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Abstract—In this paper a novel hybrid approach for 

compensating the distortion of any interpolation has been 

proposed. In this hybrid method, a modular approach was 

incorporated in an iterative fashion. By using this approach we 

can get drastic improvement with less computational complexity. 

The extension of the proposed approach to two dimensions was 

also studied. Both the simulation results and mathematical 

analyses confirmed the superiority of the hybrid method. The 

proposed method was also shown to be robust against additive 

noise.  

Index Terms—iterative approach, interpolation distortion, 

quadrate latice, modular method 

1.  INTRODUCTION 

here are several applications in digital signal processing 

and communication systems that require the 

reconstruction of an analog signal from its discrete time 

samples using D/A converters. Several methods have been 

introduced in the literature in 1970’s and 1980’s (for a 

complete survey of interpolation techniques refer to [1]). 

Sample-and-Hold (S&H: zero-order-hold) and Linear 

Interpolation (LI: first-order-hold) were the dominant methods 

before that time. Today, Spline Polynomial interpolation such 

as B-splines and Cubic splines are the usual interpolation 

functions [2-4]. These interpolators create some distortions at 

the Nyquist rate after low pass filtering, especially when S&H 

or LI are utilized. The main advantage of these types of 

interpolators is their simplicity which makes them appropriate 

for practical use in iterative schemes. There are several 

methods to compensate for this type of distortion such as 

inverse      filtering, over-sampling, nonlinear adaptive 

algorithms [5-6], a modular method [7], and successive 

approximation using iterative methods [8-9]. The modular 

method is compared to the inverse      filtering in [7] which 

shows that by using a few number of modules, the 

performance of the modular method excels the inverse 

filtering as far as noise is concerned. Over-sampling is not a 

practical solution due to its bandwidth requirement. The 

iterative method [8] outperforms the modular method at the 

cost of more computations.  

We present a hybrid method that combines the benefits of 

the iterative and the modular methods. The advantages of this 

hybrid method are fast convergence rate, low complexity and 

reconstruction delay, and robustness against additive noise. In 

fact, by using this combined approach, a drastic improvement 

in signal reconstruction was achieved, with low complexity. 

We then generalize this hybrid method for 2-D signals, and 

successfully apply it to the interpolation of actual images. The 

simulation results confirm the superiority of the proposed 

hybrid scheme for the interpolation of 2-D signals.  

The rest of this paper is organized as follows: Section II 

briefly describes the background on signal reconstruction 

techniques including modular and iterative methods as well as 

the extension of the former to 2-D signals. In section III, we 

propose a hybrid method by applying the modular method in an 

iterative framework and prove the convergence of the hybrid 

method. Noise analysis and sensitivity is also discussed in this 

section. Simulation results and comparison with other methods 

are presented in section IV. Finally, section V concludes this 

paper. 

2. PRELIMINARIES 

2.1. Modular Method in 1-D 

In this section we give a brief overview of the modular 

method [7] that compensates the distortion of common 

interpolators such as Sample and Hold (S&H) and linear order 

hold by mixing the sum of cosine waves and then passing 

them through a lowpass filter.   

Let      be an interpolation of samples of       An 

improved reconstruction of      is given by [7]: 

                                 (1) 

where 

                    
   

 
         

    

 
             (2) 

As   increases,        converges to its ideal samples of 

     and thus,       converges to     . 

2.2. Modular method in 2-D 

We can extend the 1-D Modular method to 2-D signals. For 

example for S&H we have: 
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Thus in the 2-D case, the distortion function can be 

interpreted as 

T 



                     
    

 
    ,                                          (4)  

in which   
    

 
    
 
is a rectangular surface represented as an 

ideal 2-D LPF. In order to compensate the distortion function, 

we can add up      functions in 2-D. Although there are 

different scenarios depending on the sampling scheme, we just 

focus on rectangular lattice structure which is common in 

sampling theory. In this case, as illustrated in Fig. 1, each 

sample is located on the lattice point. Therefore, the ideal LPF 

can be obtained by: 

                                                     (5) 

In the time domain, we have: 
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It is clear that as the number of modules increases, the 

results will converge to its ideal value. We shall see that with a 

few number of modules we can obtain close approximations. 
 

