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Abstract

This paper is concerned with the robust filtering problem for a class of nonlinear stochastic systems with missing

measurements and parameter uncertainties. The missing measurements are described by a binary switching sequence

satisfying a conditional probability distribution, and the nonlinearities are expressed by the statistical means. The

purpose of the filtering problem is to design a filter such that, for all admissible uncertainties and possible measurements

missing, the dynamics of the filtering error is exponentially mean-square stable, and the individual steady-state error

variance is not more than prescribed upper bound. A sufficient condition for the exponential mean-square stability of

the filtering error system is first derived and an upper bound of the state estimation error variance is then obtained. In

terms of certain linear matrix inequalities (LMIs), the solvability of the addressed problem is discussed and the explicit

expression of the desired filters is also parameterized. Finally, a simulation example is provided to demonstrate the

effectiveness and applicability of the proposed design approach.
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I. Introduction

For several decades, filtering techniques have been playing an important role in many branches of signal

processing such as target tracking [2]. A number of filtering approaches, including Kalman filtering, H∞

filtering and robust filtering, have been proposed in the literature, most of which are under the assumption

that the measurements always contain true signals corrupted by the noises, see e.g. [4, 6, 7, 10, 11, 16, 17, 19,

20,26,31,34]. However, in real-world applications, the measurements may contain missing measurements (or

incomplete observations) due to various reasons such as high maneuverability of the tracked targets, sensor

temporal failures or network congestion [21].

Because of its clear engineering insights, in the past few years, the filtering problem with missing measure-

ments has received much attention. For linear stochastic systems, the related work was started in [15, 22]

where the missing data was modeled as a binary switching sequence specified by a conditional probability

distribution. Based on this model for observations missing, some results have recently been reported on the

filtering problems for linear stochastic systems, see [12, 13, 28–30] for some examples. Specifically, in [28],

a filter for stochastic uncertain systems has been designed with prescribed error variance constraints. The

finite-horizon robust filtering problem has been considered in [29] for discrete-time stochastic systems with
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probabilistic missing measurements subject to norm-bounded parameter uncertainties. Very recently, a ro-

bust H∞ filtering problem has been coped with in [30] for uncertain time-delay systems with probabilistic

observation missing.

On the other hand, it is quite common in practical engineering that, for a class of filtering problems such

as the tracking of a maneuvering target, the performance objectives are naturally described as the upper

bounds on the error variances of estimation [19,26,28,34]. This gives rise to the so-called variance-constrained

filtering problem, which has been motivated from the well-known covariance control theory [5,18]. Note that

the variance-constrained filtering or control theory has been extensively investigated in a variety of practical

situation [3,35]. As mentioned in [28], the specified variance constraints may not be minimal, but should meet

given engineering requirements. Therefore, after assigning to the filtering error dynamics a specified variance

upper bound, there remains much freedom which can be used to attempt to directly achieve other desired

performance requirements, but the traditional optimal (robust) Kalman filtering methods may not have such

an advantage.

It should be pointed out that, almost all the aforementioned results concerning variance-constrained filtering

have been concerned with linear systems only, and the corresponding literature for nonlinear systems has been

very few, due primarily to the difficulty in analyzing the steady-state estimation error covariance for nonlinear

systems. In [34], an LMI approach has been proposed to deal with robust H2 filtering problems for a class

of stochastic nonlinear systems, but the variance constraints have not been explicitly taken into account.

Up to now, to the best of authors’ knowledge, in the presence of probabilistic measurements missing, the

filtering problem for nonlinear stochastic systems with error variance constraints has not been investigated

yet, and therefore remains open and challenging. It is, therefore, the purpose of this paper to shorten such

a gap by investigating the robust filtering problem for a class of nonlinear stochastic systems with missing

measurements and variance constraints.

In this paper, we model the missing measurements by a Bernoulli distributed white sequence with a known

conditional probability distribution. Based on this model, the robust variance-constrained filtering problem

is addressed for a class of nonlinear stochastic systems with missing measurements. We aim at designing

a filter such that, for all parameter uncertainties and possible measurements missing, 1) the filtering error

system is exponentially mean-square stable and 2) the variance of the estimation error for individual state

is not more than prescribed upper bound. It is shown that the solvability of the addressed filtering problem

can be expressed as the feasibility of a certain set of LMIs, and the explicit expression of the desired robust

filters is also derived. A simulation numerical example is provided to illustrate the usefulness of the proposed

design approach. The main contributions of this paper are summarized as follows: 1) a new filtering problem is

studied for the stochastic systems with both stochastic nonlinearities and measurements missing phenomenon;

and 2) a new error variance performance is taken into consideration for the addressed stochastic nonlinear

systems with missing measurements.

