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a b s t r a c t

We present a unified framework to analyze the mean and mean-square stability of a

large class of adaptive filters. We do this without obtaining a full transient model,

allowing us to acquire sufficient conditions on the stability without assuming a given

statistical distribution for the input regressors. We also apply the proposed framework

to some popular adaptive filtering schemes, showing that in some cases the sufficient

conditions derived are very tight and even necessary too.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

Adaptive filters are recursive estimators. This recursive
nature raises the question of stability. As they are stochastic
systems, several criteria can be used. Mean and mean-square
stability are preferred, because with some appropriate
assumptions they are basically easier to study.

A lot of effort has been put into analyzing the con-
vergence properties of adaptive filters (see [1,2] and
references therein). Besides the question of stability, it is
also important to study the steady-state and transient
behavior. However, the stability issue is the most critical,
because it determines when an adaptive filter can be
implemented and be useful for the application of interest.

The stability of several algorithms has been treated in
the literature. However, in general, the stability analysis
has been done for particular algorithms, and not from a
general point of view or in a unified way. In [3,4] the
ll rights reserved.

@fi.uba.ar (H. Rey),
question of stability (and also transient and steady-state
behavior) is addressed for a large family of adaptive
filters. Nevertheless, in general and for non-Gaussian
input signals, the study of stability proposed in those
works results in the analysis of an M2-dimensional state-
space equation, where M is the length of the adaptive
filter. For adaptive filter lengths on the order of hundreds
of taps, as several applications require [5], the numerical
solution of the stability conditions derived in those works
could be precluded.

In this paper, we will concentrate on the stability issue.
In order to accomplish this we will not try to develop an
exact transient model for the mean and mean-square error
vector. Instead, we will look for necessary and sufficient
conditions on quantities relevant to the mean and mean-
square behavior. After that, we will try to constrain those
quantities in order to guarantee stability of the adaptive
filter. As this will be done in full generality, the results
obtained can be applied with minor changes to a large
family of adaptive filters and without assumptions on the
statistical distribution of the input regressors. We will
illustrate this through the application of the obtained results
to several well-known adaptive filters.
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First, we present certain definitions and notation used
throughout the paper. For simplicity, we assume that all
the signals involved are real; the more general complex
case is a straightforward extension of the real case. Let
w¼ ðw1,w2, . . . ,wMÞ

T be the unknown M�1 system. The
M�1 input vector at time i, xi, is combined by the system
giving an output yi ¼wT xi. This output is observed, but is
usually corrupted by noise, vi, which will be considered
additive. Thus, each input xi gives an output di ¼wT xiþvi.
We want to find ŵ i to estimate w. This adaptive filter
receives the same input, leading to an output error
ei ¼ di�ŵ

T
i xi. We also define the misalignment vector

~w i ¼w�ŵ i. We denote the identity matrix and the zero
matrix of appropriate dimensions by I and 0, respectively,
while trð�Þ, E½��, and diagð�Þ denote the trace, expectation,
and diagonal operators, respectively. For a matrix A,
lmðAÞ,m¼ 1,2, . . . ,M, denote its eigenvalues, with lmaxðAÞ
and lminðAÞ being the largest and smallest, respectively.

2. Problem formulation

In order to obtain full generality in our analysis, we
will assume the following form for the adaptive filter:

ŵ iþ1 ¼ aŵ iþlfðxiÞei, ð1Þ

where a is a positive number typically in (0,1], l¼ diag
ðm1,m2, . . . ,mMÞ, mm40, and f : RM-RM is in principle an
arbitrary multidimensional function. The algorithm is
initialized with an arbitrary vector ŵ0, which is typically
equal to the null vector. The mathematical form assumed
in (1) is sufficiently general to encompass several popular
gradient-based adaptive filters. Important cases in this
family are the least-mean-square (LMS), the normalized
LMS (NLMS), the signed regressor (SR), the leaky LMS
(LLMS), the multiple step-size LMS (MLMS), etc. [1,2].
Using the definition of the misalignment vector and the
model assumed for the signal di, we can write

~w iþ1 ¼ ½aI�lfðxiÞx
T
i � ~w i�lfðxiÞviþð1�aÞw: ð2Þ

Our interest is to analyze the mean and mean-square
stability of ~w i. For this purpose and based on some
statistical properties of the input regressor, we will look
for conditions on l that guarantee stable behavior of the
adaptive filter. Given the fact that we restrict ourselves to
the case l¼ diagðm1,m2, . . . ,mMÞ with mm40, we can work
with ~c i ¼ l�1=2 ~w i. Defining ~f ðxiÞ ¼ l1=2fðxiÞ, ~x i ¼ l1=2xi,
and c¼ l�1=2w, (2) can be rewritten as

~c iþ1 ¼ ½aI�~f ðxiÞ ~x
T
i � ~c i�

~f ðxiÞviþð1�aÞc: ð3Þ

From (3) we can obtain

~c iþ1 ¼Aði,0Þ ~c0�
Xi

j ¼ 0

Aði,jþ1Þ½~f ðxjÞvj�ð1�aÞc�, ð4Þ

where the matrix A(i,j) is defined by

Aði,jÞ ¼

½aI�~f ðxiÞ ~x
T
i �

� ½aI�~f ðxi�1Þ ~x
T
i�1� � � � ½aI�~f ðxjÞ ~x

T
j �, jr i,

I, j¼ iþ1,

0, j4 iþ1,

8>>>><
>>>>:

ð5Þ
In the following, we will assume that the noise signal vi is
a zero-mean i.i.d. sequence with variance s2

v and inde-
pendent from the input xi, which is also a zero-mean
stationary signal with correlation matrix Rxx. We will also
make the standard independence assumption on the
input regressors [1,3].