2.3. Iterative Method 

The iterative method to compensate for interpolation 

distortions is given by: 

                                      (7)  

where   is the relaxation parameter that determines the 

convergence rate and       is the  -th iteration. In addition, 

Operator      consists of two operators;   is a band-

limiting operator and   is a sampling process, e.g.,   can be 

S&H or LI and   can be a lowpass filter. 

3. HYBRID APPROACH 

One of the main disadvantages of the traditional iterative 

method is its low convergence rate, even for the optimum 

relaxation parameters. Since the modular method outperforms 

simple low-pass filtering, it can be exploited to improve the 

convergence rate of the iterative method. In order to combine 

the modular and iterative methods, we incorporate the modular 

method in each iteration step as shown in Fig. 2. 

We will see in the simulation section that with only one 

module a phenomenal improvement can be achieved. Below, 

we shall prove the convergence of the hybrid method for S&H 

interpolation. The proof for other types of interpolation 

functions is similar. 

Proof of Convergence for the S&H Interpolation: 

For the P and S operators defined for S&H, we can write 

                                          (8) 
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In which   
 

 
  is a rectangular function used for S&H.       

will converge to      in the limit if we have a contraction, i.e., 

        . This implies [2] 
                              (10) 

Substituting (8) in (10), we can get: 

                       
                                                        (11)  

 

 
Figure 1.  The Quadrature lattice 
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Figure 2.  a) The reconstruction block diagram using standard iterative method 
b) The Modular Method 

 

where      and                 . Assuming that 

only one module is applied, the left-hand side of (11) can be 

rewritten in the frequency domain as follows: 

                                           

                     
 

 
         

 

 
              

(12) 

where       is an ideal lowpass filter with the cut-off 

frequency of    
 

  
. Assuming that the sampling rate is at the 

Nyquist rate, (12) becomes 

                                          
                                                                                (13) 

Hence, 

                                         
                                                       (14) 

To satisfy (14), it is required that 

                                
                                                      (15) 

The maximum occurs at   
 

  
 and for    , and we get 
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Therefore, the proposed hybrid method converges to the 

original signal.  

From (11), assuming that   is an ideal low pass filter,   can 

be computed as          
 

 
      . Comparing this 

value with        derived for the hybrid method; we expect 

              

  

     
   

 
   

  

     
    

 
   

      

                     
          



a drastic convergence rate improvement. For the best 

convergence rate, the relaxation parameter   should be chosen 

so that it minimizes  , thus at the Nyquist rate, the optimal 

value for   is given by 

     
 

     
 

 
       

  

 
       

 

 
 
                    (17) 

For other types of interpolations, the derivations are similar. 

For example, for LI we have 

                                  
                           (18) 

We get           for    , which is less than 

       for the conventional LI interpolation. The optimum 

value for   is then given by:   

     
 

      
 

 
         

 

 
        

 

 
 
                                  (19) 

If we mix the signal with more harmonics in each iteration 

step, as shown in Fig. 2(b), it can be shown that   decreases as 

we increase the number of modules. In the limit one can write 

              
                                                        (20) 

Hence,   tends to zero for     as the number of harmonics 

increases, and thus a faster convergence is expected. 

 

3.1. Chebyshev Acceleration of the iterative method 

The iterative and thus the hybrid method can be accelerated 

by utilizing the two previous iterations based on the 

Chebyshev acceleration method [11]. Accordingly we have: 

              
 

   
                          (21) 

where            
 
and    

   

   
 .   and   are the operators 

defined for the iterative method. The constants   and   are 

frame bounds [11], and should be selected properly for an 

acceptable performance. There is no unique optimum pair for 

  and  , thus before running the system for the first time they 

should be selected by experimental methods. The parameter 

   
can be calculated as follows:   

      
  

 
     

  

                                                          (22) 

where   is defined as   
   

   
. 

