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a b s t r a c t

In this paper, we present an iterative method for estimation of pitches from signals

containing multiple sources using subspace techniques. The resulting estimator is

termed Iterative Harmonic MUltiple SIgnal Classification (I-HMUSIC). Different

modifications of I-HMUSIC are proposed that improve upon the classical MUSIC

algorithm, including a computationally efficient method for noise subspace updating

I-HMUSIC and its modifications are evaluated and compared with both the Cramér–Rao

lower bound (CRLB) and non-iterative HMUSIC; good statistical performances have

been obtained.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

The problem of estimating the fundamental frequency
or pitch of a periodic waveform has been of interest
to the signal processing community for many years.
Fundamental frequency estimators are important for
many applications such as automatic note transcription,
audio coding, and classification of music. Numerous
algorithms have been proposed see, e.g. [1–7]. In real
recorded signals, however, multi-pitch scenarios occur
more frequently than single-pitch scenarios. A number of
multi-pitch algorithm are described in [6,3,4,1], to which
we refer the interested reader.

A model using complex exponentials for the multi-pitch
estimation problem can be defined as follows: consider a
signal consisting of K sources of harmonically related
complex exponentials with fundamental frequencies ok
ll rights reserved.
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embedded in additive noise, i.e.,

xðnÞ ¼
XK

k ¼ 1

XLk

l ¼ 1

bl,kejoklnþeðnÞ, bl,k ¼ Al,kejyl,k ð1Þ

for n=0,y,N�1, where Al, k is the real-valued amplitude, ok

is the fundamental frequency, Lk is the model order, yl,k is
the phase, and e(n) is the complex symmetric white
Gaussian noise. The problem is to estimate ok from x(n)
with N measured samples. The estimation problem
associated with the real case can be cast as (1) by the use
of analytic signals, which is valid when there is little or no
spectral content of interest near 0 and p. In this paper, we
assume that the number of sources K and the model orders
Lk of the individual sources are known, order estimation can
be achieved with multi-dimensional search of the extended
cost function [1,5].

Recently, subspace-based fundamental frequency
estimators have shown good estimation performance
both for single and multi-pitch cases [5,1,8]. This type of
methods is forming a cost function by exploiting the
orthogonality properties between the noise and signal
subspaces decomposed from a covariance matrix. In
subspace-based multi-pitch estimators, however, the cost
function is usually multi-modal with many local extrema.
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Those extrema are the ambiguities between the signal
subspace on source of interest and part of the signal
subspace of other sources, especially when there are large
variations between the model orders Lk. This gives rise to
estimation errors such as sub-octave or octave errors on
the fundamental frequency for sources other than the
source with the highest model order. To avoid local
extrema we present an iterative HMUSIC (I-HMUSIC) for
multi-pitch estimation. In I-HMUSIC, we use the deflation
technique to sequentially estimate the fundamental
frequencies starting with the source containing the
highest model order. This exploits the property that the
estimation of the signal subspace for the source with
highest model order is only orthogonal to the noise
subspace with the fundamental frequency of interest
which gives a cost function without local extrema. The
estimated source is then removed from the mixture x(n),
and then the next source with the second highest
model order is estimated. This procedure simplifies the
multi-pitch estimation problem into K sequentially
related single-pitch problems. For further improvement
of the estimation accuracies, iterative re-estimation of the
ok’s can be performed, based on previously estimated
parameters, this type of iteration is normally referred as a
cyclic minimizer (CM) [9]. Within this framework of
I-HMUSIC, different modifications of the algorithm were
also proposed.

Iteratively decomposing a covariance matrix into its
subspaces is usually computationally heavy. In this paper,
a fast updating method of the noise subspace is also
proposed. This method is based on the approximative
orthogonality between Vandermonde vectors with dis-
tinct frequencies. Our method is asymptotically exact and
computationally simpler compared to subspace decom-
position algorithms based on eigenvalue decomposition
(EVD) or singular value decomposition (SVD).
2. Preliminaries

In this section, we present the fundamentals of the so-
called covariance matrix model and introduce some useful
vector and matrix notations. The signal sub-vector
containing m samples of the observed complex signal
(1) is defined as

xðnÞ ¼ ½xðnÞ xðn�1Þ � � � xðn�mþ1Þ�T , ð2Þ

with ð�ÞT denoting vector transpose, and when m is a user
parameter.

