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On the asymptotic distribution of GLR for

impropriety of complex signals
Jean-Pierre Delmas, Abdelkader Oukaci and Pascal Chevalier

Abstract

In this paper, the problem of testing impropriety (i.e., second-order noncircularity) of a sequence of complex-

valued random variables (RVs) based on the generalized likelihood ratio test (GLRT) for Gaussian distributions

is considered. Asymptotic (w.r.t. the data length) distributions of the GLR are given under the hypothesis that

RVs are proper or improper, and under the true, not necessarily Gaussian distribution of the RVs. The considered

RVs are independent but not necessarily identically distributed: assumption which has never been considered

until now. This enables us to deal with the practical important situations of noncircular RVs disturbed by residual

frequency offsets and additive circular noise. The receiver operating characteristic (ROC) of this test is derived

as byproduct, an issue previously overlooked. Finally illustrative examples are presented in order to strengthen

the obtained theoretical results.

Index Terms

Generalized likelihood ratio (GLR), receiver operating characteristics (ROC), asymptotic distribution of

circularity coefficients estimate, improper, second-order noncircular complex random variables.

Revised research paper submitted to Signal Processing.

I. INTRODUCTION

For complex-valued RVs, many papers (see, e.g., [1],[2],[3],[4]) show that significant performance gains can

be achieved by second-order algorithms based on both Cx = E(xxT ) and Rx = E(xxH). They exploit the

statistical information contained in Cx, provided it is non-zero in addition to that contained in the standard

covariance matrix Rx. These algorithms face an additional complexity. Moreover, some such algorithms (see

e.g., [5]) adapted for improper or second-order noncircular signals, i.e., with non-zero matrices Cx, fail or suffer
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of too slow convergence when they are used for proper or second-order circular signals. It is thus important to

adapt the processing to the properness of the observation.

Hence, the question arises as to how we can classify a signal as proper or improper. This problem is a binary

hypothesis test H0: Cx = 0 versus H1: Cx 6= 0. In practice, as the parameters Rx and Cx are clearly unknown,

only the GLR detector can be used. This detector was introduced independently by Ollila and Koivunen [6] and

Schreier, Scharf and Hanssen [7] under the traditional assumption of independent and identically distributed

Gaussian samples (xk)k=1,...,K . But in these works, its performance was illustrated by a Monte Carlo simulation

only. Walden and Rubin-Delanchy [8] derived recently this GLRT as well by formulating this testing problem

in terms of real-valued Gaussian random vectors. Note that they have also presented a theoretical analysis of the

null asymptotic distribution of the GLR with several numerical studies based on Monte Carlo simulations for

the alternative distribution under the Gaussian distribution of the signals. Furthermore, there have been recent

extensions of this GLRT to non-Gaussian RVs. Authors in [9] have extended this GLRT to complex elliptically

symmetric distributions, with a slight adjustment by dividing it with an estimated scaled standardized 4th-order

moment. Then in [10], a GLRT based on complex generalized Gaussian distributions have been provided. These

extensions make the GLRT more robust to nonGaussian distributions, but surprisingly they do not improve the

performance for sub-Gaussian distributions [10], which include the majority of applications in communications

and radar.

The aim of this paper is to complement the theoretical asymptotical analysis of [8] and [9]. The originality

of our approach consists in considering the null and alternative asymptotic distribution of the GLR derived

under the Gaussian distribution, but used in practice under independent not necessarily identically Gaussian

distributed data. This paper is organized as follows. The GLRT is recalled for the convenience of the reader.

in Section II. The asymptotic distribution of the GLR under the hypothesis that RVs are proper or improper is

considered in Section III, using the asymptotic distributions of the circularity coefficients given in [11]. This

asymptotic distribution is given in the scalar case and then extended to the multidimensional case under the

assumption of independent identically not necessarily Gaussian distributed RVs. An interpretable closed-form

expression of the ROC is given in the scalar case due to the simplicity of the asymptotic distribution of the

GLR. Then, extension of this study to independent non identically distributed RVs is considered in Section IV.

This enables us to deal with practical situations of noncircular RVs disturbed by residual frequency offsets and

additive circular noise. Finally some illustrative examples are presented in Section V. Note that some results

of this paper have been given in [12].

The following notations are used throughout the paper. Matrices and vectors are represented by bold upper

case and bold lower case characters, respectively. Vectors are by default in column orientation, while T , H

and ∗ stand for transpose, conjugate transpose, conjugate respectively. vec(·) is the “vectorization” operator

that turns a matrix into a vector by stacking the columns of the matrix one below another which is used in
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conjunction with the Kronecker product A ⊗ B as the block matrix whose (i, j) block element is ai,jB and

with the vec-permutation matrix K which transforms vec(C) to vec(CT ) for any matrix C.

