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Abstract

This paper is concerned with the fault detection problem for a class of discrete-time systems with randomly occurring

nonlinearities, mixed stochastic time-delays as well as measurement quantizations. The nonlinearities are assumed

to occur in a random way. The mixed time-delays comprise both the multiple discrete time-delays and the infinite

distributed delays that occur in a random way as well. A sequence of stochastic variables is introduced to govern

the random occurrences of the nonlinearities, discrete time-delays and distributed time-delays, where all the stochastic

variables are mutually independent but obey the Bernoulli distribution. The main purpose of this paper is to design

a fault detection filter such that, in the presence of measurement quantization, the overall fault detection dynamics is

exponentially stable in the mean square and, at the same time, the error between the residual signal and the fault signal

is made as small as possible. Sufficient conditions are first established via intensive stochastic analysis for the existence

of the desired fault detection filters, and then the explicit expression of the desired filter gains is derived by means of the

feasibility of certain matrix inequalities. Also, the optimal performance index for the addressed fault detection problem

can be obtained by solving an auxiliary convex optimization problem. A practical example is provided to show the

usefulness and effectiveness of the proposed design method.
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1. Introduction

In the past decades, the problem of fault detection in dynamic systems has been attracting extensive

research attention owing to the ever increasing demand for higher performance, higher safety and reliability

standards [4, 6, 7, 11, 22, 23, 31, 32, 35–37]. Roughly speaking, the aim of fault detection and isolation (FDI) is

to construct a residual signal and compute a residual evaluation function which can then be compared with

a pre-defined threshold. When the residual has a value larger than the threshold, the fault is detected and

an alarm of fault is generated. Among different methods for fault detection, the model-based approach has

been widely used in recent years as it makes explicit use of the mathematical model for designing a fault

detection filter/observer to detect the fault signal. So far, the problem of fault detection has been thoroughly

investigated for a variety of systems including linear uncertain systems [15,20], fuzzy systems [33], time-delay

systems [21, 38], Markovian jump linear systems [2, 40] and networked control systems [24], to name just a

few.

Networked control systems (NCSs) have recently received a great deal of research attention because of

the rapid development of network technologies and their successful industrial applications [1,5,14,17–19,39].

Nevertheless, compared with the rich literature on filtering and control problems for NCSs [1, 8, 9, 25], only a

limited number of results have been available on the general topic of fault detection for NCSs [13,30]. In the

context of network-induced communication delays, there is a need to discuss the distributed delays that occur

very often in practical systems. The engineering significance of distributed delays has been widely recognized

and a number of corresponding results have been published, see e.g. [16, 28, 29, 34]. Note that almost all

relevant literature has been concerned with the continuous-time systems involving continuously distributed

delays that are described in the form of either a finite or infinite integral. The distributed delays in the

discrete-time setting, on the other hand, have received little attention despite their clear engineering insight

due to the spatially distributed nature of NCSs. Up to now, little attention has been paid to the FDI problem

for networked control systems with infinite distributed communication delays, not to mention the case where

the measurement quantization (another typical network-induced phenomenon) is also involved.

It is well known that nonlinearities exist universally in practice and it is quite common to describe them

as additive nonlinear disturbances. In a networked system such as the internet-based three-tank system

for leakage fault diagnosis, such nonlinear disturbances may occur in a probabilistic way due to the random

occurrence of networked-induced phenomenon. For example, in a particular moment, the transmission channel

for a large amount of packets may encounters severe network-induced congestions due to the bandwidth

limitations, and the resulting phenomenon could be reflected by certain randomly occurring nonlinearities
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(RONs) where the occurrence probability can be estimated via statistical tests. Note that some initial work

has been carried out for systems with RONs, see [27] and the references therein. Also, the network-induced

time-delays are typically time-varying and random, and therefore should be modeled in a probabilistic way

as well. In other words, randomly occurring time-delays can better reflect the signal transmission lags for

networked systems. However, up to date, the fault detection problem for discrete networked systems involving

randomly occurring multiple delays under quantized measurement outputs with or without RONs is still an

open yet challenging issue. This situation has motivated our current investigation with hope to shorten such

a gap by addressed the quantized fault detection problem with randomly occurring mixed delays as well as

nonlinearities.

Summarizing the above discussion, in this paper, we are motivated to study the fault detection problem for

a class of discrete-time systems involving stochastic mixed time delays, randomly occurring nonlinearities and

measurement quantization of the logarithmic type. By augmenting the states of the original system and the

fault detection filter, the addressed fault detection problem is converted into an auxiliaryH∞ filtering problem.

