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a b s t r a c t

In this paper the problem of optimization of the measurement matrix in compressive

(also called compressed) sensing framework is addressed. In compressed sensing a

measurement matrix that has a small coherence with the sparsifying dictionary (or

basis) is of interest. Random measurement matrices have been used so far since they

present small coherence with almost any sparsifying dictionary. However, it has been

recently shown that optimizing the measurement matrix toward decreasing the

coherence is possible and can improve the performance. Based on this conclusion, we

propose here an alternating minimization approach for this purpose which is a variant

of Grassmannian frame design modified by a gradient-based technique. The objective is

to optimize an initially random measurement matrix to a matrix which presents a

smaller coherence than the initial one. We established several experiments to measure

the performance of the proposed method and compare it with those of the existing

approaches. The results are encouraging and indicate improved reconstruction quality,

when utilizing the proposed method.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

Sparse signal recovery problem has been widely
researched within signal and image processing communities
in recent years. Sparse signals/images have few non-zero
components. A signal or image with an underlying sparse
structure can be more efficiently and advantageously com-
pressed, stored or transmitted than normal non-sparse
signals. Such an optimum compression requires a novel
sampling scheme, followed by an appropriate reconstruction
method, different from conventional techniques. Given the
compressed measurements y and the sampling pattern D,
the main challenge is to solve the following inverse problem:

minJaJ0 s:t: y¼Da, ð1Þ

where y 2 Rp and the rectangular matrix D 2 Rp�m with
pom are known and the sparse signal a 2 Rm should be
ll rights reserved.
found. ‘0-norm ðJ � J0Þ counts the number of non-zero
components and is a measure of sparsity degree in the
signal. Note that in most cases the original signal is sparse in
a different domain (e.g. Fourier, wavelet, or discrete cosine
transform (DCT)). In such cases the notation changes to
y¼Ux¼UWa¼Da, where U 2 Rp�n and W 2 Rn�m are
called measurement (sensing) matrix and sparsifying trans-
form, respectively. Note that U is always an overcomplete
matrix (p5n) and W can either be overcomplete ðnomÞ,
called dictionary, or complete (n¼m) which is called basis.

One of the recent emerging fields having direct con-
nection to sparse recovery problem is compressed sensing
(CS) [1,2]. In CS we not only attempt to find a sparse
solution for (1), but also discuss the possible ways to
generate U to compressively acquire the input signal and
yet not to violate the uniqueness conditions for sparse
recovery in (1). In other words, CS targets Shannon’s
theorem [3] and takes the advantages of sparsity to
decrease the sampling rate.

The major difficulty in solving (1) is its non-convexity.
Its solution requires a combinatorial search through all
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possible sparse a which is not feasible. However, there
have been reported several approaches providing the
solution for the sparse recovery problem, by either relax-
ing it to

minJaJ1 s:t: y¼Da, ð2Þ

where JaJ1 ¼
P

i9ai9 refers to ‘1-norm, or using a greedy
strategy. Note that in addition to (1) and (2), there are
other formulations as well which are not presented here.
Some of the well known recovery methods are basis
pursuit (BP) [4], orthogonal matching pursuit (OMP) [5],
least angle regression (LARS) [6], and least absolute
shrinkage and selection operator (LASSO) [7].

Although sparsity is an essential requirement for the
signals in the CS framework, it is not sufficient for a signal
to be successfully reconstructed. Thus far, it is realized
that in order to be able to attain a reasonably small p and
yet have a stable reconstruction, U requires to have
specific properties [8], the one which is focused on here,
is mutual coherence. In CS theory, a suitable sensing
matrix U is desired to be as incoherent as possible with
sparsifying matrix W. In other words, the correlation
between any distinct pair of columns in equivalent matrix
D should be very small, and that means to have a nearly
orthogonal matrix D. It is shown that random matrices
with Gaussian or Bernoulli distributions are appropriate
choices for U [9], as they satisfy this property with high
probability and can be generated non-adaptively. Although
U is normally selected to be random, some recent works
have been reported in which the authors attempt to find an
optimal structure for U (explicitly or implicitly) with the
hope of increasing the reconstruction quality and to take
fewer measurements [10–15]. Elad [10] attempts to itera-
tively decrease the average mutual coherence using a
shrinkage operation followed by a singular value decom-
position (SVD) step. In [11] the authors apply a kind of non-
uniform sampling by segmenting the input signal and
taking samples with different rates from each segment. In
[12], which is an application to magnetic resonance imaging
(MRI), the authors define an incoherence criterion based on
point spread function (PSF) and propose a Monte Carlo
scheme for random incoherent sampling of this type of data.
Wang et al. [13] propose a variable density sampling
strategy by exploiting the prior information about the
statistical distributions of natural images in the wavelet
domain. Their proposed method is computationally efficient
and can be applied to several transform domains. In another
work in [14], Wang et al. propose to generate colored
random projections using an adaptive scheme. Duarte-
Carvajalino et al. [15] take the advantage of an eigenvalue
decomposition process followed by a KSVD-based algorithm
[15] (see also [16]) to optimize U and learn dictionary W,
respectively. The results of all previous methods reveal the
improved performance which is an evidence of the benefits
that optimal sampling can provide for this framework.