II. GENERALIZED LIKELIHOOD RATIO DECISION RULE

We assume that (xk)k=1,...K ∈ CN is a realization of K independent identically zero-mean complex Gaussian

distributed RVs. Their covariance matrices Rx = E(xxH) and Cx = E(xxT ) are unknown. Consider the

following binary composite hypothesis testing problem:

H0 : Cx = 0, Rx

H1 : Cx 6= 0, Rx.

In the likelihood ratio, the GLR replaces the unknown parameters Rx and Cx by their maximum likelihood

(ML) estimates. It is thus straightforward to derive its expression which is given by [6], [7]

L(x, K) def=
p

(
(xk)k=1,...K ; R̂x, Ĉx,H1

)

p
(
(xk)k=1,...K ; R̂x,0,H0

) =
det(R̂x)K

det(R̂x̃)K/2
(1)

with R̂x
def= 1

K

∑K
k=1 xkxH

k and R̂x̃
def= 1

K

∑K
k=1 x̃kx̃H

k where, x̃k
def= [xT

k ,xH
k ]T . The GLRT decides H1 if

L(x,K) > λ (2)

and otherwise H0. In the scalar case N = 1, the GLRT is the UMP linearly invariant test [8]. But note that

no uniformly most powerful (UMP) C linearly1 invariant test for impropriety exists for N > 1 [8]. It becomes

especially simple

L(x,K) = (1− γ̂2
x)−K/2 (3)

with γ̂x = | 1
K

∑K
k=1 x2

k|/ 1
K

∑K
k=1 |xk|2 is the ML estimate [13], [11] of the circularity coefficient γx

def=

|E(x2
k)|/E|xk|2. By the increasing monotony of (3), the GLRT decides H1 if

γ̂x > λ′, (4)

which is quite intuitive.

III. ASYMPTOTIC DISTRIBUTION OF GLR FOR IID OBSERVATIONS

Throughout this section, this GLRT is used for independent identically zero-mean non necessarily Gaussian

distributed RVs (xk)k=1,...K . For such nonGaussian RVs, decision rule (2) is no longer a GLRT. However, it

generally provides good performance in practice (see e.g., for the detection of a known signal corrupted by

noncircular interference [14]) and is simple to implement.

1C linear transformations include rotation and scaling, but not widely linear operations.
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A. Scalar complex random variable

Let be xk a scalar valued RV of arbitrary distribution with finite 4-th-order moments. We suppose that under

H0, xk is circular up to the 4th-order2. Then, the following result is proved in the Appendix:

Result 1: Under the respective hypothesis H0 and H1, the following convergences in distribution hold when

K →∞
√

K

1 + κx

2

γ̂x
L→ R(1) (5)

√
K(γ̂x − γx) L→ N (0, σ2

γ) if γx 6= 1. (6)

In (5) and (6), R(1) and N (0, σ2
γ) denote the Rayleigh distribution with unit scale (i.e., the chi distribution

with two degrees of freedom χ2) and the zero-mean Gaussian distribution with variance σ2
γ , respectively, with

σ2
γ = (1− γ2

x)2 + γ2
xκx +

κx

2
+

γ2
x<(κ′x)

2
− 2γ2

x<(κ′′x) if σ2
γ 6= 0, (7)

where under H0, κx is the normalized-like cumulant cum(xk,xk,x∗k,x∗k)
(E(|xk|2))2 , and under H1, κx, κ′x and κ′′x are the

normalized-like cumulants cum(xk,xk,x∗k,x∗k)
(E(|xk|2))2 , cum(xk,xk,xk,xk)

(E(x2
k))2 and cum(xk,xk,xk,x∗k)

E(|xk|2)E(x2
k) respectively, which are invariant

to any rotation of the distribution of xk.

Naturally general expression (7) of σ2
γ simplifies for certain complex distribution classes for which the

normalized-like cumulants κx, κ′x and κ′′x are redundant. For example, the following result is proved in the

Appendix.

Result 2: For generalized complex elliptically symmetric distributions (GCES)3 introduced in [16] in the

multidimensional case, σ2
γ (7) reduces to

σ2
γ = (1− γ2

x)2
(

1 +
κx

2 + γ2
x

)
. (8)

Remark 1: This theoretical result means that the estimate γ̂x is approximately Rayleigh (of scale 1+ κx
2

K ) or

GaussianN (γx,
σ2

γ

K ) distributed under H0 and H1, respectively for K À 1. Furthermore the domain of validity of

this approximation depends on γx and σ2
γ through the approximate relation γx− 2σγ√

K
> 0. For practical use of this

result, i.e., for probability of detection PD 6= 1 and probability of false alarm PFA 6= 0, note that the distribution

of γ̂x under H0 and H1 must overlap. This is roughly achieved for γx− 2σγ√
K

<
4
√

1+κx/2√
K

as illustrated in Fig.1.