The covariance matrix R 2 Cm�m of x(n) can then be
written as

R¼ EfxðnÞxHðnÞg ¼
XK

k ¼ 1

ZkPkZH
k þs

2I, ð3Þ

where Ef�g and ð�ÞH denote the statistical expectation and
the Hermitian transpose, respectively. Furthermore, Zk is a
Vandermonde matrix of source k, which is defined as

Zk ¼ ½zðokÞ � � � zðokLkÞ�, ð4Þ
where zðoÞ ¼ ½1 ejo � � � ejoðm�1Þ�T . The matrix Pk ¼

diagð½A2
1,k � � � A2

Lk ,k�Þ contains signal amplitudes, s2 de-
notes the noise variance, and I is the identity matrix.

Let R¼UKUH be the EVD or SVD of the covariance
matrix. Then, U contains the m orthonormal eigenvectors
of R, i.e., U¼ ½u1 . . . um� and K is a diagonal matrix
containing the corresponding eigenvalues. Lets G be
formed from the m�Q least significant eigenvalues
where Q ¼

PK
k ¼ 1 Lk, with S¼ ½u1 . . . uQ �, and G¼

½uQ þ1 . . . um�. The noise subspace G is orthogonal to Zk,
i.e., Zk

HG=0, for k=1,y,K.

3. I-HMUSIC algorithm

Having defined the covariance matrix model and
useful notations, we now present I-HMUSIC. This method
can be summarized into two nested loops: the inner loop
uses the deflation technique to sequentially estimate the
fundamental frequencies, while the outer loop uses CM to
increase the accuracies by repeating the inner loop until
some convergence criterion is reached [4,9]. The outer and
the inner loops have iteration indices i, k, respectively.

We start with the inner loop, where the deflation
technique is adopted to avoid local extrema by estimating
the individual sources in a sequence based on the model
orders sorted as L1ZL2Z � � �ZLK . The deflated covar-
iance matrix with previously estimated sources removed
is defined as

Rk,iðuk,iÞ ¼ R�
Xk�1

ku ¼ 1

Ẑku,iP̂ku,iẐ
H

ku,i ¼Uk,iKk,iU
H
k,i, ð5Þ

where uk,i ¼ ½ô1,i � � � ôK ,i b̂
T

1,i � � � b̂
T

K ,i� is a parameter
vector that is updated after each iteration and initially
uk,1 ¼ 0. Without loss of generality, indices i of the
parameter vector can be dropped, e.g. uk. The amplitude
vector is defined as b̂k ¼ ½b̂1,k � � � b̂Lk ,k�

T . The eigenvectors
of Uk are used to form the noise and signal subspace
notated as

Sk,i ¼ ½u1 u2 . . . uLk
�, ð6Þ

Gk,i ¼ ½uLkþ1 uLk þ2 . . . um�, ð7Þ

where Lk is the number of principal eigenvalues asso-
ciated with the remaining harmonics in Rk, given as

Lk ¼Q�
Xk�1

ku ¼ 1

Lku ð8Þ

for k=1,y,K. Then, we proceed with the estimation of the
fundamental frequency of source k as

ôk ¼ argmax
ok

1

JZH
k Gk,iJ

2
F

, ð9Þ

where J � JF is the Frobenius norm. With the fundamental
frequency, the signal amplitudes can easily be estimated
using a least squares estimate, e.g.

b̂k ¼ ðẐ
H

k ẐkÞ
�1Ẑ

H

k xðnÞ�
Xk�1

ku ¼ 1

Ẑkub̂ku

 !
: ð10Þ

The estimated amplitudes and fundamental frequency
are then substituted into (5) to estimate the covariance
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matrix for the next source k+1. The estimation of
fundamental frequency is repeated until fokg

K
k ¼ 1 is

completely estimated.
In the outer loop, we iteratively re-estimate Rk,iðukÞ

based on previous estimates of uk. Increased accuracy of
ok then results from an improved estimate of the
decomposed covariance matrix Rk,i. In many applications,
the required accuracy for the estimated parameters is
satisfied without using CM, i.e., for i=1.

