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Abstract

In this paper, we tackle the two-dimensional (2-D) parameter estimation problem for a sum ofK ≥ 2

real/complex damped sinusoids in additive white Gaussian noise. According to the rank-K property of

the 2-D noise-free data matrix, the damping factor and frequency information is contained in theK

dominant left and right singular vectors. Using the sinusoidal linear prediction property of these vectors,

the frequencies and damping factors of the first dimension are first estimated. For each frequency of the

first dimension, the corresponding parameter in the second dimension is then obtained to achieve auto-

pairing. Computer simulations are included to compare the proposed approach with several conventional

2-D estimators in terms of mean square error performance andcomputational complexity.

Index Terms

dominant singular vector, linear prediction, weighted least squares, two-dimensional parameter

estimation, spectral analysis

I. INTRODUCTION

The problem of parameter estimation forK ≥ 1 2-D noisy sinusoids has received a great deal of

attention. It is because in many applications such as sourcelocalization [1]–[2], radar imaging [3],

vibrational analysis of circularly shaped objects [4], nuclear magnetic resonance (NMR) spectroscopy

[5], wireless communication channel estimation [6], the corresponding signals can be well described by

the 2-D sinusoidal model.
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2-D Fourier transform is the direct nonparametric approachto address 2-D spectral estimation. In spite

of its computational attractiveness when using fast Fourier transform, it suffers from poor resolution

in resolving closely-spaced frequencies and high-sidelobe effects [7]–[8]. In order to achieve higher

resolution, the parametric approach, which assumes that the signal satisfies a generating model with

known functional form, is a standard choice. Well known 2-D parametric solutions include maximum

likelihood (ML) method [9] and subspace-based estimators such as multiple signal classification (MUSIC)

[2], [3], [5], matrix enhancement and matrix pencil (MEMP) [10] and estimation of signal parameters

via rotational invariance techniques (ESPRIT) [4], [6], [11], [12], [13]. In the presence of additive white

Gaussian noise, the ML scheme [9], which corresponds to a multi-dimensional peak search, can produce

optimum estimation performance, that is, its mean square error (MSE) attains Cramér-Rao lower bound

(CRLB). Comparing with the ML estimator, the subspace methodology whose underlying principle is

to separate the received data into signal and noise subspaces via eigenvalue decomposition (EVD) or

singular value decomposition (SVD), is more computationally efficient at the expense of suboptimality.

The MUSIC algorithm [3] requires to find theK peaks in a 2-D cost function constructed from the

noise eigenvectors. By constructing a Hankel-block-Hankel matrix whose size is larger than that of the

data matrix, the MEMP method [10] decomposes the 2-D estimation problem into two one-dimensional

problems related to each dimension, where generalized EVD and 2-D frequency pairing are needed. The

ESPRIT algorithm [11] is similar to [10] in the sense that theHankel-block-Hankel matrix is exploited

but it provides auto-pairing of the 2-D frequencies by making use of joint diagonalization and can deal

with damped sinusoids. While [4], which addresses X-texture modes, that is, real-valued 2-D sinusoids

with damping only in one dimension, can be considered as a modification to [11] by applying partial

forward-backward averaging.

In this paper, we contribute to accurate and fast 2-D parameter estimation of multiple complex/real

damped sinusoids based on the subspace methodology. We refer our approach to as principal-singular-

vector utilization for modal analysis (PUMA), meaning thatthe principal singular vectors of the data

matrix are effectively exploited in the estimation process. This work is a follow-up of [14] where the

PUMA algorithm for a single damped/undamped real/complex tone orK = 1 is devised and analyzed.

The key ideas in [14] are to make use of the rank-one property of the corresponding 2-D noise-free data

matrix and find the damping factor as well as frequency parameters for each dimension from the left and

right principal singular vectors in a separable manner. In this paper, we extend [14] to the general case

of K ≥ 2 which is not a straightforward task. In particular, the damping factors and frequencies in each

dimension are not directly related to theK principal singular vectors and 2-D parameter pairing needs
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to be addressed.

