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ABSTRACT 
 

The trajectory planning of redundant robots through the pseudoinverse control leads to undesirable drift in the joint space. This paper 

presents a new technique to solve the inverse  kinematics  problem  of  redundant  manipulators,  which  uses  a     fractional 

differential of order a to control the joint positions. Two performance measures   are defined to examine the strength and weakness 

of the proposed method. The positional error index measures the precision of the manipulator’s end-effector at the target position. 

The repeatability performance index is adopted to evaluate if the joint positions are repetitive when the manipulator execute 

repetitive trajectories in the operational  workspace. Redundant and  hyper-redundant  planar  manipulators reveal that it is 

possible to choose in a large range of possible values of a in order to get repetitive trajectories in the joint  space. 
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1. Introduction 

 

Kinematic redundancy occurs when a manipulator 

possesses more degrees of freedom than the required to 

execute a given task. 

Many techniques for solving the kinematics of redun- 

dant manipulators that have been suggested control the 

end-effector indirectly, through the rates at which the 

joints are driven, using the pseudoinverse of the Jacobian 

(see, for instance, [1,2]). The pseudoinverse of the Jacobian 

matrix guarantees an optimal reconstruction of the 

desired end-effector velocity—in the least-squares sen- 

se—with the minimum-norm joint velocity. However, 

even though the joint velocities are instantaneously 

minimized, there is no guarantee that the kinematic 

singularities are avoided [3]. Moreover, this method  has 

 
 

 

the generally undesirable property that repetitive end- 

effector motions do not necessarily yield repetitive joint 

motions. Klein and Huang [4] were the first to observe this 

phenomenon for the case of the pseudoinverse control of 

a planar three-link manipulator. Baillieul [5] proposed a 

modified Jacobian matrix called the extended Jacobian 

matrix. The extended Jacobian is a square matrix that 

contains the additional information necessary to optimize 

a certain function. The inverse kinematic solutions are 

obtained through the inverse of the extended Jacobian. 

The algorithms, based on the computation of the extended 

Jacobian matrix, have a major advantage over the 

pseudoinverse techniques, because they are locally cyclic 

[6]. A large volume of research has been produced in the 

last few years in this topic [7–10]. For example,  Zhang 

et al. [11] solve the joint angle drift problem by means of 

a dual-neural-network based quadratic-programming 

approach. 

Fractional calculus (FC) is a natural extension of the 

classical mathematics. In fact, since the beginning of 

theory  of   differential  and   integral  calculus,   several 
 





 

 

mathematicians investigated the calculation of noninte- 

ger  order  derivatives  and  integrals.  Nevertheless,  the 

Eq. (2) can be inverted to provide a solution in terms of 

the joint velocities: 

application of FC has been scarce until recently, but the 

recent scientific advances motivated a renewed interest in 
  

this field [12–14]. 

In this paper, we proposed a modified algorithm to 

solve the inverse kinematics problem of redundant 

manipulator, which uses a fractional derivative approach 

where J# is the Moore–Penrose generalized inverse of the 

Jacobian J [2,16]. 
It can be easily shown that a more general solution to 

Eq. (2) is given by: 

to control the joint positions. Having these ideas in mind, 

the paper is organized as follows. Sections 2, introduces 

the fundamentals of the kinematics of redundant manip- 

 

where I 2 Rnxn  is the identity matrix and q_ 

 

Rn   is an 

ulators and some basic theory in what concerns the FC. 

Based in these concepts, Section 3 presents the proposed 

method for robot trajectory control. Section 4 presents the 

general conditions of the experiments and the perfor- 

mance measures used to validate the proposed method. In 

arbitrary joint velocity vector. The solution (6) is com- 

posed of two terms. The first term is relative to minimum 

norm joint velocities. The second term, the homogeneous 

solution,  attempts  to  satisfy  the  additional  constraints 

specified by q_ 0 . Moreover, the matrix I-J# ðqÞJðqÞ  allows 

Section  5,  the  simulation  results  obtained  in various the  projection  of q_   0   in  the  null  space  of  J.  A direct 

experiments are presented and discussed. Finally, 

Section 6 draws the main conclusions. 

 

2. Preliminary concepts 

 

In this section are introduced the fundamentals of the 

kinematics of redundant manipulators and some basic 

theory in what concerns the FC, used in the following 

sections. 

 
2.1. Kinematics of redundant manipulators 

 
We consider a manipulator with n degrees of freedom 

whose joint variables are denoted by q ¼ ½q1; q2; . . . ; qn ]
T . 