Sufficient conditions are established for the existence of the desired fault detection filter, and then the explicit

expression of the desired filter gains is derived. A practical example is provided to show the usefulness and

effectiveness of the proposed design method. The main contributions of this paper can be listed as follows. 1)

A combination of important factors contributing to the complexity of the systems are investigated within an

unified framework that comprises randomly occurring nonlinearities, randomly occurring multiple time-varying

communication delays, randomly occurring infinite distributed delays and measurement quantization. 2) The

model-based fault detection problem is put forward in the presence of network-induced phenomena occurring

with given probabilities. 3) Intensive stochastic analysis is carried out to enforce the H∞ performance for the

addressed ‘complex’ systems in addition to the usual stability requirement.

Notation. The notation used here is fairly standard except where otherwise stated. Rn, Rn×m and Z

(Z+, Z−) denote, respectively, the n-dimensional Euclidean space, the set of all n×m real matrices and the

set of integers (nonnegative integers, negative integers). l2[0,∞) is the space of square summable vectors.

‖A‖ refers to the norm of a matrix A defined by ‖A‖ =
√

trace(AT A). The notation X ≥ Y (respectively,

X > Y ), where X and Y are real symmetric matrices, means that X−Y is positive semi-definite (respectively,

positive definite). MT represents the transpose of the matrix M . I and 0 represent the identity matrix and

zero matrix of compatible dimension, respectively. diag{· · · } stands for a block-diagonal matrix. E{x} and

E{x| y} will, respectively, mean expectation of the stochastic variable x and expectation of x conditional on

y. Prob{·} means the occurrence probability of the event “·”. In symmetric block matrices, “∗” is used as

an ellipsis for terms induced by symmetry. Matrices, if they are not explicitly specified, are assumed to have
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compatible dimensions.

2. Problem formulation

Consider the following discrete-time systems with randomly occurring nonlinearities and mixed stochastic

time-delays: 



x(k + 1) = Ax(k) + Ad1

q∑

i=1

αi(k)x(k − τi(k)) + β(k)Ad2

∞∑

d=1

µdx(k − d)

+ γ(k)g(k, x(k)) + D1w(k) + Gf(k)

y(k) = Cx(k) + D2w(k) + Hf(k)

x(k) = ψ(k),∀k ∈ Z−

(1)

where x(k) ∈ Rn represents the state vector; y(k) ∈ Rm is the process output; w(k) ∈ Rp is the unknown

input belonging to l2[0,∞); and f(k) ∈ Rl is the fault to be detected. τi(k) (i = 1, 2, ..., q) denote the discrete

time-delays while d (d = 1, 2, ...,∞) describe the distributed time-delays, ψ(k) is a given initial sequence, and

A,Ad1, Ad2, D1, G, C,D2,H are all constant matrices with appropriate dimensions.

The nonlinear function g(k, x(k)) satisfies the following condition:

‖g(k, x(k))‖2 ≤ ε(k)‖E(k)x(k)‖2 (2)

where ε(k) > 0 is a known positive scalar and E(k) is a known constant matrix.

The constants µd ≥ 0 (d = 1, 2, . . . ,∞) satisfy the following convergence condition:

µ̄ :=
∞∑

d=1

µd ≤
∞∑

d=1

dµd < +∞ (3)

The stochastic variables αi(k) (i = 1, 2, · · ·q), β(k) and γ(k) are mutually uncorrelated Bernoulli distributed

white sequences that account for, respectively, the phenomena of randomly occurring discrete time-delays,

distributed time-delays and nonlinearities. A natural assumption on the sequences αi(k) (i = 1, 2, · · ·q), β(k)

and γ(k) are made as follows:

Prob{αi(k) = 1} = E{αi(k)} = ᾱi, Prob{αi(k) = 0} = 1− ᾱi,

Prob{β(k) = 1} = E{β(k)} = β̄, Prob{β(k) = 0} = 1− β̄,

Prob{γ(k) = 1} = E{γ(k)} = γ̄, Prob{γ(k) = 0} = 1− γ̄,

(4)

where ᾱi ∈ [0, 1], β̄ ∈ [0, 1] and γ̄ ∈ [0, 1] are known constants.

Remark 1: As discussed in the introduction, the nonlinearities described by g(k, x(k)) could occur in a

probabilistic way based on an individual probability distribution specified a prior through statistical tests.
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The concept of such randomly occurring nonlinearities (RONs) has been put forward in [27] to reflect the

stochastic nonlinearities for complex networks. In this paper, the RONs are addressed for the fault detection

problems which render more practical significance in a networked environment. On the other hand, the term
∑∞

d=1 µdx(k− d) in (1) represents the so-called infinitely distributed delay in the discrete-time setting, which

can be regarded as the discretization of the infinite integral form
∫ t
−∞ k(t− s)x(s)ds for the continuous-time

system. The importance of distributed delays has been widely recognized, but the corresponding results for

discrete-time systems have been very few especially when the fault detection problem becomes a research

focus.

Assumption 1: The communication delays τi(k) (i = 1, 2, · · · , q) are time-varying and satisfy dm ≤ τi(k) ≤
dM , where dm and dM are constant positive scalars representing the lower and upper bounds on the commu-

nication delays, respectively.