The rest of the paper is organized as follows. The algorithm development for multiple damped cisoids

is provided in Section II. According to the rank-K property of the 2-D noise-free data matrix, the

corresponding left and right dominant singular vectors arecharacterized by the damping factors and

frequencies in the first and second dimension, respectively. Making use of the dominant singular vectors,

the parameters of interest at one dimension will first be accurately estimated according to an iterative

procedure which utilizes the sinusoidal linear prediction(LP) property and weighted least squares (WLS).

The damping factors and frequencies in another dimension are solved via another similar iterative

algorithm such that pairing of the 2-D parameters is automatically achieved. Estimation for real tones is

addressed in Section III. In Section VI, simulation resultsare included to evaluate the performance of

the PUMA approach by comparing with the ML [9] and ESPRIT algorithms [4], [11] as well as CRLB.

Finally, conclusions are drawn in Section V. A list of mathematical symbols that are used in the paper

is given in Table 1.

Symbol Meaning
† pseudoinverse

vec vectorization operator

⊗ Kronecker product

⊙ Hadamard product

◦ Khatri-Rao product

Ii i× i identity matrix

0i×j i× j zero matrix

ã noise-free value ofa

â estimate ofa

[a]
i

ith element ofa

[A]
i,j

(i, j) entry ofA

diag(a) diagonal matrix with vectora as main diagonal

blkdiag(A1,A2, · · · ,An) block diagonal matrix with its diagonal elements are squarematrices ofA1,A2, · · ·An

Toeplitz(a,bT ) Toeplitz matrix with first columna and first rowb
T

vec(A)
[

a
T
1 a

T
2 · · · a

T
K

]T

whereA =
[

a1 a2 · · · aK

]

TABLE I

L IST OF SYMBOLS
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II. ESTIMATION FOR COMPLEX SINUSOIDS

In this Section, we first devise the PUMA algorithm for estimating the parameters of multiple damped

cisoids in additive noise. The signal model is:

rm,n = sm,n + qm,n, m = 1, 2, · · · ,M, n = 1, 2, · · · , N (1)

where sm,n =

K
∑

k=1

γkα
m
k βn

k exp {j(µkm+ νkn)} (2)

is the noise-free signal. Theγk is the complex amplitude,µk ∈ (−π, π) andαk > 0 are the frequency and

damping factor in the first dimension whileνk ∈ (−π, π) andβk > 0 are the corresponding parameters

in the second dimension, of thekth cisoid. The number of damped cisoids, namely,K ≥ 2, is assumed

known. Here we consider that the frequencies are distinct for at least one dimension. Without loss of

generality, we assume thatM ≥ N > K and all frequencies in the first dimension are not identical,

that is,µk 6= µl, k 6= l. The additive noises{qm,n} are uncorrelated zero-mean complex white Gaussian

processes with unknown variancesσ2
q . The task is to find{µk}, {νk}, {αk}, {βk} and {γk}, from the

MN samples of{rm,n}.

We first express (1)–(2) in matrix form as:

R = S+Q (3)

where[R]m,n = rm,n, [S]m,n = sm,n and [Q]m,n = qm,n. Consideringsm,n as a sum ofK components

of (αk exp{jµk})
m γk (βk exp{jνk})

n, k = 1, 2, · · · ,K, it is easy to see thatS can be factorized as:

S = GΓHT . (4)

where G =
[

g1 g2 · · · gK

]

, Γ = diag(γ1, γ2, · · · , γK), H =
[

h1 h2 · · · hK

]

, gk =
[

ak a2k · · · aMk

]T

, hk =
[

bk b2k · · · bNk

]T

, ak = αk exp{jµk} and bk = βk exp{jνk}. On the other

hand,R can be decomposed using SVD as

R = UΛVH (5)

whereΛ = diag(λ1, λ2, . . . , λN ) is the square diagonal matrix containing singular values ofR with

λ1 ≥ λ2 ≥ · · · ≥ λN ≥ 0 while U = [u1 u2 · · · uN ] ∈ CM×N andV = [v1 v2 · · · vN ] ∈ CN×N are

orthonormal matrices whose columns are the corresponding left and right singular vectors, respectively.

