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Abstract

This paper addresses the problem of blind separation of convolutive mixtures of BPSK and circular linearly modulated
signals with unknown (and possibly different) baud rates and carrier frequencies. In previous works, we established
that the Constant Modulus Algorithm (CMA) is able to extract a source from a convolutive mixture of circular linearly
modulated signals. We extend the analysis of the extraction capabilities of the CMA when the mixing also contains BPSK
signals. We prove that if the various source signals do not share any non zero cyclic frequency nor any non conjugate
cyclic frequencies, the local minima of the constant modulus cost function are separating filters. Unfortunately, the
minimization of the Godard cost function generally fails when considering BPSK signals that have the same rates and
the same carrier frequencies. This failure is due to the existence of non-separating local minima of the Godard cost
function. In order to achieve the separation, we propose a simple modification of the Godard cost function which only
requires knowledge of the BPSK sources frequency offsets at the receiver side. We provide various simulations of realistic
digital communications scenarios that support our theoretical statements.
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1. Introduction

The blind source separation of convolutive mixtures of
linearly modulated signals has mainly been studied in the
case where the signals share the same known baud rate,
and when the sampling frequency of the multivariate re-
ceived signal coincides with this baud-rate. In this context,
to be referred to in the sequel as the stationary case, the
discrete-time received signal coincides with the output of
an unknown MIMO filter driven by the sequences of sym-
bols sent by the various transmitters. In most cases, these
sequences are independent and identically distributed, and
several methods have been proposed in order to extract
each of them from the observation (see e.g. [3], [6], [7],
[12], [13]) . The source separation problems that are en-
countered in the context of passive listening are however
more complicated because the transmitters are usually
completely unknown to the receiver, and have no reason
to transmit linearly modulated signals sharing the same
baud-rates. It is therefore quite relevant to address the
problem of blind separation of linearly modulated signals
with unknown, and possibly different, baud rates. In this
context, the received signal is sampled at any frequency
satisfying the Shannon sampling theorem, so that the cor-
responding discrete-time signal is cyclostationary with un-
known cyclic frequencies. If the cyclic frequencies were
known at the receiver side, it would be easy to generalize
the usual blind source separation approaches based on the

optimization of contrast functions depending on higher or-
der cumulants. However, when the cyclic frequencies are
unknown, it is impossible to consistently estimate the cu-
mulants, a conceptual problem first remarked by Ferreol
and Chevalier ([5]) in the context of blind separation of in-
stantaneous mixtures. An obvious approach would consist
in estimating the unknown cyclic frequencies. However,
this is a difficult task if the excess bandwidths of the trans-
mitted signals are low and if the duration of observation
is not large enough.

In contrast with the cumulants, the constant modulus
cost function can be consistently estimated in the cyclosta-
tionary context. In [10], we considered only source signals
that transmit second-order circular symbol sequences, and
we have shown that in this case, to be referred to as the cir-
cular case, the minimization of the Godard cost function
allows to extract the sources using a deflation approach
if their baud-rates are different one from another. If cer-
tain baud rates coincide, sufficient conditions for the sep-
aration have been established in [10]. Although we have
not been able to prove that separation is achieved in the
most general case, all the simulations we have performed
strongly suggest that the minimization of the Godard cost
function is successful in the circular case. The purpose of
this paper is to address this issue when in the non circular
source signals, which will be referred to as the non circular
case, and to show how the separation method based on the
minimization of the CMA contrast function coupled with
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a deflation approach can be adapted to this context. As
in [10] we only focus in this paper on the separation of the
first source.
In order to simplify the presentation of our results, we

only consider the case where the non circular signals are
BPSK signals. We begin by defining in section 2 the con-
text of our study and giving a brief description of the con-
sidered signals and criteria. In section 3 we prove that the
Godard cost function is still successful if the sources do not
share the same baud rates and the same carrier frequencies.
We also prove, in section 4, that contrary to the circular
case, the minimization of the Godard cost function fails to
separate 2 BPSK signals sharing the same baud rate and
the same carrier frequency. We show that this is due to
the existence of non separating local minima of the Godard
cost function, toward which the minimization algorithms
seem to converge quite often. We also show that it is possi-
ble to modify the Godard cost function in order to achieve
source separation of K non circular BPSK modulated sig-
nals sharing the same known (or well estimated) carrier
frequency. Section 5 briefly generalizes this result to more
general mixtures. The new modified CMA algorithm needs
the estimation of the carrier frequencies offsets of the non
circular source signals, or equivalently the estimation of
the ”significant”non conjugate cyclic frequencies of the re-
ceived signal. Fortunately, this is a much easier task than
the estimation of baud rates, because the non conjugate
cyclic correlation coefficients of the received signal at twice
the frequency offsets are not affected by possible low ex-
cess bandwidths of the source signals (see [1]). Numerical
results are finally presented in section 6.
Notations: If (un)n∈Z is a discrete-time sequence, we de-

note by < un > the time average operator defined as

< un >= lim
N→+∞

1
2N + 1

N
∑

n=−N

un

If x is a complex valued random variable, we denote by
c4(x) its fourth order cumulant defined by cum{x, x∗, x, x∗}.
If (x(n))n∈Z is a discrete-time cyclostationary sequence, we
define, when it makes sense, the cyclo-correlation at cyclic-
frequency α and time lag m:

∀α ∈
(

−1
2
,
1
2

]

, ∀m ∈ Z, R(α)
x (m) =< E(x(n + m)x(n)∗e−2iπnα) >

and the non conjugate cyclo-correlation at cyclic-frequency
αc and time lag m:

∀αc ∈
(

−1
2
,
1
2

]

, ∀m ∈ Z, R(αc)
c,x (m) =< E(x(n+m)x(n)e−2iπnα) >

For a wide-sense cyclostationary continuous-time ran-
dom process (xa(t))t∈R we denote by R(αa)

a,x (τ) and by R(αa,c)
a,c,x (τ)

the cyclic correlation coefficient and respectively non con-
jugate cyclic correlation coefficient at cyclic-frequency
αa(respectively non conjugate cyclic frequency αa,c) and
time lag τ.

For an interval B, we denote by F (B) the set of all func-
tions fa(t) ∈ L2(R) such that

fa(t) =
∫

B
s2iπνt f̂a(ν)dν

In other words, a square integrable function fa is an ele-
ment of F (B) if and only if its Fourier transform f̂a(ν) is
zero outside B.

2. Problem statement

2.1. Assumptions

We assume that K unknown transmitters send linearly
modulated signals sharing the same frequency bandwidth.
The receiver is equipped with a sensor of N–arrays, and the
corresponding N–dimensional received signal is sampled at
rate Te supposed to satisfy the Shannon sampling theorem.
For any k, k = 1, . . . ,K, the signal transmitted by source
k is obtained by linearly modulating a unit variance zero
mean i.i.d. sequence of symbols {ak,n}n∈Z with a shaping
filter ga,k

sa,k(t) =
∑

n∈Z
ak,nga,k(t − nTk)

We denote by Tk the symbol period of the source number
k and we consider a shaping filter of limited bandwidth
[− 1+γk

2Tk
,

1+γk

2Tk
], where γk is the excess bandwidth factor, be-

longing to [0, 1). The bandwidth of the complex envelope
of transmitted signal k is then [− 1+γk

2Tk
,

1+γk

2Tk
].

In order to simplify the presentation of the results we
make the following assumption:

• the symbol sequence {ak,n}n∈Z is either second order
circular or corresponding to a BPSK constellation (i.e.
equal to ±1) for each k.

The propagation channels between each transmitter and
the receiver are assumed to be frequency selective. More-
over, the carrier frequencies of the various transmitted sig-
nals of course do not coincide with the center frequency of
the receive filter of the receiver. Hence, the contribution
of each transmitted signal at the receiver side is corrupted
by a frequency offset. The frequency offset associated to
source k is denoted by ∆ fk.
We denote by ya,k(t) the N dimensional continuous-time

signal representing the contribution of the transmitted sig-
nal k to the received signal ya(t) which is to say, the signal
that would be received if only transmitter k were active.
We can then write ya,k(t) as

ya,k(t) = e2iπ∆ fk t (ha,k ∗ sa,k
)

(t) (1)

where ∗ represents the convolution operator and where ha,k

is the N dimensional channel impulse response between
source k and the multiple-sensors receiver. The presence
of the frequency offset shifts the bandwidth of the ya,k(t)
signal with a factor equal to ∆ fk, thus making it coincide
with the interval [− 1+γk

2Tk
+ ∆ fk,

1+γk

2Tk
+ ∆ fk].
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The continuous-time received signal (in the absence of
noise) ya(t) =

∑K
k=1 ya,k(t) is sampled at rate Te which is

supposed to verify

1
2Te
> max

k

(

1+ γk

2
+ |∆ fk |

)

(2)

Under these assumptions, the N-dimensional discrete-time
received signal y(n) can be written as

y(n) =
K

∑

k=1

e2iπnδ fk















∑

l

hk,lsk(n − l)















=

K
∑

k=1

e2iπnδ fk [hk(z)]sk(n)

(3)
where for each k, sk(n) represents the sampled version of
transmitted signal k, and where hk(z) =

∑

l∈Z kk,lz−l is the
transfer function of the 1-input / N outputs discrete time
equivalent channel between transmitter k and the receiver.
Finally, δ fk is defined as δ fk = ∆ fkTe.

2.2. Expansion of the Godard cost function

Due to the previously described context, each of the
transmitted signals is cyclostationary and thus has a set
of cyclic frequencies which are easily identified from the
second order statistics of each signal. For all k, and for all
τ ∈ R, the cyclic correlation function t → E(sa,k(t+τ)sa,k(t)∗)
and, for a BPSK signal, the non conjugate cyclic correla-
tion function t → E(sa,k(t + τ)sa,k(t)) are periodic of period
Tk. Because of the limited bandwidth of sa,k, the expan-
sion in Fourier series of these two functions only involves
frequencies 0, 1

Tk
and − 1

Tk
of sa,k.