3. Mean stability

Taking expectation on both sides of (4) and using the
assumptions on the noise and the input signals, we obtain

E½ ~c iþ1� ¼ E½Aði,0Þ� ~c0þð1�aÞ
Xi

j ¼ 0

E½Aði,jþ1Þ�c

¼ Biþ1 ~c0þð1�aÞ
Xi

j ¼ 0

Bi�jc, ð6Þ

where

B¼ aI�l1=2Cxxl
1=2, ð7Þ

and

Cxx ¼ E½fðxiÞx
T
i �: ð8Þ

A necessary and sufficient condition for the stability of (6)
is to choose l according to

ja�lmðl
1=2Cxxl

1=2Þjo1, m¼ 1,2, . . . ,M: ð9Þ

In several cases of interest, the matrix Cxx is positive definite,
which implies that lmðl1=2Cxxl1=2Þ, m¼ 1,2, . . . ,M are posi-
tive, so a careful choice of l with mm40 can guarantee the
mean stability. However, when Cxx is not positive definite
(or some of its eigenvalues have negative real parts), it
would be possible that no choice of l will guarantee
stability of the algorithm. For example, with the SR
algorithm, where Cxx ¼ E½signðxiÞx

T
i �, some class of input

signals could lead to eigenvalues with negative real parts
[6]. In the important case when Cxx is positive definite, we
can write (9) as

0olmðl
1=2Cxxl

1=2Þo1þa, m¼ 1,2, . . . ,M: ð10Þ

4. Mean-square stability

It is known that in order to obtain a better picture of the
way in which an adaptive filter works, besides the mean
behavior, we need to look into the mean-square perfor-
mance and stability. In the following, we will derive a
sufficient condition for the mean-square stability of (1).
We will assume that Cxx is symmetric and positive definite.
This will be true in most cases. The general case can also be
analyzed, but the mathematics are more involved and will
not be done here. This assumption implies that B defined
in (7) is symmetric.

From (4) and using the assumptions on the noise and
the input signals, we obtain

E½J ~c iþ1J
2
� ¼ ~cT

0E½AT
ði,0ÞAði,0Þ� ~c0

þ2ð1�aÞ
Xi

j ¼ 0

~cT
0E½AT

ði,0ÞAði,jþ1Þ�c
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þs2
v

Xi

j ¼ 0

E½~f
T
ðxjÞA

T
ði,jþ1ÞAði,jþ1Þ~f ðxjÞ�

þð1�aÞ2
Xi

j ¼ 0

Xi

k ¼ 0

cT E½AT
ði,kþ1ÞAði,jþ1Þ�c:

ð11Þ

Eq. (11) is valid in the general case where the input reg-
ressors are not necessarily independent. In order to
analyze the stability of (11) we will use the independence
assumption. This is done only for maintaining simple
mathematics. It should be emphasized that it would be
possible to perform a stability analysis from (11) without
the independence assumption. However, the mathemati-
cal difficulties would be greater, and sooner or later some
proper mixing condition on the input would be needed.
Mixing conditions [7] allow us to introduce dependence
between successive input regressors. This dependency
could be arbitrary, with the condition that it decreases
sufficiently fast when the time lag between the two input
regressors under consideration is large.

Now, we define

Dði,jÞ ¼ E½AT
ði,jÞAði,jÞ�: ð12Þ

Using the definition of A(i,j) and the independence
assumption, we have

E½AT
ði,kÞAði,jÞ� ¼

Dði,kÞBk�j, jrk,

Bj�kDði,jÞ, j4k:

(
ð13Þ

With these definitions, we can write the four terms on the
RHS of (11) as

T1 ¼ ~c
T
0Dði,0Þ ~c0, ð14Þ

T2 ¼ 2ð1�aÞ
Xi

j ¼ 0

~cT
�1Bjþ1Dði,jþ1Þc, ð15Þ

T3 ¼ s2
v

Xi

j ¼ 0

tr½ ~FxxDði,jþ1Þ�, ð16Þ

T4 ¼ ð1�aÞ2
Xi

j ¼ 0

Xi

k ¼ j

cT Dði,kþ1ÞBk�jcþ
Xj�1

k ¼ 0

cT Bj�kDði,jþ1Þc

2
4

3
5,

ð17Þ

respectively, and also define

~Fxx ¼ E½~f ðxjÞ
~f

T
ðxjÞ�, ð18Þ

which will be assumed to be positive definite. The mean-
square stability of ~w i is equivalent to limi-1E½J ~w iJ

2
�o1,

which is also equivalent (given that mm40, m¼

1,2, . . . ,M) to limi-1E½J ~c iJ
2
�o1. In this way, restricting

us to the study of E½J ~ciJ
2
�, we have the following theorem:

Theorem 1. A necessary and sufficient condition for limi-1

E½J ~c iþ1J
2
�o1, for every ~c0 and c is given by the satisfaction

of (10) and, in addition,

(NðlÞ,gðlÞ with NðlÞ40 and 0ogðlÞo1 such that

tr½Dði,jþ1Þ�rNðlÞgi�jðlÞ, 8iZ j: ð19Þ
The proof of this theorem can be found in the appendix.
The fact that the condition given in (19) is necessary and
sufficient allows us, without loss of generality, to restrict
tr[D(i,kþ1)] to exponential behavior. Although there are
multiple ways to accomplish this, we will focus on a
particular one, for which we will obtain only sufficient
conditions for the mean-square stability, which from a
practical point of view are more useful than necessary
conditions.