From the decomposition in (4), it is obvious thatrank(S) = K and thus the best rank-K approximation

of R according to (5), denoted bŷS, is

Ŝ = UsΛsV
H
s (6)
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Here, the matrix with subscript “s” contains the dominant components of the original one, corresponds to

the signal subspace components. Comparing (4) and (6), it isclear thatG, Γ andH correspond toUs,

Λs andV∗
s , respectively. To perform parameter estimation, we first let matrix with ·̃ be the noise-free

versions of the matrices in (6). AsG andŨs span the same column space, we have

Ũs = GΩG (7)

whereΩG ∈ CK×K is an unknown matrix. That is, each column ofŨs, namely,ũk, k = 1, 2, · · · ,K,

is a sum ofK damped cisoids such that the frequencies and damping factors in {ũk} are identical but

they have different amplitudes, which corresponds to a multi-channel spectral estimation problem [15].

More precisely, each element ofũk has the form of[ũk]m =
∑K

k=1 ζkα
m
k exp{jµkm} where{ζk} are

parameters not of interest, and thus[ũk]m can be expressed as a linear combination of its previousK

samples [7]. As a result, we have the following LP property:

K
∑

i=0

ci[ũk]m−i = 0, c0 = 1, k = 1, 2, · · · ,K, m = K + 1, · · · ,M (8)

where{ci} are called the LP coefficients. The frequenciesωk and damping factorsαk are related to the

following polynomial:

K
∑

i=0

ciz
K−i = 0 (9)

whose roots arez = ak, k = 1, 2, . . . ,K [16]. When noise is absent, expressing (8), for a specificũk,

as matrix form yields

[

Dk −fk

]





1

c



 = 0(M−K)×1, k = 1, 2, · · · ,K (10)

where

Dk =

















[ũk]K [ũk]K−1 · · · [ũk]1

[ũk]K+1 [ũk]K · · · [ũk]2
...

...
. . . · · ·

[ũk]M−1 [ũk]M−2 · · · [ũk]M−K

















(11)

c =
[

c1 c2 · · · cK

]T

(12)

fk = −
[

[ũk]K+1 [ũk]K+2 · · · [ũk]M

]T

, k = 1, 2, · · · ,K. (13)
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Grouping the left hand side of (10) fork = 1, 2, · · · ,K, yields

e =
[

eT1 eT2 · · · eTK

]T

= Dc− f = 0(M−K)K×1 (14)

where

ek = Dkc− fk = Aũk = 0(M−K)×1, (15)

D =
[

DT
1 DT

2 · · · DT
K

]T

(16)

f =
[

fT1 fT2 · · · fTK

]T

, k = 1, 2, · · · ,K (17)

A = Toeplitz

(

[

cK 01×(M−K−1)

]T

,
[

cK cK−1 · · · c1 1 01×(M−K−1)

]

)

. (18)

In the presence of noise,̃uk is replaced byuk and (14) is invalid. To estimatec, we formulate a WLS

cost function

ĉ = argmin
c

eHWe =
(

DHWD
)−1

DHWf (19)

where ĉ denotes the estimate ofc. Furthermore,W is a symmetric weighting matrix and the optimal

choice according to Gauss-Markov theorem is [17]:

W = σ2
q

[

E
{

eeH
}]−1

(20)

To calculateW, we first note thatek in (15) implies

A
[

ũ1 ũ2 · · · ũK

]

= AŨs = 0(M−K)×K . (21)

Moreover, when noise is present, we can express (14) as

e = vec(AUs) = vec
(

AŨs +A∆Us

)

(22)

where∆Us = Us − Ũs is the perturbation caused by noise. Using (22), we can express (20) as

W = σ2
q

[

E
{

vec(AUs)vec(AUs)
H
}]−1

(23)

To compute (23), we first apply [18] to obtain

∆Us = ŨsΘ+QṼΛ̃
−1

− ŨsŨ
H
s QṼΛ̃

−1
(24)

whereΘ = Z⊙
(

ŨH
s QṼΛ̃+ Λ̃ṼHQHŨs

)

with [Z]m,n being equal to1/(λ̃n−λ̃m) and zero otherwise.

