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A noise removal method for band pass signals based on the anisotropic diffusion
algorithm originally put forward by Perona and Malik is proposed in this paper. The
anisotropic smoothing algorithm proposed here is for band pass signals modulated with
a constant carrier frequency. A partial differential equation to smooth band pass noisy
signals is derived. The propagator of this differential equation is also analytically
calculated in this paper. An appropriate linear operator is then considered here for such
band pass signals to form an anisotropic diffusion algorithm. The algorithm proposed
here demonstrates better performance for band pass noisy signals containing disconti-
nuities in comparison with the traditional Perona-Malik (PM) algorithm and is robust
in the presence of excessive noise with SNR less than unity.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Noise removal for signals and images has received con-
siderable attention in recent years. A nonlinear noise
removal algorithm of low pass signals and images containing
discontinuities is proposed in the pioneering work of Perona
and Malik (PM) [1] based on anisotropic diffusion. Perona
and Malik claim that their anisotropic diffusion equation has
no additional maxima (minima) that do not belong to the
original image. This claim is challenged in Refs. [2,3].
Excessive noise may produce a gradient comparable to
image edges and features. In such cases, PM algorithm
may therefore fail [2,4-6]. A regularization procedure can
however improve the performance of the PM algorithm in
the presence of excessive noise. An edge enhancing func-
tional is also proposed in Ref. [7] for direct edge enhance-
ment to treat low contrast and edge blurred images.
A generalization for 3D volumetric images is proposed in
Ref. [8]. An extension for vector valued images such as color
images is also proposed in Ref. [9]. Black et al. [10] propose
a robust estimation procedure to estimate a piecewise
smooth image from a noisy input image and demonstrate
improved automatic stopping of diffusion process with the
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preservation of sharp boundaries and better continuity of
edges compared to the PM algorithm. A fast anisotropic
smoothing method using curvature-preserving PDEs is pro-
posed in Ref. [11] to denoise multi-valued images. A selec-
tive method for image smoothing is also proposed in
Ref. [12] by employing an edge-strength function, which
improves the quality of the preservations of image details.
The contribution of this paper is to propose a nonlinear
algorithm for noise removal of band pass signals containing
discontinuities. This work is therefore considered to be an
extension of the PM algorithm for signals modulated with a
sinusoidal signal (carrier) with a constant frequency. The
paper is structured as follows. In Section 2, a mathematical
argument is presented to generalize the notion of diffusion
equation for band pass signals. Section 3 deals with the
generalization of the nonlinear anisotropic diffusion origin-
ally proposed in Ref. [1] for band pass signals and its
implementation issues. Numerical Results are presented in
Section 4 and finally the paper concludes in Section 5.

2. Mathematical framework
2.1. Statement of problem
The anisotropic diffusion algorithm proposed in Ref. [1]

is based on the solution of the diffusion (heat) equation
when the diffusion coefficient is not constant over the


www.elsevier.com/locate/sigpro
dx.doi.org/10.1016/j.sigpro.2010.12.018
mailto:sm3@ecs.soton.ac.uk
dx.doi.org/10.1016/j.sigpro.2010.12.018

S. Mahmoodi / Signal Processing 91 (2011) 1298-1307 1299

space. It is well known that the propagator of linear heat
equation is a Gaussian function whose variance is propor-
tional to (virtual) time associated with the (evolving)
smoothed signal. Such a propagator has a smoothing
property, which removes the noise from the original noisy
signal. However this propagator also smoothes disconti-
nuities in the original signal. In order to preserve disconti-
nuities of the original signal and simultaneously remove
the noise, the PM algorithm [1] sets the diffusion coeffi-
cient to zero where there are discontinuities in the original
signal. The discontinuities are detected by examining the
gradient of the evolving signal. In this paper, a band pass
signal (a piecewise continuous low pass signal modulated
with a high frequency carrier with constant frequency)
contaminated with additive Gaussian noise is considered
for noise removal and smoothing. It is important to note
that the original PM algorithm removes the high fre-
quency component (carrier) of the original band pass
signal, since it behaves like a low pass filter. Therefore a
new method is required to remove the noise and also to
preserve discontinuities and high frequency carrier.

2.2. Heat equation for band pass signals and its propagator

Let us consider the one dimensional heat equation for
the smoothing of low pass signals as follows:

ou o*u

P K a2 (D)
with initial condition

u(x,0) = y(x) 2

where u:R>-R, y:R—R and K> 0 are the smoothed
low pass signal at the evolution (virtual) time ¢, the
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original low pass noisy signal and a constant respectively.
It is well known that the propagator of Eq. (1) is written as

Pyx,t)= 3

Kt 4Kt
It is easy to see from Eq. (3) that propagator (3) is a low
pass Gaussian filter removing high frequency components.