E(sa,k(t + τ)sa,k(t)∗) = R(0)
sa,k

(τ) + R
( 1

Tk
)

sa,k
(τ)e2iπ t

Tk + R
(− 1

Tk
)

sa,k
(τ)e−2iπ t

Tk

E(sa,k(t + τ)sa,k(t)) = R(0)
c,sa,k

(τ) + R
( 1

Tk
)

c,sa,k
(τ)e2iπ t

Tk + R
(− 1

Tk
)

c,sa,k
(τ)e−2iπ t

Tk

Note that when the excess bandwidth γk is small, the cyclic
correlation coefficients at non-zero frequencies are clearly
inferior to those corresponding to the zero cyclic frequency.
We denote αk =

Te
Tk

for k = 1, . . . ,K. Then, it is clear
that the non zero cyclic frequencies of the discrete time
signal are ±αk; if moreover sk is a BPSK signal, its non
conjugate cyclic frequencies are 0,±αk. From now on, we
denote by I and Ic the set of all cyclic and non conjugate
cyclic frequencies of y(n). We obtain immediately that

• I = {0, (±αk)k=1,...,K}

• Ic = {(2δ fk, 2δ fk ± αk)k=1,...,K , sk BPSK}

In the following, we also denote I∗ the set of non zero cyclic
frequencies of y(n).
In order to extract one of the source signals, (y(n))n∈Z

is filtered by a N–inputs / 1–output filter g(z) to produce
the 1–dimensional signal r(n) = [g(z)]y(n). It is straightfor-
ward that this scalar signal r(n) has the same cyclic and
non-conjugate cyclic frequencies as the received signal y(n).

Our goal is to find filter g(z) producing a signal r(n) that
coincides with a filtered version of one of the source sig-
nals (sk)k=1,...,K . This can be achieved by minimizing a cost
function. In the following we investigate whether or not
the Godard cost function is a good contrast function for
mixtures containing BPSK signals. In a cyclostationary
context and for a discrete time signal r, the Godard cost
function is defined as

J(r) =< E

(

|r(n)|2 − 1
)2
> (4)

In order to express J(r) in a more convenient way, we re-
mark that r(n) can be written as

r(n) =
K

∑

k=1

e2iπnδ fk [ fk(z)]sk(n) (5)

where fk(z) is the transfer function fk(z) = g(ze−2iπδ fk )hk(z).
We denote by ‖ fk‖ the norm of filter fk(z) defined by

|| fk ||2 =
∫ 1/2

−1/2
| fk(e2iπν)|2S (0)

sk
(e2iπν) dν

where S (0)
sk

(e2iπν) represents the spectral density of signal
(sk(n))n∈Z. We finally define filter f̃k(z) and signal s̃k(n) by

f̃k(z) =
fk(z)
‖ fk‖
, s̃k(n) = [ f̃k(z)]sk(n) (6)

If ‖ fk‖ = 0, we put f̃k(z) = 0 and s̃k(n) = 0. It is clear that
‖ f̃k‖ = 1, and that < E|s̃k(n)|2 >= 1. r(n) can be written as

r(n) =
K

∑

k=1

‖ fk‖e2iπnδ fk s̃k(n) (7)

and coincides with a filtered version of one of the source
signal (up to the term e2iπnδ fk) if and only if the coeffi-
cients (‖ fk‖)k=1,...,K satisfy ‖ fk‖ = δ(k− k0)‖ fk0‖. We state the
following result

Proposition 1. The Godard cost function given by (4)
can be expanded as

J(r) =
K

∑

k=1

β(s̃k)‖ fk‖4+
∑

k1,k2

l(s̃k1 , s̃k2)‖ fk1‖2‖ fk2‖2−2
K

∑

k=1

‖ fk‖2+1

(8)
where l(s̃k1, s̃k2) and β(s̃k) are defined respectively by

2+Re

















2
∑

α∈I∗

R(α)
s̃k1

(0)
(

R(α)
s̃k2

(0)
)∗
+

∑

αc∈Ic

R
(αc−2δ fk1 )
c, s̃k1

(0)
(

R
(αc−2δ fk2 )
c, s̃k2

(0)
)∗
















(9)
and by

< c4(s̃k) > +2+ 2
∑

l=−1,1

∣

∣

∣Rlαk
s̃k

(0)
∣

∣

∣

2
+

∑

l=−1,0,1

∣

∣

∣Rlαk
c, s̃k

(0)
∣

∣

∣

2
(10)

3



Proof. We start by writing J(r) as

J(r) =< E|r(n)|4 > −2 < E|r(n)|2 > +1

Using the relation

E|r(n)|4 = c4(r(n)) + 2
(

E|r(n)|2
)2
+

∣

∣

∣E(r2(n))
∣

∣

∣

2

and the Parseval identities <
(

E|r(n)|2
)2
>=

∑

α∈I |R(α)
r (0)|2

and <
∣

∣

∣E(r(n))2
∣

∣

∣

2
>=

∑

α∈Ic
|R(α)

c,r (0)|2, we immediately get
that

J(r) =< c4(r(n)) > +2
∑

α∈I
|R(α)

r (0)|2+
∑

α∈Ic

|R(αc)
c,r (0)|2−2R(0)

r (0)+1

(11)
Since (s̃k)k=1,...,K signals are independent we can write

< c4(r(n)) > =

K
∑

k=1

‖ fk‖4 < c4(s̃k(n)) >

R(α)
r (0) =

K
∑

k=1

‖ fk‖2R(α)
s̃k

(0)

where α represents one of the cyclic frequencies of r. For
α = 0, the last expression becomes R(0)

r (0) =
∑K

k=1 ‖ fk‖2 since
we assumed that < E|s̃k(n)|2 >= R(0)

s̃k
(0) = 1. Furthermore, it

is easily proved that if αc is one of the non-conjugate cyclic
frequencies of r, then the non-conjugate cyclic correlation
coefficient of signal e2iπnδ fk s̃k(n) at αc frequency and at time
lag 0 coincides with R(αc−2δ fk)

c, s̃k
(0). This implies that :

R(αc)
c,r (0) =

K
∑

k=1

‖ fk‖2R(αc−2δ fk)
c, s̃k

(0)

Using these various expressions in (11) we obtain the an-
nounced result. Notice that it is easy to establish that
β(s̃k) is also given by

β(s̃k) =< E|s̃k(n)|4 > (12)

Note that, as shown in [10], β(s̃k) =< E|s̃k(n)|4 >≥ 1.
Expression (8) shows that J(r) is a function of both the

norms (‖ fk‖2)k=1,...,K , and the unit norm filters ( f̃k(z))k=1,...K

defined by s̃k(n) = [ f̃k(z)]sk(n), and that these 2 sets of
parameters are independent. Minimizing J(r) with respect
to g(z) is thus equivalent to minimizing (8) independently
with respect to the norms (‖ fk‖2)k=1,...,K and the unit norm
filters ( f̃k(z))k=1,...K .

In the following we study the minimization of J(r) firstly
when the different source signals do not have any non zero
cyclic frequency in common nor any non-conjugate cyclic
frequency in common and then we consider an opposite
scenario where K BPSK signals share the same baud rate
and the same carrier frequency.

3. The source signals do not share the same cyclic

and non conjugate cyclic frequencies

We first study the behavior of J(r) when the source sig-
nals do not share the same cyclic and non conjugate cyclic
frequencies. This situation is likely to occur when the dif-
ferent transmitters do not belong to the same network and
it practically implies that ∀k , l ∈ {1 . . .K} αk , αl (i.e.
Tk , Tl) and δ fk , δ fl (∆ fk , ∆ fl). In this context, the
term l(s̃k1, s̃k2) reduces to the constant term 2, and J(r) is
given by

J(r) =
K

∑

k=1

β(s̃k)‖ fk‖4+2
∑

k1,k2

‖ fk1‖2‖ fk2‖2−2
K

∑

k=1

‖ fk‖2+1 (13)

We now study the conditions under which the minimum
of J(r) is reached for a filter such that ‖ fk‖ = δ(k − k0)‖ fk0‖.
For this, we follow [10] and we first fix the unit norm fil-
ters ( f̃k)k=1,...,K or equivalently the (β(s̃k))k=1,...,K coefficients.
Then, we consider the problem of minimizing J with re-
spect only to the (‖ fk‖2)k=1,...,K . This is an easy task be-
cause, as a function of the (‖ fk‖2)k=1,...,K norms, J(r) has a
simple expression which allows the following result to be
derived

Theorem 1. The minimum of J(r) w.r.t. (‖ fk‖2)k=1,...,K is
reached for sequences such that ‖ fk‖2 = δ(k − k0)‖ fk0‖2 for a
certain k0 index if and only if

min
k=1,...,K

β(s̃k) < 2

and if this minimum is reached for the index k0. Moreover,
the minimum value of J is equal to 1− 1

βmin,k0
.

Corollary 1. If the sources do not share the same cyclic
and non conjugate cyclic frequencies, the global minimiza-
tion of the Godard cost function allows to extract all the
source signals using a deflation approach if

βmin,k = min
f̃k ,‖ f̃k‖=1

β(s̃k) < 2, for each k = 1, . . . ,K (14)

The proof of this theorem can be found in [10]. It re-
mains to check if condition (14) holds. For circular lin-
early modulated signals, (14) has been analytically proved
in [10]. In the case of BPSK signals, the following result
can be proved using a similar approach.