Using (21) and (24), we have

AUs = A∆Us = AQṼΛ̃
−1

(25)
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Vectorizing both sides of (25) yields

vec(AUs) =
(

Λ̃
−1

ṼT ⊗A
)

vec(Q). (26)

As E{QQH} = σ2
qIMN , (26) implies that1

E

{

vec(AUs) vec(AUs)
H
}

= σ2
qΛ̃

−2
⊗AAH . (27)

Substituting (27) into (23) and approximating̃λk by λk, we have2

W ≈ diag(λ2
1, λ

2
2, · · · , λ

2
K)⊗ (AAH)−1. (28)

SinceW is block diagonal, (19) can be written as

ĉ =

(

K
∑

k=1

λ2
kD

H
k (AAH)−1Dk

)−1( K
∑

k=1

λ2
kD

H
k (AAH)−1fk

)

. (29)

As (28) depends on the unknownc, we follow [19] to estimatec in an iterative manner and the

estimation procedure is:

(i) SetAAH = IM−K which corresponds to the LS estimator for (26)

(ii) Calculateĉ using (29)

(iii) Compute an updated version ofW with c = ĉ using (28)

(iv) Repeat Steps (ii)-(iii) until a stopping criterion is reached

Substitutingĉ = c in (9) and solving for the roots, denoted byâk, k = 1, 2, · · · ,K, the frequency and

damping factor estimates in the first dimension are:

µ̂k = ∠(âk) (30)

α̂k = |âk|. (31)

Basically, we can follow (28)–(31) to solve for{ν̂k} and {β̂k} but a matching step is required to

determine the correct pairs of(ak, bk). In order to achieve 2-D parameter pairing in an automatic manner,

we employ another estimation procedure for the parameters in the second dimension as follows.

From (3)–(4), we have

R ≈ ĜHHHT (32)

1(A⊗B) (C⊗D) = AC⊗BD

2(A⊗B)−1 = A
−1

⊗B
−1
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whereĜ is the estimate ofG which is constructed according toak = âk and

HHHT = ΓHT =
[

hhh1 hhh2 · · · hhhK

]T

(33)

hhhk = γkhk. (34)

From (32), the least squares (LS) estimate ofHHH is

ĤHH = RT (Ĝ†)T . (35)

Noting that the elements ofhhhk possess the same LP property as inhk, we extract̂hhhk from ĤHH to construct

the equations

ĥhhk,ubk ≈ ĥhhk,l (36)

whereĥhhk,u and ĥhhk,l are ĥhhk but without the last and first element, respectively. Considering sufficiently

small error conditions such thatâk → â, we haveĜ → G. In such conditions,R will be independent

of Ĝ and thus the disturbances among each vector ofĥhhk can be assumed independent and identically

distributed (IID). Following [19], the WLS estimate ofbk is computed as:

b̂k = argmin
bk

(ĥhhk,ubk − ĥhhk,l)
HΨk(ĥhhk,ubk − ĥhhk,l) =

ĥhh
H

k,uΨkĥhhk,l

ĥhh
H

k,uΨkĥhhk,u

, k = 1, 2, · · · ,K (37)

where the optimum weighting matrixΨk has the form:

Ψk =
[

E

{

(ĥhhk,ubk − ĥhhk,l)(ĥhhk,ubk − ĥhhk,l)
H
}]−1

=
(

BkB
H
k

)−1
(38)

where Bk = Toeplitz

(

[

−bk 01×(N−2)

]T

,
[

−bk 1 01×(N−2)

]

)

. (39)

Similar to the iterative estimation ofc in the first dimension, we start withΨk = IN−1 in the iterations

between (37) and (38) to obtain̂bk, k = 1, 2, · · · ,K. Finally, the frequenciesνk and damping factorsβk

are estimated as

ν̂k = ∠(b̂k) (40)

and β̂k = |b̂k|, k = 1, 2, · · · ,K. (41)

In doing so,ak and bk are automatically paired up. It is worthy to point out that wecan first estimate

{bk} according to (7)–(31) and then base on (37) to find{ak}.

