy the SPIRE algorithm [23], which utilizes the smaller non-
aliased distance pairs to restore the aliased values of the longer
distance pairs (Fig. 1). Note that without the normalization term
lω0d jmax c−1 in (6) the features remain frequency dependent and
clustering must be performed for each frequency bin separately.
Bin-wise classification strategies, such as [5], usually require
longer data observations in order to guarantee accurate cluster-
ing results at each frequency bin. More importantly, the order
in which the clusters are determined may be different from one
frequency bin to another and a reordering is generally required
to ensure that the same cluster index corresponds to the same
source across all frequencies. As proposed by [2, 8], the fre-
quency normalization avoids this so-called permutation prob-
lem [24] by utilizing all frequency bins in one single clustering
step and allows the algorithm to operate on observations with
short data length.

Step 3. The DOA data set Ψ = {ψ(k, l) |ψ(k, l) ∈ R, (k, l) ∈ Ω}
is then divided into N clusters, where Ω = {(k, l) : 0 ≤ k ≤
K − 1, 0 ≤ l ≤ L − 1} denotes the set of TF points in the STFT
plane. Each cluster is represented by a set of prototype vectors,
called centroids or centers V = [vn] with vn ∈ R and V ∈ RN ,
and a partition matrix U = [un(k, l)] ∈ RN×K×L indicating the
degree un(k, l) to which a data point ψ(k, l) belongs to the n-
th cluster. While in hard clustering, such as [11], each data
element belongs to exactly one cluster (binary membership val-
ues) in fuzzy clustering data points can belong to more than one
cluster (continuous membership values). Here, fuzzy clustering
is employed in order to reflect the localization uncertainty in a
reverberant data set through a soft partitioning. More formally,
let the space of all possible fuzzy partitions be defined as

P =

{
U = [un(k, l)] | ∀n ∈ {1, . . . ,N},∀(k, l) ∈ Ω :

un(k, l) ∈ [0, 1];
N∑

n=1

un(k, l) = 1; 0 <
∑
∀(k,l)∈Ω

un(k, l)
}
. (7)

Given a particular data set Ψ, the search for the best fuzzy par-
tition U∗ in P is a constrained non-linear optimization problem.
An algorithmic solution is usually implemented as an alternat-
ing optimization scheme, which iterates between updates for V
and U until a convergence criterion is met [25]. The final cluster
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centroids ψ̂n := v∗n represent estimates of the DOA source loca-
tions and the corresponding partition matrix can be interpreted
as a collection of N fuzzy TF masks

M̂n(k, l) := u∗n(k, l), n = 1, . . . ,N. (8)

Alternatively, binary masks may be obtained through a de-
fuzzification process that converts the fuzzy partitioning U∗
into a hard or crisp segmentation. One popular defuzzification
method is to simply assign the TF point to the cluster of highest
membership, e.g.,

M̂n(k, l) :=


1, if n = argmax

j

{
u∗j(k, l)

}

0, otherwise.
(9)

Step 4 - Time-Frequency masking. Next, we obtain the sep-
arated signals Ŝ n(k, l) by applying the estimated localization
masks M̂n(k, l) to one of the mixture observations:

Ŝ n(k, l) = M̂n(k, l)XJ(k, l), n = 1, . . . ,N (10)

where J is a selected microphone index. Note that TF masking
is prone to musical noise artifacts caused by zero-padding of
spectral components in Ŝ n(k, l). Our use of contextually con-
strained fuzzy masks may ameliorate this problem somewhat
by providing a smoother separation result with fewer spectral
discontinuities in the extracted signals.

Step 5 - Source resynthesis. Finally, the estimated source sig-
nals are reconstructed in the time-domain by applying the
overlap-and-add method [26] onto the masked spectra. We fol-
low [11] and denote the reconstructed source estimate as

ŝn(t) =
1

Cwin

L/τ0−1∑

k′=0

ŝk+k′
n (t), (11)

where Cwin = 0.5
τ0

L is a constant for the Hanning window func-
tion and individual segments are obtained by an inverse STFT

ŝk
n(t) =



L−1∑

l=0

Ŝ n(k, l)e lω0(t−kτ0) if (kτ0 ≤ t ≤ kτ0+L−1),

0 otherwise.

(12)

4. Fuzzy clustering with observation weighting and context
information

In this section, we describe three fuzzy cluster algorithms
which can be used to estimate the TF separation masks as de-
fined in Section 3. We start by giving a brief review of the
FCM algorithm [27] and its implementation as an alternating
optimization scheme. We continue with the wFCM algorithm
[14], which is able to cope with unreliable data points through
the use of observation weights. The weighting scheme allows
for accurate centroid determination even if the data set is con-
taminated by noise. Next, we adopt a recently proposed clus-
tering technique [21] from the field of medical image segmen-
tation for the problem of acoustic source separation. The new

wCFCM method can produce more accurate separation masks
under reverberant conditions through the use of context infor-
mation during the membership updates. The section closes with
an example illustrating the estimated TF masks by each cluster
algorithm under anechoic and reverberant conditions.

4.1. Fuzzy c-means clustering
4.1.1. Optimization problem and cost function

Generally, the problem of finding the best fuzzy partition U∗
given the data set Ψ, can then be written as a constrained non-
linear optimization problem

(U∗FCM,V
∗
FCM) = argmin

(U,V)∈P

{
JFCM

}
subject to (7). (13)

For the FCM algorithm [27], the cost function JFCM takes on the
form

JFCM =

N∑

n=1

∑
∀(k,l)∈Ω

un(k, l)qDn(k, l), (14)

where q ∈ (1,∞) is a fuzzification parameter controlling the
softness of the memberships and

Dn(k, l) :=‖ ψ(k, l) − vn ‖2 (15)

is the squared Euclidean distance between the observation
ψ(k, l) and the centroid vn of the n-th cluster.