Proposition 2. Consider a BPSK signal with symbol pe-
riod T and excess bandwidth 0 < γ < 1, and assume that
the sampling period Te does not belong to {T, T

2 ,
T
3 ,

2T
3 }. De-

note by κ the kurtosis of the corresponding binary symbol
sequence, κ = −2. Then, βmin = min f̃ ,‖ f̃ ‖=1 β([ f̃ (z)]s(n)) is
given by

βmin = inf
fa∈F ([− 1+γ

2T ,
1+γ
2T ])
Φ( fa) (15)

where Φ( fa) is defined by

Φ( fa) = κT
∫

R
| fa(t)|4dt

(
∫

R
| fa(t)|2dt)2 + 2+ 4

∣

∣

∣

∣

∣

∣

∫

R
| fa(t)|2e−2iπ t

T dt
∫

R
| fa(t)|2dt

∣

∣

∣

∣

∣

∣

2

+
|
∫

R
fa(t)2dt|2

(
∫

R
| fa(t)|2dt)2 +

∣

∣

∣

∣

∫

R
fa(t)2e−2iπ t

T dt
∣

∣

∣

∣

2

(
∫

R
| fa(t)|2dt)2 +

∣

∣

∣

∣

∫

R
fa(t)2e2iπ t

T dt
∣

∣

∣

∣

2

(
∫

R
| fa(t)|2dt)2

4



Moreover, if we define ηmin by ηmin = min‖ f̃ ‖=1 < c4(s̃) >,
then

ηmin = inf
fa∈F ([− 1+γ

2T ,
1+γ
2T ])
κT

∫

R
| fa(t)|4dt

(
∫

R
| fa(t)|2dt)2

(16)

We give the proof of this result in the Appendix A.

Remark 1. If Te ∈ {T, T
2 ,

T
3 ,

2T
3 }, the expression and, as

a consequence, the value of βmin, is different from (15).
βmin, as a function of Te, is therefore a constant func-
tion except in such points as {T, T

2 ,
T
3 ,

2T
3 } where it has a

different value. We are therefore dealing with a discontin-
uous function. In order to illustrate this point, we consider
as an example the case where Te = T . For this sampling
rhythm to satisfy the condition of Shannon it is necessary
and sufficient that the excess bandwidth factor be 0.
Under these conditions, it is well known that βmin equals

1 and ηmin = −2, while we will soon see that βmin ≃ 1.19
and ηmin = −1.36 if Te does not belong to {T, T

2 ,
T
3 ,

2T
3 }. For

simplicity reasons, we prefer not to give the expressions of
βmin if Te ∈ { T2 ,

T
3 ,

2T
3 }. In any case, the probability of Te

being equal to one of these values is obviously null in a
blind context. For this reason we suppose in the following
that Te does not belong to {T, T

2 ,
T
3 ,

2T
3 }.

As F ([− 1+γ1

2T ,
1+γ1

2T ]) ⊂ F ([− 1+γ2

2T ,
1+γ2

2T ]) if γ1 < γ2, (15)
implies that considered as a function of γ, βmin(γ) is de-
creasing. This observation allows us to make the following
statement :

Proposition 3. Function γ→ βmin(γ) is decreasing when
γ varies from 0 to 1. Consequently, βmin(γ) is strictly in-
ferior to 2 for all γ if and only if βmin(0) < 2.

The main interest of proposition 3 is that if a function
fa(t) ∈ F ([− 1

2T ,
1

2T ]) (corresponding to γ = 0), then the
integrals

∫

R

| fa(t)|2e−2iπ t
T dt,

∫

R

fa(t)2e−2iπ t
T dt,

∫

R

fa(t)2e2iπ t
T dt

vanish. This result is a direct application of the inequality
of Parseval. The expression of βmin(0) is therefore

βmin(0) = min
fa∈F ([− 1

2T ,
1

2T ])
κT

∫

R
| fa(t)|4dt

(
∫

R
| fa(t)|2dt)2

+ 2+

∣

∣

∣

∫

R
fa(t)2dt

∣

∣

∣

2

(∫

R
| fa(t)|2dt

)2

(17)
It is easy to notice that βmin does not depend of T and
that the theoretical expressions (15) and (16) of βmin and
ηmin can be used in order to compute the numerical values
of these functions for all the values of γ ∈ [0, 1] via the ap-
proach proposed in [10].Figure 1(a) gives a numerical rep-
resentation of βmin as a function of γ in the case of BPSK
signals. Moreover, we have found that ηmin ≃ 0.68κ(1+ γ)
and is equal to −1.36(1+ γ) in the case of BPSK signals,
since κ = −2. Figure 1(a) also confirms the decreasing
nature of βmin with respect to γ, and the fact that for a
BPSK modulated signal βmin < 2 for all γ provided that
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Figure 1: βmin as a function of γ in the case of (a) BPSK signals and
(b) cicular signals.

Te does not belong to {T, T/2, T/3, 2T/3}. If Te = T , as
we have already mentioned, βmin = 1; if Te equals one of
the other possible values, we can directly verify that βmin

remains strictly inferior to 2. We can therefore enunciate
the following result:

Proposition 4. In the case of circular or BPSK trans-
mitted signals, not sharing any non zero cyclic frequency
nor any non conjugate cyclic frequency, the minimization
of the constant modulus criterion, along with a deflation
approach allows the extraction of all sources.

Remark 2. Notice that the values of βmin for a BPSK
modulated signal are smaller than the ones we observe for
linearly modulated circular signals which we represent in
figure 1(b). This means that if a BPSK modulated signal
is mixed with circular modulated signals, the BPSK source
will very often be the first one extracted when using a de-
flation approach.

Despite its undeniable importance, proposition 2 is not
completely convincing as to the pertinence of the pro-
posed approach. In practice, the search for filter g(z) =
∑L

l=−L g(l)z−l which extracts a source from the mixture is
done by minimizing an estimator Ĵ(r) of J(r). Further-
more, the minimization of Ĵ(r) is carried out by means of

5



iterative algorithms such as the steepest descent or New-
ton algorithms who are not guaranteed to converge toward
the global minimum of Ĵ and may very well converge to-
ward a local minimum instead. It is therefore necessary
to verify that J does not have any non separating lo-
cal minima. Under a technical assumption, the following
result can be established

Proposition 5. Assume that at least one of the functions
f̃k → β([ f̃k(z)]sk(n)) defined on the set of all unit norm fil-
ters has no local minimum f̃ ∗k such that β([ f̃ ∗k (z)]sk(n)) ≥ 2.
Then, the argument of each local minimum of the Godard
cost function is a separating filter.

Proof. We define the following quantities u =

(
∑K

k=1 ‖ fk‖2)1/2 and vk =
‖ fk‖

u . Expression (13) of J(r) then
becomes

J(r) = u4

















K
∑

k=1

β(s̃k)v4
k + 2

∑

k1,k2

v2
k,1v2

k,2

















− 2u2















K
∑

k=1

v2
k















+ 1

In the following we pose β = (β(s̃1), . . . , β(s̃K))T and we
denote by T (v, β) the expression multiplying the term u4. It
is clear that

∑K
k=1 v2

k = 1. Since
∑

k1,k2
v2

k,1v2
k,2 = (

∑K
k=1 v2

k)2 −
∑K

k=1 v4
k we obtain a simpler expression for T (v, β)

T (v, β) = 2+
K

∑

k=1

v4
k(β(s̃k) − 2)

J(r) is thus given by:

J(r) = u4T (v, β) − 2u2
+ 1

We consider a local minimum ( f ∗1 (z), . . . , f ∗K(z))T of J(r), and
denote by u∗, v∗, f̃ ∗k , s̃∗k, β∗ the corresponding values of
u, v, f̃k, s̃k, β. It is easy to check that the point v∗ is a local
minimum of the function v→ T (v, β∗). As at least one the
coefficients (β(s̃∗k) − 2) is strictly negative, v∗k = δ(k − k0)v∗k0

where k0 is one of the index for which βk0,∗ − 2 < 0 (see
e.g. [4]). This implies that ‖ fk,∗‖ = δ(k − k0)‖ f ∗k0

‖, and
that the local minimum f1,∗(z), . . . , fK,∗(z) is a separating
filter. It is difficult to check analytically whether or not it
exists k for which f̃k → β([ f̃k(z)]sk(n)) has no local minimum
f̃ ∗k such that β([ f̃ ∗k (z)]sk(n)) ≥ 2. However, this condition
probably holds because the steepest descent minimization
algorithms of the functions f̃k → β([ f̃k(z)]sk(n)) we have run
always converge toward a point for which β([ f̃k(z)]sk(n)) <
2.
In sum, the above results indicate that if the source

signals do not share the same cyclic and non conjugate
cyclic frequencies, then, the minimization of the Godard
cost function allows to extract circular and BPSK source
signals. In this context, it is therefore possible to separate
the source signals without any knowledge of their cyclic
and non conjugate cyclic frequencies.

4. K BPSK sources sharing the same baud-rate

and the same carrier frequency

In this section, we consider the opposite situation, when
all the source signals are BPSK signals with the same baud
rate T , the same carrier frequency offset ∆ f , and the same
excess bandwidth γ. We also denote by α and δ f the terms
α = Te/T and δ f = ∆ f Te. Recall that the sampling rate Te

is assumed not to belong to {T, T/2, T/3, 2T/3}.