From (A.24) and the independence assumption, we can
write

tr½Dði,jÞ� ¼ tr½AT
ði�1,jÞGxxAði�1,jÞ�

¼ tr½GxxAði�1,jÞAT
ði�1,jÞ�rlmaxðGxxÞtr½Dði�1,jÞ�,

ð20Þ

where Gxx is defined as

Gxx ¼ E½ET
ðiÞEðiÞ�: ð21Þ

This procedure can be repeated several times to obtain

tr½Dði,jÞ�rM½lmaxðGxxÞ�
i�jþ1: ð22Þ

From this and in view of the result of Theorem 1, we can
guarantee the mean-square stability by choosing l in
such a way that

lmaxðGxxÞo1: ð23Þ

The matrix Gxx can be expressed as

Gxx ¼ a2I�al1=2CT
xxl

1=2�al1=2Cxxl
1=2þl1=2Hxxl

1=2, ð24Þ

where

Hxx ¼ E½fT
ðxiÞlfðxiÞxix

T
i �: ð25Þ

As (23) is equivalent to asking for

GxxoI, ð26Þ

where the inequality sign refers to the usual partial
ordering defined for positive definite matrices [8], we will
need to search for l in order to guarantee this.

We will see that, although the exponential bound
(22) might not be the tightest one, this approach can
lead to some well-known results on the stability of
classical adaptive filters that are actually very tight. At
this point, we only keep the sufficiency and could lose the
necessity.
5. Particular cases

In this section, we will use the results of the previous
sections to analyze the stability of several well-known
adaptive filters. For some algorithms, the results depend
not only on the correlation matrix Rxx but also on some
other input moments. If these moments have no well-
known closed-form expression for a particular input
distribution, they can be estimated by simulation. The
computational load of such a task is negligible in compar-
ison with that required by other stability analyses pro-
posed in the literature [3,4].
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5.1. Least-mean-square (LMS)

In this case fðxiÞ ¼ xi, a¼ 1, and l¼ mI. For mean
stability, (10) reduces to the well-known relation

0omo 2

lmaxðRxxÞ
: ð27Þ

The mean-square stability condition (26) reduces to

2Rxx4mE½JxiJ
2xix

T
i �, ð28Þ

which is equivalent to

0omo2lminðRxxJ�1
xx Þ, ð29Þ

where

Jxx ¼ E½JxiJ
2xix

T
i �: ð30Þ

Eq. (29) can also be rewritten as

0omo 2

lmaxðR
�1
xx JxxÞ

: ð31Þ

This expression, in combination with (27), guarantees the
mean-square stability of the LMS algorithm. We note that
this condition is valid, in principle, for all input statistical
distributions. However, in order to obtain a more explicit
characterization, we need an expression for the fourth-
order term Jxx. If we add the assumption that the input
regressor is Gaussian, we can obtain an explicit expres-
sion for that term [2]:

Jxx ¼ 2R2
xxþRxxtrðRxxÞ, ð32Þ

so condition (31) can be written as

0omo 2

2lmaxðRxxÞþtrðRxxÞ
: ð33Þ

This is only a sufficient condition for the stability of the
LMS with Gaussian signals. However, it is close enough
to the necessary and sufficient condition that can be
obtained from an elaborated model of the transient
behavior of the LMS algorithm for Gaussian signals [1,3].
In fact, for white Gaussian signals, condition (33) is also
necessary. A simplified (and more restrictive) bound
for m can be obtained using the fact that lmaxðRxxÞrtrðRxxÞ,
so (33) becomes

0omo 2

3trðRxxÞ
, ð34Þ

which is the same result obtained in [9].

5.2. Leaky LMS (LLMS)

In this case fðxiÞ ¼ xi, l¼ mI, and a¼ 1�bm [1], where
b40 and mo1=b. Eq. (10) simplifies to

0omo 2

bþlmaxðRxxÞ
: ð35Þ

From (26), we can write

2ðbIþRxxÞ4mðb2Iþ2bRxxþ JxxÞ, ð36Þ

from which we can obtain

0omo 2

lmax½ðbIþRxxÞ
�1
ðb2Iþ2bRxxþJxxÞ�

: ð37Þ
This is a sufficient stability bound for the LLMS algorithm
under a general input distribution, and is consistent
with (31) for b¼ 0. If the input is Gaussian, we can use
(32) to obtain

0omo max
m ¼ 1,2,...,M

2ðbþlmÞ

ðbþlmÞ
2
þl2

mþlmtrðRxxÞ

" #
, ð38Þ

where lm, m¼ 1,2, . . . ,M denote the eigenvalues of Rxx,
being consistent again with (33) for b¼ 0. This stability
bound is sufficiently tight with respect to the sufficient
and necessary condition derived in [10] for Gaussian
signals (again, for white Gaussian signals condition (38)
is also necessary), and is a better sufficient condition than
the approximation given in [10, Eq. (43)]. Useful analyses
for the Leaky LMS algorithm are also performed in [11,12].
5.3. Normalized LMS (NLMS)

In this case, we have fðxiÞ ¼ xi=JxiJ
2, l¼ mI, and a¼ 1.