Algorithm outline.
Loop 1 i=1,y,convergence:

Loop 2 k=1,y,K:

Uk,iKk,iU
H
k,i ¼ SVDfRk,iðukÞg

Gk,i ¼ ½uLk þ1 uLk þ2 . . . um�

ôk ¼ argmax
ok

1

JZH
k,iGk,iJ

2
F

b̂k ¼ ðẐ
H

k,iẐk,iÞ
�1Ẑ

H

k,i xðnÞ�
Pk�1

ku ¼ 1

Ẑku,ib̂ku,i

 !

Update uk

End loop 2
End loop 1
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Fig. 1. (Top) Cost function of the non-iterative HMUSIC evaluated on

N=512. (Bottom) Cost function of the proposed I-HMUSIC.
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Fig. 2. Error between the true projection matrix and the approximated

using our proposed fast method.
3.1. Fast noise subspace updating method

Generally, the EVD or SVD computation used in (5) is
computationally heavy. Here, we will present an approx-
imate method to efficiently update the noise subspace for
source k. The relationship between the projection matrix
of the signal subspace (6) and the projection matrix of the
Vandermonde matrix is defined as

PS ¼PZ ¼ ZðZHZÞ�1ZH , ð11Þ

where Z=[Z1 y ZK], and PS ¼ SSH . The columns of
Vandermonde matrix Z are asymptotically orthogonal
for any set of distinct frequencies when m-1, i.e., [1]

lim
m-1

PZ ¼ lim
m-1

mZðZHZÞ�1ZH
¼
XK

k ¼ 1

ZkZH
k : ð12Þ

Using (11), an approximately estimate of the noise
subspace projection matrix which is also equivalent to
the true one is given as

PGk
�PGþ

Xk�1

ku ¼ 1

ZkuðZ
H
kuZkuÞ

�1ZH
ku, ð13Þ

where TracefZH
k PGk

Zkg ¼ 0. The expression in (13) can then
be substituted into (9) for fundamental frequency estima-
tion. Our proposed updating method is computationally
simpler because we only need to estimate the true noise
subspace once and because it works without estimating the
signal amplitudes.

In summary, three modifications of I-HMUSIC are
proposed. The first one uses the nested loop system to
first sequentially estimate fundamental frequencies and
adopts CM to refine the results. This is referred to as
I-HMUSIC (SVD, CM). The second one only uses the inner
loop to estimate the estimates, referred to as I-HMUSIC
(SVD). The third one uses the fast noise subspace updating
method I-HMUSIC (FAST).
4. Experimental results

We start the simulation with a simple demonstration
of the differences between the cost function in non-
iterative HMUSIC used in [10] and the proposed
I-HMUSIC(SVD,CM). Signal parameters used in this
example consist of two sources with fundamental
frequencies o1 and o2, and harmonic orders are L1=8
and L2=4. The resulting cost functions with non-iterative
HMUSIC and I-HMUSIC are shown in Fig. 1, we can see
that the cost function has a spurious peak at the octave
error of o1 while I-HMUSIC shows a cleared cost function.
Sometimes, this type of spurious peak is hard to
distinguish from real peaks when sources consisting of
different model order appear.

Before we start statistical evaluation, we will plot
RMSE between the projection matrix of the noise sub-
space estimated using fast noise subspace updating
method and the projection matrix estimated on the noise
subspace using SVD. The resulting plot is shown in Fig. 2,
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as expected the errors of the approximative noise
subspace decrease with increased N.