2This means that not only E(x2
k) = 0, but also the fourth-order cumulants satisfy cum(xk, xk, xk, xk) = 0 and cum(xk, xk, xk, x∗k) =

0 [15]. We note, it is possible that E(x2
k) = 0 with cum(xk, xk, xk, xk) 6= 0 or cum(xk, xk, xk, x∗k) 6= 0. In this case, the asymptotic

distribution of γ̂x is much more involved (see the proof of Result 1 in the Appendix).
3which include the Gaussian distribution.
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Fig.1 Approximative probability density function (PDF) of γ̂x under H0 and H1.

Remark 2: For rectilinear RVs, γx = 1 and thus xk = rke
iφ where rk is a real-valued RV and with φ fixed. In

this case, the circularity coefficient γx is perfectly estimated, i.e., γ̂x = 1. Consequently, the detection problem

is singular and for a threshold λ′ close to 1, PD and PFA are equal to 1 and 0 respectively.

Remark 3: Note that σ2
γ can be zero with γx < 1 (an example of such a situation is given in [11]). In this

case, the sequence K(γ̂x − γx) converges in distribution [17, Th.B, p.124] to a Hermitian form rHΩr, with r

a two dimensional zero-mean complex Gaussian RV,. The distribution of this Hermitian form is defined by the

right hand side of (17). But our first order analysis does not allow one to specify the matrix Ω.

Remark 4: Note that for γx close to zero and K À 1, 2 ln L(x,K) = −K ln(1 − γ̂2
x) ≈ Kγ̂2

x. Furthermore

for Gaussian distributed xk, κx = 0. In these conditions (5) gives

2 lnL(x, K) L→ χ2
2, under H0. (9)

This asymptotic property is consistent with the constant false alarm rate (CFAR) detector where the number

2 of degree of freedom of the chi-squared distribution is equal to the number of real-valued components of

cx
def= E(x2

k), given by the Wilk’s theorem [18, p.132]4. But for nonGaussian distributions, detector (4) is no

longer asymptotically CFAR. From the practical point of view, similarly as [9], by dividing the test statistic

γ̂x with
√

1 + κ̂x

2 where κ̂x is any consistent estimate of κx, we obtain an adjusted GLRT which becomes

asymptotically CFAR. Hence, once the threshold is fixed for a given PFA, the obtained PD will depend naturally

on the unknown parameters γx and σ2
γ (7).

Remark 5: For Gaussian distributed RVs, the normalized-like cumulants κx, κ′x and κ′′x are zero. Thus the

variance σ2
γ of the asymptotic distribution of γ̂x under the hypothesis H1 given by (7) and (8) becomes equal

4Note that this theorem has been used in [8] and [13] for vector and scalar cases to directly derive asymptotic distribution (9).
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to (1 − γ2
x)2. It is a decreasing function of γx. Consequently for a fixed PFA, i.e., for fixed threshold λ′, PD

is an increasing function of γx that does not depend on the power of xk. This property is very intuitive.

For arbitrary, not necessarily Gaussian distributions of xk, Result 1 allows us to derive

PFA = P (γ̂x > λ′/H0) ≈ Qχ2
2

(
Kλ′2

1 + κx

2

)

PD = P (γ̂x > λ′/H1) ≈ QN

(√
K(λ′ − γx)

σγ

)
,

where Qχ2
2
(.) and QN (.) denote the complementary cumulative distribution functions (i.e., Qf (x) def=

∫ +∞
x f(t)dt where f(.) is the associated probability density function) of the chi-squared distribution with

2 degrees of freedom and of the zero-mean, unit-variance Gaussian distribution respectively, and where σγ is

given by (7). Eliminating the threshold λ′ between PFA and PD gives the following closed form expression of

the ROC of GLR detector (4)

PD ≈ QN




√
(1 + κx

2 )Q−1
χ2

2
(PFA)−√Kγx

σγ


 . (10)

From this expression, we clearly see that for fixed PFA, PD is an increasing function of the data length K and

for Gaussian distributed RVs, an increasing function of the circularity coefficient γx.

B. Multidimensional complex random variable

In the multidimensional case (N > 1), Result 1 cannot be easily extended as explained in the Appendix

where we can only prove for arbitrary distributions with finite 4-th-order moments the following result.

Result 3: Under hypothesis H1, the following convergence in distribution holds when K →∞ for the decision

statistic `(x,K) def= [L(x,K)]−2/K

√
K(l(x,K)− `1)

L→ N (0, σ2
1) under H1, (11)

where the expressions of `1 and σ2
1 are derived in the Appendix.

Remark 6: Note that for the Gaussian distribution, i.e., for the only distribution for which the decision statistic

L(x,K) given by (1) is a GLR, Wilk’s theorem [18, p.132] applies5 and gives

2 ln L(x,K) L→ χ2
N(N+1) under H0. (12)

The degree of freedom of the chi-squared distributions is equal to the number N(N + 1) of real-valued

independent parameters in the Hermitian matrix Cx. Under H1, in the particular case where Cx is "close" to

0 (see a more formal definition in [19, Ch.23.7]), the analysis of [20, Sec.II] is valid and gives the following

5Note that Wilk’s theorem has been invoked in this context in [8] and [9].