Defining

Kxx ¼ E
xix

T
i

JxiJ
2

� �
, ð39Þ

we can show that (10) can be put as

0omo 2

lmaxðKxxÞ
: ð40Þ

In the same manner, (26) reduces to

2Kxx4mKxx, ð41Þ

from which we have

0omo 2

lmaxðK
�1
xx KxxÞ

¼ 2: ð42Þ

In this way, we obtain the well-known stability bound
0omo2 for the NLMS algorithm.

We emphasize the fact that the above bound does not
depend on the statistical distribution of the input signal
and is not restricted to the Gaussian case. We note that
when the NLMS has regularization [1], i.e., fðxiÞ ¼

xi=ðJxiJ
2
þdÞ with d40, we see that the upper limit of

the stability region is greater than 2, but the exact value
can be very difficult to compute even in the Gaussian case,
because we need to compute Kxx and

E
JxiJ

2

ðJxiJ
2
þdÞ2

xix
T
i

" #
: ð43Þ

Recently, in [13], it was shown how to calculate these
moments for the general circular complex and correlated
Gaussian case.
5.4. Signed regressor (SR)

For the SR algorithm, we have fðxiÞ ¼ signðxiÞ, l¼ mI,
and a¼ 1. If we define

Lxx ¼ E½signðxiÞx
T
i � ð44Þ



Fig. 1. Stability region of the MLMS algorithm for white Gaussian

input (M¼2).
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and assume that this matrix is positive definite, (10) can
be put as

0omo 2

lmaxðLxxÞ
: ð45Þ

Also, (26) reduces to

2Lxx4mMRxx, ð46Þ

which gives us

0omo 2

MlmaxðL
�1
xx RxxÞ

, ð47Þ

where we used the fact that E½JsignðxiÞJ
2xix

T
i � ¼MRxx. If

the input is Gaussian, it is easy to prove (using Price’s
theorem [14]) that Lxx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2=ps2

x Þ
p

Rxx, so (45) can be
rewritten as

0omo
ffiffiffiffiffiffiffiffiffi
ps2

x

2

r
�

1

lmaxðRxxÞ
ð48Þ

and (47) can be put as

0omo 1

M

ffiffiffiffiffiffiffiffiffi
8

ps2
x

s
, ð49Þ

which is the same result obtained in [3,15]. From the
results in [15], where this stability bound is calculated
through a full transient analysis, we know that this bound
is also a necessary condition for convergence.

5.5. Multiple step-size LMS (MLMS)

In this case, we have fðxiÞ ¼ xi, l¼ diagðmmÞ, mm40,
m¼ 1,2, . . . ,M, and a¼ 1. Eq. (10) gives

j1�lmðlRxxÞjo1, m¼ 1,2, . . . ,M: ð50Þ

On the other hand, from (24) and (26) we obtain

2Rxx4MxxðlÞ, ð51Þ

where

MxxðlÞ ¼ E½xT
i lxixix

T
i �: ð52Þ

It is clear that

MxxðlÞ ¼
XM
k ¼ 1

mkNðkÞxx , ð53Þ

where Nxx
(k)

are positive definite matrices given by

NðkÞxx ¼ E½x2
i�1þkxix

T
i �,

XM
k ¼ 1

NðkÞxx ¼ Jxx: ð54Þ

The condition for the mean-square stability (51) can be
written as

XM
k ¼ 1

mkNðkÞxx o2Rxx: ð55Þ

This means that the stability region for mm m¼ 1,2, . . . ,M
is the intersection of the positive orthant with the
feasibility region of the linear matrix inequality [16] given
by (55). Without any assumption on the input distribu-
tion, it can be easily proved that the stability region is
convex. However, not much more can be said without a
statistical assumption on the input, which is necessary to
determine the feasibility region of (55), and furthermore
is, in general, impossible without a numerical procedure.
In the Gaussian case, (55) can be written as

2Rxx42RxxlRxxþRxxtrðlRxxÞ: ð56Þ

This is equivalent to

2I42R1=2
xx lR1=2

xx þtrðlRxxÞI, ð57Þ

which implies that

242lmaxðlRxxÞþtrðlRxxÞ: ð58Þ

Using the fact that lmaxðlRxxÞrtrðlRxxÞ, we can obtain an
explicit and easily computable region on l for the stability
of the algorithm. More precisely,

trðlRxxÞo2
3, mm40, m¼ 1,2, . . . ,M, ð59Þ

which is equivalent to the condition obtained in [2].
If the input is Gaussian and Rxx ¼ s2

x I, the stability region
can be obtained exactly. In that case, it can be proved that
(56) can be written as the intersection of the following half-
spaces:

2

s2
x

43mmþ
X

m0am

mm0 , mm40, m¼ 1,2, . . . ,M: ð60Þ

In Fig. 1 we see the stability region (solid line) for a white
Gaussian input with M¼ 2. We also see the approximate
stability region (dashed line) given by (59), which is valid
even if the Gaussian input is colored, and which is strictly
smaller than the region given by (60).

