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Abstract

Smoothing causal linear time-invariant filters are stud@dcontinuous time processes.
The paper suggests a family of causal filters with almost gptial damping of the energy on
the higher frequencies. These filters are sub-ideal mednaig faster decay of the frequency
response would lead to the loss of causality.
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1 Introduction

The paper studies smoothing filters for continuous timegsses. The consideration is restricted
by the causal continuous time linear time-invariant fil{gr® filters), i.e. linear filters represented
as convolution integrals over the historical data. Thesgrdilare used in dynamic smoothing, when

the future values of the process are not available.
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In the frequency domain, smoothing means reduction of tkeggron the higher frequencies.
In particular, an ideal low-pass filter is a smoothing filtdowever, this filter is not causal, i.e., it
requires the future value of the process. Moreover, a filtdr @xponential decay of the frequency
response also cannot be causal [6]. It follows from the fhat & sufficient rate of decay of
energy on higher frequencies implies some predictabilitthe processes; on the other hand, a
causal filter cannot transform a general kind of a processangredictable process. The classical
result is Nyquist-Shannon-Kotelnikov interpolation thexm that implies that if a process is band-
limited then it is predictable (see, e.d., [1]-[3],[5]] {/12], [15]-[18]). Recently, it was found that
processes with exponential decay of energy on the highgudércies are weakly predictable on a
finite time horizon[[6].

We suggest a family of causal smoothing filters with "almastponential rate of damping
the energy on the higher frequencies and with the frequeasgonse that can be selected to
approximate the real unity uniformly on an arbitrarily langpterval. These filters are sub-ideal in
the sense that their effectiveness in the damping of higeguencies cannot be exceeded; a faster
decay of the frequency response is not possible for causaksfil This is because this family of

causal filters approximates the exponential decay rate &fieaance set of non-causal filtelr$ (1).

2 Problem setting

Let z(¢) be a continuous-time processs R. The output of a linear filter is the process

o) = [ et

— 0o
whereh : R — R is a given impulse response function.

If h(t) = 0 fort < 0, then the output of the corresponding filter is

y(t) = / h(t — 7)z(7)dr.
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In this case, the filter and the impulse response functiorsaic to be causal. The output of a
causal filter at time can be calculated using only past historical valugés)|,<; of the currently
observable continuous-time input process.

The goal is to approximate(t) by a smooth filtered proceggt) via selection of an appropri-
ate causal impulse response functidn).

We are looking for families of the causal smoothing impukssponse function’(-) satisfying

the following conditions.

(A) The outputsy(-) approximate processes-); the arbitrarily close approximation can be

achieved by selection of an appropriate impulse respoose tine family.

(B) For processes(-) € Ly(R), the outputg(-) are infinitely differentiable functions. On the
higher frequencies, the frequency response of the filtey ssraall as possible, to achieve the

most effective damping of the energy on the higher frequenofz.

(C) The effectiveness of this family in the damping of thehag frequencies cannot be ex-

ceeded; any faster decay of the frequency response wouldddhe loss of causality.

(D) The effectiveness of this family in the damping of thelteg frequencies approximates the
effectiveness of some reference family of non-causal smogffilters with a reasonably

fast decay of the frequency response.

Note that it is not a trivial task to satisfy Conditions (@)}( For instance, consider a family of
low-pass filters with increasing pass inter{alA, A], whereA > 1. Clearly, the corresponding
smoothed processes approximate the original proceds-as+oo, i.e., Condition (A) is satisfied.
However, the distance of the set of these ideal low-passsfiftem the set of all causal filters is

positive [1].



Forz(-) € La(R), we denote byX = Fz the function defined ofR as the Fourier transform
of z(+);

X (iw) = (Fz)(iw) = / e"“r(t)dt, weR.

—00

Herei = /—1. Forz(-) € L2(R), the Fourier transfornX is defined as an element 6h(R)
(more preciselyX (i-) € La(R)).