4.1.2. Cluster prototype and membership updating
The minimization problem in (13) can be solved by means

of Lagrange multipliers and is usually implemented as an alter-
nating optimization scheme due to the absence of a closed form
solution [25, 27]. Starting from a random partitioning, the cost
function (14) is iteratively minimized by alternating the updates
for the centroids and memberships

v∗n =

∑
∀(k,l)∈Ω

un(k, l)qψ(k, l)
∑

∀(k,l)∈Ω
un(k, l)q , ∀n (16)

u∗n(k, l) =


N∑

j=1

(
Dn(k, l)
D j(k, l)

) 1
q−1



−1

, ∀n, k, l (17)

until an appropriate convergence criterion is met. Convergence
is considered to be obtained when the difference between suc-
cessive partition or prototype matrices is less than some pre-
defined threshold ε [27]. Although convergence is guaranteed,
the alternating optimization scheme may only converge to a lo-
cal rather than global optimum. It is therefore recommended to
execute several runs of the algorithm and pick the best result.

The clustering procedure for the standard FCM algorithm is
summarized in Alg. 1. While this scheme is computational ef-
ficient it lacks robustness against noise and outliers. In the con-
text of clustering, outliers are usually defined as observations
that are far away from all cluster centers [28]. Consequently,
these points should be represented by low membership weights
during the centroid computation (16). However, because of the
constraints in (7), FCM assigns outliers rather high membership
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values close to 1/N. It is this inability to deal with corrupted
observations in (16) that often leads the FCM algorithm to pro-
duce incorrect localization results under reverberant conditions
[14]. We, therefore, conclude that FCM is suitable only for ane-
choic data sets that contain few outliers or noisy observations.

Algorithm 1: FCM - The fuzzy c-means clustering algo-
rithm.

input : Ψ, N, q, ε
output: U∗FCM,V∗FCM

initialize partition matrix U(0) ∈ P randomly1

repeat for j = 1, 2, . . .2

update centroids V( j) with U( j−1) using (16)3

compute distances D( j) with V( j) via (15)4

update partition matrix U( j) with D( j) using (17)5

until ‖ U( j) − U( j−1) ‖< ε6

return U∗FCM ← U( j) and V∗FCM ← V( j)7

4.2. Weighted fuzzy c-means clustering
4.2.1. Optimization problem and cost function

In weighted fuzzy c-means (wFCM) clustering [14, 29] the
reliability of each datum ψ(k, l) is indicated by an observation
weight w(k, l). Let W = {w(k, l) |w(k, l) ∈ R+, (k, l) ∈ Ω} be
the corresponding set of observation weights for Ψ. The con-
strained optimization problem with observation weighting then
becomes

(U∗wFCM,V
∗
wFCM) = argmin

(U,V)∈P

{
JwFCM

}
subject to (7), (18)

with the cost function JwFCM defined as

JwFCM =

N∑

n=1

∑
∀(k,l)∈Ω

un(k, l)qw(k, l)Dn(k, l). (19)

4.2.2. Cluster prototype and membership updating
This minimization problem can again be solved by Lagrange

multipliers leading to the wFCM update equations:

v∗n =

∑
∀(k,l)∈Ω

un(k, l)qw(k, l)ψ(k, l)
∑

∀(k,l)∈Ω
un(k, l)qw(k, l)

, ∀n (20)

u∗n(k, l) =


N∑

j=1

(
Dn(k, l)
D j(k, l)

) 1
q−1



−1

, ∀n, k, l. (21)

The additional weighting factor w(k, l) in (20) allows the wFCM
algorithm to incorporate prior knowledge about the reliability
of each observation during the centroid updates. Its main pur-
pose is to reduce the influence of unreliable data points while
increasing the weight of reliable observations. If the weights
are chosen appropriately, the centroid estimation in wFCM be-
comes much less susceptible to outliers and noisy data points.
Note, however, that wFCM uses the same update equation for
the membership values as FCM in (17).

4.2.3. Selection of observation weights
For the purpose of robust source localization, a good choice

of the observation weights is crucial. A number of previous
studies [30, 31, 32] have shown that in echoic enclosures, only
a small fraction of the location cues correspond to the correct
source locations. Based on our previous work [14], the observa-
tion weights are estimated here prior to the clustering by scan-
ning the TF plane for regions with low DOA fluctuations. It is
thereby assumed that TF regions with low DOA fluctuations are
not affected by sound reflections [30], possess a high SNR [33]
and are indicative of single source zones [34]. High variances,
on the other hand, indicate regions where sources overlap or re-
flections contaminate the DOA measurements. The local DOA
variance σ2

ψ(k, l) is computed over a small neighborhood N(k,l)
as

σ2
ψ(k, l) =

1
|N(k,l)| − 1

∑

∀(k′,l′)∈N(k,l)

[
ψ(k′, l′) − µψ(k, l)

]2
, (22)

where µψ(k, l) is the local DOA mean

µψ(k, l) =
1
|N(k,l)|

∑

∀(k′,l′)∈N(k,l)

ψ(k′, l′). (23)

The neighborhood N(k,l) was chosen as a 11-point window of
adjacent frequency bins. The lower the local variance for a
DOA measurement, the more weight should be given to this
observation during clustering. We found, that a good choice for
w(k, l) is the following empirically determined function

w(k, l) = 1 +
1

max{σ2
ψ(k, l), κ} , (24)

which assigns large weights w(k, l) >> 1 to regions with low
DOA fluctuations while penalizing areas with high variances
through unity weights, w(k, l) ≈ 1. The constant κ prevents a
division by zero and controls the upper limit of the weights.
In our implementation, κ was set to 10−3. Note that wFCM
defaults to the standard FCM if the weights are chosen to be
unity for all TF points. Fig. 3 shows an example of the weights
w(k, l) and illustrates the impact of the weighting scheme on the
clustering structure. The iterative clustering procedure for the
weighted FCM algorithm is summarized in Alg. 2.