The acceleration method improves the iterative method with 

almost no additional complexity. Notice that the parameter   

depends only on the constants   and   and once the    vector 

is calculated, it is saved in the memory for later 

implementations. 

 

3.2. Noise Analysis 

Suppose that the proposed hybrid method is used in a noisy 

environment. For the sake of analysis, white Gaussian noise is 

added to the original signal before the reconstruction. In this 

section we will analyze and compare the effects of noise on 

hybrid and traditional methods. From (8), for the traditional 

iterative method, we have: 

                                               (24)  

where      is the additive white Gaussian noise to the input, 

and       and        are the S&H versions of      and      , 
respectively. The necessary constraint on the convergence is 

the contraction inequality given in (11). Substituting (24) in 

(10), we obtain 

                                       
                                                                                 (25) 

By invoking the triangle inequality, it is sufficient to have 

                                         
                                                                                 (26) 

If we have a contraction then  

                                                           (27) 

As in the previous section, the following inequality  

                                           (28)  

in the frequency domain, should be satisfied for      . In 

the worst case we have  

    
 

    
                

 

 
                

                                                                                         (29) 

This implies that as long as the noise standard deviation 

satisfies (29), the iterations converge. Now, consider the 

proposed hybrid method. As in (28) we can state that 

                                     
                                                                  (30) 

is a sufficient constraint for the convergence. And for the 

worst case, we have 
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Comparing (31) to (30), we conclude that the proposed 

hybrid method can tolerate more noise power. 

 

3.3. Sampling Rate Analysis 

In the previous sections, the analysis was based on the 

sampling rate at the Nyquist rate. Suppose the sampling 

process is   times the Nyquist rate. Invoking the sufficient 

condition for convergence (11), we have 
 

          
 

  
       

 

  
         

 

  
       (32) 

 

For example, for    ,   is equal to     . This factor is 

about 3 times smaller than that of the Nyquist rate; this implies 

we should expect              dB improvement in terms 

of SNR at each iteration step. Similar analysis shows that an 

equivalent improvement for the LI can be expected. The 

simulation results presented in section IV confirm the 

theoretical derivations of this section. Although all the 

relations were proved for ordinary iterative method, the same 

relations can be also applied to the Chebyshev accelerated 

iterative approach [11]. The extension of the proof to the 

hybrid method is straightforward.  

 

3.4. Modular-Iterative Method in 2-D 

For the proposed method in 2-D, we consider the rectangular 

lattice sampling process with interpolation function such as 

S&H and first-order hold. The band limiting process   is an 

ideal 2-D LPF. All the relations written in the previous section 

about convergence rate, noise can be restated for the 2-D case. 

Since the procedure and the mathematical proof closely follow 

those of the 1-D case, we avoid rewriting it. In the next section, 

we simulate the performance of the proposed algorithm. 

4. SIMULATION RESULTS AND DISCUSSION 

4.1. Hybrid Method in 1-D 

The performance of different methods discussed so far are 

evaluated and compared in this section. To have a fair 

comparison, initial band-limited signals are produced by a 

Gaussian process with zero mean and an average power of 

   dB. The performance of each method is averaged over 50 



signals.  The initial signals are FFT lowpass filtered version of 

pseudo-random signals. During all simulations, we use the 

same FFT lowpass filter. Parameter   is equal to one and the 

parameters   and   are set at   and  , respectively.  To show 

the significance of this method, the sampling rate is at the 

Nyquist rate. The performance criterion for our simulations is 

the Signal to Noise Ratio (SNR) in dB. To avoid transient 

errors at the end points, SNR is calculated for interior points 

and 10% of the end points is ignored. As illustrated in [3], [4] 

and Fig. 3, the SNR increases monotonically in dB as the 

number of iterations increases. But it saturates at about     

dB because of the computer round-off error.   