Let us now derive a heat equation preserving a specific
frequency wo and filtering any other frequency. Let us
denote h(x,t) : R? - C as a complex valued band pass signal
at virtual time t represented as

h(x,t) = u(x,t)ei®ox 4)

where u(x,t) and wq are a low pass signal at virtual time t
satisfying Eq. (1) and carrier frequency, respectively
(i=+v-1.

By solving Eq. (4) for u and replacing it in Eq. (1), we
arrive at the following differential equation:

oh ?h . oh
a =K (W—leoa—woo (5)

with initial condition
h(x,0) = y(x)e'** (6)

Eq. (5) with initial condition (6) is a heat equation
preserving the carrier with frequency wy. The propagator
of Eq. (5) is derived in the following theorem:

Theorem 1. The propagator of Eq. (5) is a Gabor type
complex valued function derived as
exp(—(x? /4Kt) +iwoX)

P = Kt

Q)

The proof is presented in Appendix A.

Fig. 1. (a) Original noiseless signal with carrier frequency wg=1. (b) Noisy signal contaminated with additive Gaussian noise with SNR=1.64.
(c) Smoothed signal obtained by convolving noisy signal with propagator (7) with wo=1, K=1, t=20, and filter size=11. (d) Smoothed signal obtained by
convolving noisy signal with propagator (3) with K=1, t=20, and filter size=11.
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At this stage, it is interesting to compare numerically
the smoothing effects of propagators (3) and (7) on a band
pass signal with carrier frequency wo when there is no
discontinuity in the original signal (linear case). To this
end, the solutions of Eqgs. (5) and (1) are calculated by
convolving propagators (7) and (3) respectively, with the
original signal as an initial condition. Fig. 1(a) depicts an
original noiseless signal with a carrier frequency
wo=1 rad/s. Additive Gaussian noise is added to the signal
shown in Fig. 1(a) to obtain noisy signal shown in Fig. 1(b)
with SNR=1.64. Propagators (7) and (3) are convolved
with the noisy signal shown in Fig. 1(b) to obtain the
smoothed signals shown in Fig. 1(c) and (d), respectively.
It is clear from Fig. 1(c) and (d) that propagator (7)
preserves the high frequency structure of the original
noiseless signal while removing the noise; however pro-
pagator (3) smoothes both the noise and the high fre-
quency carrier of the original signal. The smoothed signal
shown in Fig. 1(d) is completely distorted. It is important
to notice that the signal considered in Fig. 1 is real valued.
In the above experiments, we therefore convolve the
original signal with the real part of propagator (7).

3. Anisotropic diffusion algorithm for band pass signals
and implementation issues

In this section, we consider the problem of noise
removal from band pass signals containing discontinuities.
We adapt the nonlinear PM method proposed in Ref. [1]
for band pass signals. To this end, Eq. (5) is rewritten as

oh o . \?
E=K<&4wo) h 8

The difference between Egs. (1) and (8) is that the
operator 8/0x has changed to (8/dx)—iwo. In the original
anisotropic diffusion algorithm (where K is not constant
with respect to x), Eq. (1) is written as

ou 0 ou
Fraair (K §> 9

The PM algorithm proposed in Ref. [1] is based on Eq. (9)
by setting K as a function of x so that K is set to zero when
there is a discontinuity in the original noiseless signal.
According to the PM algorithm, Eq. (9) is implemented in
a discrete domain as

U(t + At) = u(t) + At(K D(uy) + KrD(ug)) (10

where D(ug)=u(j+1)—u(j), D(up)=u(j—1)—u(j), K=g(|uGi—1)
—u(j)|) and Kr=g(|u(j+1)—u(j)|). Function g(y) is usually set
to one of the following functions:

2
z0)—exp(- %) a1
or
1
gy = Wz/qz) (12)

where q is a parameter set by users.

For band pass signals using Eq. (8), anisotropic diffu-
sion can therefore be written as

oh o . o .
&= (& —1600) <K (a—lw()))h (13)

with initial condition
h(x,0) = s(x)

Before the discrete implementation of Eq. (13) is
discussed, we need to understand more about the opera-
tor 8/ox—iwo.