We also mention that in [3], it is claimed that the
approach presented there can be used to analyze the
MLMS, although the particular analysis is not carried out.
6. Simulation results

In order to test the suitability of the stability bounds
derived in the previous section, we performed some
numerical simulations. We will test the results only
for the LMS and SR algorithms. As we are interested
in identifying when the value of m leads to instability,



Fig. 2. SSMTA (estimate of the steady-state mismatch) for the LMS

algorithm. M¼32, a¼0 (uncorrelated data). Input distributions are uniform

(top), Gaussian (middle), and SIRV (bottom). SSMTA was averaged over 100

independent realizations. The vertical dashed line represents the numeri-

cally computed bound m0 according to (31). The x axis is segmented in

intervals of length 0:05m0.
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we need to analyze

lim
i-1

E
J ~w iJ

2

JwJ2

" #
, ð61Þ

which is the normalized version of the ‘‘final’’ mean-square
behavior. From a practical point of view, it is impossible
to compute this quantity. For this reason, and in order to
analyze the steady-state mismatch (SSM), we propose to
work with

SSM¼ E
J ~w iJ

2

JwJ2

" #* +
¼ E½SSMTA�, ð62Þ

where / �S denotes time averaging from iteration 39 500
to 40 000, and

SSMTA ¼
J ~w iJ

2

JwJ2

* +
: ð63Þ

It is assumed that during this time interval the adaptive
algorithm, if stable, will be close to its steady-state and,
if unstable, it will present a high value of E½J ~w iJ

2=JwJ2
�.

The time averaging provides robustness against statistical
fluctuations.

Clearly, SSMTA is a random variable, with its mean
being equal to the SSM. In order to obtain an estimate of
this mean, 100 independent realizations of the algorithm
would lead to the sequence fSSMðnÞTAg, n¼ 1, . . . ,100. Then,
the estimate of the mean can be computed as

SSMTA ¼
1

100

X100

n ¼ 1

SSMðnÞTA , ð64Þ

This estimator is a random variable itself, whose mean is
equal to the mean of SSMTA, i.e., the SSM. Based on 100
realizations of the algorithm we will compute a single
realization of the estimator (64). If this estimate turns out
to be ‘‘small’’, should we believe that the algorithm is
stable for that choice of m? Or is it actually unstable but
the ‘‘small’’ estimate was a product of statistical fluctua-
tions? In order to tackle this issue, we can estimate the
population standard deviation of the estimator SSMTA

(also known as standard error of the mean) by computing

ŝSSMTA
¼

1ffiffiffiffiffiffiffiffiffi
100
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

100

X100

n ¼ 1

ðSSMðnÞTA�SSMTAÞ
2

vuut ¼
ŝSSMTAffiffiffiffiffiffiffiffiffi

100
p ,

ð65Þ

where ŝSSMTA
is an estimator of the population standard

deviation of SSMTA. If the estimate from (65) is ‘‘small’’, we
can trust on the result given by (64) as a good estimate of
the SSM, since the estimator SSMTA will be subject to
‘‘small’’ fluctuations. This will be important to help us
determine whether or not the algorithm is in an unstable
situation, and hence, provide better insight to the tightness
of the proposed stability bound. On the other hand, the
required correlation matrices used to compute the proposed
stability bounds in each scenario (e.g., matrices Jxx and Lxx

for the LMS and SR algorithms, respectively) are estimated
with a large ensemble of independent realizations of the
input. This will let us cover several scenarios where no
closed-form expressions exist for these matrices.
We will test the different algorithms with filter lengths
M¼32 and 128. In order to test different input statistics,
we will generate the input signals according to distribu-
tions such as Gaussian and uniform. We will also test the
algorithm using input regressors generated according to a
spherically invariant random vector (SIRV) model [17],
which is very important for speech [18] and radar applica-
tions [19]. In particular we will use a SIRV with character-
istic pdf given by a chi-square random variable with 16
degrees of freedom.

We will also include the effect of input correlation. All
three input distributions will be generated so that the
sequence fxig will have an associated correlation matrix
given by

Rxx ¼ s2
x

1 a � � � aM�1

a 1 � � � aM�2

^ & & ^

aM�1 � � � a 1

2
6664

3
7775 ð66Þ

with 0rao1. The value a¼0 leads to uncorrelated data,
whereas a¼0.9 corresponds to highly correlated data. It is
known that in the Gaussian and SIRV case, the desired
correlation can be generated through an appropriate
linear transformation [19]. In the uniform case, this can
be accomplished using the Spearman correlation coeffi-
cient [20]. In every case, the power of the system output
yi ¼wT xi and background noise vi were set to s2

y ¼ 1 and
s2

v ¼ 0:001, respectively, with the noise being zero-mean,
white, and Gaussian.

In Fig. 2 we show the results for the LMS algorithm
with M¼32 and a¼0 (uncorrelated data). The vertical
dashed line represents the numerically computed bound
m0 according to (31). The x axis is segmented in intervals
of length 0:05m0. According to the overly conservative
theoretical result (34), the stability bound under Gaussian
regressors in this scenario would be 0.0208. As derived
in Section 5.1, the less restrictive result (33) should be
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necessary and sufficient in this scenario, and its corre-
sponding bound is 0.0588. It can be seen that this value is
very close to the simulated one obtained by applying our
model for the Gaussian input. Moreover, a similar value
was obtained for the bound with uniform input. These
bounds appear to be very tight (they are at most within
5% of the actual stability limit).

On the other hand, the LMS algorithm with m close to
0.0588 and SIRV input data would be absolutely unstable.
The more conservative result 0.0208 would actually lead
to stable behavior for the three inputs, but would be
overly conservative for the uniform and Gaussian data. In
fact, the step-size is chosen in practice to be close to half
the value resulting from (34). The consequences of being
so conservative will be seen in slower convergence of the
algorithm. Finally, it might seem that the bound obtained
for the SIRV input is not as tight as the ones in the other
cases. We will perform a more thorough analysis later to
see whether the increments in SSM as m is increased are
due to the typical dynamics of the LMS algorithm or
whether some of the realizations were indeed unstable
(or at least exhibited some undesirable behavior).
Fig. 3. SSMTA (estimate of the steady-state mismatch) for the SR

algorithm. M¼128, a¼0.9 (correlated data). Input distributions are

uniform (top), Gaussian (middle), and SIRV (bottom). The vertical

dashed line represents the numerically computed bound m0 according

to (47). The x axis is segmented in intervals of length 0:05m0.