According to the results depicted in Fig. 3, for the classical 

iterative method, after two iterations, the SNR of about    dB 

is achieved. This means   dB improvement with respect to 

simple filtering of sample-and-hold signal. On the other hand, 

the hybrid method after two iterations reaches   dB and   dB 

for one and two modules, respectively.  Hence, the hybrid 

method improvement is about   dB for only one harmonic 

and   dB for two harmonics, this is quite impressive in real 

engineering applications. 

Fig. 4 shows similar results for the Linear Interpolation 

(LI). The difference between the hybrid method and the 

iterative method at the first few iterations is not very 

significant (about  - dB difference). However, as the number 

of iterations increases, the difference between the two methods 

becomes apparent. The improvement of the conventional 

iterative method after eight iterations is about   dB, while 

that of the hybrid method is about   dB. Since the difference 

in the performance of modular compensators with one and two 

harmonics is not very significant, only one module has been 

used in the iteration steps in the following sections. 

 

4.1.1. Effect of the Relaxation Parameter 

For the convergence of the iterative method,   must lie 

between   and   [2]. By altering the relaxation parameter, the 

speed of the convergence rate changes.  

Although there are adaptive algorithms to find    for the   

 -th iteration step, due to their computational complexity, we 

would like to find the optimum global   for the best 

convergence rate; to this end, a quantitative criterion for the 

rate of convergence is defined. Our criterion is the maximum 

achievable improvement after    iterations divided by the 

number of iterations (average dB improvement per iteration). 

 
Figure 3.  SNR vs. the number of iterations for different methods(Zero-order 

hold,    , 1-D, at the Nyquist rate) 

 

 
Figure 4.  SNR vs. the number of iterations for different methods (First-order 

hold,      , 1-D, at the Nyquist Rate) 

 

 
Figure 5.  Convergence rate vs. relaxation parameter for different methods for 

S&H interpolation (1-D, at the Nyquist Rate, with one module). 

 

Fig. 5 shows the convergence rate of the standard iterative 

method and the proposed hybrid method for different values of 

the relaxation parameter. We can conclude from this figure 

that with the best choice of   for each method, our technique 

outperforms the conventional iterative method by about   dB 

per iteration (81%). Also the optimum   is shown to be      

which verifies the theoretical result derived in (17). 

The same criterion can be calculated for the LI but the 

simulation results are omitted for the sake of conciseness; in 

this case the hybrid method converges 47% faster than the 

classical iterative method for the optimum relaxation factor.  

The optimum   is     which concurs with the theoretical result 

derived in (19). 

 

4.1.2. Noisy environment 

To study the effect of noise on the convergence rate and 

maximum achievable SNR, we added a white Gaussian noise, 

with a power of     dB, to the signal. This is a model of the 

channel noise that enters the reconstruction module along with 

the signal. Fig. 6 shows that after a few iterations, the SNR 

plot will reach its maximum value. But this value (about   dB 

to   dB) is less than the maximum achievable SNR in the 

absence of noise (about    dB). After this climax, the SNR 

gets worse due to the additive noise and computer round-off 

errors. Despite the degradations, Fig. 6 shows that the hybrid 

method for S&H case is still more robust than the 

conventional method. 

 

4.1.3. The Sampling Rate Effect 



In section III we showed that the SNR and the convergence 

rate have a direct relationship with the sampling rate. At 

higher rates the difference between the hybrid and the 

conventional methods diminishes. 

Simulation results show that the SNR, at each iteration step, 

improves by about     dB when the sampling rate is doubled. 

This verifies the relation derived for   in (32), according to 

which doubling the rate decreases the convergence factor  , by 

  times and hence             dB improvement. 

 

4.2. Hybrid Method in 2-D 

Fig. 8 shows the performance of the hybrid approach with 

different number of modules versus the number of iterations at 

the Nyquist rate. In fact, zero-order module means a 

traditional iterative approach. Here,   is set to one, which is 

the typical choice in most applications.  