The impulse response of the operator d/ox is the
Heaviside function, i.e. the solution of the following
differential equation is a Heaviside function:

ou
x
where 0(x) is the Dirac delta function. Eq. (14) indicates
that in discontinuities of a signal, the operator 9/6x
produces a maximum represented by §(0) in Eq. (14). The
rationale of the PM algorithm is that if there are disconti-
nuities in low pass signals, according to Eq. (14) the term
ou/ox in Eq. (9) produces a maximum at such discontinuities.
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Fig. 2. (a) Complex valued signal (real and imaginary parts in solid and
dashed lines) wo=2 rad/s. (b) Numerical evaluation of term (6h/éx)—iwgh,
where h is complex signal shown in (a) and Ax =0.01.
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Therefore K should be set to zero anywhere there is a
discontinuity to preserve discontinuities of such signals.
Similarly the impulse response of 8/6x—iwq is H(x)ei*, i.e.
H(x)ei®o* js a solution of Eq. (15) (H(x) is the Heaviside
function)

1301

produces maxima at such discontinuities. Therefore K in
Eq. (13) should be set to zero to preserve discontinuities
of such band pass signals.

A discrete implementation of Eq. (13) is written as

h(ty + At) = h(ty) + At(K Do, (hr) + Kr Do, (hg)—iwoKr Do (hR))

(16)
% —iwgh = 4(x) (15) where
Fig. 2(a) shows h(x)=H(x)ei®X* so that the real and h(x;+Ax)—h(x;) .
imaginary parts are drawn in solid and dashed lines, Dos(hg) = = Ax ’ —iwoh(j+Ax),
respectively. Fig. 2(b) depicts oh/ox—iwoh demonstrating h(x;—Ax)—h(x;) .
a Dirac delta function at x=0. In this numerical experi- Doy(hy) = T Ax +iwoh(X;),
ment, we have set wg=2 rad/s and Ax=0.01. We notice g( h(x’+AA’2_h(Xf)—iwoh(xj+Ax)D
that as Ax— 0, the term Ah/Ax—iwoh approaches d6(x). The Kg = Ax , and
rationale of our algorithm similar to the PM algorithm is hog—Ax)—heg) | 5
that if there are discontinuities in band pass signals with a K — g( A& ‘Hwoh("j)D
constant frequencywo; the term |oh/ox—iwgh| in Eq. (13) L= Ax '
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Fig. 3. (a) Noiseless complex band pass signal with discontinuity at x=500 (left—real part; right—imaginary part). (b) Noiseless signal of (a) is
contaminated with additive Gaussian noise with standard deviation 0.1; only real part of signal is shown. (c) Real part of signal smoothed by anisotropic
diffusion for band pass signals with g=4, At=0.001, and 4000 iterations. (d) Real part of signal smoothed by traditional anisotropic diffusions with q=4,
At=0.001, and 4000 iterations.
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Fig. 3. (Continued)

Function g(y) can be chosen using either Eq. (11) or (12).
In this paper, Eq. (11) is used for g(y). Eq. (16) is therefore
the main engine of a noise removal algorithm for band
pass signals containing discontinuities. The virtual time t
therefore corresponds to the iterations in the algorithm.
Signal h in Eq. (13) or its discrete implementation of
Eq. (16) is complex valued. The Euclidean distance
between the smoothed signals in two consecutive itera-
tions is used as a stopping criterion of the algorithm. If
this Euclidean distance is less than a user defined thresh-
old (T;), the algorithm stops.

Let us now discuss the influence of the parameters T,
At, and q on the performance of the algorithm. The lower
the threshold Ts, the smoother the signal and the longer
the running time of the algorithm.

Parameter At also plays an important role in this
algorithm. Lower values for At make the algorithm con-
verge to the desired solution slower but with such low
values forAt, convergence is guaranteed. On the other
hand, the algorithm may become unstable, if large
values for At are chosen. In our experiments, At is always

chosen to be less than or equal to 0.001 to guarantee
convergence.

Parameter g should be chosen proportional to the
amount of change in the discontinuities of the original
signal. Large values for g may lead to smoothing disconti-
nuities in the original noiseless signal. On the other hand,
if q is small and the signal is too noisy, the smoothed
signal may contain false discontinuities associated with
noise (and not discontinuities in the original noiseless
signal). We also notice that large values for q should be
chosen for signals with low SNR (very noisy environ-
ment). In a less noisy environment, it is best to choose
smaller values for g to avoid smoothing the discontinu-
ities associated with the original noiseless signal. It is
also noted that in this paper, we always assume that the
original signal contains at least one full cycle of the
carrier signal between two consecutive discontinuities
to avoid difficulties associated with Heisenberg’s uncer-
tainty principle [13].