The rest of this paper is arranged as follows. Section II formulates the robust variance-constrained filter

design problem for uncertain nonlinear stochastic discrete-time systems. In Section III, the exponential mean-

square stability of the filtering error system and the individual variance constraints of the estimation error

are analyzed separately. The solution of the robust filter design problem is given in terms of a certain set of

LMIs in Section IV. In Section V, an illustrative numerical example is provided to show the effectiveness and

usefulness of the proposed approach. Section 6 gives our conclusions.

Notation The following notation will be used in this paper. R
n and R

n×m denote, respectively, the n-

dimensional Euclidean space and the set of all n×m matrices, and I
+ denotes the set of nonnegative integers.

The notation X ≥ Y (respectively X > Y ), where X and Y are symmetric matrices, means that X − Y is

positive semi-definite (respectively positive definite). Var{xi} means the variance of xi. E{x} stands for the

expectation of stochastic variable x and E{x|y} for the expectation of x conditional on y. The superscript
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“T” denotes the transpose. ρ(A) means the spectral radius of matrix A, while tr(A) is the trace of matrix

A. ⊗ stands for the Kronecker product of matrices. diag{F1, F2, . . .} denotes a block diagonal matrix whose

diagonal blocks are given by F1, F2 . . . . The symbol “∗” in a matrix means that the corresponding term of

the matrix can be obtained by symmetric property.

II. Problem Formulation

Consider the following uncertain discrete-time nonlinear stochastic system:

xk+1 = (A+ ∆A)xk + f(xk) +Bωk, (1)

with the measurement equation

yk = γk

(
Cxk + g(xk)

)
+Dωk, (2)

where xk ∈ R
n is the state, yk ∈ R

m is the measured output, and A,B,C,D are known constant matrices

with appropriate dimensions. ωk ∈ R
n is a zero mean Gaussian white noise sequence with covariance W > 0.

∆A is a real-valued perturbation matrix that represents parametric uncertainty being of the following form:

∆A = HFE, FFT
6 I, (3)

where H and E are known constant matrices with appropriate dimensions. The uncertainties in ∆A are said

to be admissible if (3) holds. The stochastic variable γk ∈ R is a Bernoulli distributed white sequence taking

values on 0 and 1 with

Prob {γk = 1} = E {γk} := γ̄, (4)

where γ̄ is a known positive constant, and γk ∈ R is assumed to be independent of both wk and the system

initial state x0. Therefore, we have

Prob {γk = 0} = 1 − γ̄,

σ2
γ := E

{
(γk − γ̄)2

}
= (1 − γ̄)γ̄.

(5)

Remark 1: Notice that the parameter uncertainty only enters into the system matrix A. However, it is

worth pointing out that, within the same framework to be developed, we can also consider the case when

the uncertainties exist in the output equation. The reason why we discuss the system (1)-(2) is to make our

theory more understandable and to avoid unnecessarily complicated notations.

The nonlinear stochastic functions f(xk) and g(xk) are assumed to have the following first moments for all

xk:

E

{[
f(xk)

g(xk)

]
|xk

}
= 0, (6)

with the covariance given by

E

{[
f(xk)

g(xk)

] [
fT(xj) gT(xj)

]
|xk

}
= 0, k 6= j (7)

and

E

{[
f(xk)

g(xk)

] [
fT(xk) gT(xk)

]
|xk

}
=

q∑

i=1

Πix
T

k Γixk , (8)

where Πi and Γi (i = 1, 2, · · · , q) are known positive-definite matrices with following structures:

Πi =

[
π1i

π2i

][
π1i

π2i

]T

, Γi = θiθ
T
i ,
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with π1i ∈ R
n, π2i ∈ R

m and θi ∈ R
n(i = 1, 2, · · · , q) being known column vectors of appropriate dimensions.

Remark 2: The nonlinearity description in (6)-(8) covers several classes of well-studied nonlinear systems, for

example, the system with state-dependent multiplicative noises and the system whose state’s power depends

on the sector-bound (or sign) of the nonlinear state function of the state, see [36].

Introduce now a new stochastic sequence

γ̃k := γk − γ̄. (9)

It is easy to see that γ̃k is a scalar zero mean stochastic sequence with variance

σ2
γ̃ = (1 − γ̄)γ̄. (10)

Consider the following filter for the system (1):

x̂k+1 = Gx̂k +K(yk − γ̄Cx̂k), (11)

where x̂k stands for the state estimate, G and K are the filter parameters to be scheduled.

