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Abstract

In recent years there has been a renewed interest in finding fast algorithms to compute
accurately the linear canonical transform (LCT) of a given function. This is driven by the
large number of applications of the LCT in optics and signal processing. The well-known
integral transforms: Fourier, fractional Fourier, bilateral Laplace and Fresnel transforms
are special cases of the LCT. In this paper we obtain an O(N logN) algorithm to compute
the LCT by using a chirp-FFT-chirp transformation yielded by a convergent quadrature
formula for the fractional Fourier transform. This formula gives a unitary discrete LCT
in closed form. In the case of the fractional Fourier transform the algorithm computes
this transform for arbitrary complex values inside the unitary circle and not only at the
boundary. In the case of the ordinary Fourier transform the algorithm improves the
output of the FFT.
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1 Introduction

The Linear Canonical Transform (LCT) of a given function f(x) is a three-parameter
integral transform that was obtained in connection with canonical transformations in
Quantum Mechanics [1, 2]. It is defined by

L{a,b,c,d}[f(x), y] =
1√
2πib

∫ ∞

−∞
e

i
2b

(ax2−2xy+dy2)f(x)dx,

for b 6= 0, and by
√
de

i
2
cdy2f(dy), if b = 0. The four parameters a, b, c and d appearing in

(1), are the elements of a 2×2 matrix with unit determinant, i.e., ad− bc = 1. Therefore,
only three parameters are free. Since this transform is a useful tool for signal processing
and optical analysis, its study and direct computation in digital computers has become
an important issue [3]-[10], particularly, fast algorithms to compute the linear canonical
transform have been devised [4, 7]. These algorithms use the following related ideas: (a)
use of the periodicity and shifting properties of the discrete LCT to break down the orig-
inal matrix into smaller matrices as the FFT does with the DFT, (b) decomposition of
the LCT into a chirp-FFT-scaling transformation and (c) decomposition of the LCT into
a fractional Fourier transform followed by a scaling-chirp multiplication. All of these are
algorithms of O(N logN) complexity.
In this paper we present an algorithm that takes O(N logN) time based in the decomposi-
tion of the LCT into a scaling-chirp-DFT-chirp-scaling transformation, obtained by using
a quadrature formula of the continuous Fourier transform [11, 12]. Here, DFT stands
for the standard discrete Fourier transform. To distinguish this discretization from other
implementations, we call it the extended Fourier Transform (XFT). Thus, the quadrature
from which the XFT is obtained, uses some asymptotic properties of the Hermite polyno-
mials and yields a fast algorithm to compute the Fourier transform, the fractional Fourier
transform and therefore, the LCT. The quadrature formula is O(1/N)-convergent to the
continuous Fourier transform for certain class of functions [13].

2 A discrete fractional Fourier transform

In previous work [12], [13], [14], we derived a quadrature formula for the continuous
Fourier transform which yields an accurate discrete Fourier transform. For the sake of
completeness we give in this section a brief review of the main steps to obtain this formula.
Let us consider the family of Hermite polynomials Hn(x), n = 0, 1, . . ., which satisfies the
recurrence equation

Hn+1(x) + 2nHn−1(x) = 2xHn(x), (1)
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with H−1(x) ≡ 0. Note that the recurrence equation (1) can be written as the eigenvalue
problem
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. (2)

Let us now consider the eigenproblem associated to the principal submatrix of dimension
N of (2)

H =



















0 1/2 0 · · · 0 0
1 0 1/2 · · · 0 0
0 2 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 1/2
0 0 0 · · · N − 1 0



















.

It is convenient to symmetrize H by using the similarity transformation SHS−1 where S
is the diagonal matrix

S = diag

{

1,
1√
2
, . . . ,

1
√

(N − 1)! 2N−1

}

.

Thus, the symmetric matrix H = SHS−1 takes the form
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√
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√
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2

0





























.

The recurrence equation (1) and the Christoffel-Darboux formula [15] can be used to solve
the eigenproblem

Huk = xkuk, k = 1, 2, . . . , N,

which is a finite-dimensional version of (2). The eigenvalues xk are the zeros of HN(x)
and the kth eigenvector uk is given by

ck (s1H0(xk), s2H1(xk), · · · , sNHN−1(xk))
T ,

where s1, . . . , sN are the diagonal elements of S and ck is a normalization constant that
can be determined from the condition uT

k uk = 1, i.e., from

c2k

N−1
∑

n=0

Hn(xk)Hn(xk)

2nn!
= 1.
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Therefore,

ck =

√

2N−1 (N − 1)!

N

(−1)N+k

HN−1(xk)
.