We assume that the class of tasks we are interested in can 

be  described  by  m  variables,  x ¼ ½x1 ; x2; . . . ; xm ]
T ,  m o n, 

and  that  the  relation  between  q  and  x  is  given  by  the 

consequence is that it is possible to generate internal 

motions that reconfigure the manipulator structure with- 

out changing the gripper position and orientation [2–17]. 

Nakamura and Hanafusa [18] proposed a least squares 

formulation with a damping factor under the name of 

singularity-robust inverse of Jacobian matrix, to provide 

continuous and feasible solutions even at or in the 

neighborhood of singular points. The method compro- 

mises between the accuracy with which the desired end- 

effecter  is  followed  Jx_ -Jq_ J  and  feasibility  of  the  joint 

velocities Jq_ J of the inverse kinematic solution, by tacking 
the inverse kinematic problem as: 

  

where k is known as the damping factor, rather than 

finding the minimum vector q_ that gives the best solution 
to Eq. (2). The solution is given by: 

direct kinematics:    
   

2 

  where  J is  the  singularity  robust  inverse  and     k 

Differential kinematics of robot manipulators was 

introduced by Whitney [15] that proposed the use of 

differential relationships to solve for the joint motion 

from the Cartesian trajectory of the end-effector. Differ- 

entiating (1) with respect to time  yields: 

determines  the  weighting  between  the  exactness and 

the feasibility. The limitations of the method are that the 

damped factor is tuned by trial and error and its optimal 

value depends on the operating conditions (high damping 

factors give good behaviour but reduced accuracy in the 

neighbourhood of singular points). 

 In the closed-loop pseudoinverse (CLP) method     the 
joint   positions  can   be   computed   through  the time 

where x_ 2 R
m 
, q_ 2 R

n  
and JðqÞ¼ @f ðqÞ=@q 2 R

mxn 
. Hence, 

it is possible to calculate a path qðtÞ in terms of a 

prescribed trajectory xðtÞ  in the operational space.   We 

integration of the expression: 

  

assume that the following condition is satisfied: 
where Dx ¼ xref -x  and  xref is  the  vector  of reference 

  

Failing to satisfy this condition usually means that the 

selection of manipulation variables is redundant and the 

number  of  these  variables  m  can  be  reduced.  When 

condition (3) is verified, we say that the degree of 

redundancy of the manipulator is n - m. If, for some q 
we have: 

  

then the manipulator is in a singular state. This state is 

not desirable because, in this region of the trajectory, the 

manipulating ability is very limited. 

position  in  the  operational  space.  Nevertheless,  in  a 

previous study, addressing the CLP method [19], it was 

concluded that this method leads to unpredictable, not 

repeatable, arm configurations and reveals properties 

resembling those that occur in chaotic systems. As a 

consequence, the motion in joint space becomes unpre- 

dictable for subsequent cycles. 

 
2.2. Introduction to fractional calculus 

 
FC goes back to the beginning of the theory of 

differential calculus. Nevertheless, the application of FC 
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just emerged in the last two decades, due to the progress 

in  the  area  of  nonlinear  and  complex  systems   that 

 

revealed subtle relationships with the FC concepts. In 

the field of dynamical systems theory some work has been 

carried out, but the proposed models and algorithms are 
 

still in a preliminary stage of establishment. 

The fundamental aspects of FC theory are addressed in 

[20–22]. Concerning FC applications research efforts can 

be mentioned in the area of viscoelasticity, chaos, biology, 

 

signal processing, diffusion, wave propagation, percola- 

tion, modeling and control [23–27]. 

FC is a branch of mathematical analysis that extends to 

real, or even complex, numbers the order of the 

differential and integral operators. Since its foundation, 

the   generalization  of  the   concept  of  derivative   and 

integral to a non-integer order a has been the subject  of 

distinct approaches. Due to this reason there are several 

alternative definitions of fractional derivatives. An ap- 

proach, based on the concept of fractional differential, is 

An important property revealed by expression (10) is 

that while an integer-order derivative just implies  a 

finite series, the fractional-order derivative requires an 

infinite number of terms. Therefore,  integer  derivati- 

ves are ‘local’ operators in opposition with fractional 

derivatives which have, implicitly, a ‘memory’ of all past 

events. 

Analyzing (10b) we verify [28] that the series coeffi- 

cients decay very slowly. Therefore, the samples of the 

past have a considerable impact upon the calculation of 

 
 

 

 

 

 
 

Fig. 1. Charts of P error  for the nR-robot, n ¼ f3; 4; 5g, vs a and r, with nC  ¼ 300 cycles. 



 

 

the present value of the fractional derivative. This 

property leads to a signal variation much more conserva- 

tive than what we obtain for the case of integer order. 

Often,  in  discrete  time  implementations expression 

(10) is approximated by: 

namely the fractional closed-loop pseudoinverse (F-CLP) 

method. 