Table 1

SSMTA 7 ŝSSM TA
for Uniform input. Under the conditions LMS, M¼32, a¼0.9, a

values of SSMðnÞTA computed over the 100 realizations) was equal to ½0:0035,0:197

Under the conditions SR, M¼128, a¼0.9, and m¼ 1:05m0, the range was equ

m¼ 1:05m0, the range was equal to [0.0296,0.2008].

Conditions m¼ 0:95m0 m¼ m0

SR, M¼32, a¼0 0.013370.0005 0.045270

LMS, M¼32, a¼0 0.012770.0003 0.045470

SR, M¼32, a¼0.9 0.014970.0005 0.032170

LMS, M¼32, a¼0.9 0.002470.0001 0.003670

SR, M¼128, a¼0 0.009970.0002 0.020670

LMS, M¼128, a¼0 0.0170.0001 0.023170

SR, M¼128, a¼0.9 0.033270.0006 0.059670

LMS, M¼128, a¼0.9 0.011970.0002 0.020570
Fig. 3 shows results for the SR algorithm with a longer
filter (M¼128) and correlated data (a¼0.9). The same
considerations as in Fig. 2 apply, except that the bound m0

was computed according to (47). In this scenario, the
theoretical result (49) predicts that for Gaussian regressors,
the maximum step-size would be 0.0125. Although the
bounds we obtained are very close to each other, when
SIRV input is used the value m¼ 0:0125 would lead to large
instabilities. In all simulated scenarios for the SR algorithm,
we consistently found that the bound for the uniform input
was larger than the one for the Gaussian input, which in
turn was larger than the one for the SIRV input; however, all
three were within 10% to 15% of each other. Therefore, it
would be easier than with the LMS algorithm to find a fairly
conservative bound that would work in all three scenarios.
However, our model already provides a tight bound m0 in all
cases (we next study whether it is at most within 5 or 10%
of the actual stability limit).

It is well known that the SSM of the LMS and SR
algorithms will in general increase with m [1]. However,
according to these dynamics, how large of an increase could
be considered ‘‘normal’’? In all the simulated scenarios, the
signal-to-noise ratio was set to 30 dB. In Figs. 2 and 3, it can
be seen that the resulting SSMTA values for mom0 were
close to –20 dB. However, for m4m0 they approach 0 dB or
even larger. If this increase is ‘‘normal’’, it should happen on
average for a large number of realizations. Then, the
estimated standard error of the mean ŝSSMTA

, should be
small. Moreover, according to (63), SSMTA is the average of
500 random variables, so by central-limit-theorem argu-
ments we expect it to be normally distributed. If the
estimate of its standard deviation ŝSSMTA

(which in our case
is 10 � ŝ

SSMTA
) increases and become close to or even larger

to the estimate of its mean, this would be an indication that
the distribution of SSMTA can no longer be seen as gaussian.
This could be the case when some realizations of the
algorithm show an unstable behavior, so the distribution
becomes more heavy-tailed. Therefore, an increase in ŝSSMTA

would be an indication that the source of variability is most
likely due to unstable (or undesirable) behavior of the
algorithm in some realizations.

Table 1 collects the results of SSMTA and ŝSSMTA
in all

the scenarios with uniform input. In most cases, the
tightness of m0 is evident. For the LMS case, M¼32,
a¼0.9, and m¼ 1:1m0, SSMTA increased 150% with respect
nd m¼ 1:1m0, the range of SSMTA (interval from minimum to maximum

6�, whereas for m¼ 1:15m0, SSMTA 7 ŝ
SSM TA

was equal to 0:128970:0694.

al to ½0:1151,0:7516�. Under the conditions LMS, M¼128, a¼0.9, and

m¼ 1:05m0 m¼ 1:1m0

.0039 (8.476.3)�1026 –

.0021 (8.478.3)�1055 –

.0016 1.2270.46 (1.671.5)�1050

.0001 0.005970.0003 0.014970.0028

.0005 5.7871.81 (10.175.4)�1020

.0003 (2.272)�103 –

.0014 0.21170.0082 (1.370.2)�106

.0004 0.057570.0018 (3.172.8)�1014



Table 2

SSMTA 7 ŝ
SSMTA

for Gaussian input. Under the conditions LMS, M¼32, a¼0.9, and m¼ 1:15m0, SSMTA 7 ŝ
SSM TA

was equal to 0.0270.0098, with the range

being equal to [0.0018,0.9299]. Under the conditions LMS, M¼128, a¼0.9, and m¼ 1:05m0, the range was equal to [0.0121,0.0884].