Our contribution in this paper is to develop a novel
approach for optimizing the measurement matrix. We
propose a gradient-based method to optimize a randomly
selected measurement matrix to decrease the coherence
with the given sparsifying matrix. The proposed algo-
rithm, which is related to the design of Grassmannian
frames [17–19], aims at minimizing a cost function in an
alternating scheme. The results of our experiments and
simulations confirm the ability of the proposed method to
decrease the coherence leading to higher reconstruction
quality.

The rest of the paper is organized as follows. In the next
section, we first define the criteria that can be used for
measuring the coherence of a matrix. Then, the proposed
approach for optimization of the measurement matrix is
described. In Section 3 an adaptive scheme to choose the
optimum stepsize is proposed. In Section 4, some simula-
tions are given to examine the proposed method from the
practical perspectives. The discussion and conclusion are
presented in Sections 5 and 6, respectively.

2. Measurement matrix optimization

2.1. Problem formulation

Following the notations stated earlier, assume a has
s5m non-zero samples and called s-sparse. A successful
CS requires U and W to be incoherent. A good measure of
coherence between these two matrices (or equivalently
columns of D) can be obtained by referring to the defini-
tion of mutual coherence [20,21]. Here, we quote this
definition as that presented by Elad [10]:

Definition 1. For a matrix D, the mutual coherence is
defined as the maximum absolute value and normalized
inner product between all columns in D that can be
described as

mmxðDÞ ¼ max
iaj,1r i,jrm

9dT
i dj9

JdiJ2 � JdjJ2

( )
: ð3Þ

A desired U has a small mmx with respect to W. An
alternative description for mmx is obtained by referring to
the corresponding Gram matrix ~G ¼ ~D

T ~D, in which ~D is
column-normalized version of D. We set two coherence
measures based on this matrix, which are used to study
the performance of different methods later in the Results
section. These parameters are the maximum and average
of off-diagonal elements in ~G, denoted respectively as

mmx ¼ max
iaj,1r i,jrm

9 ~gij9, ð4Þ

mav ¼

P
jai

P
iaj9 ~gij9

mðm�1Þ
: ð5Þ

There are important reasons which motivate us to
search for measurement matrices with small coherence.
The first reason is the influence that the mutual coherence
has on the achievable sparsity bound for the given signal.
A detailed discussion about this fact has been documen-
ted in [21,22]. In a brief statement, if we suppose that the
following inequality holds in a noiseless setting:

JaJ0o
1

2
1þ

1

mmxðDÞ

� �
ð6Þ

then, a is necessarily the sparsest signal when y and D are
known. More importantly, both BP and OMP are guaranteed
to successfully recover it [21,22]. This implies that as long as
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the mutual coherence is small, a successful reconstruction is
achievable for a wider range of sparsity degree.

Another significant requirement is the restricted iso-

metry property (RIP) [9,20], which is defined with respect
to an isometry constant 0odr1. For a s-sparse signal a
and any integer trs, the isometry constant of D is the
smallest ds that satisfies

ð1�dsÞJatJ
2
2rJDtatJ

2
2rð1þdsÞJatJ

2
2: ð7Þ

This property implies that for a proper isometry constant
(the ideal d is 0), RIP ensures that any t subset of columns
in D with cardinality less than s is nearly orthogonal. This
orthogonality can be related to the coherence of columns;
less coherence corresponds to higher degree of orthogon-
ality. This results in a better CS behavior and guarantees
the identifiability of the original signal by both OMP and
BP [4]. Note that in noisy circumstances more severe
conditions are applied to ensure the stability of recon-
struction, which are not dealt here.