Remark 2: The description of the communication delays in (1) exhibits the following two features: 1) the

communication delays are allowed to occur in three fashions, i.e., discrete, successive, or even distribute ways;

and 2) each possible delay could occur independently according to an individual probability distribution that

can be specified a prior through statistical test.

In a networked environment, it is quite common that the measurements y(k) of the system are quantized

during the signal transmission. Let us denote the quantizer as h(·) =
[

h1(·) h2(·) · · · hm(·)
]T

which is

symmetric, i.e., hj(−v) = −hj(v), j = 1, . . . , m. The map of the quantization process is

ỹ(k) = h(y(k)) =
[

h1(y(1)(k)) h2(y(2)(k)) · · · hm(y(m)(k))
]T

.

In this paper, we are interested in the logarithmic static and time-invariant quantizer. For each hj(·) (1 ≤
j ≤ m), the set of quantization levels is described by

Uj = {±µ̂
(j)
i , µ̂

(j)
i = χi

jµ̂
(j)
0 , i = 0,±1,±2, · · · } ∪ {0}, 0 < χj < 1, µ̂

(j)
0 > 0,

and each of the quantization level corresponds to a segment such that the quantizer maps the whole segment

to this quantization level.

According to [12], the logarithmic quantizer is given by

hj(y(j)(k)) =





µ̂
(j)
i , 1

1+δj
µ̂

(j)
i ≤ y(j)(k) ≤ 1

1−δj
µ̂

(j)
i

0, y(j)(k) = 0

−hj(−y(j)(k)), y(j)(k) < 0

where δj = (1−χj)/(1+χj). It can be easily seen from the above definition that hj(y(j)(k)) = (1+∆(j)
k )y(j)(k)

with |∆(j)
k | ≤ δj . According to the transformation discussed above, the quantizing effect can be transformed



REVISION 6

into the sector-bounded uncertainties.

Defining ∆k = diag{∆(1)
k , · · · ,∆(m)

k }, the measurements with quantization effect can be expressed as

ỹ(k) = (I + ∆k)y(k) = (I + ∆k)Cx(k) + (I + ∆k)D2w(k) + (I + ∆k)Hf(k) (5)

Consider a full-order fault detection filter of the following structure:




x̂(k + 1) = AF x̂(k) + BF ỹ(k)

r(k) = CF x̂(k) + DF ỹ(k)
(6)

where x̂(k) ∈ Rn represents the filter state vector, r(k) ∈ Rl is the so-called residual that is compatible with

the fault vector f(k), and AF , BF , CF , DF are appropriately dimensioned filter matrices to be determined.

By defining

∆̄ = diag{δ1, · · · , δm}, Fk = ∆k∆̄−1,

we can obtain an unknown real-valued time-varying matrix satisfying FkF
T
k ≤ I. From (1), (5) and (6), we

have the overall fault detection dynamics governed by the following system




x̄(k + 1) = (Ā + ∆Ā)x̄(k) +
q∑

i=1

(Ādi + Ãdi)x̄(k − τi(k)) + (Ād + Ãd)
∞∑

d=1

µdx̄(k − d)

+ (γ̄ + γ̃(k))Zg(k, x(k)) + (D̄ + ∆D̄)v(k)

r̄(k) = (C̄ + ∆C̄)x̄(k) + (D̄F + ∆D̄F )v(k)

(7)

where

x̄(k) =
[

xT (k) x̂T (k)
]T

, r̄(k) = r(k)− f(k), v(k) =
[

wT (k) fT (k)
]T

,

Ā =


 A 0

BF C AF


 , Ādi =


 ᾱiAd1 0

0 0


 , Ãdi =


 α̃i(k)Ad1 0

0 0


 ,

Ād =


 β̄Ad2 0

0 0


 , Ãd =


 β̃(k)Ad2 0

0 0


 , D̄ =


 D1 G

BF D2 BF H


 ,

Z =
[

I 0
]T

, C̄ =
[

DF C CF

]
, D̄F =

[
DF D2 DF H − I

]
,

∆Ā = HF FkEC , ∆D̄ = HF FkED, ∆C̄ = DF FkEC , ∆D̄F = DF FkED,

HF =
[

0 BT
F

]T

, EC =
[

∆̄C 0
]
, ED =

[
∆̄D2 ∆̄H

]
,

with α̃i(k) = αi(k) − ᾱi , β̃(k) = β(k) − β̄ and γ̃(k) = γ(k) − γ̄. It is clear that E{α̃i(k)} = 0,E{α̃2
i (k)} =

ᾱi(1− ᾱi),E{β̃(k)} = 0,E{β̃2(k)} = β̄(1− β̄) and E{γ̃(k)} = 0,E{γ̃2(k)} = γ̄(1− γ̄).
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Definition 1: [26] The fault detection dynamics in (7) is said to be exponentially stable in the mean square

if, in case of v(k) = 0 and for any initial conditions, there exist constants δ > 0 and 0 < κ < 1 such that

E{‖x̄(k)‖2} ≤ δκk sup
i∈Z−

E{‖ψ(i)‖2}, ∀k ≥ 0.