Define the estimation error as

ek = xk − x̂k, (12)

and steady-state estimation error covariance as

Xee := lim
k→∞

E
{
eke

T
k

}
. (13)

Then, we obtain the following augmented system

zk+1 = Ãzk + B̃h(xk) + D̃ωk, (14)

where

zk =

[
xk

ek

]
, Ã =

[
A+ ∆A 0

A+ ∆A−G− γ̃kKC G− γ̄KC

]
,

B̃ =

[
I 0

I −γkK

]
, D̃ =

[
B

B −KD

]
, h(xk) =

[
f(xk)

g(xk)

]
.

Before stating our design objective, we introduce the following stability concept for the system (14).

Definition 1: [30] The system (14) is said to be exponentially mean-square stable if, with ωk = 0, there

exist constants ζ > 1 and τ ∈ (0, 1) such that

E

{∥∥zk
∥∥2
}

6 ζτk
E

{∥∥z0
∥∥2
}
, ∀z0 ∈ R

2n, k ∈ I
+. (15)

for all admissible uncertainties and possible measurements missing.

In this paper, our objective is to design the filter (11) for the system (1) such that, for all admissible

uncertainties and possible measurements missing, the following two objectives are satisfied simultaneously:

Q1) The augmented system (14) is exponentially mean-square stable;

Q2) The steady-state error variance Xee satisfies

Xi
ee 6 σ2

i i = 1, 2, · · · , n, (16)

where Xi
ee stands for the steady-state variance of the ith error state, and σ2

i (i = 1, 2, · · · , n) denotes the

prespecified steady-state estimation error variance constraint on the ith state.

Remark 3: In engineering practice, the variance upper bounds which represent the control or estimation

precision of the system state should be specified according to the actual requirements before the system
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design. For instance, in the problem of tracking maneuvering targets, the position and velocity of the target

are measured in every sampling instant. However, due to the high maneuver of the tracked target, it is neither

possible nor necessary to track the target in a precise way. Instead, an acceptable compromise is to keep the

target within a given “window” as frequent as possible, and such a requirement can be expressed as upper

bounds on the estimation error variance. In this sense, before the actual system design, we could specify the

error variance upper bound according to the length and width of the required “window”.

III. Stability and variance analysis

Before giving our derivation, we first introduce some useful lemmas.

Lemma 1: [27] Let V (zk) = zT
k Pzk be a Lyapunov functional where P > 0. If there exist real scalars λ,

µ > 0, ν > 0 and 0 < ψ < 1 such that both

µ
∥∥zk
∥∥2

6 V (zk) 6 ν
∥∥zk
∥∥2
, (17)

and

E
{
V (zk+1)

∣∣zk
}
− V (zk) 6 λ− ψV (zk), (18)

hold, then the process zk satisfies

E

{∥∥zk
∥∥2
}

6
ν

µ

∥∥z0
∥∥2

(1 − ψ)k +
λ

µψ
. (19)

Denote

Â =

[
A 0

A−G G− γ̄KC

]
, ∆Â =

[
∆A 0

∆A 0

]
, J =

[
0 0

σγ̃KC 0

]
,

Γ̃i =

[
Γi 0

0 0

]
, Π̃i =

[
π1iπ

T
1i π1iπ

T
1i − γ̄π1iπ

T
2iK

T

∗ π1iπ
T
1i − γ̄(π1iπ

T
2iK

T +Kπ2iπ
T
1i) + (γ̄2 + σ2

γ)Kπ2iπ
T
2iK

T

]
.

(20)

Lemma 2: Given the filter parameters G and K. The following statements are equivalent.

1)

ρ

{
(Â+ ∆Â)T ⊗ (Â+ ∆Â)T + JT ⊗ JT +

q∑

i=1

st(Γ̃i)st
T(Π̃i)

}
< 1, (21)

or

ρ

{
(Â+ ∆Â) ⊗ (Â+ ∆Â) + J ⊗ J +

q∑

i=1

st(Π̃i)st
T(Γ̃i)

}
< 1. (22)

2) There exists a positive definite matrix P > 0 such that

(Â+ ∆Â)TP (Â+ ∆Â) + JTPJ − P +

q∑

i=1

Γ̃itr[P Π̃i] < 0. (23)

3) There exists a positive definite matrix Q > 0 such that

(Â+ ∆Â)Q(Â+ ∆Â)T + JQJT −Q+

q∑

i=1

Π̃itr[QΓ̃i] < 0. (24)

4) The system (14) is exponentially mean-square stable.