4.1. Existence of spurious local minima for K = 2 and
γ = 0

Our purpose is to support the conjecture that the Go-
dard cost function has non separating local minima, and
that the minimization algorithms often converge toward
these spurious points. In order to justify this, we assume
that the common excess bandwidth γ of the 2 source sig-
nals is equal to 0. In this context, the cyclic and non
conjugate cyclic correlations coefficients at frequencies ±α
are zero. Expression (8) of J(r) thus reduces to

J(r) = β(s̃1)‖ f1‖4 + β(s̃2)‖ f2‖4+ (18)

2‖ f1‖2‖ f2‖2
(

2+ Re(R(0)
c, s̃1

(0)R(0)
c, s̃2

(0)∗)
)

− 2
(

‖ f1‖2 + ‖ f2‖2
)

+ 1

where β(s̃i) is given by

β(s̃i) =< c4(s̃i) > +2+ |R(0)
c, s̃i

(0)|2

for i = 1, 2. This expression is formally similar to the one
of J in the case where the 2 sources are circular with a non
zero excess bandwidth (see [10]), except that the cyclic
correlation coefficients R(0)

c, s̃i
(0) are replaced by 2R(α)

s̃i
(0). An

analog of the condition |2R(α)
s̃i

(0)| ≤ 1, which plays an im-
portant role in [10], can also be proved true for the cyclic
correlation coefficients R(0)

c, s̃i
(0), i.e. |R(0)

c, s̃i
(0)| ≤ 1. Consider-

ing the definition of s̃i in (6), we can write

R(0)
c, s̃k

(0) =
∫

R

ˆ̃f (e2iπν) ˆ̃f (e−2iπν)S (0)
c,sk

(e2iπν) dν

As signal sk is real valued, S (0)
c,sk

coincides with the spectrum

S (0)
sk

of sk, and is an even function. Using the Schwartz

inequality, we get immediately that |R(0)
c, s̃i

(0)| ≤ 1. It is
therefore possible to use Theorem 2 of [10] established in
the circular case to prove that if βmin and ηmin defined in
Proposition 2 verify















−3βmin + 5+ ηmin > 0

2(βmin − 1)βmin − 4
(

1− 1
2

√

2(βmin − 1)− 1− ηmin

)2
< 0
(19)

then, the argument of the global minimum of J(r) is a
separating filter, and the minimum value of J(r) coincides
with 1− 1/βmin. For γ = 0, βmin ≃ 1.19, ηmin ≃ −1.36, and
it is easily checked that the 2 conditions above are satis-
fied. The global minimization of J(r) therefore allows to
separate the 2 BPSK signals. Moreover, 1− 1/βmin ≃ 0.16.
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However, J(r) may have non separating local minima, to-
ward which a steepest descent minimization algorithm of
J(r) often converges. In order to define these local minima,
we denote by f̃ ∗1 (z) one of the arguments of the global mini-
mum of β([ f̃1(z)]s1(n)) over the set of unit norm filterswith

real coefficients. We denote by β1,min the corresponding
minimum. It is easy to show that β1,min can be evaluated
using Proposition 2, by minimizing the function Φa over
the real elements of F ([−1/2T, 1/2T ]) when γ = 0. In
these conditions, it can be shown that β1,min coincides with
ηmin + 3, i.e. that β1,min ≃ 1.64. We now consider the unit
norm filter with imaginary coefficients f̃ ∗2 (z) = i f̃ ∗1 (z). It is
clear that β([ f̃ ∗2 (z)]s2(n)) coincides with β1,min. We finally
define filters f ∗i (z) for i = 1, 2 by

f ∗i (z) =
1

(1+ β1,min)1/2
f̃ ∗i (z) (20)

If r∗(n) = [ f ∗1 (z)]s1(n) + [ f ∗2 (z)]s2(n), one can check that
J(r∗) = 1 − 2/(1 + β1,min) ≃ 0.25. Although we have not
been able to analytically prove these non separating points
to be a local minimum of J, we have observed that the
steepest descent minimization algorithm of J(r) very often
converges to one of these points rather than toward the ar-
gument of the separating global minimum of J. To verify
this, we present in Figure 2(a) an histogram of the values
of J(r) at convergence of the steepest descent minimization
algorithm. We used 1000 experiments, each corresponding
to different randomly selected propagation channels, and
we assumed the thermal noise to be negligible. The figure
clearly shows that in more than half of the experiments
the final value of Ĵ(r) corresponds to 1− 1

1.32 ≃ 0.25 which
is associated to a local minima rather than to the value of
the global minimum of J which is 1− 1

βmin

= 1− 1
1.19 ≃ 0.16.

In order to verify that the value 1− 1
1.32 does not corre-

spond to a separating filter, we present in figure 2 an his-
togram of the signal to interference and noise ratio (SINR)
associated to the filters determined by minimizing Ĵ(r). We
define the SINR as the ratio between the power of signal
r1, representing the contribution of the extracted signal
filtered by the extracting filter and the power of signal r2

which represents the contribution of the other transmitted
signal filtered by the same filter. It is clear that if the filter
is perfectly adjusted then the SINR must equal +∞ in the
absence of thermal noise. The experiments we presented
thus tend to confirm the fact that J(r) has non separat-
ing local minima and that the steepest descent algorithm
converges very often toward one of them.

4.2. A new cost function

A simple modification of the Godard cost function allows
to overcome the aforementioned problems, provided that
the most significant non-conjugate cyclic frequencies of the
received signal are known or can be correctly estimated
by the receiver. We recall that for a mixture of BPSK
modulated signals sharing the same carrier frequency, the
most significant cyclic frequency is 2δ f .
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Figure 2: Histograms of (a) Ĵ(r) values and (b)SINR values, obtained
after extracting a source from a mixture of 2 identical BPSK signal
with γ = 0.

In the following, we assume that the carrier frequency
offset δ f is known or correctly estimated at the receiver
side, and consider the cost function J

′
(r) defined by

J
′
(r) = J(r) − |R(2δ f )

c,r (0)|2 (21)

=< E

(

|r(n)|2 − 1
)2
> −

∣

∣

∣< E(r2(n))e−2iπn2δ f >
∣

∣

∣

2

J
′
(r) is obtained by subtracting from J(r) the modulus

square of the non conjugate cyclic correlation coefficient
at time lag 0 and at non conjugate cyclic frequency 2δ f .
Using the expression of J(r), we immediately obtain that

J
′
(r) =

K
∑

k=1

β
′
(s̃k)‖ fk‖4+

∑

k1,k2

l
′
(s̃k1, s̃k2)‖ fk1‖2‖ fk2‖2−2

K
∑

k=1

‖ fk‖2+1

(22)
where the term l

′
(s̃k1, s̃k2) is given by

2+ Re

















2
∑

l=−1,1

R(lα)
s̃k1

(0)
(

R(lα)
s̃k2

(0)
)∗
+

∑

l=−1,1

R(lα)
c, s̃k1

(0)R(lα)
c, s̃k2

(0)∗
















(23)
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and where β
′
(s̃k) is defined by

< c4(s̃k) > +2+ 2
∑

l=−1,1

∣

∣

∣Rlα
s̃k

(0)
∣

∣

∣

2
+

∑

l=−1,1

∣

∣

∣R(lα)
c, s̃k

(0)
∣

∣

∣

2
(24)

β
′
(s̃k) also equals

β
′
(s̃k) = β(s̃k) −

∣

∣

∣R(0)
c, s̃k

(0)
∣

∣

∣

2
(25)

In order to give some insight on J
′
, we first consider the

case γ = 0. Expression (22) of J
′
(r) therefore becomes

J
′
(r) =

K
∑

k=1

β
′
(s̃k)‖ fk‖4 + 2

∑

k1,k2

‖ fk1‖2‖ fk2‖2 − 2
K

∑

k=1

‖ fk‖2 + 1

Furthermore, β
′
(s̃i) now equals β

′
(s̃i) =< c4(s̃i) > +2. The

expression of J
′
(r) is thus similar to (13), except that

β(s̃i) is now replaced by β
′
(s̃i). It is easy to check that

< c4(s̃i) >< 0, so that β
′
(s̃i) < 2 for each i. Theorem 1 and

Proposition 5 thus imply that the global minimum and the
local minima of J

′
are separating filters. This shows that

the minimization of J
′
(r) allows to separate the K BPSK

signals if γ = 0.
In order to extend this result to the more general case

where γ > 0, we now show that the argument of the mini-
mum value of J′(r) corresponds to a separating filter. Con-
trary to the case where the transmitted signals all had dif-
ferent cyclic frequencies and different non conjugate cyclic
frequencies, it is no longer possible to directly character-
ize the global minimum of J

′
(r) since its analytical form

is too complex. We overcome this difficulty by using the
following result stated and proved in [10]:

Proposition 6. Let m(r) be a positive function such that
for any filtered version r(n) = [f(z)]s(n) we have

J
′
(r) ≥ m(r)

Assume that the infimum of m(r) is reached if and only
if signal r(n) coincides with a filtered version of one of
the source signals. Let r∗(n) = [ fk0,∗(z)]sk0(n) be one of the
signals for which inf f(z) m(r) = m(r∗). If m(r∗) = J

′
(r∗), then

inf
f(z)

J
′
(r) = J

′
(r∗)

and the infimum is reached if and only if r(n) coincides
with one of the r∗ specified above.

In order to derive a function m(r) satisfying the condi-
tions of Proposition 6, we prove the following result.