Algorithm 2: wFCM - The weighted fuzzy c-means
clustering algorithm.

input : Ψ, W, N, q, ε
output: U∗wFCM,V∗wFCM

initialize partition matrix U(0) ∈ P randomly1

repeat for j = 1, 2, . . .2

update centroids V( j) using W & U( j−1) via (20)3

compute distances D( j) with V( j) via (15)4

update partition matrix U( j) using (21)5

until ‖ U( j) − U( j−1) ‖< ε6

return U∗wFCM ← U( j) and V∗wFCM ← V( j)7
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Figure 3: Example of observation weighting in noisy DOA feature sets. (a) Ob-
servation weights w in time-frequency plane; Lighter areas have lower weights;
darker areas higher weights. (b) DOA histogram with unity weights (light gray
bars) and with weights from (a) (dark gray bars). The true DOA angles of the
two speech sources are −20◦ and 20◦.

4.3. Weighted contextual fuzzy c-means clustering

A common drawback of FCM and wFCM is their lack of
robustness when confronted with reverberant speech mixtures.
Typically, the estimated membership functions contain many
misclassified points which often appear as speckled patterns in
the TF masks. This is not surprising, given that no particu-
lar structure is imposed on the speech spectrum and member-
ship classification of a datum depends solely on the Euclidean
distances of a single TF point in the DOA feature space. As-
signing a TF point independently from its context or surround-
ings ignores the highly structured nature of speech in the TF
domain. Human speech sounds are formed through continu-
ous movements of articulatory organs inside the vocal tract and
therefore display a smooth and continuous appearance when
contemplated in the TF domain. The new wCFCM cluster al-
gorithm incorporates such a homogeneity assumption on the
speech spectra in form of contextually constrained membership
functions.

4.3.1. Optimization problem and cost function

We consider the following constrained optimization problem

(U∗wCFCM,V
∗
wCFCM) = argmin

(U,V)∈P

{
JwCFCM

}
subject to (7) (25)

and follow [21] in defining the wCFCM cost function as

JwCFCM =

N∑

n=1

∑
∀(k,l)∈Ω

un(k, l)qw(k, l)Dn(k, l)

+
β

2

N∑

n=1

∑
∀(k,l)∈Ω

un(k, l)q
∑

∀(k′ ,l′)∈N(k,l)

N∑

n′=1,
n′,n

un′(k′, l′)q.

(26)

Note that the first term in (26) is identical to the wFCM ob-
jective function while the second term acts as a regularization
term forcing TF points from a neighborhood N(k,l) to have simi-
lar membership values in the same cluster. This penalty is min-
imized when the membership value for a particular cluster is
large and the membership values for the other clusters in a local
TF neighborhood are small [21]. The parameter β controls the
trade-off between minimizing the wFCM objective function and
biasing the solution towards homogenous membership masks.
For ease of notation, we define

Cn(k, l) :=
∑

∀(k′ ,l′)∈N(k,l)

N∑

n′=1,
n′,n

un′ (k′, l′)q (27)

and write (26) as

JwCFCM =

N∑

n=1

∑
∀(k,l)∈Ω

un(k, l)q
[
w(k, l)Dn(k, l) +

β

2
Cn(k, l)

]
. (28)

4.3.2. Cluster prototype and membership updating
The constrained minimization problem (25) is again solved

by Lagrange multipliers and implemented as an alternating op-
timization scheme. It can be shown (see Appendix) that the
wCFCM update equations are given by

v∗n =

∑
∀(k,l)∈Ω

un(k, l)qw(k, l)ψ(k, l)
∑

∀(k,l)∈Ω
un(k, l)qw(k, l)

, ∀n (29)

u∗n(k, l) =


N∑

j=1

(
w(k, l)Dn(k, l) + βCn(k, l)
w(k, l)D j(k, l) + βC j(k, l)

) 1
q−1



−1

,∀n, k, l.

(30)

As is evident from (29) the wCFCM algorithm inherits the ro-
bust centroid estimation of the wFCM algorithm through the
use of the observation weights w(k, l). However, the member-
ships U∗ are computed differently from wFCM depending on
the value of the contextual weighting parameter β. For β = 0,
no context information is utilized and (30) becomes identical to
the wFCM update equation. When β > 0, the value at un(k, l)
is influenced by the membership values un′,k′,l′ at neighboring
TF points (k′, l′) ∈ N(k,l) in other clusters n′ , n. The result
is a smoothing effect that causes neighboring TF points to have
similar memberships in the same cluster. The main steps of the
wCFCM algorithm are summarized in Alg. 3.
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Algorithm 3: wCFCM - The weighted contextual
fuzzy c-means clustering algorithm.

input : Ψ, W, N, q, β, ε
output: U∗wCFCM,V∗wCFCM

initialize partition matrix U(0) ∈ P1

repeat for j = 1, 2, . . .2

update centroids V( j) with U( j−1) via (29)3

compute distances D( j) with V( j) via (15)4

compute context C( j) with U( j−1) via (27)5

update partition matrix U( j) using (30)6

until ‖ U( j) − U( j−1) ‖< ε7

return U∗wCFCM ← U( j) and V∗wCFCM ← V( j)8

4.3.3. Selection of regularization parameter β
Proper selection of β is crucial to obtain near-optimal per-

formance under varying environmental conditions. In general,
the stronger the room reverberation the higher the degree of
smoothing required to obtain a satisfactory clustering result. On
the other hand, if reverberation is mild and there is very little
noise in the feature set, then too much regularization will result
in degraded performance due to over-smoothing.

In practice, generally only limited information about the mix-
ing process or the room environment is available preventing us
from choosing an optimal β a priori. It is therefore highly desir-
able to obtain appropriate estimates for β directly from the data
without having to rely on trial-and-error methods or unrealistic
assumptions about the noise characteristics of the input data.

Cross-validation is a well-established technique for deter-
mining a near-optimal regularization parameter without any a
priori knowledge of either the amount of noise or its distribu-
tion [35, 36]. One iteration of cross-validation involves parti-
tioning a data set into complementary subsets, executing the al-
gorithm under study with a fixed regularization parameter on
one subset, and validating the outcome on the other subset.
To reduce variability, the validation results are normally aver-
aged over multiple iterations of cross-validation using different
choices for the subsets.