Proof: First, it can be noticed that the main difference between this lemma and Theorem 1 of [36] is

that the state matrix of the system (14) in this paper contains stochastic variables γk and γ̃k which result

from the possible measurements missing in the process of output sampling. Hence, we just need to prove the
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relationship “ 2)⇒ 4) ” in order to demonstrate how we tackle the matrix involving stochastic variables in the

derivation, and the rest of this lemma can be easily proved as in Theorem 1 of [36] using the techniques shown

below.

2)⇒ 4): Define a Lyapunov functional V (zk) = zT
k Pzk where P > 0 is the solution to (23). Then,

E
{
V (zk+1)

∣∣zk
}
− V (zk)

= E

{(
Ãzk + B̃h(xk)

)T
P
(
Ãzk + B̃h(xk)

)∣∣zk
}
− zT

k Pzk

= E

{(
zT
k Ã

TPÃzk

)∣∣zk
}

+ E

{(
hT(xk)B̃

TPB̃h(xk)
)∣∣zk

}
− zT

k Pzk.

(25)

Using the statistics of ωk, γk and γ̃k, we obtain

E

{(
zT
k Ã

TPÃzk

)∣∣zk
}

= E



z

T
k

(
(Â+ ∆Â) + γ̃k

[
0 0

−KC 0

])T

P

(
(Â+ ∆Â) + γ̃k

[
0 0

−KC 0

])
zk





= zT
k

(
(Â+ ∆Â)TP (Â+ ∆Â) + JTPJ

)
zk, (26)

E

{(
hT(xk)B̃

TPB̃h(xk)
)∣∣zk

}

= E

{
tr
(
B̃TPB̃h(xk)hT(xk)

)∣∣zk
}

=

q∑

i=1

E

{
tr(B̃TPB̃Πi)z

T
k Γ̃izk

∣∣zk
}

= zT
k

q∑

i=1

Γ̃iE

{
tr(PB̃Πi B̃

T)
}
zk, (27)

and

B̃ =

[
I 0

I −γ̄K

]
+ (γ̄ − γk)

[
0 0

0 K

]
. (28)

Then, we have

B̃Πi B̃
T = B̃

[
π1i

π2i

][
π1i

π2i

]T

B̃T

=

([
π1i

π1i − γ̄Kπ2i

]
+ (γ̄ − γk)

[
0

Kπ2i

])([
π1i

π1i − γ̄Kπ2i

]
+ (γ̄ − γk)

[
0

Kπ2i

])T

,

(29)

and therefore

E

{
tr(PB̃Πi B̃

T)
}

= E



tr


P

[
π1i

π1i − γ̄Kπ2i

][
π1i

π1i − γ̄Kπ2i

]T

+ (γ̄ − γk)

2tr


P

[
0

Kπ2i

][
0

Kπ2i

]T







= tr

(
P

[
π1iπ

T
1i π1iπ

T
1i − γ̄π1iπ

T
2iK

T

∗ π1iπ
T
1i − γ̄(π1iπ

T
2iK

T +Kπ2iπ
T
1i) + γ̄2Kπ2iπ

T
2iK

T

])

+ σ2
γtr

(
P

[
0 0

0 Kπ2iπ
T
2iK

T

])

= tr(P Π̃i).

(30)



FINAL MANUSCRIPT 7

Hence,

E
{
V (zk+1)

∣∣zk
}
− V (zk) = zT

k

(
(Â+ ∆Â)TP (Â+ ∆Â) + JTPJ − P +

q∑

i=1

Γ̃itr[P Π̃i]
)
zk. (31)

It follows from (23) that there always exists a sufficiently small scalar η satisfying 0 < η < λmax(P ) such

that

(Â+ ∆Â)TP (Â+ ∆Â) + JTPJ − P +

q∑

i=1

Γ̃itr[P Π̃i] < −ηI, (32)

which means

E
{
V (zk+1)

∣∣zk
}
− V (zk) 6 −ηzT

k zk 6 −
η

λmax(P )
V (zk). (33)

Finally, the exponential mean-square stability of (14) can be immediately obtained from Lemma 1.

Lemma 3: Given the filter parameters G and K. If the system (14) is exponentially mean-square stable

and there exists a symmetric matrix Y satisfying

(Â+ ∆Â)Y (Â+ ∆Â)T + JY JT − Y +

q∑

i=1

Π̃itr[Y Γ̃i] < 0, (34)

then Y > 0.