4. Numerical results

Fig. 3(a) shows a noiseless complex band pass signal
containing a discontinuity. Gaussian noise is added to this
signal to produce the noisy signal shown in Fig. 3(b). The
anisotropic diffusion algorithm proposed here is applied
to this noisy signal to result in the smoothed signal shown
in Fig. 3(c). As can be seen from Fig. 3(c), the discontinuity
as well as the high frequency component of the signal is
preserved whilst the noise is reduced. Fig. 3(d) depicts the
signal smoothed by the traditional anisotropic diffusion
(PM) algorithm. As can be seen from Fig. 3(d), the PM
algorithm smoothes the noise as well as the high fre-
quency component of the signal (lower amplitude of high
frequency oscillations). The traditional anisotropic diffu-
sion also considers the fast rising and falling amplitudes
of the high frequency component of the signal as dis-
continuities and therefore causes serious distortion in the
smoothed signal as depicted in Fig. 3(d). The same values
for various parameters are used in both algorithms for a
fair comparison.

Eq. (16) requires a complex valued signal. Therefore
in the example shown in Fig. 3, the signal is complex
valued. In practice, however, signals are real valued. In
order to be able to use the algorithm proposed here for
real valued signals, we propose to employ the Hilbert
transform [14] to calculate the imaginary part of the real
valued signal to construct a complex valued signal.
Fig. 4(a) shows a real valued signal whose Hilbert trans-
form (shown in the same figure) is used as an imaginary
part for this real valued signal to compose a complex
valued signal. Additive Gaussian noise is added to the real
valued signal shown in Fig. 4(a), to produce a noisy signal
depicted in Fig. 4(b). The Hilbert transform of this noisy
signal shown in Fig. 4(b), is then used as an imaginary
part of a complex valued signal. The anisotropic diffusion
proposed here for band pass signals is applied to the
signal of Fig. 4(b). The real part of the smoothed signal is
depicted in Fig. 4(c). Another noiseless band pass signal
containing a discontinuity at x=500 is shown in Fig. 5(a).
This signal is contaminated with additive Gaussian noise
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Fig. 4. (a) Real signal (left) and its Hilbert transform (right). (b) Real signal contaminated with additive Gaussian noise with standard deviation 0.1 (left)
and its Hilbert transform (right). (c) Real part of smoothed complex valued signal composed in (b) by anisotropic diffusion for band pass signals with g=4,
At=0.001, and 4000 iterations.

with standard deviation 0.2 to produce the noisy signal also applied to the noisy signal of Fig. 5(b) to produce the
shown in Fig. 5(b). The algorithm proposed here is applied smoothed signal depicted in Fig. 5(d). As can be seen from
to the noisy signal of Fig. 5(b) to obtain the smoothed Fig. 5, the signal smoothed by the algorithm proposed

signal in Fig. 5(c). The traditional anisotropic diffusion is here preserves the discontinuity as well as the high
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Fig. 5. Superior performance of algorithm proposed here over traditional anisotropic diffusion for a band pass signal whose envelope changes slowly and
contains discontinuity. (a) Noiseless band pass signal—envelope of signal varies slowly with respect to x and it has a discontinuity at x=500. (b) Additive
Gaussian noise with standard deviation 0.2 is added to signal of (a). (c) Smoothed signal obtained by applying algorithm proposed here with q=6,
At=0.001, and 4000 iterations. (d) Smoothed signal obtained by applying traditional anisotropic diffusion algorithm with g=6, At=0.001, and 4000

iterations.

frequency component (carrier) of the original noiseless
signal, whilst it removes the noise. However, the tradi-
tional anisotropic diffusion partly smoothes the high
frequency component (the signal amplitude is less than
that of the original signal) and it also considers the fast
falling and rising amplitude of the signal as discontinuity
and hence causes serious distortion in the smoothed
signal (Fig. 5(d)). The anisotropic diffusion algorithm
proposed here is numerically more expensive than the
PM algorithm. For example it takes 93.375 s for a PC with
an 800 MHz CPU to run the algorithm proposed here with
4000 iterations as described in Fig. 5 in a Matlab environ-
ment (version 6.1). On the other hand, the traditional
anisotropic diffusion takes 54.86 s to run 4000 iterations
in the case of the example shown in Fig. 5. Fig. 6(a)
depicts a band pass signal with a discontinuity in phase
(rather than amplitude). Additive Gaussian noise is added
to this signal to produce a noisy signal shown in Fig. 6(b)
with SNR=0.43. The anisotropic diffusion algorithm for

band pass signals proposed here is applied to this noisy
signal to produce the smoothed signal depicted in
Fig. 6(c). As can be seen from Fig. 6(c), the algorithm
proposed here removes the noise and preserves the
discontinuity. The traditional anisotropic diffusion is also
applied to the noisy signal of Fig. 6(b) to produce the
smoothed signal of Fig. 6(d). As shown in this figure, the
traditional algorithm removes the noise but it creates
some distortion in the original signal by filtering the high
frequency component. The discontinuity is also smoothed
by the traditional PM algorithm.