In our application, true cross-validation with multiple data
partitions is computationally prohibitive because of the large
number of data points. Instead, we have resorted to a subop-
timal procedure of the true cross-validation scheme, called the
holdout method [36]. In holdout, the data set is divided into one
estimation set and one validation set. The algorithm of interest
is first applied to the estimation set using a fixed value for β.
The points of the validation set are assumed to be missing in
this step. The outcome of the estimation step is then used to
test the appropriateness of β by computing a cross-validation
error on the validation set. This process is repeated for dif-
ferent values of β, and the value β∗ that results in the lowest
cross-validation error is considered to be optimal. Contrary to
true cross-validation, this offers the advantage that the cross-
validation error is only computed once using the left-out data
from the validation set. Although the holdout method is not
as reliable as true cross-validation, it usually yields reasonable
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Figure 4: Plot of cross-validation error for different values of the regularization
parameter β. In this example, Ecv(β) is minimized for β∗ ≈ 0.0108.

estimates for β with substantial computational savings [36].
For our wCFCM algorithm, we mainly adopt the holdout

scheme presented in [21], which has been shown to perform
well in clustering problems related to medical image segmenta-
tion. For a particular choice of β, the centroids v(β)

n and cluster
membership values u(β)

n (k, l) obtained from the estimation set
are validated for their clustering performance using the follow-
ing wFCM criterion-based cross-validation error

Ecv(β) =

N∑

n=1

∑
∀(k,l)∈Ωv

u(β)
n (k, l)qw(k, l) ‖ ψ(k, l) − v(β)

n ‖2, (31)

where Ωv denotes the indices of all TF points in the valida-
tion set. The choice of Ωv is not very critical as along as each
source is sufficiently represented in the set. As recommended
in [35], we chose the validation points in Ωv randomly with
|Ωv| = 1

10 |Ω|.
Fig. 4 shows a typical plot of the cross-validation error Ecv(β)

computed for various values of β using the described holdout
strategy. For most cases, the cross-validation error function
is of convex shape and shows a clear global minimum. We
follow [21] and stop the search once the first local minimum
of Ecv(β) has been found. The complete description of the
steps involved for the wCFCM algorithm using pseudo-cross-
validation is given in Alg. 4.

4.4. Example

The following example provides an illustration of the TF
masks produced by the three cluster algorithms FCM, wFCM
and wCFCM under anechoic and reverberant conditions. For
comparison purposes, the estimated fuzzy membership masks
are presented alongside binary a priori masks [2, 37]. These
a priori masks are obtained using the premixed source signals
and serve here as "ground truth" reference for judging the qual-
ity of the partitioning result of each cluster algorithm.

Our example consists of a speech mixture with two sources
of equal gain. Clustering is performed in anechoic (RT60

1 =

1RT60 is defined as the time required for reflections of a direct sound to
decay by 60 dB following sound offset [38].
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Algorithm 4: wCFCM using the holdout method
for parameter selection (adopted from [21]).

input : Ψ, Ωv, W, N, q, ε
output: U∗wCFCM,V∗wCFCM

run wFCM to determine JwFCM1

compute βinc = 0.1 JwFCM
(JwCFCM−JwFCM)/β2

set β = βinc3

run wCFCM on estimation set Ω\Ωv4

compute Ecv(β) on validation set Ωv5

if Ecv(β) is not at a local minimum set β = β + βinc6

and go to Step 4, using the current clustering result
as an initialization of the next application of
wCFCM; otherwise set β∗ = argmaxβ {Ecv(β)} and
go to Step 7.
apply wCFCM to entire TF plane Ω using β∗ as7

regularization parameter

0 ms) and reverberant (RT60 = 300 ms) conditions. A fuzzy
exponent q = 2 was used for all cluster algorithms. The holdout
method was employed to automatically select the amount of
smoothing performed in wCFCM. Note that the data length was
relatively short with 2.8 s.

Fig. 5 shows the a priori mask as well as the fuzzy member-
ship masks generated by FCM, wFCM and wCFCM with q = 2
for the anechoic speech mixture. All three cluster algorithms
produced very accurate results when compared to the a priori
mask. In the absence of any sound reflections almost all ex-
tracted features are reliable indicators of the source locations
making it possible for FCM and wFCM to perform well in this
situation. The wCFCM result was similarly successful although
it exhibited some minor loss in detail in the low frequency re-
gions due to its neighborhood smoothing.

Fig. 6 shows the a priori mask as well as the fuzzy member-
ship masks generated by FCM, wFCM and wCFCM for the re-
verberant speech mixture. Due to the adverse impact of sound
reflections on the localization measurements many of the ex-
tracted location features deviated significantly from their true
value. As is evident from Fig. 6(b) and 6(c), the isolated mem-
bership assignment of each TF point in FCM and wFCM is
highly vulnerable to noise in the feature set. When compared
to the "ground truth" in Fig. 6(a) the FCM and wFCM masks
are more speckled and contain many misclassifications. In con-
trast, the wCFCM result in Fig. 6(d) is much smoother and less
speckled due to the inclusion of context information. This sug-
gests that wCFCM is more robust than conventional clustering
and may have the potential to improve the separation perfor-
mance of current BSS systems for reverberant speech mixtures.

5. Experimental evaluation

In this section, we present some results for the application
of the three fuzzy cluster algorithms in a BSS framework with
synthetic speech mixtures. The first experiment examined the
clustering performance on an over-determined BSS task using

(a) a priori (b) FCM

(c) wFCM (d) wCFCM

Figure 5: Comparison of a priori masks with fuzzy membership masks gen-
erated by FCM, wFCM and wCFCM in anechoic conditions. Lighter areas
indicate lower membership values; darker areas represent higher membership
levels. RT60 = 0 ms,SIR = 0 dB,M = 6, d = 4.28 cm, fs = 8 kHz, q = 2.

conventional TF masking for demixing the sources from the
mixture. In the second experiment, we studied the impact of us-
ing a fuzzy mask as opposed to a binary mask when performing
the demixing in reverberant conditions. The third experiment
reports on the source localization accuracy of the three cluster
algorithms when deployed in anechoic and reverberant environ-
ments. The last experiment investigated the performance of the
cluster algorithms in a BSS application that combines TF mask-
ing with beamforming.