2.2. The proposed method

Recall from the previous section that an incoherent D has
a small mutual coherence. In other words, the correspond-
ing Gram matrix has its absolute off-diagonal elements
close to zero and diagonal elements equal to one. This,
indicates a Gram matrix which is equal to identity matrix. In
a previous work [23], we proposed a method to minimize
the difference between Gram matrix and identity matrix in
the form of Frobenius norm:

min
G

JG�IJ2
F , ð8Þ

where J � J2
F denotes the Frobenius norm and I is identity

matrix. The proposed method in [23] is able to optimize an
initial U to a less coherent matrix. However, further study
revealed that choosing identity matrix in the above objec-
tive function is a very strict constraint, and a Gram matrix
equal to I is only achievable for p¼m, which is not the case
here. We believe that we are able to optimize U not with
respect to an identity matrix, but with a matrix which is
updated inside the algorithm, accordingly. We shortly
propose a method in this paper which follows this idea.

Another interesting description of matrices with small
coherence is inferred from the equiangular tight frame
(ETF) design, which is a special type of Grassmannian

frames [18,19]. A tight frame is a generalization of an
orthonormal basis. In orthonormal bases all vectors have
unit norm and they are perpendicular to each other. In a
more general term, every orthonormal basis is equiangular

[18] and that causes each pair of distinct vectors to have
zero inner product. An extended and more general type of
orthonormal basis is called tight frame which contains
vectors maximally partitioned in space. Now, we study
ETFs in detail. Consider m unit-norm vectors in a p-
dimensional space, where prm. ETF is an arrangement of
such vectors that have the same—normally minimum—

absolute inner product with respect to each other (in
orthonormal basis this value is zero, equivalent to 901
Euclidean angle). Suppose we arrange these vectors as
columns of matrix ~D. It is known that inner product
between all vectors are simply obtained by multiplying ~D
by its transposed: ~D

T ~D. This is equivalent to the Gram
matrix ~G which has already been described. Note that
diagonal elements of ~G are not of our interest since they
indicate the Euclidean norms of columns of ~D. In particular,
we are only interested in the off-diagonal elements of ~G
which correspond to inner products between any two
distinct vectors defined as

~gij ¼ cosðyijÞ :¼ / ~di,
~djS¼ ~d

T

i
~dj for iaj, ð9Þ

where / � , �S denotes the vector inner product. It is
important to note that minimum possible absolute off-
diagonals of ~G are zero and can occur only if ~D is ortho-
normal with p¼m. This is not the case here, since we only
deal with pom. It can be shown that minimum absolute
inner product for each vector pair in an equiangular tight
frame is [18]:

mE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m�p

pðm�1Þ

r
: ð10Þ

In fact, (10) is the minimum achievable mutual coherence of
D, too. We now summarize our discussion in the following
definition [18]:

Definition 2. A matrix D is called an equiangular tight frame
(ETF) if its corresponding Gram matrix has unit diagonal
elements and off-diagonals equal to 7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm�pÞ=pðm�1Þ

p
:

~gij ¼
7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m�p

pðm�1Þ

r
for iaj,

1 otherwise:

8><
>: ð11Þ

In general, designing an exact ETF is a complicated pro-
cedure [18] and such frames do not exist for any arbitrary
p and m—it is known that a real equiangular tight frame
can exist only if mrpðpþ1Þ=2 [18]. Nonetheless, there
are methods established to find ETFs such as in [17,18].
The problem we face here is more challenging, where we
require to find a measurement matrix U for any arbitrary
pom, having small coherence with a known fixed dic-
tionary/basis W. In other words, D¼UW is desired to be
as close as possible (and not exactly equal) to an ETF,
where U, and potentially W, are overcomplete matrices.
What follows is the proposed approach to find such a
measurement matrix.