Finally Fig. 7(a) shows a noisy real world signal
generated based on the Bell 212A modem standard (DPSK
with double-bit symbols) with a 1200 Hz carrier fre-
quency. This signal represents a 16 bit binary word
(“1010111100000101”). The anisotropic diffusion pro-
posed here is applied to this signal to produce the
smoothed signal depicted in Fig. 7(b), which preserves
the discontinuities and the carrier signal associated with
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Fig. 6. Superior performance of anisotropic diffusion algorithm proposed in this paper in the presence of excessive noise. (a) Band pass signal
with discontinuity in phase at x=500. (b) Noisy signal with additive Gaussian noise with standard deviation 0.6 (SNR=0.43). (c) Signal smoothed
by algorithm proposed here with g=15, At=0.001, and T;=0.02. (d) Signal smoothed by traditional anisotropic diffusion with q=15, At=0.001, and

T,=0.02.

the original signal. Discontinuities that are preserved by
the algorithm proposed here are pointed to by arrows in
Fig. 7(b). The traditional anisotropic diffusion also pro-
duces the smoothed signal shown in Fig. 7(c). It is noted
that the smoothed signal using the traditional anisotropic
diffusion has lower amplitude than the original signal due
to the low pass smoothing of the PM algorithm. As can be
seen from Fig. 7(c), the discontinuities associated with the
original signal have also been smoothed or distorted by
the traditional anisotropic diffusion. The parameters used
in both algorithms in this experiment are g=15, Ts=0.01,
and At=0.001.

5. Conclusion

The anisotropic diffusion method proposed by Perona
and Malik is extended in this paper for band pass signals

containing discontinuities. The mathematical frame-
work for such an algorithm is established here. Such a
mathematical framework is best suited for complex
valued signals. Therefore Hilbert transform is employed
to help use the algorithm proposed here for real
valued signals. The method proposed in this paper shows
superior performance over the traditional anisotropic
diffusion. The method developed here is not unique.
Similar results may be obtained by assuming that the
relation between low pass and band pass signals are
obtained by h(x,t) = u(x,t)e=®* rather than Eq. (4).
The anisotropic diffusion proposed here for band pass
signals is robust in a noisy environment with SNR even
less than unity. For the future work, it is interesting to
consider signals in which the time interval between
consecutive discontinuities is less than a full cycle of the
carrier signal.
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Fig. 7. Noise removal of a real world signal (DPSK with multi-bit symbols) generated using Bell 212A modem standard. (a) Original noisy signal
representing a 16 bit binary word 1010111100000101. (b) Signal smoothed by anisotropic diffusion proposed here (q=15, T;=0.01, and At=0.001;
discontinuities of the signal are pointed to by arrows). (c) Signal smoothed by traditional anisotropic diffusion (q=15, T;=0.01, and At=0.001).
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Appendix A. Proof of Theorem 1

In order to find the propagator of equation (5), we
employ Fourier and Laplace transforms with respect to x
and t, respectively to change differential equation (5) to
an algebraic equation, which is easier to solve for s. Let us
take the Laplace transform with respect to virtual time t
from both sides of Eq. (5)

FPHXS)

. OH(x,s)
) Pl s
52){ 1o x

sH(x,s)—h(x,0) = K ( —w%H(x.s))

A-1)

where h(x,0) and H(x,s) are the initial condition and the
Laplace transform of h(x,t) with respect to t, respectively.
To derive the propagator of Eq. (5), the initial condition
is set to Dirac delta function, i.e. h(x,0) = d(x). By taking
the Fourier transform with respect to x from both sides of
Eq. (A-1), we arrive at

sP(w,5)—1 = K(—@?P(®,5) +2w@oP(w,5)—w3P(®,s))
(A=2)

where P(w,s) is the Fourier transform of H(x,s) with
respect to x. P(w,s) is solved from Eq. (A-2)

1

P(w,s)= ———
(@:5) 5+ K(w—wg)?)

(A-3)

By taking the inverse Laplace and Fourier transforms from
both sides of Eq. (A-3), the propagator of Eq. (5) is derived as

exp(—(x% /4Kt) +iwoX)
VAnKt

P(x,t) = O
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