5.1. Experimental setup

Multipath sound propagation was simulated for a small rect-
angular room with dimensions 6 m x 4 m x 3 m (length x width x
height). Wall reflections were estimated using the image model
method for simulating small-room acoustics [38]. Room im-
pulse responses for different reverberation times were gener-
ated for each sensor of a six-channel ULA with inter-element
spacing of d =4.28 cm and a sampling frequency of 8 kHz. The
array was positioned in the middle of the room at a height of
2 m. Facing array broadside, two sources with equal gain were
placed in the horizontal plane at azimuth angles of θ1 = −20◦

and θ2 = 20◦ and a distance of 1.5 m from the array center.
The sound mixtures consisted of two speech sources, one

from the TIDIGIT [39] and the other from the TIMIT [40]
database. For evaluation purposes, a total of 240 different
mixtures were constructed. The average utterance length was
around 2.5 s. Simulations were run for three room reverbera-
tion times RT60 ∈ {0 ms, 300 ms, 600 ms}. The STFT frame size
was 64 ms with a shift of 10 ms.

It is widely known that the performance of fuzzy cluster-
ing strongly depends on the initialization of the algorithm. For
FCM and wFCM, the best solution among 50 runs was selected

8



(a) a priori (b) FCM

(c) wFCM (d) wCFCM

Figure 6: Comparison of a priori TF masks with fuzzy membership masks gen-
erated by FCM, wFCM and wCFCM in reverberant conditions. Lighter areas
indicate lower membership values; darker areas represent higher membership
levels. RT60 = 300 ms,SIR = 0 dB,M =6, d = 4.28 cm, fs =8 kHz, q = 2 .

as final result in order to minimize the risk of finding a local
rather than global optimum. The wCFCM algorithm was ini-
tialized with the best wFCM result and the regularization pa-
rameter was determined using the cross-validation method. A
rectangular neighborhood of size 15 × 9 (frequency × time)
TF points was used for the contextual regularization term in
wCFCM.

For the purpose of quantifying the separation performance,
we resorted to the measures provided by the freely available
BSS_EVAL toolbox [41]. The toolbox operates on the assump-
tion that a given source estimate ŝ(t) can be modeled as the
following sum

ŝ(t) = st(t) + ei(t) + en(t) + ea(t), (32)

where st(t) is an allowed deformation of the target source, ei(t)
accounts for distortions due to unwanted interfering sources,
en(t) is perturbating noise and ea(t) characterizes all other ar-
tifacts introduced by the separation algorithm, e.g., musical
noise. The decomposition of the estimated sources was per-
formed using the toolbox function bss_decomp_filt, which al-
lows for time-invariant filter distortions of the target source.
The filter length was set to 256 taps as recommended in [42].
The following three global performance measures were com-
puted. Firstly, the source-to-distortion ratio (SDR)

SDR := 10 log10

[ ∑
t |st(t)|2∑

t |ei(t) + en(t) + ea(t)|2
]

dB (33)

is an overall quality measure for the separation results. Sec-
ondly, the sources-to-interferences ratio (SIR)

SIR := 10 log10

[∑
t |st(t)|2∑
t |ei(t)|2

]
dB (34)

quantifies the strength of interfering sources in the target source
estimate. Lastly, the sources-to-artifacts ratio (SAR)

SAR := 10 log10

[∑
t |st(t) + ei(t) + en(t)|2∑

t |ea(t)|2
]

dB (35)

measures the amount of artifacts in the source estimates. For
the experiments considered here, we assumed ideal omni-
directional microphones so that en(t) can be omitted in the
above definitions. In order to express the SIR and SDR im-
provements between the speech mixture input and the pro-
cessed BSS output, we also computed the corresponding gains,
e.g., SIRgain = SIRoutput − SIRinput. All performance criteria
are expressed in dB and the higher the ratios are the better the
quality of the separation result is.

5.2. Results

5.2.1. Separation performance for conventional TF masking
First, we tested the clustering performance using conven-

tional TF masking for demixing the two speakers from the mix-
tures. In all cases, clustering was performed with q = 2 and
binary TF masks were estimated using the maximum member-
ship assignment in (9).

Fig. 7(a)-(c) show the separation results for the three cluster
algorithms in anechoic and reverberant test scenarios. These
figures demonstrate the superiority of wCFCM over FCM for
the reverberant test cases. For example, wCFCM achieved sub-
stantial SIR gains of up to 5 dB over conventional fuzzy cluster-
ing (Fig. 7(b)) while at the same time producing similar artifacts
in the output signals (Fig. 7(c)). We also note that wCFCM per-
formed slightly worse than FCM and wFCM in anechoic con-
ditions. This was caused by the cross-validation method used
to determine the optimal smoothing parameter. It was found
that the method overestimated the strength of β in some cases,
which led to performance degradations due to over-smoothing.

5.2.2. Soft vs. hard masking
Next, we studied the impact of using a fuzzy mask as op-

posed to a binary mask when performing the demixing. The
wCFCM cluster algorithm was run several times with a differ-
ent fuzzy exponent q ∈ {1.1, 1.3, 1.5, 1.8, 2.0, 2.3, 2.6, 3.0}. The
choice of q controls the softness of the generated TF masks
and the closer this parameter is to unity the more binary the
membership levels become. The separation performance was
recorded for both fuzzy and binary masks, as defined in Eq. (8)
and (9). The reverberation time RT60 was 300 ms.