Consider a reference family of "ideal” smoothing filtersiwihe frequency response
M, (iw) = e Ml > 0. (1)

For these filters, Condition (A) is satisfied as—+ 0, and Conditions (B) is satisfied for all > 0.
However, these filters are non-causal: for affy) € Ly(R), the output processes of these filters
are weakly predictable at timeon a finite horizont, ¢t + ) [6].

To satisfy Conditions (A)—(D), we consider a family of caufsiéers with impulse responses
{h,(-)}52, C L2(R) and with the corresponding Fourier transforis(iw), such that the fol-
lowing more special Conditions (a)-(d) are satisfied.

(a) Approximation of identity operator:

(al) For any? > 0, H,(iw) — 1 asv — +oo uniformly inw € [—, Q.

(@2) For anyz(-) € Lo(R),
() = 2()llLym) = 0 as v — oo,

wherey, is the output process

yu(t) = / hy(t — 7)x(7)dT.

—00

(b) Smoothing propertykor everyr > 0, there existg > 0 such that for any, > 1,

/ eI’ 1 H,, (iw) " dw < +00.



(c) Sub-ideal smoothingFor any§ > 1, there existss > 0 such that for any2 > 0

log | H, (iw)][°
/ I%I(?mdw:ﬂn @
{w >0y 1Hw

(d) Approximation of non-causal filtersl(1) with respect to tffeaiveness in dampingdzor any

e > 0andu > 0, there existy = v(u) > 0 such that

[, (i) = | M, (icw <e.

Mram) <

Let us show that Conditions (a)-(d) ensure that Conditigks(D) are satisfied, in a certain
sense. Clearly, Condition (a) ensures that Condition (Apissfied.

Further, by Condition (b), for any > 0 andv > 0,

/ (14 Jw]FY4 H, (i) dw < +00.

—00

Letz(-) € La(R), X = FX, andY, (iw) = H,(iw)X (iw). By HOlder inequality, it follows that

0o 00 1/2
/ <1+rw\k>2m<z‘w>12dwg</ <1+\wrk>4wﬂy<z‘w>r4dw) X2, < +oo.

Hencey, (t) has derivatives i, (R) of any order, and, therefore, is infinitely differentiabhetie
classical sense. Therefore, Condition (b) ensures thadiGam (B) is satisfied.

Let us show that Condition (c) ensures that Condition (Chaitisfied. Letd > 1 be fixed,
and letr = v(§) be such that(2) holds. Let us show that the filter with thefezgy response

h = F~1H cannot be causal for some "better” frequency respdiigev) such that

|H (iw)| = o(|H,(iw)]) as |w| — +oo. 3)

More precisely, we will show thak cannot be causal with a stronger condition that there exists

Q > 0 such that

|log |H (iw)|| > |log |H, (iw)||’,  |w| = Q. (4)
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In particular, this condition implies thatg |H,, (iw)|/ log | H (iw)| — 0 as|w| — 4-oc.
The desired fact that cannot be causal can be seen from the following. By Paley ardéfv
Theorem|[[14], the Fourier transforfi (iw) of a causal impulse respondé) € Ly(R) has to be

such that

dw < 400

/°° | log | H (iw)]|

oo 14 w?
(see, e.g./[13], p.35). Since= r(4) is such that[(R) holds, it follows fronii(4) thatcannot be
causal. Therefore, Condition (c) ensures that ConditigrigGatisfied.
Finally, Condition (d) ensures that Condition (D) is sa#idfisince the effectiveness of smooth-

ing is defined by the rate of damping of the higher frequencies

3 A family of sub-ideal smoothing filters
LetCt £ {z € C: Rez > 0}. Let us consider a set of transfer functions
Hopg(s) = e @) s e CT. (5)

Herea > 0,b > 0, andq € [g, 1), are rational numberg, € (0, 1) is a given number. We mean
the branch of s + b)? such that its argument igArg (s + b), whereArg z € (—m, 7] denotes the
principal value of the argument af€ C. This set was introduced inl[4] as an auxiliary tool for
solution of a parabolic equation in the frequency domain.