March 28, 2011 DRAFT



7

approximation of distribution when K À 1 :

2 ln L(x,K) a∼ χ′2N(N+1)(µ) under H1, .

In this expression, χ′2N(N+1)(µ) represents a noncentral chi-squared distribution with N(N + 1) degree of

freedom and noncentral parameter µ. This parameter is a measure of the discrimination between H0 and H1.

A general expression of this parameter which depends on K is given by [20, exp.(4)].

IV. EXTENSION TO NON IDENTICALLY DISTRIBUTED RVS

For practical purposes, RVs are not always identically distributed. In particular, when noncircular RVs are

disturbed by residual frequency offsets and additive circular noise, RVs could be seen as circular depending on

the signal to noise ratio (SNR) and the number K of samples. So in this Section, we still consider the previous

GLRT that has been derived under the assumption of independent identically zero-mean complex Gaussian

distribution. But it is used here for independent zero-mean non necessarily identically Gaussian distributed RVs6

(xk)k=1,...K . To take account of the dependence of the distribution of xk with k, the following notation is used:

rx,k
def= E|x2

k|, cx,k
def= E(x2

k), r̄x,K
def= 1

K

∑K
k=1 rx,k, c̄x,K

def= 1
K

∑K
k=1 cx,k, cumx,k

def= cum(xk, xk, x
∗
k, x

∗
k),

cum
′
x,k

def= cum(xk, xk, xk, xk) and cum
′′
x,k

def= cum(xk, xk, xk, x
∗
k).

For arbitrary distributions with finite 4th-order moments such that the following Lyapunov conditions [21,

Th. 2.7.2] are satisfied7

lim
K→∞

∑K
k=1 E||x2

k| − rx,k|3(√∑K
k=1 E

(
(|x2

k| − rx,k)2
))3 = 0 and lim

K→∞

∑K
k=1 E|x2

k − cx,k|3(√∑K
k=1 E

(
(x2

k − cx,k)2
))3 = 0, (13)

where rx,k, cx,k, cumx,k, cum
′
x,k and cum

′′
x,k are bounded and where we suppose that under H0, (xk)k=1,...,K

are circular up to the 4th-order, the following result extending Result 1 is proved in the Appendix.

Result 4: Under the respective hypothesis H0 and H1, the following convergences in distribution hold when

K →∞ √
K

αK + κx,K

2

γ̂x
L→ R(1) (14)

σ−1
γ,K(γ̂x − γx,K) L→ N (0, 1), (15)

where αK
def= 1

r̄2
x,K

1
K

∑K
k=1 r2

x,k and κx,K
def= 1

r̄2
x,K

1
K

∑K
k=1 cumx,k, γx,K is the time-averaged circularity

coefficient |c̄x,K |
r̄x,K

= | 1
K

∑K
k=1 E(x2

k)|/ 1
K

∑K
k=1 E|xk|2 and where the expression of σγ,K is derived in the

Appendix.

6We only consider scalar complex-valued RVs, because the extension to multidimensional complex-valued RVs would involve overly
too cumbersome notations.

7which are not severe and are clearly satisfied for the RVs described by (16).
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Remark 7: Clearly for identically distributed RVs, rx,k = r̄x,K = rx, cumx,k

r2
x

= κx and thus αK = 1 and

κx,K = κx in (14) and Result 3 reduces to Result 1 under H0. Under H1, the derivation of σ2
γ,K (23) in the

Appendix comes down to the proof of (6), (7) given in [11] for identically distributed RVs where σγ,K = σγ√
K

.

V. ILLUSTRATIVE EXAMPLES

This section has two purposes. First, we examine the domain of validity of our asymptotic results, and second,

we study the performance of the GLR detector in a specific example.

The following MIMO channel (extension of the example given in [7]) that transmits Q independent

equiprobable BPSK symbols aq,k ∈ {−1, +1} over an additive noise channel is considered. It also rotates

independently the phase of the transmitted symbols aq,k by φq,k and are disturbed by residual frequency offsets

∆fq.

xk =
Q∑

q=1

σqaq,ke
iφq,kei2πk∆fqsq + nk, (16)

where σq and sq are Q unknown amplitudes and steering vectors with unit first component. The components

of nk are independent zero-mean complex circular Gaussian RV of unknown variance σ2
n.

We consider three experiments. In the first one, there is no residual frequency offset and under H0 and H1,

we assume that the phase terms (φq,k)k=1,..,K,q=1,..,Q are independent and respectively uniformly distributed

on [0, 2π] or Gaussian distributed with mean φq0 and variance σ2
φq

. So we are interested in classifying this

channel as either incoherent or partially coherent. This is a binary composite hypothesis testing problem. We

easily deduce that

Rx =
Q∑

q=1

σ2
qsqsH

q + σ2
nIQ and Cx =





0 under H0

∑Q
q=1 σ2

qe
2iφq0e−2σ2

φq sqsT
q under H1.