Our aim in this paper is to design a filter of the form (6) that makes the error between residual and fault

signal as small as possible. By means of definition 1, the aim of this paper can be restated as finding the filter

parameters AF , BF , CF and DF such that the following two requirements are satisfied simultaneously:

(R1) The overall fault detection dynamics (7) is exponentially stable in the mean square.

(R2) Under zero initial condition, the residual error r̄(k) satisfies

∞∑

k=0

E{‖r̄(k)‖2} ≤ γ2
∞∑

k=0

E{‖v(k)‖2} (8)

for all non-zero v(k), where γ > 0 is made as small as possible in the feasibility of (8).

We further adopt a residual evaluation stage including an evaluation function J(k) and a threshold Jth of

the following form:

J(k) =

{
k∑

h=0

rT (h)r(h)

} 1
2

, Jth = sup
wk∈l2,fk=0

E{J(L)}. (9)

where L denotes the maximum time step of the evaluation function. Based on (9), the occurrence of faults

can be detected by comparing J(k) with Jth according to the following rule:

J(k) > Jth =⇒ with faults =⇒ alarm,

J(k) ≤ Jth =⇒ no faults.

3. Main results

In this section, let us investigate the both the analysis and synthesis problems for the fault detection filter

design of system (1) in the presence of measurement quantization (5). The following lemmas will be used in

deriving our main results.

Lemma 1: [3] Let x ∈ Rn, y ∈ Rn and matrix Q > 0. Then, we have xT Qy + yT Qx ≤ xT Qx + yT Qy.

Lemma 2: [16] Let M ∈ Rn×n be a positive semidefinite matrix, xi ∈ Rn, and constant ai > 0 (i =

1, 2, · · · ). If the series concerned is convergent, then we have

( ∞∑

i=1

aixi

)T

M
( ∞∑

i=1

aixi

)
≤

( ∞∑

i=1

ai

) ∞∑

i=1

aixiMxi (10)

For presentation convenience, we first discuss the nominal system of (7) (i.e., without the parameter un-

certainties ∆Ā, ∆D̄, ∆C̄ and ∆D̄F ) and will eventually extend our main results to more general case. In the
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following theorem, a sufficient condition is presented for the residual dynamics (7) to be exponentially stable

with (8) satisfied under zero initial conditions.

Theorem 1: Consider the nominal system of (7) with given filter parameters and a prescribed H∞ index

γ > 0. The fault detection dynamics is exponentially stable in the mean square and satisfies (8) if there exist

matrices P > 0, Qj > 0 (j = 1, 2, . . . , q), Q > 0 and positive constant scalar ρ satisfying

Φ =




Ω11 + C̄T C̄ ∗ ∗ ∗
ẐT PĀ Ω22 ∗ ∗
ĀT

d PĀ ĀT
d PẐ Ω33 ∗

D̄T PĀ + D̄T
F C̄ D̄T PẐ D̄T PĀd Ω44




< 0 (11)

ZT PZ ≤ ρI (12)

where

Ω11 = 2ĀT PĀ + ρĒ(k) + µ̄Q +
∑q

j=1(dM − dm + 1)Qj − P,

Ω22 = 2ẐT PẐ + diag{−Q1 + Ã1,−Q2 + Ã2, · · · ,−Qq + Ãq},

Ω33 = 2ĀT
d PĀd + β̄(1− β̄)ÂT

d2PÂd2 − 1
µ̄Q, Ω44 = 2D̄T PD̄ + D̄T

F D̄F − γ2I,

Ãi = ᾱi(1− ᾱi)ÂT
d1PÂd1, i = 1, 2, . . . , q. Ē(k) = diag{(4γ̄2 + γ̄)ε(k)ET (k)E(k), 0},

Ẑ =
[

Ād1 Ād2 · · · Ādq

]
, Âd1 = diag{Ad1, 0}, Âd2 = diag{Ad2, 0}.

Proof: Choose the following Lyapunov functional for system (7):

V (k) =
4∑

i=1

Vi(k) (13)

where

V1(k) = x̄T (k)Px̄(k), V2(k) =
q∑

j=1

k−1∑

i=k−τj(k)

x̄T (i)Qj x̄(i),

V3(k) =
q∑

j=1

−dm∑

m=−dM+1

k−1∑

i=k+m

x̄T (i)Qj x̄(i), V4(k) =
∞∑

d=1

µd

k−1∑

τ=k−d

x̄T (τ)Qx̄(τ)

with P > 0, Q > 0, Qj > 0 (j = 1, 2, . . . , q) being matrices to be determined.