Proof: Lemma 3 can be easily proved by the Lyapunov method together with Lemma 2, hence the proof

is omitted.

Now, let us proceed to deal with the error variance constraints. Defining the state covariance of system

(14) by

Qk := E{zkz
T
k } = E





[
xk

ek

][
xk

ek

]T


 :=

[
Xxxk Xxek

XT
xek Xeek

]
, (35)

the evolution of Qk can be derived from the system (14) as follows:

Qk+1 = (Â+ ∆Â)Qk(Â+ ∆Â)T + JQkJ
T +

q∑

i=1

Π̃itr[QkΓ̃i] + D̃WD̃T. (36)

Rewrite (36) in the form of stack matrices

st(Qk+1) =
[
(Â+ ∆Â) ⊗ (Â+ ∆Â) + J ⊗ J +

q∑

i=1

st(Π̃i)st
T(Γ̃i)

]
st(Qk) + st(D̃WD̃T). (37)

If the system (14) is exponentially mean-square stable, it then follows from Lemma 2 that (22) holds, hence

in the steady-state,

Q̂ := lim
k→∞

Qk =

[
Xxx Xxe

XT
xe Xee

]
(38)

exists and satisfies

(Â+ ∆Â)Q̂(Â+ ∆Â)T + JQ̂JT − Q̂+

q∑

i=1

Π̃itr[Q̂Γ̃i] + D̃WD̃T = 0. (39)

Based on the results we have obtained so far concerning the exponential mean-square stability as well as

steady-state variance, we are now ready to cope with the addressed multiobjective filter design problem.
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IV. Robust filter design

In this section, an LMI method is proposed to design the robust variance-constrained filter for the uncertain

nonlinear stochastic system with missing measurements. To start with, a corollary is given that combines

exponential mean-square stability and the error variance upper bound constraints.

Corollary 1: Given the filter parameters G and K. If there exits a positive definite matrix Q > 0 such that

(Â+ ∆Â)Q(Â+ ∆Â)T + JQJT −Q+

q∑

i=1

Π̃itr[QΓ̃i] + D̃WD̃T < 0 (40)

holds, then the system (14) is exponentially mean-square stable and the steady-state state covariance satisfies

Q̂ 6 Q.

Proof: It follows from (40) that

(Â+ ∆Â)Q(Â+ ∆Â)T + JQJT −Q+

q∑

i=1

Π̃itr[QΓ̃i] < −D̃WD̃T < 0, (41)

which indicates from Lemma 2 that the system (14) is exponentially mean-square stable. Therefore, in the

steady-state, the state covariance of (14) Q̂ exists and satisfies (39). Subtracting (39) from (40), we obtain

(Â+ ∆Â)(Q− Q̂)(Â+ ∆Â)T + J(Q− Q̂)JT − (Q− Q̂) +

q∑

i=1

Π̃itr[(Q− Q̂)Γ̃i] < 0. (42)

From Lemma 3, we know that Q− Q̂ > 0 and the proof is complete.

In the next stage, we shall present the filter designing technique for the nonlinear stochastic system in the

presence of probabilistic measurements missing.

The following theorem provides an LMI approach to the addressed filter design problem for the uncertain

discrete-time nonlinear stochastic system (1)-(2).

Theorem 1: Given σ2
i > 0(i = 1, 2, · · · , n). If there exist positive definite matrices R > 0, S > 0, real

matrices M , N , a positive scalar ε and positive scalars αi > 0 (i = 1, 2, · · · , q) such that, for all admissible

parameter uncertainties and possible measurement missing, the following set of LMIs:

[
−αi αiθ

T
i

αiθi −R

]
< 0, (43)

Ψ :=

[
Ψ11 Ψ12

ΨT
12 Ψ22

]
< 0, (44)

X̂ − S 6 0, (45)

where

Ψ11 =




−R 0 RA 0 0 0

∗ −S SA−M M − γ̄NC σγ̃NC 0

∗ ∗ −R 0 0 0

∗ ∗ ∗ −S 0 0

∗ ∗ ∗ ∗ −R 0

∗ ∗ ∗ ∗ ∗ −S




,
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Ψ12 =




Rπ11 · · · Rπ1q 0 · · · 0 RB RH 0

Sπ11 − γ̄Nπ21 · · · Sπ1q − γ̄Nπ2q σγNπ21 · · · σγNπ2q SB −ND SH 0

0 · · · 0 0 · · · 0 0 0 εET

0 · · · 0 0 · · · 0 0 0 0

0 · · · 0 0 · · · 0 0 0 0

0 · · · 0 0 · · · 0 0 0 0




,

Ψ22 = diag
{
−α1I, · · · ,−αqI,−α1I, · · · ,−αqI,−W

−1,−εI,−εI
}
,

X̂ = diag
{
(σ2

1)
−1, (σ2

2)
−1, · · · , (σ2

n)−1
}
,

is feasible, then there exists a filter of the form (11) such that the requirements Q1) and Q2) are simultaneously

satisfied. Moreover, the desired filter can be determined by

G = S−1M,

K = S−1N.
(46)