For Q = 1 and N = 1, κx = − 1
(1+ρ−1

x )2
under H0 and γx = e

−2σ2
φ1

1+ρ−1
x

, κx = −1+e
−4σ2

φ1

(1+ρ−1
x )2

κ′x = e−4σ2
φ1 − 3 and

κ′′x = − 2
1+ρ−1

x
under H1, with an SNR of ρx

def= σ2
1/σ2

n.

Fig.2 shows the detection performance PD for different fixed PFA for N = Q = 1 as a function of the SNR

for two values of σφ1 deduced from the asymptotic distribution of γ̂x given by Result 1. We see that the PD for

fixed PFA is very sensitive to the coherence of the channel. When σφ1 increases for a fixed SNR, the circularity

coefficient γx decreases and detection worsens.
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Fig.2 PD for four different fixed PFA and two values of σφ1 as a function of SNR for N = Q = 1 and K = 100.

In the second experiment, model (16) with N = Q = 1 is compared to the Gaussian model obtained when

φ1,k does not depend on k and a1,k are independent zero-mean complex circular or real-valued Gaussian RVs

under H0 and H1 respectively. Fig.3 shows the northwest corner of the ROC curve for the GLRT detector

for K = 100 and ρx = 0.63 (−2dB) for BPSK model with a coherent channel (i.e., σφ1 = 0) and Gaussian

model, and thus associated with the same value of γx = 0.387. We note that the ROC curve is sensitive to

the distribution of the RVs xk, the performance is improved for the BPSK model w.r.t. the Gaussian model

and that the empirical ROC fits the asymptotic theoretical ROC for the relatively small data length K = 100.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.75

0.8

0.85

0.9

0.95

1

 P
FA

 P
D

 

 

Theoretical BPSK model

Simulated BPSK model

Theoretical Gaussian model

Simulated Gaussian model

Fig.3 Asymptotic theoretical and empirical (with 10000 Monte Carlo runs) ROC curve associated with BPSK and Gaussian model.

Fig.4 shows the ROC curve for the GLRT detector for the same parameters as in Fig.3, but with
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four residuals of frequency offset ∆f1 for which rx,k = r̄x,K = σ2
1 + σ2

n, cx,k = σ2
1e

2iφ1e4πik∆f1 ,

c̄x,K = σ2
1e

2iφ1e2πi(K−1)∆f1

(
sin 2πK∆f1

sin 2π∆f1

)
,

γx,K =
1

1 + ρ−1
x

1
K

∣∣∣∣
sin 2πK∆f1

sin 2π∆f1

∣∣∣∣

and cumx,k = 0 for a Gaussian signal. Comparing to Fig.3, we note in Fig.4 a degradation owing to the frequency

offset for which the time-averaged circularity coefficient gets closer to zero under H1. The performance of the

detector begin decreasing from K∆f1 = 0.002 for which PFA = 0.1 and 0.05 are obtained for PD = 0.980

and 0.960 respectively, against PD = 0.989 and 0.970 for no residual frequency offset. The detection capability

collapses for K∆f1 = 0.5 where the time-averaged circularity coefficient γx,K = 0. We see also that the

empirical ROC fits the asymptotic theoretical ROC for the relatively small data length K = 100.
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Fig.4 Asymptotic theoretical and empirical (with 10000 Monte Carlo runs) ROC curve associated with Gaussian model for four
values of K∆f1.

Finally in the third experiment, we consider the multidimensional Gaussian model8 (φq
def= φq,k does not

depend on k and aq,k are independent zero-mean complex circular or real-valued Gaussian RVs under H0

and H1 respectively), with no residual of frequency offset. Here, Q = 2, σ1 = σ2, with an array of N = 2

omnidirectional sensors equispaced half a wavelength apart. The direction of arrival with respect to broadside

of the two sources are θ1 = 0◦ and θ2 = 5◦. Fig.5 shows the detection performance PD for different fixed PFA

as a function of the SNR for two values of ∆φ
def= φ1 − φ2. PD and PFA are deduced from the asymptotic

distribution of l(x,K) under H1 given by Result 2 and of 2 lnL(x,K) under H0 given by (12), respectively.

We see that the GLRT is very sensitive to ∆φ. In particular for very close DOAs (i.e., s1 ≈ s2) and equipowered

8We note that in this case under H0, the asymptotic distribution of the test statistic is only available for Gaussian distributions of the
RVs (see (12). In this case, this test is asymptotically CFAR and once the threshold is fixed for a given PFA, the obtained PD derived
by (11) will depend naturally on the unknown parameters `1 = det[I− (R−1

x Cx)∗R−1
x Cx] and σ2

1 derived in the Appendix.
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sources, C ≈ 0 under H1 for ∆φ = π/2 radians, which implies a very bad capability of circularity detection.

Furthermore we see that the empirical PD fits the asymptotic PD for the relatively small data length K = 100,

except for weak PD.