Notice that

E
{

ÃT
diPÃdi

}
= ᾱi(1− ᾱi)ÂT

d1PÂd1 (14)

E{ÃT
d PÃd} = β̄(1− β̄)ÂT

d2PÂd2. (15)
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According to Lemma 1, we have

2γ̄x̄T (k)ĀT PZg(k, x(k)) ≤ x̄T (k)ĀT PĀx̄(k) + γ̄2gT (k, x(k))ZT PZg(k, x(k)), (16)

2γ̄gT (k, x(k))ZT PD̄v(k) ≤ γ̄2gT (k, x(k))ZT PZg(k, x(k)) + vT (k)D̄T PD̄v(k), (17)

2γ̄

( q∑

i=1

Ādix̄(k − τi(k))
)T

PZg(k, x(k)) ≤
( q∑

i=1

Ādix̄(k − τi(k))
)T

P

( q∑

i=1

Ādix̄(k − τi(k))
)

+γ̄2gT (k, x(k))ZT PZg(k, x(k)), (18)

2γ̄

(
Ād

∞∑

d=1

µdx̄(k − d)
)T

PZg(k, x(k)) ≤
(

Ād

∞∑

d=1

µdx̄(k − d)
)T

P

(
Ād

∞∑

d=1

µdx̄(k − d)
)

+γ̄2gT (k, x(k))ZT PZg(k, x(k)). (19)

Also, it follows from (2) that

gT (k, x(k))(4γ̄2 + γ̄)ZT PZg(k, x(k)) ≤ xT (k)(4γ̄2 + γ̄)ρε(k)ET (k)E(k)x(k) = x̄T (k)ρĒ(k)x̄(k) (20)

Then, along the trajectory of system (7), we have from (14)-(20) that

E{∆V1(k)} = E{x̄T (k + 1)Px̄(k + 1)− x̄T (k)Px̄(k)}

≤ E
{

x̄T (k)(2ĀT PĀ− P + ρĒ(k))x̄(k) + 2x̄T (k)ĀT P

( q∑

i=1

Ādix̄(k − τi(k))
)

+2x̄T (k)ĀT PĀd

( ∞∑

d=1

µdx̄(k − d)
)

+ 2x̄T (k)ĀT PD̄v(k)

+2
( q∑

i=1

Ādix̄(k − τi(k))
)T

P

( q∑

i=1

Ādix̄(k − τi(k))
)

+
q∑

i=1

x̄T (k − τi(k))ÃT
diPÃdix̄(k − τi(k)) + 2

( q∑

i=1

Ādix̄(k − τi(k))
)T

PD̄v(k)

+2
( q∑

i=1

Ādix̄(k − τi(k))
)T

PĀd

( ∞∑

d=1

µdx̄(k − d)
)

+ 2vT (k)D̄T PD̄v(k)

+2
(

Ād

∞∑

d=1

µdx̄(k − d)
)T

P

(
Ād

∞∑

d=1

µdx̄(k − d)
)

+ 2
(

Ād

∞∑

d=1

µdx̄(k − d)
)T

PD̄v(k)

+
(

Ãd

∞∑

d=1

µdx̄(k − d)
)T

P

(
Ãd

∞∑

d=1

µdx̄(k − d)
)}

. (21)

Next, it can be derived that

E{∆V2(k)} ≤ E
{ q∑

j=1

(
x̄T (k)Qj x̄(k)− x̄T (k − τj(k))Qj x̄(k − τj(k)) +

k−dm∑

i=k−dM+1

x̄T (i)Qj x̄(i)
)}

E{∆V3(k)} = E
{ q∑

j=1

(
(dM − dm)x̄T (k)Qj x̄(k)−

k−dm∑

i=k−dM+1

x̄T (i)Qj x̄(i)
)}

E{∆V4(k)} = E
{

µ̄x̄T (k)Qx̄(k)−
∞∑

d=1

µdx̄
T (k − d)Qx̄(k − d)

}
. (22)
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From Lemma 2, it can be easily seen that

−
∞∑

d=1

µdx̄
T (k − d)Qx̄(k − d) ≤ − 1

µ̄

( ∞∑

d=1

µdx̄(k − d)
)T

Q

( ∞∑

d=1

µdx̄(k − d)
)

(23)

where µ̄ is defined in (3). For notational convenience, we denote the following matrix variables

ξ(k) :=
[

x̄T (k) x̄T (k − τ1(k)) · · · x̄T (k − τq(k))
∑∞

d=1 µdx̄
T (k − d) vT (k)

]T

,

ζ(k) :=
[

x̄T (k) x̄T (k − τ1(k)) · · · x̄T (k − τq(k))
∑∞

d=1 µdx̄
T (k − d)

]T

.