Conditions m¼ 0:95m0 m¼m0 m¼ 1:05m0 m¼ 1:1m0

SR, M¼32, a¼0 0.013770.0007 0.045070.005 (472.9)�1020 –

LMS, M¼32, a¼0 0.012270.0004 0.038770.0029 (2.172)�1042 –

SR, M¼32, a¼0.9 0.021070.0009 0.075570.0085 (4.372.5)�107 –

LMS, M¼32, a¼0.9 0.001570.0001 0.001770.0001 0.002570.0002 0.003170.0002

SR, M¼128, a¼0 0.009770.0002 0.022970.0009 6.0371.69 (5.871.7)�1017

LMS, M¼128, a¼0 0.009670.0001 0.021370.0003 116718 (6.872.8)�1028

SR, M¼128, a¼0.9 0.044270.0011 0.085070.0028 0.770.06 (571.6)�106

LMS, M¼128, a¼0.9 0.008070.0001 0.012970.0004 0.021970.0011 0.150170.0271

Table 3

SSMTA 7 ŝSSMTA
for SIRV input. Under the conditions LMS, M¼32, a¼0.9, and m¼ 1:15m0, SSMTA 7 ŝSSM TA

was equal to 0:011170:0083. Under the

conditions LMS, M¼128, a¼0, and m¼ 1:05m0, the range was equal to [0.0035,0.0700]. Under the conditions LMS, M¼128, a¼0.9, and m¼ 1:05m0, the

range was equal to [0.0047,0.1520].

Conditions m¼ 0:95m0 m¼ m0 m¼ 1:05m0 m¼ 1:1m0

SR, M¼32, a¼0 0.012170.0006 0.034870.0045 1.771.5)�103 –

LMS, M¼32, a¼0 0.005570.0005 0.009170.0007 0.039470.0155 1.0970.66

SR, M¼32, a¼0.9 0.018370.0007 0.051570.0059 2.4370.93 (1.471.3)�1027

LMS, M¼32, a¼0.9 (1570.4)�10�4 0.001170.0001 0.001970.0003 0.001670.0001

SR, M¼128, a¼0 0.009670.0002 0.019170.0009 2.371.79 (2.672.1)�1014

LMS, M¼128, a¼0 0.003870.0001 0.006870.0004 0.015370.0013 0.158870.0542

SR, M¼128, a¼0.9 0.040170.001 0.079470.0028 0.5270.05 (1.470.6)�105

LMS, M¼128, a¼0.9 0.00570.0002 0.007970.0006 0.012870.0017 0.056570.0223
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to the value when m¼ 1:05m0 (whereas in the other

conditions analyzed in this table the increase was below

50%), while ŝSSMTA
increased 10 times. Also, while the

minimum value of SSMðnÞTA was close to the mean value

when m¼ 0:95m0 (stable), the maximum value was 50

times larger. All of these facts lead us to believe that
the behavior of the algorithm under these conditions is
no longer stable. A similar analysis can be done for the
SR case.

Tables 2 and 3 show comparable results for Gaussian
and SIRV inputs, respectively. The same ideas used for
analyzing the previous table can be applied here. The LMS
case, M¼32, a¼0.9 proved to be the least tight, requiring
a 15% increase from m0 to lose stability.

It can be seen that in all scenarios tested, the algo-
rithms were stable when using m¼ 0:95m0, so the suffi-
ciency of the proposed bound m0 is well established.
Moreover, m0 was within 5% of the actual stability limit
in all but one of the tested conditions.

7. Conclusions

We have presented an analysis that allows us to
evaluate the mean and mean-square stability of a large
class of adaptive filters. Without a full transient model,
which is the usual approach in the literature, we were
able to obtain sufficient conditions on the stability, and
without restricting to the Gaussian case. In several cases
of interest, the conditions obtained are tight enough or
even necessary. Some well-known results, as well as some
new ones, were also obtained for popular adaptive filters.
The simulation results show the tightness of the bound
derived for several cases of interest.
Appendix A. Proof of Theorem 1

We begin with the following lemma which will be
useful:

Lemma 1. Given a positive doubly-indexed sequence g(i,j)
such that

Pi
j ¼ k gði,jþ1ÞrN, 8 iZk with N40, and such

that gði,kþ1Þrgði,jþ1Þgðj,kþ1Þ 8 iZ jZk, ( 0ogo1 and

LðkÞ40 such that

gði,kþ1ÞrLðkÞgi�k: ðA:1Þ

Proof. From gði,kþ1Þrgði,jþ1Þgðj,kþ1Þ, we obtain

gði,jþ1ÞZ
gði,kþ1Þ

gðj,kþ1Þ
: ðA:2Þ

Then, it is clear that

Xi

j ¼ k

gði,jþ1ÞZ
Xi

j ¼ k

gði,kþ1Þ

gðj,kþ1Þ
¼ gði,kþ1Þ

Xi

j ¼ k

1

gðj,kþ1Þ
,

ðA:3Þ

which leads to

Xi

j ¼ k

1

gðj,kþ1Þ
r

N

gði,kþ1Þ
: ðA:4Þ
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Using (A.4), we can obtain

Xi

j ¼ k

1

gðj,kþ1Þ
Z 1þ

1

N

� �Xi�1

j ¼ k

1

gðj,kþ1Þ
: ðA:5Þ

Through repeated application of the last reasonings, we
can obtain

Xi

j ¼ k

1

gðj,kþ1Þ
Z 1þ

1

N

� �i�k 1

gðk,kþ1Þ
: ðA:6Þ

Taking (A.4) and (A.6), we get

gði,kþ1ÞrNgðk,kþ1Þ
N

Nþ1

� �i�k

, ðA:7Þ

from which we obtain the desired result by setting
g¼N=ð1þNÞ and LðkÞ ¼Ngðk,kþ1Þ.