Consider a convex set HmE
which contains the ideal

ETFs [18]:

HmE
¼ H 2 Rm�m : H¼HT ,diag H¼ 1,max

iaj
9hij9rmE

� �
,

ð12Þ

where 1 is a column vector of all ‘ones’. As mentioned
earlier, we cannot guarantee to find a U leading to a D
with coherence exactly equal to mE. In other words, it is
not always possible to find a U with a Gram matrix lying
in the set HmE

, because of two reasons: (1) dealing with
arbitrary dimensions and not necessarily mrpðpþ1Þ=2,
and (2) being constrained by the fixed matrix W. As a
solution, we relax this situation and attempt to optimize a
random U to have a Gram matrix lying in a set Hm with
mZmE. In order to find such a matrix, we define the
following minimization problem which needs to be solved,
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alternately:

min
U,H2Hm

JWTUTUW�HJ2
F : ð13Þ

The reason for introducing m is to emphasize that we can
use the proposed method to find a matrix with a coherence
close to any arbitrary m and not necessarily mE. In the
following subsections, we propose an alternating minimiza-
tion algorithm, which iteratively minimizes (13) to find the
desired U.1 The proposed algorithm attempts to force an
upper limit on off-diagonal elements of WTUTUW, and find
the desired U, accordingly.

2.2.1. Updating U : a gradient descent approach

Starting with a U, constructed from random i.i.d
(independent and identically distributed) columns, we
apply a gradient descent method to minimize (13), while
keeping H fixed. We denote the ij-th element of U by fij

and define the cost function as

J ¼ JWTUTUW�HJ2
F : ð14Þ

The minimization method can be described as an iterative
process such that fij’fij�Z@J =ð@fijÞ, where Z40 is the
iteration stepsize. In order to apply the proposed method
to all elements of matrix U, we compute the gradient of J
with respect to U (denoted as rUJ ¼ @J =@U), where H is
considered fixed:

@J
@U
¼

@

@U
TrfðWTUTUW�HÞT ðWTUTUW�HÞg: ð15Þ

Here, Trf�g denotes the matrix trace operation. Consider-
ing the matrix derivative rules in matrix computation [25]
we simplify (15) to

@J
@U
¼ 4UWðWTUTUW�HÞWT : ð16Þ

The full update equation would then be

Uðkþ1Þ ¼UðkÞ�bUðkÞWðW
TUT
ðkÞUðkÞW�HÞWT , ð17Þ

where k is the iteration index and b¼ 4Z. The scalar
stepsize b can either be a fixed value or be adaptively
updated during the iterations. We will discuss about such
adaptive stepsize shortly. At k-th iteration and after
updating the measurement matrix using (17), we keep
U fixed and update H to minimize (13). We next describe
the procedure for updating H.

2.2.2. Updating H: a component-wise approach

In order to have no high-coherent element between U
and W, an upper limit on off-diagonal elements of
WTUTUW is imposed. This is done while updating H,
based on a given threshold m. Minimization of (13) with
respect to H, which is a Hermitian matrix, is known as
matrix nearness problem and is solved element-wise
[17,18]. In fact, the closest H to WTUTUW, in terms of
Frobenius norm, has similar sign pattern. On the other
hand, it is known that the nearest element of a set to a
point (in terms of Frobenius norm) can be obtained by
projecting that point onto the set, which is a unique
1 A partially similar and independent work in parametric dictionary

design has also been reported in [24].
solution [24]. Here also Hm is a convex set and therefore,
the solution is straightforward which can be simply
described as a matrix having unit diagonal elements and
off-diagonals satisfying

8i,j iaj : hij ¼
gij if 9gij9rm,

m � signðgijÞ otherwise,

(
ð18Þ

where gij is the ij-th element of G¼WTUTUW and m is the
desired mutual coherence defined by the user. Such an
element-wise scheme in updating H assures that in the
next update of U, the elements with higher coherence
will be intensively constrained. The pseudocode of the
algorithm appears in Algorithm 1.
lgorithm 1. The proposed optimization method.
Input: Sparse representation matrix W, stepsize b, threshold m,

and number of iterations: L, K.
Output: Measurement matrix U.
1
 begin

2
 Initialize U to a random matrix.
3
 Initialize H to an identity matrix.
4
 for l¼ 1 to L do

5
 G’WTUTUW

6
 Update H:
7
 for all iaj do(

8
 hij ¼

gij if 9gij9rm
m � signðgijÞ otherwise
9
 end

10
 Update U:
11
 for k¼1 to K do

12
 U’U�bUWðWTUTUW�HÞWT
13
 end

14
 end

15
 end
We also note that having unit diagonal elements in H
can be thought as a normalization constraint on the
columns of D¼UW, when solving (13). Therefore, nor-
malizing the columns of D in Algorithm 1 is not applied.
This has also the advantage of less computation cost.
However, in order to be consistent in representing the
results, we always compute the coherence based on the
column-normalized D, denoted by ~D, and accordingly
~G ¼ ~D