From Fig. 8, we observe that the binary masks outperformed
the fuzzy masks significantly in terms of interference suppres-
sion for values of q > 2. For smaller values of q the per-
formance of the fuzzy masks approached those of the binary
masks. This is expected, because for q ∈ (1, 1.5] the fuzzy clus-
tering effectively turns into a hard clustering with almost binary
membership values. Note also that the highest SIR gains were
achieved for q = 2.0 and q = 2.3, which suggests that for rever-
berant mixtures fuzzy clustering techniques may perform better
than hard clustering approaches, such as k-means.
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Figure 7: Source separation performance in terms of (a) SDR gain, (b) SIR gain and (c) SAR when the TF masks were estimated using the FCM, wFCM or wCFCM
cluster algorithm. The error bars show the standard deviation computed over all outputs.
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values for the fuzzy exponent q.

From Fig. 9, we see that according to the SAR measure the
fuzzy masks caused fewer artifacts in the output spectra than
their binary counterparts. This agrees with a previous study
[43], which found that soft TF masks can significantly reduce
musical noise by preventing excessive zero-padding in the BSS
outputs. The question whether musical noise distortions are ac-
ceptable often depends on the target application. For example,
speech recognition systems are usually more interested in sup-
pressing energy from interfering sources than reducing musical
noise. On the other hand, this may be different for audio appli-
cations intended for human listeners.

In conclusion, our results suggest that for striking a balance
between SIR and SAR, a good choice for the fuzzy exponent
is q ≈ 2. The proposed fuzzy clustering also provides the user
with the option to apply hard or soft TF masking, depending on
the application at hand.

5.2.3. Source DOA localization accuracy

In this experiment, the localization accuracy of the three clus-
ter algorithms FCM, wFCM and wCFCM was determined un-
der different room reverberation times. Performance was quan-
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Figure 9: Separation performance of fuzzy and binary TF masking in terms
of SAR when wCFCM clustering was performed with different values for the
fuzzy exponent q.

tified in terms of the root-mean-square error (RMSE)

RMSE :=

√√√
1
N

N∑

n=1

(θ̂n − θn)2, (36)

which measures the difference between the estimated θ̂n and
the true DOA angle θn averaged over all sources. The lower the
RMSE value the better the localization accuracy of the cluster
algorithm. The fuzzifier parameter was set to q = 2.

Fig. 10 shows the obtained results for each cluster algorithm
in terms of the RMSE localization error. Not surprisingly, for
anechoic conditions the localization performance of all three
cluster algorithms was very accurate. With only two sources
and no reverberation most DOA observations contributed reli-
able measurements for the clustering process. For reverberant
data, strategies with observation weighting (wFCM,wCFCM)
clearly outperformed conventional FCM. This is consistent with
previous studies [2, 30, 33, 44], which found that the accuracy
of histogram based source localization strategies greatly bene-
fits from assigning reliability weights to data points.
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Figure 10: Localization accuracy in terms of RMSE for the three different
cluster algorithms FCM, wFCM and wCFCM in different reverberant environ-
ments. The error bars show the standard deviation computed over all outputs.

5.2.4. Separation performance for combined TF masking and
beamforming

In our last experiment, we investigated the performance of
each fuzzy cluster algorithm when deployed in a BSS applica-
tion that combines TF masking with spatial filtering. In [45], it
was shown that the outcome of the clustering stage can be used
to blindly design the spatial filter weights of N adaptive beam-
formers in the frequency domain. The beamformed sources are
then estimated as

Ŝ n(k, l) = b ∗n (l)HX(k, l), n = 1, . . . ,N (37)

where X(k, l) = [X1(k, l), . . . , XM(k, l)]T is an observation vec-
tor and b ∗n (l) = [b ∗1n(l), . . . , b ∗Mn(l)]T denotes the optimal beam-
former weight at frequency bin l according to some design
criterion. In our implementation, we employed linear con-
strained minimum variance (LCMV) beamforming, where the
filter weights are given by [46]

b∗n(l) = R−1
n (l)A(l)

(
A(l)HR−1

n (l)A(l)
)−1
δn. (38)

Rn(l) is the noise-plus-interference correlation matrix, A(l) =

[a1(l), . . . , aN(l)] is the constraint matrix containing the steering
vectors

an(l) =
[
e− lω0dm1c−1ψn , . . . , e− lω0dM1c−1ψn

]T
(39)

and δn = (δn1 , . . . , δnN )T is the constraint response vector with

δni =


1, if i = n
0, otherwise.

(40)

Essentially, the spatial filter weights b∗n(l) are designed to let
pass all signals from DOA ψn while rejecting all energy re-
ceived from interfering DOAs ψi,n. However, in practice the
true Rn(l) and A(l) are unknown and need to be derived from
the available data. As proposed in [45], we determined suitable
estimates for both quantities by utilizing the outcome of the
clustering. The constraint matrix Â(l) was obtained by replac-
ing ψn in (39) with the estimated cluster centroid ψ̂n. The jam-
mer correlation matrix R̂n(l) was estimated through a weighted

mean

R̂n(l) =

∑K−1
k=0 ρn(k, l)X(k, l)X(k, l)H

∑K−1
k=0 ρn(k, l)

, (41)

where the weights ρn(k, l) = 1 − M̂n(k, l) specify the jammer
dominant TF slots for source S n as indicated by the correspond-
ing TF mask. For a more in-depth discussion on issues related
to beamforming and TF masking, we refer the reader to the rel-
evant references [45, 47, 48]. For this experiment, we used the
binary maximum memberships masks (9) and performed clus-
tering with q = 2 in all cases.

Fig. 11 shows the separation performance of the LCMV
beamformer when the filter weights were estimated blindly
using either the FCM, wFCM or wCFCM cluster algorithm.
Among these three methods, wCFCM achieved the best out-
come with FCM and wFCM producing nearly identical separa-
tion results. In general, the LCMV beamformer performed very
well on anechoic mixtures outperforming the separation results
achieved with conventional TF masking (see Fig. 7). On the
other hand, the separation capabilities of a small microphone
array are limited in an echoic environment. As evident from
Fig. 11(b), the SIR measure dropped from 27 dB in anechoic
settings to around 3 dB for the most reverberant test scenario.
Similar performance deteriorations for adaptive beamforming
have also been observed in previous studies [49, 50]. We also
note that the poor localization accuracy of FCM had very little
impact on the separation performance. This can be explained
by the small array aperture of ≈ 21 cm, which resulted in broad
beams with high side-lobes at low frequencies (< 1 kHz) mak-
ing the LCMV beamformer particularly vulnerable to sound re-
flections in a multi-path environment.