Proposition 7. The following inequality holds:

Re

















2
∑

l=−1,1

R(lα)
s̃k1

(0)
(

R(lα)
s̃k2

(0)
)∗
+

∑

l=−1,1

R(lα)
c, s̃k1

(0)R(lα)
c, s̃k2

(0)∗
















≥ −3/2

(26)

We give the proof of this result in Appendix B. Con-
sider the function m(r) defined by

m(r) = β
′

min















K
∑

k=1

‖ fk‖4














+
1
2

















∑

k1,k2

‖ fk1‖2‖ fk2‖2
















− 2
K

∑

k=1

‖ fk‖2 + 1

(27)
where we denote by β

′

min
the quantity

β
′

min
= β

′

min,k

with β
′

min,k = min‖ f̃k‖=1 β
′
(s̃k). Recall that the signals present

in the analysed bandwidth are of the same nature and
therefore all (β

′

min,k)k=1,...,K are equal. Since relation (26) is

verified, it is clear that l
′
(s̃k1, s̃k2) ≥ 1/2. Moreover, the

(β
′
(s̃k))k=1,...,K are all greater than β

′

min
. This implies that

for all r, J
′
(r) ≥ m(r). We show that if β

′

min
< 1/2, then,

the global minimum of m(r) is reached if all (‖ fk‖)k=1,...,K

are null except for 1, i.e. if r(n) coincides with a filtered
version of one of the sources. In order to establish this
result, we pose u2

=
∑K

k=1 ‖ fk‖2, vk =
‖ fk‖

u , v = (v1, . . . , vK)T ,
and we define t(v) as

t(v) = (β
′

min
− 1

2
)

K
∑

k=1

v4
k +

1
2

It is easy to verify that

m(r) = u4t(v) − 2u2
+ 1

and that the global minimum of m(r) is reached in a point
(u∗, v∗) for which t(v∗) is minimum and u2

∗ =
1

t(v∗)
. The value

of this minimum is then 1− 1
t(v∗)

. To conclude it suffices to

remark that if β
′

min
− 1/2 < 0, then the minimum of t(v)

is reached if and only if all the components of v are null
except for one who is equal to 1, which corresponds to all
‖ fk‖ being null except for one of them ([4]). Furthermore
t(v∗) is equal to β

′

min
, u2
∗ =

1
β
′
min

and the minimum value

of m(r) is 1 − 1
β
′
min

. In the following we denote by k0 one

of the index for which β
′

min
= β

′

min,k0
, and by f̃k0,∗ a unit

norm filter for which β
′

min,k0
= β

′
([ f̃k0,∗(z)]sk0(n)), and we

pose fk0,∗(z) = u∗ f̃k0,∗(z). The minimum of m(r) is reached
if r∗(n) = [ fk0,∗(z)]sk0(n), and J

′
(r∗) coincides with m(r∗) =

1− 1
β
′
min

. Proposition 6 then states that the global minimum

of J
′
is reached only if r(n) is a filtered version of sk0(n).

We have thus established the following result

Proposition 8. If β
′

min
< 1/2, then the minimization of

J
′
(r) allows the extraction of one of the sources from the

mixture.

We must now verify whether the condition β
′

min
< 1/2

is satisfied or not. Following the same reasoning as in the
case of βmin, we can easily adapt proposition 2 by simply
replacing the expression (15) with

β
′

min
= inf

fa∈F ([− 1+γ
2T ,

1+γ
2T ])
Φ
′
( fa) (28)
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where Φ
′
( fa) is defined as

Φ
′
( fa) =κT

∫

R
| fa(t)|4dt

(
∫

R
| fa(t)|2dt)2

+ 2+ 4















∫

R
| fa(t)|2e−2iπ t

T dt
∫

R
| fa(t)|2dt















2

+

∣

∣

∣

∫

R
fa(t)2e−2iπ t

T dt
∣

∣

∣

2

(∫

R
| fa(t)|2dt

)2
+

∣

∣

∣

∫

R
fa(t)2e2iπ t

T dt
∣

∣

∣

2

(∫

R
| fa(t)|2dt

)2
(29)

The expression of Φ
′
( fa) is obtained directly by subtract-

ing from the expression of Φ( fa) (16) the term due to the
square modulus of the non conjugate cyclic coefficient of
s(n) at the non conjugate cyclic frequency 0. As in the
case of βmin, this result implies that β

′

min
is a decreasing

function of the excess bandwidth factor γ. We can thus
formulate the following statement:

Proposition 9. The function γ → β′
min

(γ) is decreasing
when γ varies from 0 to 1. Consequently, β

′

min
(γ) is strictly

inferior to 1/2 for all values of γ if and only if βmin(0) < 1
2.

The expression of β
′

min
(0) can be deduced directly from

the one of βmin(0) (17) :

β
′

min
(0) = min

fa∈F ([− 1
2T ,

1
2T ])
κT

∫

R
| fa(t)|4dt

(
∫

R
| fa(t)|2dt)2

+ 2 = ηmin + 2 (30)

with ηmin given by equation (16).
Recall that we can numerically evaluate the values of
β
′

min
and ηmin for all excess bandwidth factor γ ∈ [0, 1].

Particularly for an excess bandwidth factor of 0, ηmin ≃
−1.36 and β

′

min
= 0.64 ≥ 1/2. In order to verify the ex-

istence of some β
′

min
values smaller than 1/2 we present

in figure 3 the graph of β
′

min
(γ) for all excess bandwidth

factor γ ∈ [0, 1]. The figure confirms the decreasing nature
of β

′

min
with respect to γ and shows that β

′

min
< 1/2 as

soon as γ > 0.1. Consequently, we are sure to separate
the BPSK sources using the minimization of J

′
(r) if their

common excess bandwidth factor is superior to 0.1.
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Figure 3: β
′
min

as a function of γ for a BPSK signal.

When the excess bandwidth factor is inferior to 0.1, the
inequality J

′
(r) ≥ m(r) does not allow any conclusion to be

drawn as to the global minimum of J
′
(r). However, in such

cases, we can consider the approach used in [10] in the case
of circular signals and inequality (26). After some algebra,
we can prove that if β

′

min
> 1/2, then the global minimum

of J
′
(r) is reached for filters which allow the extraction of

one of the sources, if the following 2 sufficient conditions
are met.































ηmin + 3− (K + 1)(β
′

min
− 1

2) > 0

β
′

min

(

Kβ
′

min
− 1

2

)

−

(K − 1)
(

2−
√

3
2

√

(K(β′
min
− 1

2) − (ηmin +
3
2)

)2

< 0

(31)
We give the proof of these conditions in Appendix C. We
can easily verify that these conditions hold for γ ∈ [0, 0.1]
if the number of sources K is inferior to 10, which is very
satisfying in the considered context.

5. The case of general mixtures

5.1. Generalisation of J
′
(r)

The results obtained in the case of a mixture of BPSK
signals sharing the same characteristics can be extended
to more general mixtures of circular linearly modulated
signals and BPSK signals. The logic behind the definition
of J

′
(r) is to subtract from J(r) the square modulus of the

non conjugate cyclic correlation coefficients at time lag 0
and at the non conjugate cyclic frequencies {2δ fk, sk BPSK}.
These frequencies are called in the following the significant
non conjugate cyclic frequencies of the received signal, and
we denote by Ic,s this set. The definition of J

′
(r) thus

becomes

J
′
(r) = J(r) −

∑

αc∈Ic,s

|R(αc)(0)|2 (32)

=< E

(

|r(n)|2 − 1
)2
> −

∑

αc∈Ic,s

∣

∣

∣< E(r2(n))e−2iπnαc >
∣

∣

∣

2

We assume that the mixture contains L groups of (Kl)l=1,...,L

BPSK signals sharing the same characteristics (symbol pe-
riod, carrier frequency, excess bandwith) and linearly mod-
ulated circular source signals whose symbol period differ
from those of the BPSK signals. If source k is circular,
then it holds that β

′

min,k = βmin,k ≥ 1 > β
′

min. Therefore, it

is easy to check that J
′
(r) ≥ m(r) where m(r) is still de-

fined by (27). Proposition 8 thus implies that if the excess
bandwith of the BPSK signals are greater than 0.1, then
the minimization of J

′
allows to extract all the BPSK sig-

nals. The case where some of these excess bandwiths are
less than 0.1 is more difficult, but could be addressed using
the previous approach. We just mention that if the cyclic
and non conjugate cyclic frequencies of the sources are
pairwise different, then the minimization of J

′
still allows

to extract the K sources whatever their excess bandwiths.
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In effect, J
′
(r) can be expressed as

J
′
(r) =

K
∑

k=1

β
′
(s̃k)‖ fk‖4 + 2

∑

k1,k2

‖ fk1‖2‖ fk2‖2 − 2
K

∑

k=1

‖ fk‖2 + 1

(33)
If the source k is circular β

′
(s̃k) coincides with β(s̃k) (10)

while for a BPSK source β
′
(s̃k) is defined by (24). The

expression of J
′
(r) is therefore similar to that of J(r), and

thus all results obtained in section 3 remain valid since for
all k, β

′

k,min ≤ βk,min < 2. The modification of J proposed in
order to solve the problems generated by mixtures of non
circular sources of the same nature thus does not modify
the results obtained in the context of circular or non
circular sources having different cyclic and non conjugate
cyclic frequencies.

5.2. Frequency offset estimation

The use of J
′
requires of course the correct estimation

of the significant non conjugate cyclic frequencies of the
received signal prior the source separation. Fortunately,
this is a much easier task than the estimation of the baud
rates, because the non conjugate cyclic correlation coef-
ficients of the received signal at twice the frequency off-
sets are not affected by possible low excess bandwidths
of the source signals. A simple detection technique based
on the examination of the modulus of the periodogram of
the signal (ym(n + τ)ym(n))n∈Z (see for example [2]) may be
successfully used. We also notice that if the estimation
algorithm detects not only the significative non-conjugate
cyclic frequencies {2δ fk, sk BPSK}, but some non significa-
tive conjugate cyclic frequencies such as 2δ fk0 + αk0 or
2δ fk0 −αk0 , then the behaviour of function J

′
is even better

because β
′
(s̃k0) defined in principle by (25) is replaced by

β(s̃k0)−|R
(0)
c, s̃k0
|2−|R(αk0 )

c, s̃k0
|2 or β(s̃k0)−|R

(0)
c, s̃k0
|2−|R(−αk0 )

c, s̃k0
|2. β′min,k0

is

thus lower than what is predicated by Figure 3. The suf-
ficient condition β

′

min,k0
≥ 1

2 is thus less restrictive than in
the case where 2δ fk0 + αk0 and 2δ fk0 − αk0 are not detected.