T ~D, which is also seen in (4) and (5).
The proposed algorithm is repeated for a number of

iterations, where U and H are alternately updated to
reduce (13). Regarding the convergence of the proposed
method we mention that constructing ETFs using alter-
nating minimization methods have a global minimum
subject to an appropriate initialization [17,18]. It has been
proven in [17,18] that there exist at least one accumula-
tion point for minG,HJG�HJ2

F , and the minimization leads
to a global minimum after infinite number of iterations
(more discussion on convergence of alternating minimi-
zation methods can be found in [17,18]). The proposed
method, however, offers a gradient descent method to
update the measurement matrix which guarantees
gradual reduction of (13) and convergence to a local

minimum. Regarding the stopping criterion, we used a
fixed number of iterations. However, other stopping
criteria can also be used. For instance, one may continue
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we were unable to plot such a graph for it in Fig. 2(b).
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the algorithm until reaching to a desired coherence, or
until the value of cost function for two successive itera-
tions does not change significantly.

Next, we describe a procedure for choosing an adaptive
stepsize which improves the convergence behavior of the
proposed method compared with using a fixed stepsize.

3. Adaptive stepsize selection

Although we mentioned that a fixed stepsize can be
used in the proposed algorithm, it may not be an opti-
mum choice. Hence, we describe the procedure for select-
ing an adaptive stepsize to achieve a higher performance
and faster initial adaptation. An adaptive stepsize varies
during the iterations of the algorithm based on some
criteria. Stochastic gradient stepsize has been shown to be
advantageous over the fixed one [26–28]. In order to find
such stepsize at each iteration of the algorithm we can
use the steepest descent method as follows:

bðkþ1Þ ¼ bðkÞ�x
@J ðUðkþ1ÞÞ

@bðkÞ
, ð19Þ

where x is a constant. It is seen from (19) that the stepsize
is adapted based on the gradient of the total cost function
and the stepsize of the previous iteration. In other words,
it is adapted in a way to minimize (14). In order to
calculate the differentiation in (19) we replace (17) into
(14) and obtain the following equation:

J ðUðkþ1ÞÞ ¼ JWT
ðUðkÞ�bðkÞUðkÞWðW

TUT
ðkÞUðkÞW�HðkÞÞW

T
Þ
T

ðUðkÞ�bðkÞUðkÞWðW
TUT
ðkÞUðkÞW�HðkÞÞW

T
ÞW�Hðkþ1ÞJ

2
F : ð20Þ

For notational simplicity and avoiding very long equations
we define

MðkÞ9UðkÞWðW
TUT
ðkÞUðkÞW�HðkÞÞW

T
ð21Þ

and then simplify (20) to

J ðUðkþ1ÞÞ ¼ JWT
ðUðkÞ�bðkÞMðkÞÞ

T
ðUðkÞ�bðkÞMðkÞÞW�Hðkþ1ÞJ

2
F :

ð22Þ

In order to calculate the derivative of (22) with respect to
bðkÞ we expand J � J2

F using the trace operator and obtain:

@J ðUðkþ1ÞÞ

@bðkÞ
¼ �2TrfðAðkÞ�Hðkþ1ÞÞ

T
ðBðkÞ þBT

ðkÞÞg

þ2 Trf2CðkÞðAðkÞ�Hðkþ1ÞÞþðBðkÞ þBT
ðkÞÞ

2
gbðkÞ

�6 TrfCðkÞðBðkÞ þBT
ðkÞÞgb

2
ðkÞ þ4 TrfC2

ðkÞgb
3
ðkÞ, ð23Þ

where

AðkÞ9WTUT
ðkÞUðkÞW,

BðkÞ9WTUT
ðkÞMðkÞW,

CðkÞ9WT MT
ðkÞMðkÞW: ð24Þ

Now, the stepsize value for the (kþ1)-th iteration can be
found from (19). This adaptive update of stepsize should
be executed at each iteration of the inner loop in
Algorithm 1. We still need to manually choose x (called
stepsize of stepsize). However, we observed that the
overall performance is relatively insensitive to its value;
the fact that has been also indicated in the corresponding
literature [28].
4. Results