We are now ready to prove the exponential stability of the system (7) with v(k) = 0. Obviously, the

combination of (21)-(23) results in

E{∆V (k)} ≤ E{ζT (k)Ωζ(k)} (24)

where

Ω =




Ω11 ∗ ∗
ẐT PĀ Ω22 ∗
ĀT

d PĀ ĀT
d PẐ Ω33




.

It follows immediately from Theorem 1 that Ω < 0. Furthermore, along the same line of the proof for Theorem

1 in [26], the exponential stability of system (7) can be confirmed in the mean square sense.

Let us now move to the proof of the H∞ performance for the system (7). To do so, we assume zero initial

condition and consider the following index:

JN = E
∞∑

k=0

[r̄T (k)r̄(k)− γ2vT (k)v(k)]

= E
∞∑

k=0

[r̄T (k)r̄(k)− γ2vT (k)v(k) + ∆V (k)]− EV (k + 1)

≤ E
∞∑

k=0

[r̄T (k)r̄(k)− γ2vT (k)v(k) + ∆V (k)] = ξT (k)Φξ(k)

According to Theorem 1, we have JN ≤ 0 and therefore (8), which completes the proof of Theorem 1.

Remark 3: The conditions derived in this paper are based on the quadratic Lyapunov function approach.

This method has some advantages, for example, the definition of Lyapunov function is simple and the com-

putation cost in the design procedure is low. However, the common quadratic Lyapunov functions tend to

be conservative and might not exist for some highly nonlinear systems. It can be shown that with the use of

basis-dependent Lyapunov function and delay partitioning approach, less conservative results can be obtained

than those with the use of single quadratic Lyapunov function at the cost of higher computational burden.
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Having established the analysis results, we are in a position to deal with the filter design problem. In the

following theorem, sufficient conditions are provided for the existence of the desired fault detection filters.

Theorem 2: Consider the nominal system of (7) and let γ > 0 be a given scalar. A desired full-order fault

detection filter of the form (6) exists if there exist positive definite matrices P , Q, Qj (j = 1, 2, . . . , q), positive

constant scalar ρ and matrices X, K satisfying

Λ =




Λ̂11 ∗ ∗ ∗ ∗
0 −γ2I ∗ ∗ ∗

Λ̂31 PD̂0 + XR̂2 −P ∗ ∗
Λ̂41 0 0 −P̄ ∗
Λ̂51 Λ̂52 0 0 −P̂




< 0 (25)

ZT PZ ≤ ρI (26)

where

Λ̂11 = diag{Λ11,Λ22,Λ33}, Λ̂31 =
[

PÂ0 + XR̂1 PẐ PĀd

]
,

Λ̂41 = diag{PÂ0 + XR̂1, P Ẑ, P Ād}, Λ11 = ρĒ(k) + µ̄Q +
q∑

j=1

(dM − dm + 1)Qj − P,

Λ22 = diag{−Q1 + Ã1, · · · ,−Qq + Ãq}, Λ33 = β̄(1− β̄)ÂT
d2PÂd2 − 1

µ̄
Q,

Λ̂51 =


 0 0 0

KR̂1 0 0


 , Λ̂52 =


 PD̂0 + XR̂2

KR̂2 − ÊT
1


 , Ê =


 0n×n

In×n


 ,

P̄ = diag{P, P, P}, P̂ = diag{P, I}, Ê1 =
[

0l×p Il×l

]T

, Ê2 =
[

0m×n Im×m

]T

,

Â0 =


 A 0

0 0


 , D̂0 =


 D1 G

0 0


 , R̂1 =


 0 I

C 0


 , R̂2 =


 0 0

D2 H


 .

Furthermore, if (P, Q, Qj , X, K, ρ) is a feasible solution of (25)-(26), then the fault detection filter parameters

in the form of (6) are given as follows:

[
AF BF

]
= [ÊT PÊ]−1ÊT X,

[
CF DF

]
= K.

Proof: In order to avoid partitioning the positive definite matrices P, Q and Qj , we rewrite the parameters

in Theorem 1 in the following form

Ā = Â0 + ÊK1R̂1, D̄ = D̂0 + ÊK1R̂2,

C̄ = KR̂1, D̄F = KR̂2 − ÊT
1 , HF = ÊK1Ê2, (27)



REVISION 12

where K1 =
[

AF BF

]
. Noticing (27) and using the Schur Complement Lemma, (11) can be rewritten as




Λ̂11 ∗ ∗ ∗ ∗
0 −γ2I ∗ ∗ ∗

Λ̌31 D̂0 + ÊK1R̂2 −P−1 ∗ ∗
Λ̌41 0 0 −P̄−1 ∗
Λ̂51 Λ̌52 0 0 −P̂−1




< 0 (28)

where

Λ̌31 =
[

Â0 + ÊK1R̂1 Ẑ Ād

]
, Λ̌41 = diag{Â0 + ÊK1R̂1, Ẑ, Ād}, Λ̌52 =


 D̂0 + ÊK1R̂2

KR̂2 − ÊT
1


 .