6. Simulations

6.1. Implementation of the deflation approach

In order to introduce the deflation approach we have
implemented, we consider ĝ1 the extracting filter obtained
by minimizing the cost function (J(r) or J

′
(r)). We denote

by
r̂1(m) = ⌈ĝ1(z)⌉y(m)

an estimator of a filtered version of one of the source sig-
nals. The deflation approach consists in subtracting the
contribution of this particular source from the observed
signal y(m). As a result a new signal y(2)(m) is formed con-
taining only the contributions of the other sources. We
can then run the extraction algorithm on y(2)(m) in order
to determine a new filter g̃(2)(z) for which, signal

r̃2(m) = [g̃(2)(z)]y(2)(m)

represents an estimator of a filtered version of a second
source. In practice, the first subtraction is not perfect
and r̂1(m) may contain residual filtered versions of the re-
maining sources. This can render the convolutive mixture
defined by y2(m) more difficult to inverse than the origi-
nal one. It is therefore reasonable to try to go back to
the originally mixture y(m), and apply the extraction al-
gorithm initialised with a filter close enough to g(2)(z), the
filter that allows the extraction of the second source. This
initial filter, denoted by g(2)

init(z) =
∑L

l=0 g(2)
init,lz

−l, is obtained

by minimizing with respect to g(2)
init = (g(2)

init,0, . . . , g
(2)
init,L) the

quadratic criterion

1
M

M−1
∑

m=0

∣

∣

∣[g(2)
init(z)]y(m) − r̃2(m)

∣

∣

∣

2

This initialization, proposed in [14], allows the extraction
of the second source from the original mixture y to be
achieved with better performance.

6.2. Simulations parameters

The experimental results we present in the following
were obtained in the context of blind separation of a con-
volutive mixture of K = 3 equal power BPSK modulated
signals, observed by a receiver equipped with a circular ar-
ray of N = 5 sensors distanced from one another by half a
wavelength. All sources have the same excess bandwidth
factor γ = 0.5.
The propagation channels are multi path and affected

by a Rayleigh fading. An arbitrary path (k) is charac-
terized by its delay τk, elevation φk, azimuth θk and at-
tenuation λk. We consider the ETSI channels BUx, TUx,
HTx, RAx. For each experiment, the arrival angles on
the different paths (φ and θ) of the signals are randomly
chosen inside [−π/2, π/2] and [−π, π] respectively. The dif-
ferent complex amplitudes on each path are also randomly
chosen for each experiment. Generating different channel
characteristics from one experiment to another enables us
to have statistically significant results. We suppose that
the central frequency of the receive filter of the receiver is
f0 = 1GHz and that the received signal is corrupted by a
white, additive complex gaussian noise with power spec-
tral density N0. The signal to noise ratio per source signal
Es
N0

is equal to 20 dB. We have considered two opposite
scenarios :

• all BPSK signal have the same symbol period T =
3.6µs and same frequency offsets (δ f )

• the BPSK signal have different symbol periods (T1 =

3.4µs, T2 = 3.6µs, T3 = 3.9µs ) and different frequency
offsets (δ f1 , δ f2 , δ f3)

In both cases, the sampling period Te is equal to T
1.6, and

the carrier frequency offsets are randomly chosen on each
trial such that the generated signals satisfy the sampling
theorem. We also considered different observation dura-
tions Tobs = 2000T , Tobs = 1000T and Tobs = 500T for the
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initial received signal used to compute the separating fil-
ters and a longer observation duration of Tper f = 20000T
for the performance analysis. For each possible type of
mixture we considered 1000 independent experiments.

6.3. Numerical results

We chose two metrics of performance for our separating
method : the signal to interference plus noise ratio (SINR)
at the output of the separating filter g and the symbol
error rate (SER) computed after applying a blind CMA
fractional equalizer, supposed to know the baud rates and
the carrier frequency offsets of the sources, to the sepa-
rated signal. In order to compare the different separating
algorithms we consider the number of experiments where
we obtain a SER inferior to 10−2.
Moreover, since the channels are randomly selected from

one experiment to another, we need a reference measure
of the difficulty of the separation problem. We chose to
compute, for each source k the performances obtained
in a non blind context with the minimum mean square
estimator (MMSE). The Wiener filter ĝ(k)

wiener(z) obtained
with this method is a finite impulse response filter of the
same size as ĝ. This filter is chosen non causal, and its
coefficients are estimated from the samples of the received
signal (y(m))m=0,...,M−1 and those of the transmitted signal
(sk(m))m=0,...,M−1 as if the receiver worked with a learning
sequence of M samples. The performances provided by
this filter thus represent an upper bound as to what we
could achieve in a blind context.

Table 1(a) contains the results associated with the first
scenario. Notice that the number of times where the
SER corresponding to the separation method based on the
CMA algorithm is inferior to 10−2 is smaller than the one
corresponding to the separation with the modified CMA
criterion. This is due to the large number of cases where
the CMA algorithm does not correctly extract the sources
from the mixture. Contrariwise, the modified CMA algo-
rithm succeeds in extracting one source from the mixture.
This phenomenon is visible in figure 4 where we present
the histograms of the SINR obtained after the extraction
of one source from the mixture using the CMA, modified
CMA and MMSE methods, when considering BUx type
communication channels and a duration of observation of
2000T . It is easy to see that in an important number of
cases the SINR values corresponding to the CMA method
are close to 0 dB meaning that no source was correctly
extracted. The modified CMA algorithm significantly re-
duces the number of unsuccessful extractions and its per-
formance is close to that of the Wiener filter (MMSE). This
phenomenon can also be observed on the results obtained
on the other channels and when the duration of observa-
tion is smaller.

The results obtained in the second scenario are pre-
sented in table 1(b). Notice that in this case the per-
formance of the CMA extraction method is very close to
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Figure 4: Histogram of SINR obtained after extracting one source
from a mixture of 3 identical BPSK signals, sent over a BUx channal
and observed for a duration Tobs = 2000T .

that of the modified CMA method but does not gener-
ally surpass it. This confirms the good behaviour of the
CMA algorithm when separating mixtures of signals with
different characteristics all the while showing that the use
of the modified CMA algorithm in such cases could bring
some improvement. Generally, the performance of the two
blind separation methods are close to that of the MMSE
method.

7. Conclusion

We investigated the separation of convolutive mixtures
of second order circular linearly modulated signals and
BPSK signals in the context of passive listening. We con-
sidered only deflation approaches coupled with the min-
imization of the CMA cost function. We proved that if
the different source signals do not share the same cyclic
and non conjugate cyclic frequencies, the minimization of
the CMA cost function ensures the extraction of a filtered
version of one of the source signals. We have also shown
that in this case and under a condition which is always
verified in practice, all the local minima of the CMA cri-
terion are separating points. This result is no longer true
when mixtures of BPSK signals sharing the same baud
rate and carrier frequency are considered. In this case we
have shown the existence of non separating local minima
of the CMA cost function that prove to be quite attrac-
tive. A modification of the CMA criterion was proposed,
based on the knowledge of the most significant non con-
jugate cyclic frequencies of the received signal. Moreover,
the minimization of this new criterion was also proved to
be a reliable approach in a much more general context.
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Table 1: Percentage of TES < 10−2 for a mixture of 3 BPSK signals whose cyclic and non conjugate cyclic frequencies are (a) identical and
(b) all different.

(a)

No.symboles 2000 1000 500

BUx: BPSK BPSK BPSK BPSK BPSK BPSK BPSK BPSK BPSK

CMA 84% 83% 83.8% 82.6% 83.2% 81.8% 83.2% 81.8% 84.7%
CMAm 99.9% 100% 100% 100% 100% 99.8% 97.4% 95% 97.2%
MMSE 100% 99.8% 100% 99.9% 100% 99.9% 99.8% 100% 100%
TUx: BPSK BPSK BPSK BPSK BPSK BPSK BPSK BPSK BPSK

CMA 88.9% 87% 89.2% 89.4% 85.2% 86.1% 86.8% 86.8% 87.6%
CMAm 99.9% 100% 100% 99.8% 99.8% 99.6% 95.7% 95.3% 94.5%
MMSE 100% 99.8% 100% 100% 100% 99.9% 100% 100% 100%
HTx: BPSK BPSK BPSK BPSK BPSK BPSK BPSK BPSK BPSK

CMA 89% 87.2% 86% 87.6% 88% 88.4% 87.5% 87.7% 86.1%
CMAm 99.7% 99.8% 100% 99.2% 99.5% 99.4% 91.5% 91.5% 91.4%
MMSE 99.9% 100% 100% 100% 100% 100% 100% 100% 100%
RAx: BPSK BPSK BPSK BPSK BPSK BPSK BPSK BPSK BPSK

CMA 78% 79.7% 79% 78.9% 81.3% 79.6% 81% 81.1% 80.3%
CMAm 100% 99.9% 99.9% 99.4% 99.1% 99.2% 93.6% 94.9% 92.9%
MMSE 100% 99.9% 99.9% 100% 100% 100% 100% 100% 99.9%

(b)

No.symboles 2000 1000 500

BUx: BPSK BPSK BPSK BPSK BPSK BPSK BPSK BPSK BPSK

CMA 100% 99.9% 99.8% 99.8% 99.7% 99.8% 99.5% 99.4% 99.6%
CMAm 100% 99.9% 100% 100% 99.9% 99.9% 99.7% 99.5% 99.8%
MMSE 100% 100% 100% 100% 100% 100% 100% 100% 100%
TUx: BPSK BPSK BPSK BPSK BPSK BPSK BPSK BPSK BPSK

CMA 99.6% 99.5% 99.7% 99.3% 99.5% 99.6% 99.7% 99.4% 99.2%
CMAm 100% 99.9% 99.7% 99.7% 99.7% 99.6% 98.1% 98.9% 98.4%
MMSE 100% 99.9% 100% 100% 100% 100% 100% 100% 100%
HTx: BPSK BPSK BPSK BPSK BPSK BPSK BPSK BPSK BPSK

CMA 98.8% 98.7% 98.8% 98% 97.8% 98.1% 96.7% 96% 96%
CMAm 100% 99.8% 100% 99.5% 99.4% 99.4% 98% 98.2% 97.7%
MMSE 100% 100% 100% 100% 100% 100% 100% 100% 100%
RAx: BPSK BPSK BPSK BPSK BPSK BPSK BPSK BPSK BPSK

CMA 98.3% 98.9% 98.3% 99.2% 98.9% 98.5% 99% 98.8% 98.7%
CMAm 99.8% 99.8% 100% 98.9% 99% 99% 98.4% 98.2% 98.3%
MMSE 99.9% 100% 100% 100% 100% 100% 100% 100% 100%

Appendix A. Proof of Proposition 2

Although the proof of this proposition is very similar
to the one in [10], we provide it in order to make the pa-
per reasonably self-contained. For simplicity reasons, we
assume the carrier frequency offsets to be 0. This assump-
tion does not reduces the generality of the results.