Proof: Assume that the matrix Q has a block diagonal form as follows:

Q =

[
R 0

0 S

]
−1

> 0, (47)

where R > 0 and S > 0 are both n × n real valued matrices. Now, we define new variables αi > 0

(i = 1, 2, · · · , q) satisfying

αi <
(
tr[QΓ̃i]

)
−1

. (48)

Letting

θ̆i =

[
θi

0

]
∈ R

2n, (49)

we have Γ̃i = θ̆iθ̆
T
i .

Using the property of matrix trace and Schur Complement (Lemma 3 in [28]), we have

tr[QΓ̃i] < α−1

i ⇐⇒

[
−αi αiθ̆

T
i

αiθ̆i −Q−1

]
< 0. (50)

Then, after transformation, (50) is equivalent to (43).

Next, we prove that (44) is equivalent to

(Â+ ∆Â)Q(Â+ ∆Â)T + JQJT −Q+

q∑

i=1

Π̃iα
−1

i + D̃WD̃T < 0. (51)

By Schur Complement, (51) is equivalent to



−Q+
q∑

i=1

Π̃iα
−1

i Â+ ∆Â J D̃

ÂT + ∆ÂT −Q−1 0 0

JT 0 −Q−1 0

D̃T 0 0 −W−1



< 0. (52)

Performing the congruence transformation by diag
{
Q−1, I, I, I

}
, we can see that (52) is equivalent to




−Q−1 +Q−1
( q∑

i=1

Π̃iα
−1

i

)
Q−1 Q−1

(
Â+ ∆Â

)
Q−1J Q−1D̃

(
ÂT + ∆ÂT

)
Q−1 −Q−1 0 0

JTQ−1 0 −Q−1 0

D̃TQ−1 0 0 −W−1



< 0. (53)
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Rewrite Π̃i in the following form:

Π̃i =

[
π1i

π1i − γ̄Kπ2i

][
π1i

π1i − γ̄Kπ2i

]T

+

[
0

σγKπ2i

][
0

σγKπ2i

]T

. (54)

Using Schur Complement again, after some tedious calculation, we obtain that (53) is equivalent to the

following matrix inequality

Υ =

[
Υ11 Υ12

∗ Υ22

]
< 0, (55)

where

Υ11 =




−R 0 RĂ 0 0 0

∗ −S SĂ−M M − γ̄NC σγ̃NC 0

∗ ∗ −R 0 0

∗ ∗ ∗ −S 0 0

∗ ∗ ∗ ∗ −R 0

∗ ∗ ∗ ∗ ∗ −S




,

Υ12 =




Rπ11 · · · Rπ1q 0 · · · 0 RB

Sπ11 − γ̄Nπ21 · · · Sπ1q − γ̄Nπ2q σγNπ21 · · · σγNπ2q SB −ND

0 · · · 0 0 · · · 0 0

0 · · · 0 0 · · · 0 0

0 · · · 0 0 · · · 0 0

0 · · · 0 0 · · · 0 0




,

Υ22 = diag
{
−α1I, · · · ,−αqI,−α1I, · · · ,−αqI,−W

−1
}
,

with
Ă = (A+ ∆A),

SG = M,

SK = N.

In order to eliminate the parameter uncertainty occurred in the system matrix, we rewrite (55) as follows:

L+ ĤF Ê + ÊTFTĤT < 0, (56)

where

L =

[
Ψ11 Υ12

∗ Υ22

]
,

Ĥ =
[
HTR HTS 0 0 0 0 0 · · · 0 0 · · · 0 0

]T
,

Ê =
[

0 0 E 0 0 0 0 · · · 0 0 · · · 0 0
]
.