In this section we examine the performance of the
proposed method and compare it with well-established
similar methods by presenting the empirical results
obtained from an extensive set of experiments. In the
first experiment, we applied the proposed algorithm to a
random Uð30�200Þ taken from a Gaussian distribution
where a random dictionary W of size 200�400 was used.
Then, Elad’s algorithm [10], accessible via SparseLab tool-
box [29], was applied to the same matrices. The distribu-
tions of absolute off-diagonal elements in ~G for the
proposed method with m¼ 0:2, L¼100, K¼50 and a fixed
b¼ 0:01, and for Elad’s [10] with t¼0.2, and 1000 itera-
tions, for three different g: g1 ¼ 0:5, g2 ¼ 0:7, g3 ¼ 0:9 are
depicted in Fig. 1(a) and (b). We also added the distribu-
tion graph of our previous work in [23] for comparison. It
is seen in Fig. 1(a) and (b) that the proposed method has a
better response in decreasing both mav and mmx. Also,
Fig. 1(b) shows that the proposed method is superior to
[23] in reducing mmx, but the method in [23] is more
powerful in pulling the center of distribution toward zero
(equivalent to reducing mav). Further, we repeated this
experiment with the same settings but when an over-
complete DCT dictionary was used for W. The results are
shown in Fig. 1(c). The results in Fig. 1(b) and (c) indicate
that the proposed method performs almost similarly for
both random and DCT dictionaries. This implies that the
performance of the proposed method does not highly
depend on the type of dictionary used, which indicates
universality of the obtained measurement matrix. The
numerical values of mmx and mav obtained from this
experiment are given in Table 1, for better illustration.

In order to observe the convergence behavior of the
proposed method and also evaluate the influence of using
an adaptive stepsize we calculated the objective function
(14) and also evolution of mmx, while the iterations were
proceeding. In this experiment both U and W were
generated randomly and other parameters were as fol-
lows: p¼50, n¼80, m¼100, m¼ mE ¼ 0:082, x¼ 10�5, and
bð0Þ ¼ 0:05. We also applied the methods in [10,23] to this
data. The resulting graphs appear in Fig. 2. It is seen from
Fig. 2(a) that the proposed method (for both cases of fixed
and adaptive stepsize) achieves a lower mutual coherence
compared with other methods. Moreover, the achieved
mutual coherence when using adaptive stepsize is even
smaller. Similar superiority is observed by inspecting
Fig. 2(b) where the objective function error is depicted.2

It is seen that an adaptive stepsize leads to a smaller
steady state error and a faster convergence. This behavior
is due to the adaptation of stepsize b and reach for an
optimum value which is clearly seen from the evolution
graph in Fig. 2(c).



Table 1
Effects of different methods on mutual coherence when using two types of dictionaries: random and DCT.

Dictionary type Before

optimization

Method in [23] Proposed

method

Elad’s method

g1 g2 g3

Random
dictionary:
mmx 0.7326 0.6803 0.4298 0.7831 0.8552 0.9281

mav 0.1557 0.1436 0.1475 0.1554 0.1548 0.1556

DCT dictionary:
mmx 0.9334 0.7429 0.4855 0.9593 0.9146 0.8932

mav 0.1527 0.1430 0.1471 0.1551 0.1538 0.1552
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In the next part of the experiments we investigated the
advantages of measurement matrix optimization in the
sparse signal recovery. We selected OMP, a greedy algo-
rithm, which iteratively builds up an approximation of the
sparse signal and is widely used as a reconstruction
algorithm in this framework. Further, LASSO (a continuation
of BP [4]) was selected as a minimization approach which
attempts to fit a regression model while imposing ‘1-norm
constraint on the regression coefficients and solving:

min
a

Jy�DaJ2
2 s:t: JaJ1rk, ð25Þ

where k is a nonnegative constant [7,30]. We present the
results of applying these methods as they are well known in
sparse recovery problems. Extensive simulations were
established to sketch the phase transition diagram3 in a
noiseless setting. One hundred trials were generated at each
point on a grid of d¼ p=n and r¼ s=p axes, for n¼m¼ 500,
d 2 ½0:1 1�, and r 2 ½0:05 1�. The ðr,dÞ plane is made of
30�30 equispaced points in total. W was chosen to be a
random matrix of size 500�500. Non-zeros of the sparse
signals in each trial were drawn from random Gaussian
distribution. The resulting diagrams are demonstrated in
Fig. 3 for two different recovery algorithms, namely OMP [5]
and LASSO [7].4 Shaded attributes are the proportion of
successful outcomes to all trials. An outcome is considered
to be successful if the reconstruction error Jx�x̂J2=JxJ2 is
less than 0.01. The overlaid curves show the estimate of a
3 Details about transition diagram can be found in [29,30].
4 Other methods such as BP [4] and LARS [6] were also tested and