Proposition 10. Suppose that Te is not a multiple of T/2
(this automatically holds from the hypothesis) and that
Te < T/(1 + γ) (this holds since(2) holds). Let f (z) be a
transfer function for which ‖ f ‖ ≤ ∞. If ga(t) denotes the
shaping filter of signal sa(t), then the function f̂a(ν) defined
as

f̂a(ν) = f(e2iπνTe )ĝa(ν), ∀ν ∈ R (A.1)

vanishes outside B =
[

− 1+γ
2T ,

1+γ
2T

]

and belongs to the space

F (B). Let fa(t) be its inverse Fourier transform in the L
2–

sense. For every, t we define the continuous-time signal

(ra(t))t∈R as

ra(t) =
∑

j∈Z
a( j) fa(t − jT )

Then, the discrete-time signal r(n) = [ f (z)]s(n) coincides
with the discrete-time signal ra(nTe).

This result is proved in [11] when the filter f (z) has
a summable impulse response and in [10] when ‖ f ‖ ≤
∞. Using proposition 10, we have ∀ f (z), ∃ fa(t) such
that < E |r(n)|2 >=< E |ra(nTe)|2 > and < E

{

r(n)2
}

>=<

E

{

ra(nTe)2
}

>. Considering the time average of the

Fourier series expansion of E |ra(t)|2 and E

{

ra(t)2
}

, when

T <
{

T, T
2 ,

T
3 ,

2T
3

}

we get

< E |r(n)|2 >=< E |ra(nTe)|2 >

= R(0)
ra

(0)+ R
( 1

T )
ra

(0) < e2iπ nTe
T > +R

( 1
T )

ra
(0) < e−2iπ nTe

T >

= R(0)
ra

(0) =
1
T

∫

R

| fa(t)|2 dt (A.2)
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< E

{

r(n)2
}

>=< E

{

ra(nTe)2
}

>

= R(0)
c,ra

(0)+ R
( 1

T )
c,ra

(0) < e2iπ nTe
T > +R

(− 1
T )

c,ra
(0) < e−2iπ nTe

T >

= R(0)
c,ra

(0) =
1
T

∫

R

fa(t)2dt (A.3)

Furthermore

R(±α)
ra

(0) =
1
T

∫ T

0
E |ra(nTe)|2 e∓2iπ t

T dt =
1
T

∫

R

| fa(t)|2 e∓2iπ t
T dt

R(±αc)
c,ra

(0) =
1
T

∫ T

0
E |ra(nTe)|2 e∓2iπ t

T dt =
1
T

∫

R

fa(t)2e∓2iπ t
T dt

(A.4)

A similar reasoning can be carried on for the 4-th order
cumulant of signal ra: function c4(ra(t)) can be written as
c4(ra(t)) = κ

∑

n | f (t − nT |4 where κ is the 4-th order cumu-
lant of the transmitted symbol sequence. This function is
periodic of period T and, due to the limited bandwidth of
filter fa, has at most 7 cyclic frequencies. Its Fourier series
expansion therefore is :

c4(ra(t)) =
3

∑

k=−3

cke2iπk t
T

Because of the conditions imposed on Te, the terms

< e2iπk nTe
T > are zero if k , 0, which means that:

< c4(r(n)) >= c0 =
κ

T

∫

R

| fa(t)|4 dt (A.5)

where c0 is the constant value of the Fourier series expan-
sion of < c4(ra(t)) >.
Applying (A.2), (A.3), (A.4) and (A.5) to signal

s̃ =
⌈

f (z)
‖ f ‖

⌉

s(n) and recalling that

‖ f ‖2 =
∫ 1/2

−1/2
| f (e2iπν)|2S (0)

s dν =< E|⌈ f (z)⌉s(n)|2 >

=< E|⌈ f (z)⌉sa(nTe)|2 >= 1
T

∫

R

| fa(t)|2 dt (A.6)

we evaluate the terms in expression (15) and find the ex-
pression of Φ( fa).

Appendix B. Proof of Proposition 7

In the following, we consider once more filter f̂a(ν) de-
fined in (A.1) We begin by expressing the cyclic and non
conjugate cyclic correlation coefficients involved in expres-

sion (26) as

R(α)
s̃ (0) =

∫
1+γ
2T

− 1+γ
2T

f̂a(ν) f̂a(ν − 1
T )∗dν

∫
1+γ
2T

− 1+γ
2T

∣

∣

∣ f̂a(ν)
∣

∣

∣

2
dν

R(+α)
c, s̃ (0) =

∫
1+γ
2T

− 1+γ
2T

f̂a(ν) f̂a( 1
T − ν)dν

∫
1+γ
2T

− 1+γ
2T

∣

∣

∣ f̂a(ν)
∣

∣

∣

2
dν

R(−α)
c, s̃ (0) =

∫
1+γ
2T

− 1+γ
2T

f̂a(ν) f̂a(−ν − 1
T )dν

∫
1+γ
2T

− 1+γ
2T

∣

∣

∣ f̂a(ν)
∣

∣

∣

2
dν

(B.1)

In order to simplify the notations, we denote by B+γ and

respectively B−γ the intervals B+γ =
[

1−γ
2T ,

1+γ
2T

]

and B−γ =
[

− 1+γ
2T ,−

1−γ
2T

]

. It is straightforward that

∫
1+γ
2T

− 1+γ
2T

∣

∣

∣ f̂a(ν)
∣

∣

∣

2
dν ≥

∫

B−γ

∣

∣

∣ f̂a(ν)
∣

∣

∣

2
dν +

∫

B+γ

∣

∣

∣ f̂a(ν)
∣

∣

∣

2
dν (B.2)

Notice that the functions ν → f̂a(ν) f̂a(ν − 1
T )∗ and ν →

f̂a(ν) f̂a( 1
T − ν) are zero unless ν ∈ B+γ and that function

ν→ f̂a(ν) f̂a(−ν − 1
T ) is also zero outside of B−γ . This means

that

∫
1+γ
2T

− 1+γ
2T

f̂a(ν) f̂a(ν − 1
T

)∗dν =
∫

B+γ

f̂a(ν) f̂a(ν − 1
T

)∗dν

∫
1+γ
2T

− 1+γ
2T

f̂a(ν) f̂a(
1
T
− ν)dν =

∫

B+γ

f̂a(ν) f̂a(
1
T
− ν)dν

∫
1+γ
2T

− 1+γ
2T

f̂a(ν) f̂a(−ν − 1
T

)dν =
∫

B−γ

f̂a(ν) f̂a(−ν − 1
T

)dν (B.3)

Using the inequality of Schwartz we immediately obtain
∣

∣

∣

∣

∣

∣

∣

∫

B+γ

f̂a(ν) f̂a(ν − 1
T

)∗dν

∣

∣

∣

∣

∣

∣

∣

≤














∫

B+γ

∣

∣

∣ f̂a(ν)
∣

∣

∣

2
dν















1/2 













∫

B+γ

∣

∣

∣

∣

∣

f̂a(ν − 1
T

)
∣

∣

∣

∣

∣

2

dν















1/2

=















∫

B+γ

∣

∣

∣ f̂a(ν)
∣

∣

∣

2
dν















1/2 













∫

B−γ

∣

∣

∣ f̂a(ν)
∣

∣

∣

2
dν















1/2

(B.4)

∣

∣

∣

∣

∣

∣

∣

∫

B+γ

f̂a(ν) f̂a(
1
T
− ν)dν

∣

∣

∣

∣

∣

∣

∣

≤














∫

B+γ

∣

∣

∣ f̂a(ν)
∣

∣

∣

2
dν















1/2 













∫

B+γ

∣

∣

∣

∣

∣

f̂a(
1
T
− ν)

∣

∣

∣

∣

∣

2

dν















1/2

=















∫

B+γ

∣

∣

∣ f̂a(ν)
∣

∣

∣

2
dν















1/2 













∫

B+γ

∣

∣

∣ f̂a(ν)
∣

∣

∣

2
dν















1/2

=

∫

B+γ

∣

∣

∣ f̂a(ν)
∣

∣

∣

2
dν (B.5)

∣

∣

∣

∣

∣

∣

∣

∫

B−γ
f̂a(ν) f̂a(−ν − 1

T
)dν

∣

∣

∣

∣

∣

∣

∣

≤














∫

B−γ

∣

∣

∣ f̂a(ν)
∣

∣

∣

2
dν















1/2 













∫

B−γ

∣

∣

∣

∣

∣

f̂a(−ν − 1
T

)
∣

∣

∣

∣

∣

2

dν















1/2

=















∫

B−γ

∣

∣

∣ f̂a(ν)
∣

∣

∣

2
dν















1/2 













∫

B−γ

∣

∣

∣ f̂a(ν)
∣

∣

∣

2
dν















1/2

=

∫

B−γ

∣

∣

∣ f̂a(ν)
∣

∣

∣

2
dν (B.6)
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Using (B.1), (B.2), (B.5) and the means inequality (ab ≤
a2
+b2