−20 −15 −10 −5 0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR

P D

 PFA = 10−4

 PFA = 10−3

 PFA = 10−2

 PFA = 10−1

 PFA = 10−2

 PFA = 10−3

 PFA = 10−4

 PFA = 10−1

∆ φ=0 ∆ φ=π/2

Fig.5 Asymptotic theoretical and empirical (with 10000 Monte Carlo runs) PD for four different fixed PFA and two values of ∆φ
as a function of SNR for N = Q = 2 and K = 100.

VI. CONCLUSION

In this paper, some new enlightening results about the asymptotic distribution of the GLR for impropriety of

complex signals have been investigated. The associated GLRT derived under the usual assumption of independent

identically distributed Gaussian RVs is studied under non necessarily identical Gaussian distributions of the RVs.

For the scalar case, the asymptotic distribution of the circularity coefficient has been given under H0 and H1

for independent identical or independent non identical arbitrary distributions of the RVs. In particular this allow

us to deal with the important practical situations where discrete RVs are disturbed by residual frequency offsets

and additive Gaussian circular noise which has never been considered until now. For the multidimensional

case, the asymptotic distribution of the GLR has been given under H1 for independent and identically arbitrary

distributions of the RVs. These results enable us to specify the probability of detection for a specified probability

of false alarm, and thus to derive the ROC of this test, an issue previously totally overlooked.

VII. APPENDIX

Proof of Result 1 Under H1, (6) is directly issued form [11, Result 3]. But under H0, [11, Result 3] is not valid

because it does not holds for γx = 0. Nevertheless the analysis of [11] still applies. The classical central limit9

applied to the independent identically distributed bidimensional complex RVs (r̂x, ĉx) with r̂x = 1
K

∑K
k=1 |x2

k|

9NC(m,R,C) denotes the complex Gaussian distribution with mean m, and covariances R and C.
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and ĉx = 1
K

∑K
k=1 x2

k yields for γx = 0

√
K


 r̂x − rx

ĉx − cx


 L→ NC





0

0


 ,


σ4

x + cumx cum
′′∗
x

cum
′′
x 2σ4

x + cumx


 ,


 σ4

x + cumx cum
′′
x

cum
′′
x cum

′
x





 , (17)

where σ2
x

def= E|x2
k|, cumx

def= cum(xk, xk, x
∗
k, x

∗
k), cum

′
x

def= cum(xk, xk, xk, xk) and cum
′′
x

def=

cum(xk, xk, xk, x
∗
k). Then, considering the mapping

(r̂x, ĉx) 7−→ m̂x =
ĉx

r̂x
7−→ γ̂x = |m̂x|, (18)

whose differential of the first step is

dm =
1
r
dc (19)

under H0, the standard theorem of continuity (see e.g., [17, Th.A, p.122]) on regular functions of asymptotically

Gaussian statistics applies. Consequently, we obtain the following convergence in distribution to a complex

zero-mean Gaussian distribution of variance 1
σ4

x
(2σ4

x + cumx) and pseudo variance 1
σ4

x
cum

′
x

√
K (m̂x − 0) L→ NC

(
0, 2 +

cumx

σ4
x

,
cum

′
x

σ4
x

)
. (20)

This complex Gaussian distribution becomes circular (cum
′
x = 0) for xk circular up to the 4th-order. With

γ̂x = |m̂x|, convergence in distribution (5) is proved.

Proof of Result 2

From [16], the GCES distribution of xk is defined in the scalar case from the distribution of the real-valued

bivariate RV (<(xk),=(xk)) which is real elliptical symmetric (RES) distributed. In the zero-mean case, this

RES distribution is defined as a linear transform in R2 of a spherically symmetric distribution [22]. Consequently

as a linear transform in R2 is equivalent to an R-linear transform in C [23], xk is zero-mean GCES distributed,

if there exist complex valued scalars a and b such that xk = auk + bu∗k where uk is an arbitrary complex

circular RV. Consequently the cumulants of xk satisfy the following relations

cum(xk, xk, x
∗
k, x

∗
k) =

(
(|a|2 + |b|2)2 + 2|a|2|b|2) cum(uk, uk, u

∗
k, u

∗
k)

cum(xk, xk, xk, xk) = 6a2b2cum(uk, uk, u
∗
k, u

∗
k)

cum(xk, xk, xk, x
∗
k) = 3ab(|a|2 + |b|2)cum(uk, uk, u

∗
k, u

∗
k).

Using

E|xk|2 = (|a|2 + |b|2)E|uk|2 and E(x2
k) = 2abE|uk|2,

the normalized-like cumulants κ′x and κ′′x becomes

κ′x = κ′′x =
(

3
2 + γ2

x

)
κx.

Plugging these expressions in (7), gives expression (8) of Result 3.
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Proof of Result 3

With `(x,K) = det[I − (R̂−1
x Ĉx)∗R̂−1

x Ĉx], from (1) where Ĉx
def= 1

K

∑K
k=1 xkxT

k , the proof of Result 2

follows the same steps that for Result 1.