Let us consider the set of all transfer functions (5) withorsl numbers: > 0, b > 0, and
g € [1/2,1). We assume that this countable set is counted as a seq{iéhgé> , such that

a—0,b—0,g— 1asy — +oc.

Theorem 1 Conditions (a)-(d) are satisfied for the family of filters defl by the transfer func-

tions{H, }>2 . (Therefore, Conditions (A)-(D) are satisfied for this fami



Proof of TheorenillLet H" be the Hardy space of holomorphic 6ht functionsh(p) with
finite norm(|h| g- = sup,~¢ [|h(p + iw)||L, (r), 7 € [1, +00] (see, e.g.[]7]).

Clearly, the functions?, (p) are holomorphic irC*, and
In|H,(s)| = —Re (a(s + b)?) = —al|s + b|? cos[gArg (s + b)]. (6)

In addition, there existd/ = M (b, q) > 0 such thatos[gArg (p +b)] > M forall s € CT. It

follows that
|H,(s)| < e @Mt <1 seCt. 7)

HenceH, € H" for all r € [1,+0oc|. By Paley-Wiener Theorem, the inverse Fourier transforms
h, = F~'H,(iw) are causal impulse responses, ig(t) = 0 for t < 0 (see, e.g.[[19], p.163).
Letz € Ly(R), X = Fz,andY, = H, X.
Let us show that Condition (a) holds. Sinee+ 0 asv — +o0, it follows that H,, (iw) — 1
asv — +oo for anyw and that Condition (al) holds. By Condition (aX),(iw) — X (iw) as
v — +oo for allw € R. In addition,|H,, (iw)| < 1. HencelY, (iw) — X (iw)| < 2| X (iw)|. We

have that| X (iw) ||z, (r) = |7l z,r) < +oo. By Lebesgue Dominance Theorem, it follows that
1Y, (iw) = X (iw)| ) = 0 a@s v — 4oc.

Therefore, Condition (a) holds.

Let us show that Condition (b) holds. By (7), it follows that
|H, (iw)| < e”Mll” e R, (8)

Therefore, Condition (b) holds with any< q.
To see that Condition (c) holds, it suffices to observe {Hph@ls if6g > 1, i.e.,q > 1/6.
Let us show that Condition (d) holds. We assume that the Jemfiiransfer functiondd,,  ,(-)

is counted as a sequen{, }5° | such thab — 0, ¢ — 1 asA — +oo, with a = 11/ cos(qm/2).
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We have thatos[gArg (iw + b)] > cos(qm/2) for all b > 0, w € R andcos[qArg (iw + b)] —

cos(qm/2)asb — Oforallg < 1,w € R.

By (@)

Hy(iw)| — | M (iw)| asA — +oo for all w € R. Further, we have that
—In |H)(iw)| = aRe [(iw + b)?] = aliw + b|? cos[gArg (iw + b)]
> aliw + b|? cos(qm/2) > a|lw|? cos(qm/2). 9)

Hence— In |Hy (iw)| > plw|? and|H, (iw)| < e~#“I*. Sinceq > ¢ > 0, we have from[(B) that,

for some constants; > 0 andcy > 0,

H)\(iw)| + | M, (iw)| < ¢ exp (—co(|w|? + |w])) for all

w. By Lebesgue Dominance Theorem, it follows that

|[H(iw)| — | M, (iw —0 as \— +oo. (10)

)’HLQ(R)
Hence Condition (d) holds. This completes the proof of Thedd. ]

Note that the sequendé, (s) introduced above does not ensure approximation descriped b
Condition (al), since — +oc and H,(0) — 0 as\ — +oco. On the other hand, the sequence
H,(s) does not ensure approximatidn {10). The following corgllshows a way toward the

combination of these approximation properties.

Corollary 1 Letq € [g,1) andb > 0 be given. Let a sequengél,, ()} = {H,4(-)} be selected
such thata — 0. Then Condition (al) holds for this sequence, &Hg (iw)| < e~¢“I* for all w,

wherec = a cos(qm/2).