Thus, the components of the orthonormal vectors uk, k = 1, 2, . . . , N , are

(uk)n = (−1)N+k

√

2N−n (N − 1)!

N (n− 1)!

Hn−1(xk)

HN−1(xk)
, (3)

n = 1, . . . , N . Let U be the orthogonal matrix whose kth column is uk and let us define
the matrix

Fz =
√
2πU−1D(z)U,

where D(z) is the diagonal matrix D(z) = diag{1, z, z2, . . . , zN−1} and z is an complex
number. Therefore, the components of Fz are given by

(Fz)jk =
√
2π

(−1)j+k 2N−1 (N − 1)!

N HN−1(xj)HN−1(xk)

N−1
∑

n=0

zn

2n n!
Hn(xj)Hn(xk). (4)

Next, we want to prove that ifN is large enough, (4) approaches the kernel of the fractional
Fourier transform evaluated at x = xj , y = xk. To this, we use the asymptotic expression
for HN(x) [15])

HN(x) ≃
Γ(N + 1)ex

2/2

Γ(N/2 + 1)
cos(

√
2N + 1 x− Nπ

2
). (5)

Thus, the asymptotic form of the zeros of HN(x) are

xk =

(

2k −N − 1√
2N

)

π

2
, (6)

k = 1, 2, . . . , N . The use of (5) and (6) yields

HN−1(xk) ≃ (−1)N+k Γ(N)

Γ(N+1
2

)
ex

2
k
/2, N → ∞,

and the substitution of this asymptotic expression in (4) yields

(Fz)jk ≃
√
2π

2N−1 [Γ(N+1
2

)]2

Γ(N + 1)
e−(x2

j+x2
k
)/2

∞
∑

n=0

zn

2n n!
Hn(xj)Hn(xk).

Finally, Stirling’s formula and Mehler’s formula [16] produce

(Fz)jk ≃
√

2

1− z2
e
−

(1+z2)(x2j+x2
k
)−4xjxkz

2(1−z2) ∆xk, (7)

where ∆xk is the difference between two consecutive asymptotic Hermite zeros, i.e.,

∆xk = xk+1 − xk =
π√
2N

. (8)
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Let us consider now the vector of samples of a given function f(x)

f = (f(x1), f(x2), . . . , f(xN))
T .

The multiplication of the matrix Fz by the vector f gives the vector g with entries

gj =

N
∑

k=1

(Fz)jkf(xk) ≃
√

2

1− z2

N
∑

k=1

e
−

(1+z2)(x2j+x2
k
)−4xjxkz

2(1−z2) f(xk)∆xk,

where j = 1, 2 . . . , N. This equation is a Riemann sum for the integral

Fz[f(x), y] =

√

2

1− z2

∫ ∞

−∞
e
− (1+z2)(y2+x2)−4xyz

2(1−z2) f(x)dx,

where |z| < 1. Therefore, if we make yj = xj ,

Fz[f(x), yj] ≃
N
∑

k=1

(Fz)jkf(xk), N → ∞. (9)

Note that Fz[g(x), y] is the continuous fractional Fourier transform [17] of g(x) except
for a constant and therefore, Fz is a discrete fractional Fourier transform.

3 A fast linear canonical transform

Firstly, note that if b 6= 0, the LCT can be written as a chirp-FT-chirp transform

L{a,b,c,d}[f(x), y] =
e

idy2

2b

√
2πib

∫ ∞

−∞
e−

ixy
b e

iax2

2b f(x)dx.

Thus, for b 6= 0, the LCT of the function f(x) can be represented by the 1/b-scaled Fourier

transform of the function g(x) = e
iax2

2b f(x), multiplied by e
idy2

2b√
2πib

.

On the other hand, note that for the case z = ±i, (7) yields a discrete Fourier transform
(F±i)jk ≃ e±itjtk∆tk, that can be related to the standard DFT as follows. The use of (6)
yields

(Fi)jk = e±itjtk∆tk =
π√
2N

ei
π2

2N (j−
N−1

2 )(k−N−1
2 ) (10)

where we have used (6) and (8). Since
∑N

k=1(Fi)jkf(xk) is a quadrature and therefore,
an approximation of

g(yj) =

∫ ∞

−∞
eiyjxf(x)dx,

a scaled Fourier transform
∫ ∞

−∞
eiκyjxf(x)dt = g(κyj) (11)
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has the quadrature
∑N

k=1 F̃jkf(xk), where

F̃jk =
π√
2N

eiκ
π2

2N (j−
N−1

2 )(k−N−1
2 ). (12)

If we choose κ = 4/π, (12) takes the form

Fjk =
πei

π
2

(N−1)2

N

√
2N

[

e−iπN−1
N

j
] [

ei
2π
N

jk
] [

e−iπN−1
N

k
]

,

for j, k = 0, 1, 2, . . . , N − 1, and
∑N

k=1 Fjkf(xk) is an approximation of g(4yj/π). If

now we choose κ = 4b/π, but we keep the same matrix (13), then
∑N

k=1 Fjkf(xk) is an
approximation of

∫ ∞

−∞
ei

yj
b
xf(x)dt.