If xref is the vector of reference position in the 

operational space and xðtÞ is a vector representing the 
current position of the end-effecter in the operational 
space,  then expressions (12)–(13)  are  the  discrete ver- 

 
 

sions of the differential and the integral of order a ¼ 1, 

  

 

The characteristics revealed by fractional-order models 

make this mathematical tool well suited to describe 

phenomena such as chaos because of its inherent memory 

property. In this line of thought, the propagation of 

perturbations and the appearance of long-term dynamic 

phenomena configure a case where FC tools fit adequately 

[11]. 

 

3. Proposed method for robot trajectory control 

 

In this section we formulate a new method for the 

trajectory control of a redundant manipulator. The 

proposed  method combines  the  CLP  method  with FC, 

  

 

These equations yield the standard (integer-order) 

differential kinematic trajectory planning CLP and in- 

spired the formulation of a fraction-order kinematic 

scheme. Therefore, in order to take advantage from the 

longer memory effect provided by (10), in the F-CLP 

method, expression (12) can be rewritten leading to 

expression (14): 

  

 

when the first N terms are considered. 

Using a fractional perspective, in the F-CLP method, 

the joint positions are also computed through the   time 

 

 

 

Fig. 2.  Charts of RMj , j =1,y,3, for the 3R-robot, vs a and r, respectively, with nC  ¼ 300 cycles. 



 

 

integration of the joint velocities, given by expression r ¼ ðx2 þ x2 Þ1=2 , radius r ¼ 0:5 and a step time increment 
1 2 

(15): 

  

 

Clearly, when a ¼ 1 we get the classical CLP method. 

 
4. General definition of the experiments and 

performance measures 

 
The Jacobian of a n-link planar manipulator (i.e., m ¼ 2) 

has a simple recursive nature according with the expres- 

sions: 

of  Dt ¼ 10-3 s.  Without  lacking  of  generality,  in  the 

experiments are adopted arms having identical link 

lengths, l1 ¼ l2 ¼ · · ·  ¼ ln . 

Two performance metrics are defined to examine  the 

strength and the weakness of the  proposed  method. 

The positional error measure, Perror , is used to measure the 

precision of the manipulator in the task of positioning the 

end-effector at the target position. The repeatability 

performance measure, RM, is used to evaluate if the joint 

positions are periodic when the manipulator execute 

repetitive trajectories in the workspace. 

 
4.1. Positional error measure 

 In order to analyze the precision of the manipulator in 

the  task  of  positioning  the  end-effector  at  the target 

where li is the length of link i, qi...k ¼ qi þ · · · þ qk , Si...k ¼ 

Sinðqi...k Þ and Ci...k ¼ Cosðqi...k Þ, i; k 2 N. 

The experiments consist in the analysis of the kine- 

matic   performance   of   a   planar   manipulator   with 

position, we define a measure based on the positional 

error at each instant time. 

The average of the positional error for nC cycles is 

given by the expression: 

n ¼ f3; 4; 5g rotational joints, denoted as nR-robot, that is  
  

 

required to repeat a circular motion in the    operational   

space with frequency o0 ¼ 7:0 rad s-1 , center at    

 

 

 

Fig. 3.  Charts of RMj , j =1,y,4, for the 4R-robot, vs a and r, respectively, with nC  ¼ 300 cycles. 



 

 

where xc ¼ ðxc ; yc Þ and xf ¼ ðxf ; yf Þ are vectors representing 

the end-effector current position and the desired     final 

position, respectively, and k is the number of sampling 

points and is defined as: 

  

  

4.2. Repeatability performance measure 

 
In order to  analyze  the  repeatability characteristic 

of the joint positions, we define a measure based on 

the   Fourier   analysis   of   the   robot   joint  velocities. 

This repeatability measure, RM, evaluates the distribution 
of  the  energy  along  the  frequencies  o 2 ½omin; omax], 

 
 

 

 

Fig. 4.  Charts of RMj , j =1,y,5, of the 5R-robot, vs a and r, respectively, with nC  ¼ 300 cycles. 



 

 
 

omin ¼ 0:0 rad s-1 ,  omax ¼ nh o0 rad s-1 ,  with  a  step  fre- 
quency  increment  of  Do ¼ 0:005 rad s-1 ,  where  nh     is 
the   number   of   multiple   harmonics   and   o0    is   the 

fundamental frequency. For joint j the index RM, is 

defined as: 

The   average   of   the   positional   error,   Perror ,   for 

0:01 rar 1:0  is  depicted  in  Fig.  1.  The  case  a ¼ 1:0 

corresponds to the classical CLP method. 