similar behaviors were observed.
for each n where the reconstruction is successful with
probability 1�g. g is the estimator’s threshold and was set
to g¼ 0:25 (see [29] for more details about the estimator’s
threshold). Preliminary inspection of the results, especially
those in Fig. 4, where the curves for different methods are
depicted on the same graph, reveals the success of the
proposed approach. It is seen that the proposed approach
does give improvements over random matrices, and Elad’s
method. However, it has been observed that these advan-
tages decrease as the problems size grows (as n increases
from around 800–1000 and beyond). Nevertheless, the
proposed method outperforms both Elad’s and pure random
matrices at large dimensions, though not very noticeably.

Following the previous test in analysis of the reconstruc-
tion performance, we set up a new experiment where a
redundant DCT dictionary Wð80�120Þ was used. We con-
ducted two separate CS experiments, first by fixing p¼25
and varying s from 1 to 10 and second by fixing s¼4 and
varying p from 15 to 40 (see also [10,29]). Each experiment
was performed for 50,000 random sparse ensembles and
the average reconstruction error was recorded. The corre-
sponding graphs shown in Fig. 5 indicate the improved
performance when using an optimized U instead of a
random U. Moreover, it is seen that the proposed method
performs better, especially when OMP is used as the
recovery method. The reason can be inferred from the fact
that OMP works based on orthogonality, which is improved
when the proposed method is applied.

More importantly, Fig. 5(a) reveals that by using the
optimized measurement matrices one can achieve the
same performance as that obtained using pure random
matrices, but with fewer number of measurements.
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For instance, notice the recovery error of BP using the
optimized measurement matrix at p¼30 in Fig. 5(a). It is
almost as small as the recovery rate at p¼36 for a pure
random U. The same behavior can also be noticed for the
recovery using OMP.

In this part of the simulations the possibility of using
the proposed approach for optimizing the Bernoulli pro-
jections are studied. The main advantages of using ran-
dom Bernoulli matrices are reduction of the hardware
complexity and storage due to their binary nature.
Assuming the same settings in the previous experiment
we first generated a measurement matrix with random
Bernoulli distribution. Then, the proposed method was
applied to optimize it. The optimized matrix would not
obviously have 71 values and includes values with any
amplitude. One preliminary way to quantize the opti-
mized elements back to the Bernoulli type, i.e. 71, is to
apply the nonlinear signð�Þ operation. The recovery error
rates using this scheme are given in Fig. 6, which indicates
its superiority over pure random Bernoulli matrices.
However, applying such nonlinear operation is not opti-
mum and further work is required to better optimize
random Bernoulli matrices.

As previously mentioned, the parameter m in Algorithm 1
can be theoretically chosen as mZmE. However, we empiri-
cally observed that the best performance is achieved when
mCmE. This is a reasonable choice since mE is the optimum
mutual coherence and the aim is to approach this value. In
order to support the effectiveness of this choice and demon-
strate the influence of choosing different m we measured the
reconstruction error of 10,000 signal ensembles while opti-
mizing U with different values of m. In this experiment, the
signal ensembles were of length m¼100 with five non-
zeros, W was an overcomplete DCT dictionary, and OMP was
used as the recovery method. Other parameters of the
algorithm were p¼30, n¼64, L¼100 and K¼20. Based on
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the given parameters, the optimum mutual coherence can
be calculated as mE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm�dÞ=dðm�1Þ

p
¼ 0:1535. Fig. 7

represents the relative reconstruction error as a function of
m for three cases of no optimization, optimization with a
fixed stepsize b¼ 0:01 and optimization with adaptive
stepsize of x¼ 10�6 and bð0Þ ¼ 0:02. It is seen from the
graphs in Fig. 7 that the minimum error is achieved when
mC0:1� 0:3, and hence, mCmE is a suitable choice. It is also
noticeable that for momE still the error is relatively small
but it increases as it approaches to m¼ 0. It is worth to note
that the choice of m¼ 0 is equivalent to using the method in
[23] which means replacing H with the identity matrix I. We
have also observed that as m decreases, the steady state error
of objective function (14) becomes higher and vice versa.