If now we replace f(x) by e
iax2

2b f(x) and take into account (10), we have that

N
∑

k=1

Fjke
iax2

k
/2bf(xk)

is an approximation of the product of functions

(

e
idy2

2b√
2πib

)−1

L{a,b,c,d}[f(x), y] evaluated at

yj = 4bxj/π. Therefore, a discrete (scaled) linear canonical transform L can be given in
closed form. If we denote by G(y) the LCT of f(x), then

G(yj) = G(4bxj/π) =
N
∑

k=1

(S1FS2)jkf(xk),

where S1 and S2 are diagonal matrices whose diagonal elements are e
idy2j
2b /

√
2πib, and

eiax
2
j/2b, respectively. As it can be seen, the matrix L = S1FS2, which gives the discrete

LTC, i.e., the XFT, consists in a chirp-DFT-chirp transformation, where DFT stands for
the standard discrete Fourier transform. Therefore, we can use any FFT to give a fast
computation of the linear canonical transform G = Lf .
Now, the fast algorithm for the linear canonical transform can be given straightforwardly.

6



Algorithm

To compute an approximation G = (G1, G2, . . . , GN)
T of the linear canonical trans-

form G(y) = L{a,b,c,d}[f(x), y] evaluated at yj = 4bxj/π, where xj =
(

2j−N−1√
2N

)

π
2
.

1. For given N set up the vector u of components

uk = e−iπ (k−1)(N−1)
N eiax

2
k
/2bf

(

π
2k −N − 1

2
√
2N

)

,

k = 1, 2, . . . , N .

2. Set yj = 4bxj/π and compute the diagonal matrix S according to

Sjk =
πei

π
2

(N−1)2

N

√
2N

e
idy2j
2b e−iπN−1

N
(j−1)

√
2πib

δjk,

j, k = 1, 2, . . . , N .

3. Let DF be the discrete Fourier transform, i.e., (DF )jk = ei
2π
N

jk, j, k =
0, 1, 2, . . . , N − 1. Obtain the approximation Gj to G(4b

π
xj) by computing

the matrix-vector product
G = SDFu, (13)

with a standard FFT algorithm.

4 Example

For this example we take an integral formula found in [18] that gives

G(y) =

√
π√

2πib(α2 + a2

4b2
)1/4

e

α(β2
−αγ)

α2+ a2

4b2 e
i
2
arctan( a

2αb
)e

−αy2+2βay+a2γ

4b2α2+a2 (14)

× e
i acy2

2(4b2α2+a2) e
i
2b(α2dy2+2βαy+β2a)

4b2α2+a2 ,

if f(x) = e−(αy2+2βy+γ), α > 0. Figure 1 shows the exact LTC with α = 1, β = 2, γ = 3,
a = 1, b = 2, c = 1/2, and d = 2, compared with the approximation given by the XFT.
Figure 2 shows the exact Fresnel transform of f(x) = e−(αy2+2βy+γ) with α = 2, β = 1,
γ = 3, a = 1, b = 100, c = 0, and d = 1, compared with the approximation given by the
XFT.
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Figure 1: Real part (A) and imaginary part (B) of the exact linear canonical transform
(solid line) compared with the output of the XFT (dashed line) computed with N = 512.
The function G(y) is that given in (14) for α = 1, β = 2, γ = 3, a = 1, b = 2, c = 1/2,
and d = 2.
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Figure 2: Real part (A) and imaginary part (B) of the exact Fresnel transform (solid
line) compared with the output of the XFT (dashed line) computed with N = 1024. The
function G(y) is that given in (14) for α = 2, β = 1, γ = 3, a = 1, b = 100, c = 0, and
d = 1.
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5 Conclusion

We have obtained a discrete linear canonical transform and a fast algorithm to compute
this transform by projecting the space of functions onto a vector space spanned by a
finite number of Hermite functions. The XFT is a discrete LCT given by a unitary
matrix in a closed form in which the DFT can be found at the core, surrounded by
diagonal transformations, which makes easy to implement it in a fast algorithm. Since
this discrete LCT is related to a quadrature formula of the fractional Fourier transform,
it yields accurate results.
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