Pre- and post-multiplying the inequality (28) by diag{I, I, P, P̄ , P̂} and letting X = PÊK1, we can obtain

(25) readily, and the proof is then complete.

So far, we have obtained the main results for nominal systems, and let us show how the results can be

extended to the general case where the parameter uncertainties are included.

Theorem 3: Consider the uncertain system (7) and let γ > 0 be a given scalar. A desirable full-order fault

detection filter of the form (6) exists if there exist positive definite matrices P , Q, Qj (j = 1, 2, . . . , q), positive

constant scalars ρ, ϕ and matrices X, K satisfying

Ψ =




Λ̂11 ∗ ∗ ∗ ∗ ∗ ∗
0 −γ2I ∗ ∗ ∗ ∗ ∗

Λ̂31 PD̂0 + XR̂2 −P ∗ ∗ ∗ ∗
Λ̂41 0 0 −P̄ ∗ ∗ ∗
Λ̂51 Λ̂52 0 0 −P̂ ∗ ∗
0 0 X̄ X̂ K̄ −ϕI ∗

ĒC ĒD 0 0 0 0 −ϕI




< 0 (29)

ZT PZ ≤ ρI (30)

where

ĒC =


 ϕEC 0 0

0 0 0


 , X̂ =


 ÊT

2 XT 0 0

0 0 0


 , K̄ =


 0 ÊT

2 KT

ÊT
2 XT ÊT

2 KT


 ,

ĒD =
[

0 ϕET
D

]T

, X̄ =
[

XÊ2 XÊ2

]T

,

with Λ̂11, Λ̂31, Λ̂41, Λ̂51, Λ̂52, P̄ , P̂ defined in Theorem 2. Furthermore, if (P, Q, Qj , X, K, ρ, ϕ) is a feasible
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solution of (29)-(30), then the fault detection filter parameters in the form of (6) are given as follows:

[
AF BF

]
= [ÊT PÊ]−1ÊT X, (31)

[
CF DF

]
= K. (32)

Proof: In (25), let us replace Ā, C̄, D̄, D̄F with Ā + ∆Ā, C̄ + ∆C̄, D̄ + ∆D̄, D̄F + ∆D̄F , respectively,

where ∆Ā = ÊK1Ê2FkEC , ∆D̄ = ÊK1Ê2FkED, ∆C̄ = KÊ2FkEC and ∆D̄F = KÊ2FkED. Then, rewrite

(25) in terms of S-procedure as Λ + MFkN + NT F T
k MT < 0 with

M =


 0 0 0 0 ÊT

2 XT ÊT
2 XT 0 0 0 ÊT

2 KT

0 0 0 0 ÊT
2 XT 0 0 0 ÊT

2 XT ÊT
2 KT




T

,

N =


 EC 0 0 0 0 0 0 0 0 0

0 0 0 ED 0 0 0 0 0 0


 .

From Schur Complement and the S-procedure [3], (29) can be easily obtained which ends the proof.

Remark 4: In Theorem 3, sufficient conditions are presented that ensure the residual dynamics to be expo-

nential stable in the mean square with a guaranteed performance index γ. It is shown that the feasibility of

the fault detection filter design problem can be readily checked by the solvability of inequalities (29) and (30).

Among these feasible solutions, the optimal performance index γ∗ can be found by solving the following convex

optimization problem: minimize γ subject to (29) and (30) over matrix variables P , Q, Qj (j = 1, 2, . . . , q),

X, K and scalars ρ, ϕ.

4. An illustrative example

In this section, we aim to demonstrate the effectiveness and applicability of the proposed method. Following

[10], we consider the networked fault detection problem for an industrial continuous-stirred tank reactor

system, where chemical species A reacts to form species B. Fig. 1 illustrates the physical structure of the

system. Assuming that the network-induced delays and randomly occurring nonlinearities exist in this system,

a discrete-space model is obtained as

x(k + 1) = Ax(k) + Bu(k) + Ad1

2∑

i=1

αi(k)x(k − τi(k)) + γ(k)g(k, x(k)) + D1w(k)

y(k) = Cx(k) + D2w(k)

where the state variables are chosen as x1 = CA and x2 = TC , the input variables are chosen as u1 = T

and u2 = CAi, CA, TC , T, CAi are, respectively, the output concentration of chemical species A, the cooling

medium temperature, the reaction temperature and the input concentration of a key reactant A. Our purpose
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M otor

Pure A with CAi M ixture of A and Bwith CA

Stirrer

Colling medium 

with temperatureTC

Fig. 1. A continuous-stirred tank reactor model

is to detect the fault appearing on the cooling medium temperature TC . Therefore, the above system can be

represented in the form of (1) with matrices given by

A =


 0.9719 −0.0013

−0.0340 0.8628


 , Ad1 =


 0.14 0.2

0 0.2


 , Ad2 =


 0 0

0 0


 , D1 =


 0.1 0

0 0.3


 ,

C = [ 1 0.1 ], D2 = [ 0 0.1 ], G = [ −0.0839 0.0761 ]T , B = 0, H = 0.