Next, we evaluate the proposed estimators statistical
properties using Monte Carlo simulations by generating
signals according to the model (1) with the phase and the
noise being randomized over each realization, 100 trials
are run. The estimators are evaluated for K=2, o1 ¼ 0:16
with L1=8 and o2 ¼ 0:22 with L2=4. The amplitude for
each source is generated with a 3th-order AR-filter, as
could be expected for natural spectra, the corresponding
amplitudes are shown in Fig. 3. Signal frame is
evaluated for N=512 samples, and the user parameter
set to m¼ bN=2c. Here, the root mean square error is
defined as

RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

DK

XD

d ¼ 1

XK

k ¼ 1

ðôk,d�okÞ
2

vuut , ð14Þ

with ôk,d and ok being the estimate and the true
fundamental frequency, respectively, and with D

being the number of Monte Carlo trials. The asymptotic
Cramér–Rao lower bound (CRLB) and the pseudo
signal-to-noise ratio (PSNR) for k’th source are defined
in [10]. The cost function of (9) is evaluated first using
FFT-based method to obtain a coarse estimate of ok. Then,
these coarse estimates are used to initialize the gradient-
based methods to achieve a refined estimate [5].
Furthermore, our methods are compared with CRLB and
non-iterative HMUSIC [10].

In this example, we will consider the case where RMSE
is a function of PSNR. The evaluated results are shown in
Fig. 4, I-HMUSIC (SVD, CM) performs best which closely
following CRLB, while I-HMUSIC (FAST) and I-HMUSIC
(SVD) perform a bit worse. The main contribution of error
in I-HMUSIC (SVD) is during the estimation of the
amplitudes; the problem encountered here is that we
estimate the amplitudes for one of the sources, while the
noise term is white noise plus harmonic interferences
from the other sources. It is well-known that least square
estimate is optimal only when the noise term is white
Gaussian noise which is not the case in this problem.
Therefore, an iterative estimate of the signal amplitudes
with additional knowledge of parameters on harmonic
interferences will increase the performance and also
reduce RMSE of I-HMUSIC (SVD, CM). The I-HMUSIC
(FAST) algorithm will not follow CRLB with increased
PSNR, because of errors in the approximated projection
matrix, this is shown in Fig. 2. It is interesting to note that
CM operation will not increase the performance of
I-HMUSIC (FAST), because here we only use basis
vectors of the subspaces of interest and no estimation of
amplitudes is required.

Next, we proceed to evaluate the proposed estimators
RMSE as a function of window length N, PSNR fixed at
43 dB. The results are shown in Fig 5, on the evaluated
window length I-HMUSIC (SVD, CM) performs best where
the RMSE closely follow CRLB. As expected, the
performance of I-HMUSIC (FAST) approaches CRLB with
increased N.
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In this final experiment, we will evaluate the minimum
resolution between two sources, i.e., Do0 ¼ jo1�o2j, for
PSNR is fixed at 48.6 dB and N=512. In order to avoid
frequency overlaps between higher harmonic orders the
evaluated signals are slightly different from previous
examples, here L1=8 and L2=1. The results are shown in
Fig. 6. It can be seen that I-HMUSIC (SVD, CM) performs
best for closely spaced harmonics. Methods such as
I-HMUSIC (SVD) and I-HMUSIC (FAST) only give a
slightly worse performance but it can be far enough in
practical speech and audio applications.

In all examples, the performance of non-iterative
HMUSIC is not promising which is explained by
spurious peaks in the cost function when one of the
source model orders is less than the dominant model
order.
5. Conclusion

In this paper, we have proposed an I-HMUSIC for multi-
pitch estimation problem, several modifications of the
method have also been introduced. Overall, I-HMUSIC gives
a cost function that contains less local minimum than non-
iterative multi-pitch HMUSIC. We have evaluated our
methods with Monte Carlo simulations under different
scenarios, in all the cases good statistical properties have
been shown. The performance of the various modifications
is concluded to be determined by the trade-off between
estimation accuracy and computational complexity, where
highest complexity gives best accuracy.
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