Deriving the asymptotic distribution of `(x, K) under H0 and H1 is based on the following mapping:

(R̂x, Ĉx) 7−→ M̂x = R̂−1
x Ĉx 7−→ Σ̂x = M̂∗

xM̂x 7−→ `(x,K) = det[I− Σ̂x]. (21)

Using the asymptotic Gaussian distribution of (R̂x, Ĉx) [3], [11] derived from the classical central limit theorem,

the differential of the different sub mappings of (21), the chain rule and standard properties of the vec operator

[24, Ch.2.4], the standard theorem of continuity (see e.g., [17, p. 122]) on regular functions of asymptotically

Gaussian statistics applies.

In particular under H0, where xk is circular up to the 4th-order, the differential of Mx at (Rx,Cx) = (Rx,0)

is similarly as (19), given by

dMx = −R−1
x dRxR−1

x Cx + R−1
x dCx = R−1

x dCx, (22)

vec(dMx) = (I⊗R−1
x )vec(dCx).

Consequently, (20) becomes here

√
K (vec(M̂x)− 0) L→ NC (0,RM ,CM )

with

RM = (I⊗R−1
x )RC(I⊗R−1

x ) and CM = (I⊗R−1
x )CC(I⊗R−∗

x ),

where RC and CC are the covariance matrices of the asymptotic distribution of Ĉx given [11] by10

RC = Rx ⊗Rx + K(Rx ⊗Rx) + Qx and CC = Cx ⊗Cx + K(Cx ⊗Cx) + Q′
x,

for which here CC = 0. Consequently CM = 0 as in the scalar case, M̂x is still asymptotically circular Gaussian

distributed under H0 for xk circular up to the 4th-order and the differential of the mapping M̂x 7−→ Σ̂x at

Mx = 0 is still zero. But in contrast to the scalar case, the derivation of the asymptotic distribution of Σ̂x

needs the second differential of this mapping, which is not accessible by our first order analysis.

Under H1, with the differential of the mapping (R̂x, Ĉx) 7−→ M̂x at (Rx,Cx) derived from (22)

dMx = −R−1
x dRxR−1

x Cx + R−1
x dCx,

vec(dM) = −(CxR−T
x )⊗R−1

x )vec(dRx) + (I⊗R−1
x )vec(dCx) def= DM,Rvec(dRx) + DM,Cvec(dCx),

10where (Qx)i+(j−1)K,κ+(l−1)K = cum(xk,i, xk,j , x
∗
k,κ, x∗k,l) and (Q′

x)i+(j−1)K,κ+(l−1)K = cum(xk,i, xk,j , xk,κ, xk,l) with xk =
(xk,1, ..., xk,N )T .
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we obtain from the noncircular Gaussian asymptotic distribution of (R̂x, Ĉx)

√
K

(
vec(R̂x, Ĉx)− vec(Rx,Cx)

) L→ NC





 0

0





 RR RR,C

RH
R,C RC


 ,


 CR CR,C

CT
R,C CC





 ,

whose expressions of RR, RR,C , CR and CR,C are given in [11], the following convergence in distribution

by the standard theorem of continuity (see e.g., [17, Th.A, p. 122])

√
K

(
vec(M̂)− vec(M)

) L→ NC(0,RM ,CM ),

with

RM = (DM,R,DM,C)


 RR RR,C

RH
R,C RC





 DH

M,R

DH
M,C




CM = (DM,R,DM,C)


 CR CR,C

CT
R,C CC





 DT

M,R

DT
M,C


 .

Then consider the differential of the mapping M̂x 7−→ Σ̂x = M̂∗
xM̂x at Mx

dΣx = M∗
xdMx + dM∗

xMx,

vec(dΣ) = (I⊗M∗
x)vec(dMx)) + (Mx ⊗ I)vec(dM∗

x) def= DΣ,Mvec(dMx) + DΣ,M∗vec(dM∗
x),

which gives the following asymptotic distribution

√
K

(
vec(Σ̂x)− vec(Σx)

) L→ NC(0,RΣx
,CΣx

),

with

RΣx
= (DΣ,M ,DΣ,M∗)


 RM CM

C∗
M R∗

M





 DH

Σ,M

DH
Σ,M∗




CΣx
= (DΣ,M ,DΣ,M∗)


 CM RM

RT
M C∗

M





 DT

Σ,M

DT
Σ,M∗


 .

Finally, considering the differential of the mapping Σ̂x 7−→ `(x,K) = det[I− Σ̂x] at Σx

d` = −det[I−Σx]Tr
[
(I−Σx)−1dΣx

]
= −det[I−Σx]vecT

(
(I−ΣT

x )−1
)
vec(dΣx) def= Dl,Σvec(dΣx)

from [24, Th.1, p.149], the convergence in distribution (11) follows with σ2
1 = Dl,ΣCΣx

DT
l,Σ = Dl,ΣRΣx

DH
l,Σ

and `1 = det[I− (R−1
x Cx)∗R−1

x Cx] < 1 derived from (1).