Let the time-varying communication delays satisfy 1 ≤ τi(k) ≤ 3 (i = 1, 2) and assume that ᾱ1 =

E{α1(k)} = 0.9, ᾱ2 = E{α1(k)} = 0.7, γ̄ = E{γ(k)} = 0.8. The nonlinear function g(k, x(k)) is selected

as g(k, x(k)) = 0.5x1(k)sin(x2(k)). It is easy to see that the constraint (2) is met with ε(k) = 1 and

E(k) = diag{0.2, 0.15}. For the measurement quantization, the parameters of the logarithmic quantizer are

set as µ̂0 = 2 and χ = 0.8. Then, the fault detection filter parameters can be obtained from Theorem 3 as

follows:

AF =


 −0.3276 0.2003

−0.2621 −0.1353


 , BF =


 −0.0057

−0.0027


 , CF =

[
−0.2984 −0.0015

]
, DF = 0.0063,

and the optimal performance index given in (8) is γ∗ = 1.0007.

It is worth noting that the obtained optimal performance index γ∗ will change as the values of ᾱ1, ᾱ2 and

γ̄ change. Letting ᾱ1 = 0.9, for different combinations of ᾱ2 and γ̄, the corresponding optimal performance

indices γ∗ are shown in Table I. It can be concluded from Table I that the optimal trade-off between the
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TABLE I

The fault detection optimal performance index for different ᾱ2 and γ̄

γ∗ ᾱ2 = 0.9 ᾱ2 = 0.7 ᾱ2 = 0.5

γ̄ = 0.8 1.0004 1.0007 1.0011

γ̄ = 0.6 1.0010 1.0012 1.0106
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Fig. 2. Residual signal without w(k)
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Fig. 3. Evolution of residual evaluation function J(k)

without w(k)

robustness and sensitivity is affected by not only the randomly occurring communication time-delays but also

the randomly occurring nonlinearities.

To further illustrate the effectiveness of the designed fault detection filter, for k = 0, 1, . . . , 150, let the fault

signal f(k) be given as:

f(k) =
{ 1, 40 ≤ k ≤ 80

0, else.
(33)

First, in the case that the external disturbance is w(k) = 0, the residual response r(k) and evolution of

residual evaluation function J(k) are shown in Fig. 2 and Fig. 3, respectively, which indicate that the designed

filter can detect the fault effectively when it occurs.

Next, assume that the disturbance is given by

w(k) =
{ [

rand[0, 1] 1.2 rand[0, 1]
]T

, 0 ≤ k ≤ 50

0, else
(34)

where the rand function generates arrays of random numbers whose elements are uniformly distributed in the

interval [0 1]. The residual response r(k) and evolution of residual evaluation function J(k) are shown in
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Fig. 4. Residual signal with w(k)
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Fig. 5. Evolution of residual evaluation function J(k)

with w(k)

Fig. 4 and Fig. 5, respectively. Selecting a threshold as Jth = supf=0E
{ ∑150

s=0 r′(s)r(s)
}1/2

, after 200 runs of

the simulations, we get an average value of Jth = 0.0031. From Fig. 5, we can see that 0.0026 = J(45) < Jth <

J(46) = 0.0034, which means that the fault can be detected in 6 time steps after its occurrence. Therefore, it

can be seen that the residual can not only reflect the fault in time, but also detect the fault without confusing

it with the disturbance w(k).

In summary, all the simulation results have further confirmed our theoretical analysis for the problem of

quantized fault detection for networked systems with randomly occurring nonlinearities and mixed time-delays.

5. Conclusions

In this paper, the fault detection problem has been dealt with for a class of discrete-time systems with

randomly occurring nonlinearities, mixed stochastic time-delays as well as measurement quantizations. A

fault detection filter has been designed such that, in the presence of measurement quantization, the overall

fault detection dynamics is exponentially stable in the mean square and, at the same time, the error between

the residual signal and the fault signal is made as small as possible. Sufficient conditions have been established

via intensive stochastic analysis for the existence of the desired fault detection filters, and then the explicit

expression of the desired filter gains has been derived by means of the feasibility of certain matrix inequalities.

Also, the optimal performance index for the addressed fault detection problem has been obtained by solving

an auxiliary convex optimization problem. A practical example has been provided to show the usefulness

and effectiveness of the proposed design method. Other possible future research directions include real-time

applications of the proposed fault detection theory in telecommunications, and further extensions of the
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present results to more complex systems with unreliable communication links, such as sampled-data systems,

bilinear systems, and time varying systems, etc.
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