Now, applying Lemma 2 in [30] to (56), we know that (44) holds if and only if (51) holds. Moreover, noticing

(48), we arrive at (40) from (44). Therefore, according to Corollary 1, the system (14) is exponentially mean-

square stable, and the steady-state state covariance satisfies

Q̂ 6 Q. (57)

Since

Q̂ =

[
Xxx Xxe

XT
xe Xee

]
and Q =

[
R−1 0

0 S−1

]
, (58)
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we know that

Xee 6 S−1. (59)

Noticing that (45) implies

S−1
6 X̂−1, (60)

the requirement Q2) is also achieved. The proof is now complete.

Remark 4: The robust variance-constrained filtering problem has been solved for a class of nonlinear

stochastic systems with missing measurements in terms of the feasibility of the LMIs (43)-(45) in Theorem

1. The LMIs can be solved efficiently via interior point method [1]. Note that LMIs (43)-(45) are affine in

the scalar positive parameters ε and αi > 0. Hence, they can be defined as LMI variables in order to increase

the possibility of the solutions and decrease conservatism with respect to the uncertainty F . Note that our

main results are based on the LMI conditions. The LMI Control Toolbox implements state-of-the-art interior-

point LMI solvers. While these solvers are significantly faster than classical convex optimization algorithms,

it should be kept in mind that the complexity of LMI computations remains higher than that of solving,

say, a Riccati equation. For instance, problems with a thousand design variables typically take over an hour

on today’s workstations. However, research on LMI optimization is a very active area in the applied math,

optimization and the operations research community, and substantial speed-ups can be expected in the future.

Remark 5: It is worth pointing out that the main results in this paper can be easily extended to other more

complicated systems, such as systems with multiple stochastic data packet losses, or stochastic systems with

sector-bounded nonlinearity which is more general than that discussed in this paper. The results will appear

in the near future.

V. Numerical example

In this section, we present an illustrative example to demonstrate the effectiveness of the proposed algo-

rithms.

Consider the following discrete uncertain system with stochastic nonlinearities:

xk+1 =







−0.1 0.3 −0.2

0 −0.25 0.1

0.1 0 0.5


+




0.5

0.6

0


Fk

[
0.8 0 0

]

xk + f(xk) +




0.3

0

0.2


ωk,

yk = γk

([
1 −0.6 2

]
xk + g(xk)

)
+ ωk.

(61)

where Fk = sin(0.6k) is a deterministic perturbation matrix satisfying FkF
T
k 6 I, and ωk is zero mean

Gaussian white noise process with unity covariance. As mentioned in Remark 2, we now consider the stochastic

nonlinearities f(xk) and g(xk) in the following three cases:

Case 1: f(xk) and g(xk) are nonlinearities with multiplicative noise of the following form:

f(xk) = af

n∑

i=1

αi
fx

i
kξ

i
k,

g(xk) = ag

n∑

i=1

αi
gx

i
kξ

i
k, i = 1, 2, · · · , n,

(62)

where af and ag are known column vectors, αi
f and αi

g(i = 1, 2, · · · , n) are known coefficients, xi
k is the ith

member of xk, and ξi
k are zero mean, uncorrelated Gaussian white noise processes with unity covariances. In



FINAL MANUSCRIPT 12

this case, we assume

f(xk) =




0.2

0.3

0.5


× (0.3x1

kξ
1
k + 0.4x2

kξ
2
k + 0.5x3

kξ
3
k),

g(xk) = 0.5 × (0.3x1
kξ

1
k + 0.4x2

kξ
2
k + 0.5x3

kξ
3
k).

(63)

Case 2: f(xk) and g(xk) are nonlinearities with the sign of a function:

f(xk) = bf

n∑

i=1

βi
f · sign(xi

k) · x
i
kξ

i
k,

g(xk) = bg

n∑

i=1

βi
g · sign(xi

k) · x
i
kξ

i
k, i = 1, 2, · · · , n.

(64)

In this case, we assume

f(xk) =




0.2

0.3

0.5


×

(
0.3 · sign(x1

k) · x
1
kξ

1
k + 0.4 · sign(x2

k) · x
2
kξ

2
k + 0.5 · sign(x3

k) · x
3
kξ

3
k

)
,

g(xk) = 0.5 ×
(
0.3 · sign(x1

k) · x
1
kξ

1
k + 0.4 · sign(x2

k) · x
2
kξ

2
k + 0.5 · sign(x3

k) · x
3
kξ

3
k

)
.