Proof of Corollary 1 follows from[(9).

4 lllustrative examples

The sequence{H,(-)} introduced in the proof above is such thallH,(iw)| —
exp(—plw|)|l,m) — 0@sA — +oo, i.e., it approximates the gain of the non-causal smooth-

ing filter with the frequency respons¥,(iw) = exp(—plw|). This sequence corresponds to a
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sequence H,p,(-)} such thaty — 1,b — 0, a = p/ cos(qm/2). Figure[l shows the shapes
of gain curves| M, (iw)| = exp(—u|w|) for the reference non-causal filter with = 0.1 and
|Hgp,q(iw)| for sub-ideal causal filter§1(5) with = 0.99 andb = 1 — ¢ = 0.01 andg = 0.9,
b=1— q = 0.1 respectively. In both cases,= ./ cos(qm/2) was used. As expected, damping
on higher frequencies is more effective for the non-caukial than for causal ones, and is more

effective forqg = 0.99 than forq = 0.9. It can be illustrated as the following: far = 1000, the

[Hab,q(iw)]

ratio T, G

is found to be 1.47 and 38.65 fgr= 0.99 andq = 0.9 respectively.

Figure[2 illustrates Corollar]1 and shows the shapes of euwoves for approximation of
identity operator on low frequencies. More precisely, b |M, (iw) — 1| = \e‘“'“" — 1\ for
the reference non-causal filter with= 0.05 and |H,; ,(iw) — 1| for sub-ideal causal filter§](5)
with a = b = 0.1 anda = b = 0.05 respectively, withy = 0.5.

Figure[3 shows an example of impulse respasg, (t) = (F~'H,;,)(t) calculated as the
inverse Fourier transform for causal filtéf (5) with= 0.9, b = 0.1, a = 1/ cos(qm/2) = 6.3925.

It can be seen that the impulse response function almosthvesion some interval near zero, i.e.,
it is close to a causal impulse response with delay. (Howé@vwaoes not become a response with
delay). There is a reason for this:gif— 1 andb — 0 then, for a giveru, c > 0, H, 4 4(p) — e
uniformly in the domain{p € C* : |p| < ¢}.

It can be noted that the phase shift for the frequency regpurgction is large for largéw|,

and it is increasing whein — 1. This does not affect much the performance of the filter sthee

gain is small for these largey| and Condition (al) is ensured.

5 Conclusion

The paper proposes a family of causal smoothing filters witiost exponential damping of the

energy on the higher frequencies and with the frequencyrespthat can be selected to be arbi-



trarily close to the real unity uniformly on an arbitrarilgrge interval. These filters are sub-ideal
meaning that a faster decay of the frequency response weadbtb the loss of causality; this is
because they approximate non-causal filters with expamienate of decay. A possible application
is in interpolation and forecast algorithms. The transtgrctions obtained are not rational func-
tions; it would be interesting to consider their approxiimatby the rational functions. Another

problem is the transition to discrete time processes. Weelgdor future research.
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Figure 1:Gain decay: shapes of |M,,(iw)| = exp(—p|w|) for non-causal filter with g = 0.1 and

|Hgpq(iw)]| for causal filters (@) with ¢ = 0.99, b = 0.01 and ¢ = 0.9, b = 0.1 respectively, with

a = u/ cos(qm/2).
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Figure 2: Approximation of identity operator: shapes of error curves |M,(iw) — 1| and
|H g p,q(iw) — 1] respectively for non-causal filter with 41 = 0.05 and for causal filters (&) with

a=b=0.1and a =b=0.05, with ¢ = 0.5.

13



0.18

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

-0.02 : ;
0

Figure 3:Impulse response hgp 4(t) = (f_lHa,b,q)(t) for causal filter (&) with ¢ = 0.9, b = 0.1,

a=1/cos(qm/2) = 6.3925.
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