Because of these deficiencies it is common to post-process
the beamformer outputs further using some sort of post-
filtering.

Fig. 12 shows the separation performance when TF masking
was additionally applied to the LCMV beamformer outputs. We
observed that the non-linear masking operation improved the
SIR measure (Fig. 12(b)) considerably by further suppressing
the signal energies in jammer dominated TF cells. In particular,
the TF masks produced by wCFCM resulted in substantial SIR
gains of up to 5 dB compared to LCMV beamforming alone.
These findings are in line with [51], who reach similar conclu-
sions regarding the use of TF masking as a postprocessing step
in frequency domain BSS. However, as noted previously, the
downside of such an operation is the introduction of non-linear
distortions (musical noise) in the output signals. The SAR cri-
terion, which measures this type of distortion, indicated an in-
crease in artifacts only for the anechoic but not for the reverber-
ant cases (compare Fig. 11(c) and Fig. 12(c)). We conducted
some informal listening tests to assess the audio quality of the
separated signals, because it has been reported [52, 53] that the
SAR measure may not always accurately represent the amount
of musical noise. These tests confirmed that the post-processed
source estimates suffered from stronger musical noise than the
LCMV outputs without additional TF masking.
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Figure 11: Source separation performance of LCMV beamforming in terms of (a) SDR gain, (b) SIR gain and (c) SAR when beamformer weights were estimated
with FCM, wFCM or wCFCM. The error bars show the standard deviation computed over all outputs.
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Figure 12: Source separation performance of combined TF masking and LCMV beamforming in terms of (a) SDR gain, (b) SIR gain and (c) SAR when masks and
beamformer weights were estimated with FCM, wFCM or wCFCM. The error bars show the standard deviation computed over all outputs.

5.3. General discussion

Overall, our study has demonstrated that observation weight-
ing and context information can improve the source separa-
tion performance of a conventional fuzzy cluster algorithm un-
der reverberant conditions. The proposed wCFCM algorithm
achieved substantial gains in terms of SIR and SDR improve-
ments over conventional FCM in a number of test scenarios.

However, no comparisons between wCFCM and other BSS
algorithms were presented in this paper. The main objective
of this study was to provide a proof of concept and establish
the potential of context information for increasing the robust-
ness of standard cluster algorithms. While in the field of image
segmentation the importance of context information has been
demonstrated before [16, 18, 20], we were unable to find any
previous reports on this topic for the acoustic BSS problem. It
is our hope that this paper will encourage other researchers in
the BSS community to explore similar strategies in order to ad-
vance the paradigm of TF masking. We also expect wCFCM
to prove very useful in related research areas, such as musical
source separation [54] or missing data speech recognition [55].

Before concluding this paper, we would like to comment on
several limitations in our approach and point out some exten-
sions likely to result in further performance improvements.

Firstly, it is known that the Euclidean L2-norm distance is

not robust to outliers or strong noise in the data set. Here, we
have addressed this issue by reducing the influence of outliers
and noisy DOA observations through the use of observation
weights. Alternatively, the non-robust Euclidean L2-norm dis-
tance could be replaced with more robust Lp-norm distances
[56], such as the L1-norm [57] or kernel-based distance mea-
sures [58].

One important point that we have not addressed so far is the
question of computational complexity. For this study, all three
fuzzy cluster algorithms were implemented in MATLAB

TM
7.5

on a 3 GHz Intelr Core
TM

2 Duo machine running Linux. Ex-
ecution times varied according to the dimension of the data set
and the amount of noise. While the size of the data set is di-
rectly linked to the resolution parameters of the short-time spec-
tral analysis, the amount of noise is influenced by environmen-
tal factors, such as the room reverberation time and the number
of sources.

Table 1 shows the CPU times for the three fuzzy cluster al-
gorithms averaged over 50 runs. Clearly, wCFCM requires by
far the longest CPU-time among the three cluster algorithms.
This is mostly due to the additional computation of the con-
text regularization term in each iteration and the need to select
the smoothing parameter β via cross-validation. Reducing the
computational burden can therefore be considered an important
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Table 1: Average CPU time (±1 standard deviation over 50 trials, in seconds)
for separating a 3 s mixture of two speech sources in different reverberant envi-
ronments.

Algorithm Reverberation time RT60 in ms

0 300 600

FCM 0.4 ± 0.1 0.4 ± 0.1 0.4 ± 0.1
wFCM 0.4 ± 0.1 0.5 ± 0.1 0.5 ± 0.1
wCFCM 2.8 ± 0.6 3.5 ± 0.4 4.5 ± 0.3

(17.4 ± 8.4)a (16.7 ± 5.7)a (24.1 ± 3.9)a

a Numbers in braces indicate the extra time spent for selecting the regulariza-
tion parameter β∗ using cross-validation.

topic for future research.
Another point of concern is the size and shape of the neigh-

borhood system N(k,l) used to collect the context information
around a TF point. Although the simple rectangular context
window was successful in improving the wCFCM membership
estimation it remained fixed throughout the entire TF plane and
did not adapt to the structure of the speech sources. In order to
preserve the local homogeneity of the underlying speech char-
acteristics and avoid loss of detail in the TF masks the use of
adaptive neighborhood models [59] needs to be investigated.
Ideally, the size as well as the shape of the context window
should be tailored to the local source characteristics in the TF
plane. In this regard, it seems also worthwhile to investigate
strategies in which the smoothing parameter β is allowed to vary
with the local characteristics of the speech spectra.