We conclude that: 

(i) if ao 0:8, in general, the precision is better the higher 

the value of a, but for some radial distances occur 
 slightly variations; 

(ii) if a4 0:8 the precision is always better the higher the 
where Ej;H  is the energy concentrated in the fundamental 

and multiple higher harmonics for joint velocity q_ j, and is 

defined as: 

  

 

and Ej;T is the total energy for the joint velocity q_ j, defined 

as: 

 

  

where no is the number of sampling frequencies: 

  

value of a, having a maximum at a ¼ 1:0; 

(iii) these results are identical for any number of joints. 
 

 
5.2. The repeatability performance 

 

The  repeatability  performance  measure,  RMj,  j ¼ 1; 
. . . ; n,   for   n ¼ f3; 4; 5g   rotational   joints,   nh  ¼ 5,   radial 

distances  from  0:5 r r r 2:4  and  values  of  a  ranging 

0:01 rar 1:0   is   depicted   in   Figs.   2–4.   As   stated 

previously for a ¼ 1:0 we get the well-known CLP. 

We conclude that, for all joints and for the    different 

robot with n ¼ f3; 4; 5g, that the charts are of the same type. 

In all cases we have a region of low performance for  low 

 
 values of a, followed by a plateau with almost constant 

performance, up to a sudden degradation in the close 

neighborhood of a ¼ 1:0. The region of low performance for 

5. Simulation results and discussion 
 

This section presents the results of several simulations 

and discusses the results. In the experiments are con- 

sidered the first N ¼ 10 terms of expression (11). Larger 

values of N were tested leading to results of the same 

type. In the motion are considered nC  ¼ 300 cycles. 

 
5.1. The performance error 

 

In the following experiments are considered robots 
with n ¼ f3; 4; 5g rotational joints and circular trajectories 

at radial distances 0:5 r r r 2:4. 

low a gets larger for higher values of r, but leaves still   a 

considerable region of good behavior. Moreover, we verify 

also that the performance diminishes slightly for   larger 

values of r and that there are some regions ða; rÞ with some 

small ripple in the chart. Nevertheless, these two effects 

are of minor importance, allowing the designer to choose 

in a large range of possible values of a. 

For example, if the radial distance is r r 1:1, the 

classical CLP method leads to unpredictable, non repea- 

table, arm configurations. If we want to achieve a repe- 

titive joint trajectory we can adopt, for example, a ¼ 0:99, 

for which we get a repeatability performance measure 

as RM 4 f0:88; 0:71; 0:79g, for n ¼ f3; 4; 5g, respectively. 
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Fig. 5. Charts of the 4R-robot joint positions versus time, for r ¼ 0:7, a= 0.99 (F-CLP) and a = 1.0 (CLP), respectively, with nC ¼ 40 cycles. 
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Fig. 6. Charts of the 4R-robot initial and final configurations, for r ¼ 0:7, a= 0.99 (F-CLP) and a= 1.0 (CLP), respectively, during the 40th cycle. 

 

To analyze more deeply this situation, in Fig. 5 are 

depicted the robot joint positions for nC ¼ 40 cycles and in 

Fig. 6 are represented the initial and final configurations 

during the 40th cycle, for n ¼ 4, a ¼ f0:99; 1:0g and r ¼ 0:7. 

As we can, for a ¼ 0:99, after a transient phase, the joints 

positions start to be repetitive. However, when a ¼ 1:0 

(i.e., the classical integer-order CLP) the joint positions 

are not periodic and the motion in joint space becomes 

unpredictable. 

 
 

6. Conclusions 

 

A new algorithm to solve the inverse kinematics 

problem of redundant manipulator, the F-CLP method, 

that uses a fractional derivative approach to control the 

joint positions, was presented. Several experiments were 

developed to study the performance of the F-CLP, when 

the manipulator is required to repeat a circular motion in 

the operational space. Two performance measures were 

defined to examine the strength and weakness of the 

proposed method. The positional error measure was 

adopted to measure the precision of the manipulator in 

the task of positioning the end-effector at the target 

position. The repeatability performance measure was 

used to evaluate if the joint positions are repetitive when 

the manipulator execute repetitive trajectories in the 

workspace. 

The results show that the degradation of the positional 

error can be negligible while the gain of good repeatability 

yields significant advantage. It is shown that for all the 

radial   distances,   and   for   the   different   robot with 

n ¼ f3; 4; 5g, it is possible to find a value of a from which 

the joint positions are repetitive. 

The F-CLP follows classical integer-order trajectory 

planning scheme. Therefore, no dynamical  control 

issues are considered. Nevertheless, a possible direction 

of future research is clearly the adoption of further 

concepts borrowed from fractional-order control algo- 

rithms. 
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