As it can be observed, the number of modules directly 

affects the quality of reconstruction. When a small number of 

modules are used, the iterative method attains a better 

performance. However, as the number of modules is 

increased, the role of the iterative method becomes less 

significant. 

Lastly, in order to investigate the performance of the 

proposed approach in conjunction with the Chebyshev 

acceleration method, the SNR improvement for the hybrid and 

accelerated hybrid method is plotted in Fig. 9. For 

convenience, the proposed method with just zero, and four 

modules are depicted. As expected, the results show that the 

accelerated hybrid method outperforms the Chebyshev 

acceleration iterative approach and the traditional iterative 

one. 

 
Figure 6.  SNR of reconstruction for a random 1-D signal vs. number of 

iterations for different methods in the presence of noise (S&H,      at the 
Nyquist rate, the initial S&H/N = 40.38dB). 

 
Figure 7.  SNR vs. number of iterations. Comparison of the operation of the 

two methods at twice the Nyquist rate and at the Nyquist rate (S&H,    ). 

 
Figure 8.  The performance of the hybrid approach with different number of 

modules versus the number of iterations (2-D, at Nyquist rate). 

 

 
Figure 9.  Comparison of the accelerated hybrid approach with the traditional 

iterative and Chebyshev acceleration iterative methods (2-D, at Nyquist rate). 

 

4.2.1. Effect of the Relaxation Parameter 

In order to evaluate the optimum value of  , we calculated 

the SNR improvement during 5 iterations in the proposed 

combinational approach with different number of modules. 

Fig. 10 demonstrates the average SNR improvement versus 

different values of   for  ,  ,   and   modules. Based on the 

Figure, It can be inferred that by increasing the number of 

modules, the algorithm becomes nearly independent of  . 

Even without any iteration (the starting point), we have a good 

reconstruction and the iterative algorithm just attains minor 

increase in SNR. Thus, the role of the iterative algorithm and 
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its relaxation parameter λ decreases with the increasing 

number of modules.  

On the other hand, when the iterative algorithm has a 

significant role, the value of λ and its effect on the SNR 

improvement become noticeable. From Fig. 10, for the simple 

iterative method (without modules), the optimum λ is 1.15, 

while using modules, this value tends to one. 

 

4.2.2. Noisy environment 

Similar to 1-D, to simulate the performance of the algorithm 

in a noisy environment Additive White Gaussian Noise 

(AWGN), with the same powers as described in section 

IV.A.2, were added to the input signal. Fig. 11 shows the 

results. As depicted, the curve of SNR improvement in a noisy 

environment saturates sooner than the noiseless environment. 

Nevertheless, the proposed method outperforms the traditional 

iterative method. Here, we have considered the traditional 

iterative method (no modules) and the hybrid method with 1, 2 

and 4 modules. It is evident from this figure that the more the 

number of modules, the better the reconstruction. Moreover, it 

can be deduced that, as in the 1-D case, the proposed 

algorithm enjoys a greater degree of robustness compared to 

the simple iterative approach. 

 
Figure 10.  Average SNR improvements for hybrid approach with 0(index 

     ), 1(     ), 2(     ) and 3(     ) modules vs. different   (2-D at 

Nyquist rate). 

 
Figure 11.  The SNR improvement versus the number of iterationsin the 

presence of noise, for different methods and with different number of 

modules, (2-D, the initial S&H/N = 27.69dB). 

4.3. Computational Complexity 

The major advantage of the proposed hybrid method is its 

higher rate of convergence with less overall computational 

complexity. The conventional iterative method requires 

              real additions and               real 

multiplications per sample, where   is the number of 

iterations and   is the FFT block size. But the accelerated 

hybrid method with one module requires               
additions and               multiplications per sample.  