2 ), we get :

|R̂(α)
s̃ (0)| ≤

1
2

(

∫

B+γ

∣

∣

∣ f̂a(ν)
∣

∣

∣

2
dν +

∫

B−γ

∣

∣

∣ f̂a(ν)
∣

∣

∣

2
dν

)

∫

B+γ

∣

∣

∣ f̂a(ν)
∣

∣

∣

2
dν +

∫

B−γ

∣

∣

∣ f̂a(ν)
∣

∣

∣

2
dν

=
1
2

(B.7)

Since R̂(−α)
s̃ (0) = (R̂(α)

s̃ (0))∗ we also get |R̂(−α)
s̃ (0)| ≤ 1

2.
We define the following quantities

xi =

∫

B+γ

∣

∣

∣ f̂a,ki (ν)
∣

∣

∣

2
dν , yi =

∫

B−γ

∣

∣

∣ f̂a,ki (ν)
∣

∣

∣

2
dν , i ∈ {1, 2}

t = 2
(

R(α)
s̃k1

(0)R(α)
s̃k2

(0)∗ + R(α)
s̃k1

(0)R(α)
s̃k2

(0)∗
)

+ R(α)
s̃c,k1

(0)R(α)
s̃c,k2

(0)∗ + R(−α)
s̃c,k1

(0)R(−α)
s̃c,k2

(0)∗

where k1, k2 ∈ {1, 2} , k1 , k2.
With this notations and using (B.1),(B.2) and (B.5) for

signals s̃k1 et s̃k2 , we get:

|t| ≤ 4

√
x1y1

x1 + y1

√
x2y2

x2 + y2
+

x1

x1 + y1

x2

x2 + y2
+

y1

x1 + y1

y2

x2 + y2

|t| ≤
(
√

x1x2 +
√

y1y2)2

(x1 + y1)(x2 + y2)
+

2
√

x1y1
√

x2y2

(x1 + y1)(x2 + y2)

(B.8)

Using Schwartz inequality

√
x1x2 +

√
y1y2 ≤

√

(
√

x1)2 + (
√

y1)2
√

(
√

x2)2 + (
√

y2)2

=

√

(x1 + y1)(x2 + y2) (B.9)

and since
√

xiyi

xi+yi
≤ 1

2, we get that|t| ≤ 3
2.

Appendix C. Proof of conditions (31)

We pose λ(s̃k) =
√

4
∣

∣

∣R(α)
s̃k

(0)
∣

∣

∣

2
+

∣

∣

∣Rc,(α)
s̃k

(0)
∣

∣

∣

2
+

∣

∣

∣Rc,(−α)
s̃k

(0)
∣

∣

∣

2
.

From (26), we easily get λ(s̃k) ≤
√

3
2

Considering the expression (23) of l
′
(s̃k1, s̃k2) it is easy to

prove (using Schwartz inequality) that

l
′
(s̃k1, s̃k2) ≥ 2− λ(s̃k1)λ(s̃k2) (C.1)

Function J
′
(r) given by (22) is therefore lower bounded

by :

J
′
(r) ≥

K
∑

k=1

‖ fk‖4 β
′
(s̃k) +

K
∑

k1,k2

∥

∥

∥ fk1

∥

∥

∥

2 ∥

∥

∥ fk2

∥

∥

∥

2
(2− λ(s̃k1)λ(s̃k2))

−2
K

∑

k=1

‖ fk‖2 + 1

A better lower bound for J
′
(r) can be found by choosing

a better lower bound of l
′
(s̃k1, s̃k2) and thus a good upper

bound for λ(s̃k1)λ(s̃k2). We first state the following obvious
result.

Lemma 1. Let sa,k(t) =
∑

l al,kga,k(t − lTk) be one of the
source signals and let sk(n) be the discrete time signal ob-
tained by sampling sa,k(t) at a rate of Te. Consider a unit

norm filter f̃k(z) and signal s̃k(n) =
⌈

f̃k(z)
⌉

sk(n). We con-

sider an element λ∗ ∈ (0;
√

3
2). If λ(s̃k) ≥ λ∗, then:

β
′
(s̃k) ≥ β

′

∗

with

β
′

∗ = ηmin + 2+ λ2
∗ (C.2)

where, β
′
(s̃k) and ηmin are given by (15) and (16) respec-

tively.

In the following we denote by K1 the set of index k for
which λ(s̃k) ≤ λ∗ and by K2 the set of index k for which
λ(s̃k) > λ∗. It is easy to see that this two sets are disjoint
and that there union is the set of all source index K =
{1 . . .K}.
Observe that if k1, k2 ∈ K1, then from (C.1) l

′
(s̃k1, s̃k2) ≥

2−λ2
∗. If k1, k2 ∈ K2, then l

′
(s̃k1, s̃k2) ≥ 1

2, and if k1 ∈ K1 and

k2 ∈ K2, then l
′
(s̃k1, s̃k2) ≥ 2−

√

3
2λ∗.

Under this observations we can give the expression of a
better lower bound of J

′
(r) :

m(r) =β
′

min

∑

k∈K1

‖ fk‖4 + (2− λ2
∗)

∑

k1,k2,k1,k2∈K1

‖ fk1‖2‖ fk2‖2

+ β∗
∑

k∈K2

‖ fk‖4 +
1
2

∑

k1,k2,k1,k2∈K2

‖ fk1‖2‖ fk2‖2

+ 2(2−
√

3
2
λ∗)

∑

k1∈K1,k2∈K2

‖ fk1‖2‖ fk2‖2

− 2
∑

k1∈K1

‖ fk‖2 − 2
∑

k2∈K2

‖ fk‖2 + 1 (C.3)

We consider a vector (‖ fk‖)k=1,...,K at which the gradient of
m(r) is zero. Then, it is easily shown that

• For each k ∈ K1, ‖ fk‖2 is either equal to 0 or to a fixed
value (independent of k) denoted by t1. We denote by
P1 the number of non-zero terms.

• For each k ∈ K2, ‖ fk‖2 is either equal to 0 or to a fixed
value (independent of k) denoted by t2. We denote by
P2 the number of non-zero terms.

If P2 = 0 then t1 is given by t1 = 1
β
′
min
+(2−λ2

∗)(P1−1)
and it can

be shown that the corresponding value of m(r) increases
when P1 increases if

β
′

min
≤ (2− λ2

∗) (C.4)
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If P1 = 0 then t2 is given by t1 = 1
β
′
∗+

1
2 (P2−1)

and it can be

shown that the corresponding value of m(r) decreases when
P2 increases.
If P1 ≥ 1 and P2 ≥ 1, then t1 and t2 are given by

t1 =
(2−

√

3
2λ∗)P2 − (β∗ + 1

2(P2 − 1))

(2−
√

3
2λ∗)

2P1P2 − (βmin + (2− λ2
∗)(P1 − 1))(β∗ + 1

2 (P2 − 1))

t2 =
(2−

√

3
2λ∗)P1 − (βmin + (2− λ2

∗)(P1 − 1))

(2−
√

3
2λ∗)

2P1P2 − (βmin + (2− λ2
∗)(P1 − 1))(β∗ + 1

2 (P2 − 1))

(C.5)

The corresponding value of m(r) is

m = 1−
2(2−

√

3
2λ∗)P1P2 − (P1(β∗ + 1

2 (P2 − 1))+ P2(βmin + (2− λ2
∗)(P1 − 1)))

(2−
√

3
2λ∗)

2P1P2 − (βmin + (2− λ2
∗)(P1 − 1))(β∗ + 1

2 (P2 − 1))

(C.6)

and it can be shown that it decreases if P2 increases. More-
over, if condition (C.4) holds, then the value of m increases
when P1 increases.
The minimum of m(r) therefore corresponds to parti-

tions (K1,K2) for which (P1, P2) are equal to the following
three possible values : (P1, P2) = (1, 0), (P1, P2) = (0,K) or
(P1, P2) = (1,K − 1).
It is clear that m coincides with 1− 1

β
′
min

if (P1, P2) = (1, 0).

Therefore, by Proposition 6, separation of a source signal
will be achieved if

m > 1− 1

β
′

min

, for (P1, P2) , (1, 0) (C.7)

In the following, we derive sufficient conditions for which
(C.7) holds. We first consider the case (P1, P2) = (0,K),
and obtain the following condition

β
′

min
<
β∗ +

1
2(K − 1)

K
(C.8)

When (P1, P2) = (1,K − 1) condition (C.7) becomes

(2−
√

1
2)2(K − 1)

β∗ + λ∗
1
2(K − 2)

≥ β′
min

(C.9)

Replacing λ∗ from (C.2) in (C.4), (C.8) and (C.9) we
obtain


















K(β
′

min
− 1

2) + 1
2 ≤ β∗ ≤ 4+ ηmin − β

′

min

β
′

min
(β∗ + 1

2(K − 2))− (K − 1)
(

2−
√

3
2(β∗ − 2− ηmin)

)2

< 0

(C.10)

The minimum of J
′
(r) is reached if all but one ‖ fk‖ norms

are 0 if conditions C.10 are simultaneously verified. This

happens for a well-chosen value of λ∗ ∈ (0,
√

3
2) and im-

plicitly of β∗ ∈ (ηmin + 2;ηmin +
7
2).

Remark that, as a function of β∗,
(

2−
√

3
2

√

β∗ − 2− ηmin

)2

is decreasing when β∗ ∈

(ηmin + 2;ηmin +
7
2). This means that we should chose

the smallest value for β∗ which also verifies the first of
conditions (C.10).
For an excess bandwidth γ ∈ [0, 0.1] a suitable value is
β∗ = K(βmin − 1

2) + 1
2. Replacing this value in equations

(C.10), we obtain conditions (31).
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