(65)

Case 3: f(xk) and g(xk) are nonlinearities with the following form:

f(xk) = cf

n∑

i=1

ρi
fx

i
k

(
sin(xi

k)ξ
i
k + cos(xi

k)η
i
k

)
,

g(xk) = cg

n∑

i=1

ρi
gx

i
k

(
sin(xi

k)ξ
i
k + cos(xi

k)η
i
k

)
,

(66)

where ηi
k (i = 1, 2, · · · , n) are zero mean Gaussian white noise processes with unity covariances which are

mutually uncorrelated and also uncorrelated with ξi
k. In this case, we assume:

f(xk) =




0.2

0.3

0.5


×

(
0.3x1

k

(
sin(x1

k)ξ
1
k + cos(x1

k)η
1
k

)

+ 0.4x2
k

(
sin(x2

k)ξ
2
k + cos(x2

k)η
2
k

)
+ 0.5x3

k

(
sin(x3

k)ξ
3
k + cos(x3

k)η
3
k

)
)
,

g(xk) = 0.5 ×

(
0.3x1

k

(
sin(x1

k)ξ
1
k + cos(x1

k)η
1
k

)
+ 0.4x2

k

(
sin(x2

k)ξ
2
k + cos(x2

k)η
2
k

)

+ 0.5x3
k

(
sin(x3

k)ξ
3
k + cos(x3

k)η
3
k

)
)
.

(67)

Now, we can easily check all the above three classes of stochastic nonlinearities satisfy the following equality:

E

{[
f(xk)

g(xk)

] [
fT(xk) gT(xk)

]
|xk

}

=




0.04 0.06 0.10 0.10

0.06 0.09 0.15 0.15

0.10 0.15 0.25 0.25

0.10 0.15 0.25 0.25


x

T
k




0.09 0 0

0 0.16 0

0 0 0.25


xk.

(68)
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Let the stochastic variable γk ∈ R be a Bernoulli distributed white sequence taking values on 0 and 1 with

Prob{γk = 1}=E{γk} = 0.9. Hence, σγ = σγ̃ = 0.3.

Choosing σ2
1 = 0.5, σ2

2 = 0.5, σ2
3 = 0.8 as the estimation error variances upper bounds, we employ Matlab

Toolbox to find the desired filter parameters by using Theorem 1 and obtain

M =




−0.6109 0.0877 0.4967

0.0877 −0.6543 −0.3931

0.4967 −0.3931 1.9735


 , N =




2.1466

−0.2336

0.9600


 ,

R =




5.6595 −1.3826 −0.2050

−1.3826 5.5182 −1.2893

−0.2050 −1.2893 4.5803


 , S =




5.3355 −1.6377 0.4468

−1.6377 4.7606 −1.1655

0.4468 −1.1655 4.2440


 .

α1 = 11.0146, α2 = 10.5435, α3 = 9.4927, ε = 6.6309.

Finally, the obtained filter parameters are calculated as follows:

G =




−0.1230 −0.0274 0.0712

0.0085 −0.1810 0.0578

0.1323 −0.1395 0.4734


 , K =




0.4308

0.1537

0.2231


 .

The simulation results are shown in Figs. 1-6. The filtering error variances of the states x1
k, x

2
k and x3

k for

Case 1- Case 3 are given in Figs. 1-3. Fig. 4 shows the actual state responses x1
k and its estimate x̂1

k for Case

1, while Fig. 5 shows the actual state responses x2
k and its estimate x̂2

k for Case 3. From Fig. 6 we could

easily see that, different data missing rates will cause different performances on filtering error variance. To be

specific, the filtering error variance will become larger when the data missing is severe, which is reasonable

and understandable.

VI. Conclusion

In this paper, a robust variance-constrained filter has been designed for a class of nonlinear stochastic

systems with both parameter uncertainties and probabilistic missing measurements. A general framework for

solving this problem has been established using an LMI approach. Sufficient conditions have been derived

in terms of a set of feasible LMIs. An illustrative numerical example has been provided to demonstrate the

usefulness and effectiveness of the proposed approach. It is worth pointing out that the main results developed

in this paper could be applied to many engineering problems, for example, the maneuvering target tracking

problem that is an important branch of signal processing. Due to the complicated working conditions and

the limited capacity of data transmission, it might be the case from time to time that the measurements

may contain noise only. Therefore, the robust filtering problem for stochastic nonlinear systems with multiple

missing measurements becomes an important topic of research. By using the algorithm developed in this

paper, the filtering problem with missing measurements could be dealt with conveniently within the LMI

framework.
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Fig. 1. The filtering error variances for Case 1.
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Fig. 2. The filtering error variances for Case 2.
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Fig. 3. The filtering error variances for Case 3.
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Fig. 6. The comparison between filtering error variance of different data missing rates.