As for the 2-D case, since each of the above computations is 

performed in one dimension (per each row) and then the same 

is repeated in the other (per each column), the overall 

computational complexity is the same as the 1-D case but 

multiplied by   , where   is the size of the 2-D square 

matrix.  Although the number of computations for the hybrid 

case in each step of iteration is more, with a fewer number of 

iterations it achieves the same results and thus its overall 

computational load is considerably less. 

 

4.4. Application to Real Images 

We have already shown the computational efficiency of our 

method to be superior to existing methods of image 

interpolation. In the end, to evaluate the performance of the 

proposed method subjectively, we apply our technique to a 

well-known image (Lena). In fact, by this algorithm, we 

intend to increase the size of the images with acceptable 

quality. 

The errors between the high-resolution originals and 

reconstructed images are expressed in terms of PSNR (Peak 

Signal to Noise Ratio) values. Table I shows the errors for    

enlargement. Objective comparisons based on PSNR are 

carried out with conventional bilinear and cubic Spline 

interpolations (we confirmed the results of [15]) as well as 

state-of-the art wavelet based methods [12]-[15]. A non-

wavelet scheme based on edge-directed interpolation [16]-[17] 

was also considered to provide a comparison with an 

established method not operating in the wavelet domain. Our 

results show that the proposed iterative methods outperform 

the other methods. Besides, the Hybrid method with only 1 

module and 2 iterations exhibits almost the same PSNR 

performance as the classical iterative method with 10 

iterations.   

Fig. 12 shows the result of subjective comparison with 

bicubic Spline interpolation for the image Lena. Notice the 

sharpness of the Lena image enlarged with the proposed 

method in Fig. 12 (mid. Left) compared to the bicubic method 

(mid. Right), especially around lips, hat, and eyes. Overall, the 

hybrid method yields images that are sharper than the bilinear 

or iterative method. Furthermore, as it is depicted in Fig. 12, 

the enlarged image by the proposed method (bottom Left) has 

lower errors around edges than other one (bottom Right).  

5. CONCLUSION 

We proposed a hybrid technique based on the iterative and 

the modular methods to compensate for the distortion that 

occurs in the interpolation schemes such as S&H and LI. We 

theoretically proved that the proposed hybrid method 

converges much faster than the conventional iterative 

methods. Simulation results also confirmed the enhanced 

convergence rate. Furthermore, the superior robustness to 

noise and lower computational complexity of the Hybrid 

method were confirmed through both simulations and 

theoretical analysis. Chebyshev acceleration method was 

exploited to improve the performance of the Hybrid scheme. 

Finally, we extended our hybrid technique to 2-D signals, and 
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demonstrated its applicability to real world image 

interpolations. The aforementioned characteristics make the 

proposed hybrid approach significant from a practical point of 

view. In the future we plan to focus on the application of the 

hybrid method to 2-D signals, where hexagonal sampling has 

been used. 
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Figure 12. Top Left: Extract from original Lena image, Top Right: Original 

Image reduced by 4, Mid Right: 4× reconstruction using bicubic Spline 

interpolation, Mid Left: 4× reconstruction using hybrid method with 2 

iterations and 1 module, Bottom right: Error corresponding to the bicubic 
interpolation and Bottom Left: Error corresponding to the hybrid method. 

 

 
 

 

 
 

 

 
 

 

 
 

TABLE I 

PSNR (  ) RESULTS FOR 4× ENLARGEMENT IMAGES  
(FROM 256×256 TO 512×512) 

Image/Method Lena 

Bilinear [15] 30.13 

Bicubic [15] 31.34 

NEDI [15-17] 34.10 

WZP –Haar [15] 31.46 

WZP-Db.9/7 [15] 34.45 

Carey et al. [12], [15] 34.48 

HMM [13], [15] 34.52 

HMM-SR [14], [15] 34.61 

WZP – CS [15] 34.93 

SAI [16] 34.74 

Iterative (2 iter.) [8] 35.25 

Iterative (10 iter.) [8] 37.39 

Proposed Hybrid (2 iter. And 1 mod.) 37.12 
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