Now we will prove Theorem 1. We start by proving the
sufficiency. In order to do that we will analyze the four
terms in (11) separately. We begin with the term in (14).
We have the following

~cT
0Dði,0Þ ~c0rJ ~c0J

2tr½Dði,0Þ�rJ ~c0J
2NðlÞgiþ1ðlÞ, ðA:8Þ

which goes to zero as i-1. For the term in (15) we can
write

Xi

j ¼ 0

~cT
0Bjþ1Dði,jþ1Þc¼

Xi

j ¼ 0

tr½c ~cT
0Bjþ1Dði,jþ1Þ�: ðA:9Þ

For each of the terms on the RHS of (A.9), we apply the
Cauchy–Schwartz inequality and obtain

jtr½c ~cT
0Bjþ1Dði,jþ1Þ�jr j ~cT

0cj � ftr½Dði,jþ1ÞBjþ1Bjþ1Dði,jþ1Þ�g1=2:

ðA:10Þ

We also have

jtr½c ~cT
0Bjþ1Dði,jþ1Þ�jr j ~cT

0cjlmax½Dði,jþ1Þ�tr½Bjþ1Bjþ1
�1=2

rNðlÞgi�jðlÞtr½Bjþ1Bjþ1
�1=2: ðA:11Þ

We can then write

jtr½c ~cT
0Bjþ1Dði,jþ1Þ�jr j ~cT

0cjM1=2NðlÞgi�jðlÞjlmaxðBÞj
jþ1:

ðA:12Þ

As (9) guarantees that jlmaxðBÞjo1, we have

jtr½c ~cT
0Bjþ1Dði,jþ1Þ�jr j ~cT

0cjM1=2NðlÞgi�jðlÞ, ðA:13Þ

which implies that the term in (15) is bounded for all i.
For the term (16), we can write

s2
v

Xi

j ¼ 0

tr½ ~FxxDði,jþ1Þ�rs2
vlmaxð

~FxxÞNðlÞ
Xi

j ¼ 0

gi�jðlÞo1:

ðA:14Þ

Then, it only remains to analyze the term (17). Using the
same previous reasoning, it can be seen that

jcT Dði,kþ1ÞBk�jcjrJcJ2M1=2NðlÞgi�kðlÞjlmaxðBÞj
k�j,

ðA:15Þ

jcT Bj�kDði,jþ1ÞcjrJcJ2M1=2NðlÞgi�jðlÞjlmaxðBÞj
j�k:

ðA:16Þ
Consider the first term in (17):

ð1�aÞ2
Xi

j ¼ 0

Xi

kZ j

jcT Dði,kþ1ÞBk�jcj

rJcJ2M1=2NðlÞ
Xi

j ¼ 0

Xi

k ¼ j

gi�kðlÞjlmaxðBÞj
k�j: ðA:17Þ

Making the change of variables p¼ k�j, we write the RHS
of (A.17) as

JcJ2M1=2NðlÞ
Xi

j ¼ 0

gi�jðlÞ
Xi�j

p ¼ 0

jlmaxðBÞj

gðlÞ

� �p

: ðA:18Þ

The following fact is known

Xi�j

p ¼ 0

jlmaxðBÞj

gðlÞ

� �p

¼

i�jþ1, if
jlmaxðBÞj

gðlÞ
¼ 1,

1�
jlmaxðBÞj

gðlÞ

� �i�jþ1

1�
jlmaxðBÞj

gðlÞ

, otherwise:

8>>>>>>>><
>>>>>>>>:

ðA:19Þ

Using this last result allows us to show that (A.18) is
bounded for all i. In the same manner, we can show that
the second term in (17) is also bounded for all i. Combin-
ing all the results, we conclude that limi-1E½J ~c iþ1J

2
�o1,

proving the sufficiency part of the theorem.
The necessity can be proved as follows. First, we have

E½J ~c iþ1J
2
� ¼ EfJ ~c iþ1�E½ ~c iþ1�J

2
gþJE½ ~c iþ1�J

2: ðA:20Þ

Clearly, if limi-1E½J ~ciþ1J
2
�o1, we must have limi-1

JE½ ~c iþ1�J
2o1, which implies condition (9). Secondly,

looking at (11) and (14)–(17), we see that the only term
that is independent of the initial condition and the system
to be estimated is (16). In the special case when c¼ 0, if
limi-1E½J ~c iþ1J

2
�o1, we must have that (16) is bounded

for all i. Obviously the same must be true for any c 2 RM .
In explicit terms

(N40 such that
Xi

j ¼ k

tr½ ~FxxDði,jþ1Þ�oN, 8 iZk: ðA:21Þ

As ~Fxx40, we have

lminð
~FxxÞ

Xi

j ¼ k

tr½Dði,jþ1Þ�oN, 8 iZk: ðA:22Þ

Defining

EðiÞ ¼ aI�~f ðxiÞ ~x
T
i , ðA:23Þ

and assuming that jZk, we can write

tr½Dði,kþ1Þ� ¼ trfE½ET
ðkþ1Þ . . .ET

ðiÞEðiÞ . . .Eðkþ1Þ�g:

ðA:24Þ

Using the independence assumption, it follows that

tr½Dði,kþ1Þ� ¼ trfDði,jþ1ÞE½EðjÞ . . .Eðkþ1ÞET
ðkþ1Þ . . .ET

ðjÞ�g:

ðA:25Þ

Finally, from the last equation, it is easy to show that

tr½Dði,kþ1Þ�rtr½Dði,jþ1Þ�tr½Dðj,kþ1Þ�, jZk: ðA:26Þ
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This allows us to use Lemma 1 to obtain

tr½Dði,kþ1Þ�r
NM

lminð
~FxxÞ

N

lminð
~FxxÞþN

" #i�k

, ðA:27Þ

concluding the proof of the necessity part.
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