All the aforementioned experiments were conducted
under the noiseless settings. In order to show the robust-
ness of the proposed method in noisy situations we
considered the noisy model y¼UWaþv, where v 2 Rp

is the vector of additive Gaussian noise with zero mean.
The main parameter settings for this simulation were:
p¼25, n¼64, m¼100, number of non-zeros s¼5, and
m¼ 0:17. First, the proposed method was applied to a
random measurement matrix, where a DCT dictionary
was used. Then, the noisy measurements were generated
with different signal to noise ratios (SNRs) from 0 to
60 dB. We applied OMP and LASSO to these noisy mea-
surements to recover the sparse signals. The relative recon-
struction error under different noise levels are given in Fig. 8.
It is seen from Fig. 8 that the reconstruction performance
improves as the SNR increases and vice versa. However, the
optimized measurement matrix is more robust to noise
compared with the pure random matrix.

Finally, we compare the computation time of the pro-
posed method with other methods. We set up a simulation
to optimize measurement matrices with different dimen-
sions. A desktop computer with a Core 2 Duo CPU of
3.00 GHz, and 2 GB of RAM was used for this experiment.
Table 2 represents the running time per iteration with
respect to different dimensions for U and W. As it is seen
from the table, the computation time increases with
increasing the dimensions. The methods in [23,10] present
lowest and highest computation times, respectively. For
large dimensions the computation of the Elad’s method
[10] is almost twice as that for the proposed method with
fixed stepsize (notice the last column in Table 2). That can
be because of using SVD in Elad’s method which is compu-
tationally expensive, especially for high dimensions. In
addition, it is seen that using adaptive stepsize for the
proposed method incurs more complexity and hence
increases the computation time. In general, high computa-
tion time in very-large scale problems is a drawback of such
optimization techniques.

5. Discussion

In this short section we discuss the characteristics of
the proposed method with respect to a given class of
signals or images. It might have been realized that the
proposed method is non-adaptive and only requires the
knowledge about sparsifying dictionary. In contrast to
some methods like [14], it does not exploit any prior
knowledge (e.g. the frequency spectrum, location of non-
zeros) about the signal of interest into the optimization
process. Due to such independency from the original
signal, the optimized measurement matrix is not affected
by the properties (whether known or unknown) of the
sparse signal. In particular, the power spectrum density of
the optimized measurement matrix, which is originally
white for a pure random matrix, does not change sig-
nificantly and remains white, even if the signal to be



Table 2
The computation time (in seconds) per iteration for different methods.

Optimization technique Matrix dimensions

U: 60�100 120�200 180�300 240�400 300�500

W: 100�200 200�400 300�600 400�800 500�1000

Elad’s method [10] 0.0772 0.4533 1.2673 2.8761 5.2674

The method in [23] 0.0079 0.0591 0.2453 0.6048 1.1691

The proposed method (fixed stepsize) 0.0565 0.2562 0.7069 1.4385 2.5095

The proposed method (adaptive stepsize) 0.0673 0.3526 0.9854 2.0480 3.6545
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sampled has a particular spectrum. We have observed
such behavior in other non-adaptive methods too, such as
[10,23]. This non-adaptivity has the advantage that the
proposed method can be applied to a wide range of
signals and images without any restriction. On the other
hand, the disadvantage is that it is not able to incorporate
the prior knowledge into the optimization process in
cases where such a priori is available. However, in the
case of available knowledge about spectrum of the sparse
signal (e.g. the signal is bandpass or highpass), one
reasonable approach can be to first generate a colored
random measurement matrix using the method described
in [14], then apply the proposed method in this paper to
optimize it, and decrease the mutual coherence. This is
the context that has to be further studied in the future.
6. Conclusion

In this paper optimization of the measurement matrix
in compressed sensing was addressed. Although random
sampling has been widely used so far in this framework, it
has been recently shown that optimized projections with
the property of smaller mutual coherence with respect to
sparsifying matrix can significantly improve the perfor-
mance. We proposed a gradient-based alternating optimiza-
tion method which iteratively optimizes the measurement
matrix to decrease the mutual coherence. The advantages
are higher performance in sparse recovery, and also possi-
bility to take fewer measurements and yet achieve the same
performance level when using pure random matrices. We
also described a steepest descent method for obtaining an
adaptive stepsize to improve the performance. The pre-
sented numerical results verify the success of the proposed
approach. In addition, the experimental results indicate that
the proposed method is computationally less expensive
than some current methods in the literature.
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