Extending the algorithm to multi-dimensional feature sets is
another topic for further research. In our current implementa-
tion, only one-dimensional spatial cues extracted from the sen-
sor pair with the biggest spacing are utilized during clustering.
The extension of the wCFCM cluster algorithm to higher fea-
ture dimensions is straightforward. This includes the use of
additional delay estimates from other sensor pairs, for example
when using a non-linear array geometry as in MENUET [11],
and the use of level ratios as in DUET [2]. However, spatial
cues become less effective the stronger the reverberation and
the smaller the angular separation between the speakers. Aug-
menting the location features with pitch or harmonicity cues
may provide another important source of information for the
cluster algorithm in these challenging conditions.

Lastly, like in most related work [2, 5, 11, 45], the number
of source signals N needs to be supplied by the user. For our
algorithm to operate in a fully unsupervised way it is necessary
to automatically detect the number of (speech) sources present
in the scene. Although this is in itself a challenging task the
problem is well studied in the pattern classification literature
and a large number of suboptimal solutions exist [60].

6. Conclusions

In this paper, we presented a novel fuzzy cluster algorithm
to blindly separate reverberant mixtures of speech signals using
the concept of TF masking. In order to better deal with noisy
data sets, the proposed wCFCM technique incorporates obser-
vation weights and context information directly into the cluster-

ing procedure. The former helps to improve the source local-
ization accuracy by ignoring noisy observations during the cen-
troid updates. The latter smoothes the cluster membership lev-
els by exploiting the highly structured nature of speech signals
in the TF domain. Moreover, wCFCM avoids the frequency
permutation problem and is able to operate on observations with
short data length.

In a number of experiments with anechoic and reverberant
speech mixtures, wCFCM was found to be superior to conven-
tional fuzzy clustering, both in terms of DOA localization ac-
curacy as well as source separation performance.

Future work needs to validate the method on real data and
compare the separation performance against other competing
state-of-the-art BSS algorithms.
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A. Derivation of wCFCM update equations

This section presents the derivation of the necessary condi-
tions for the centroids and membership functions to be at a local
minimum of the wCFCM objective function. Due to the con-
ditions on the fuzzy memberships in (7), this is a constrained
minimization problem which can be solved by the method of
Lagrange multipliers. We remark that the derivation for the
membership levels is similar to the one in [21] and is given
here for completeness. For the following discussion we assume
that q > 1.

We begin by defining the Lagrangian function as

L(U,V) :=
N∑

n=1

∑
∀(k,l)∈Ω

un(k, l)qw(k, l) ‖ ψ(k, l) − vn ‖2

+
β

2

N∑

n=1

∑
∀(k,l)∈Ω

un(k, l)q
∑

∀(k′ ,l′)∈N(k,l)

N∑

n′=1,
n′,n

un′(k′, l′)q

+
∑
∀(k,l)∈Ω

λ(k, l)

1 −
N∑

n=1

un(k, l)

 ,

(42)

where the λ(k, l) are the Lagrange multipliers enforcing the
membership constraint in (7). Taking the partial derivative of
(42) with respect to vn and setting the result to zero, we have

[
∂L
∂vn

= −2
∑
∀(k,l)∈Ω

un(k, l)qw(k, l)(ψ(k, l) − vn)
]

vn=v∗n

= 0. (43)

Solving for v∗n we directly obtain the update equation for the
centroids

v∗n =

∑
∀(k,l)∈Ω

un(k, l)qw(k, l)ψ(k, l)
∑

∀(k,l)∈Ω
un(k, l)qw(k, l)

. (44)
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Similarly, by taking the derivative of (42) with respect to un(k, l)
and setting the result to zero, we obtain
[

∂L
∂un(k, l)

= qun(k, l)q−1
(
w(k, l) ‖ ψ(k, l) − vn ‖2

+ β
∑

∀(k′ ,l′)∈N(k,l)

N∑

n′=1,
n′,n

un′(k′, l′)q
)
− λ(k, l)

]

un(k,l)=u∗n(k,l)
= 0.

(45)

Solving for u∗n(k, l) leads to

u∗n(k, l) =



q

w(k, l) ‖ ψ(k, l) − vn ‖2 +β
∑
∀(k′ ,l′)
∈N(k,l)

N∑
n′=1,
n′,n

un′ (k′, l′)q



λ(k, l)



− 1
q−1

,

(46)

which still depends on λ(k, l). Because the solution in (46) must
also satisfy the membership constraint

N∑

n=1

u∗n(k, l) = 1, (47)

we can substitute (46) in (47) and solve for λ(k, l), which gives

λ(k, l)−
1

q−1 =

N∑

n=1


q


w(k, l)‖ ψ(k, l) − vn ‖2+β

∑

∀(k′ ,l′)
∈N(k,l)

N∑

n′=1,
n′,n

un′(k′, l′)q





− 1
q−1

.

(48)

Finally, by combining (46) and (48), we obtain the update equa-
tion for the membership levels

u∗n(k, l) =

w(k, l) ‖ ψ(k, l) − vn ‖2 +β
∑
∀(k′ ,l′)
∈N(k,l)

N∑
n′=1,
n′,n

un′(k′, l′)q



− 1
q−1

N∑
j=1

w(k, l) ‖ ψ(k, l) − v j ‖2 +β
∑
∀(k′ ,l′)
∈N(k,l)

N∑
j′=1,
j′, j

u j′(k′, l′)q



− 1
q−1

.

(49)

With the help of (15) and (27), this can also be written as

u∗n(k, l) =

(
w(k, l)Dn(k, l) + βCn(k, l)

)− 1
q−1

∑N
j=1

(
w(k, l)D j(k, l) + βC j(k, l)

)− 1
q−1

(50)

=


N∑

j=1

(
w(k, l)Dn(k, l) + βCn(k, l)
w(k, l)D j(k, l) + βC j(k, l)

) 1
q−1



−1

. (51)

Note that by using the results of [21, 61], it can be shown that
the wCFCM update equations also guarantee to decrease the
wCFCM objective function in each iteration.
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