Proof of Result 4

To derive the asymptotic distribution of the GLR and then to extend the results of Subsection III-A, we replace

the classical central limit theorem with the Lyapunov theorem (see e.g., [21, Th. 2.7.1]) by checking that the

Lyapunov conditions (13) are satisfied for the sequence of zero-mean RVs |x2
k|− rx,k and x2

k− cx,k. In fact the

March 28, 2011 DRAFT



15

Lyapunov theorem11 is valid for zero-mean real-valued scalar RVs uk. To extend it to the zero-mean complex-

valued multidimensional RV (|x2
k| − rx,k, x

2
k − cx,k), we must elaborate a little bit. First, the extension of the

Lyapunov theorem to zero-mean real-valued multidimensional RVs uk is straightforward by application of the

Cramer-Wold theorem [21, Th. 5.1.8] for which the sequence R−1/2
u,K

∑K
k=1 uk converges in distribution to a zero-

mean, Gaussian distribution NR(0, I) where R1/2
u,K is an arbitrary square root of Ru,K

def=
∑K

k=1 E(ukuT
k ). Then

the Lyapunov theorem applies to the zero-mean complex valued multidimensional RV (|x2
k| − rx,k, x

2
k − cx,k),

due to isomorphism between C and R2. Here, using [25, Th. 1], there exists a sequence of 2× 2 matrices AK

such that

A−1
K


 r̂x − r̄x,K

ĉx − c̄x,K


 L→ NC(0, I,∆),

with ∆ is diagonal such that

AKAH
K =


 E|r̂x − r̄x,K |2 E(r̂x − r̄x,K)(ĉx − c̄x,K)∗

E(ĉx − c̄x,K)(r̂x − r̄x,K)∗ E|ĉx − c̄x,K |2




AK∆AT
K =


 E(r̂x − r̄x,K)2 E(r̂x − r̄x,K)(ĉx − c̄x,K)

E(ĉx − c̄x,K)(r̂x − r̄x,K) E(ĉx − c̄x,K)2


 ,

where the terms of those two matrices are given by

E(r̂x − r̄x,K)2 =
1

K2

K∑

k=1

(cumx,k + |ck|2 + r2
k),

E|ĉx − c̄x,K |2 =
1

K2

K∑

k=1

(cumx,k + 2r2
k), E(ĉx − c̄x,K)2 =

1
K2

K∑

k=1

(cum
′
x,k + 2c2

k),

E(ĉx − c̄x,K)(r̂x − r̄x,K) =
1

K2

K∑

k=1

(cum
′′
x,k + 2ckrk).

Under H0 where the moments of (xk)k=1,...,K are circular up to the 4th-order, ck = 0, cum
′
x,k = 0 and

cum
′′
x,k = 0, the delta method [21, Ch. 2] derived from the standard theorem of continuity applied to the mapping

(18) with the associated differential dm = − c
r2 dr + 1

r dc gives here dm = 1
r dc and after straightforward

algebraic manipulations
√

K
1

(r̄x,K)2
1
K

∑K
k=1(r

2
x,k + 1

2cumx,k)

(
m̂x − c̄x,K

r̄x,K

)
L→ NC(0, 1, 0).

With γx,K
def= |c̄x,K |

r̄x,K
, which is the time-averaged circularity coefficient, (14) is proved.

In the same way, under H1, (15) is derived from the steps of the Appendix of [11] from the delta method

11that we restate for the ease of the reader. If uk is a sequence of zero-mean scalar real-valued RVs that satisfies
limK→∞

∑K
k=1 E|uk|3(√∑K
k=1 E(u2

k
)
)3 = 0, the sequence

∑K
k=1 uk√∑K
k=1 E(u2

k
)
. converges in distribution to a zero-mean, unit variance Gaussian distribution

NR(0, 1).
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using the two associated differentials

dm = − c

r2
dr +

1
r

dc and dγ =
1
2γ

(m∗dm + mdm∗) ,

E
∣∣∣∣m̂x − c̄x,K

r̄x,K

∣∣∣∣
2

=
(
− c̄x,K

r̄2
x,K

1
r̄x,K

)
AKAH

K


 − c̄∗x,K

r̄2
x,K

1
r̄x,K


 + o(

1
K

) def= rm,K + o(
1
K

),

E
(

m̂x − c̄x,K

r̄x,K

)2

=
(
− c̄x,K

r̄2
x,K

1
r̄x,K

)
AK∆AT

K


 − c̄x,K

r̄2
x,K

1
r̄x,K


 + o(

1
K

) def= cm,K + o(
1
K

).

Then (15) follows with σγ,K is given by

σ2
γ,K =

1
4γ2

x,K

(
c̄∗x,K

r̄∗x,K

c̄x,K

r̄x,K

)

 rm,K cm,K

c∗m,K r∗m,K







c̄x,K

r̄x,K

c̄∗x,K

r̄∗x,K


 . (23)
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