The breakdown of the required number of multiplications of the PUMA algorithm is provided in Table

II where ℓ1 and ℓ2 represent the iteration numbers in (26) and (35), respectively. ConsideringM ≥ N

which is much larger thanK, ℓ1 and ℓ2, the complexity of the proposed estimator isO(M3). On the
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other hand, the main computational requirement of the ESPRIT method [11] is to perform SVD of a

matrix with dimensionPQ× (M − P + 1)(N −Q+ 1), whereP andQ are typically chosen asM/2

andN/2, respectively, corresponding toO(M3N3) multiplications. While the ML algorithm [9] needs

to compute a LS solution involving a matrix with dimension(M − K)N + (M − K − 1)(N − 1) by

K(K − 1), which results inO(M3N3) multiplications. As a result, the PUMA estimator is superior to

the ESPRIT and ML methods in terms of computationally attractiveness.

Operation Multiplication Step

SVD of R 4M2N + 8MN2 + 9N3 1

AA
H (M −K)2M 2

Z = (AA
H)−1 [Dk fk]

(M−K)(2M2+6M−2−K2−3K−KM)
6

3

Zk = λ2
kZ (M −K)(M + 1) 4

[Vk vk] = D
H
k Zk K(M + 1)(M −K) 5

(

2 + 3 + 4 + 5
)

×K
(M−K)(8KM2−K2M+12KM−K3+3K2+4K)

6
6

(

∑K

k=1 Vk

)−1 (
∑K

k=1 vk

)

K(K2+3K−1)
3

7
(

6 + 7
)

× ℓ iterations ℓ1 ×
8KM3−9K2M2+12KM2−9K2M+4KM+K4+K3+8K2−10K

6
8

T1 = G
H
G K2M 9

T2 = G
H
R KMN 10

T
−1
1 T2

K+9K2+2K3+9KN+3K2N

6
11

9 + 10+ 11 6KMN+3K2N+9KN+6K2M+2K3+9K2+K

6
12

Ψ
−1
k = BkB

H
k N(N − 1)2 13

Ψk

[

ĥhhk,u ĥhhk,l

]

−3−N+3N2+N3

3
14

b̂k 2N − 1 15
(

13 + 14 + 15
)

×K × ℓ2 iterations ℓ2 ×K ×
4N3−3N2+8N−6

3
16

TABLE II

COMPLEXITY BREAKDOWN OF PROPOSEDMETHOD

With the use of the frequency and damping factor estimates, the estimate ofγ =
[

γ1 γ2 · · · γK

]T

,

is computed using a LS fit:

γ̂ =
(

Ĥ ◦ Ĝ
)†

vec(R) (42)

whereĤ is the estimate ofH which is constructed usingbk = b̂k and◦ denotes the Khatri-Rao product.
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III. E STIMATION FOR REAL SINUSOIDS

In this Section, we extend our study to real sinusoids and thesignal model is now given as:

rm,n = sm,n + qm,n (43)

where sm,n =

K
∑

k=1

γkα
m
k βn

k cos(µkm+ φk) cos(νkn+ θk). (44)

Now {γk} are real and positive, the admissible ranges for{µk} and{νk} are reduced to(0, π), and{φk}

and {θk} are the additional initial phase parameters. Whileqm,n is a real zero-mean white Gaussian

process with unknown varianceσ2
q . The parameters of interest areµk, νk, αk, βk, φk, θk andγk, k =

1, 2, · · · ,K. Expressing (44) in matrix form, it is shown thatS can be factorized as in (4) butgk and

hk are modified to

gk =
[

αk cos (µk + φk) α2
k cos (2µk + φk) · · · αM

k cos (Mµk + φk)
]T

(45)

and hk =
[

βk cos (νk + θk) β2
k cos (2νk + θk) · · · βN

k cos (Nνk + θk)
]T

(46)

which are characterized by the frequencies, damping factors and phases. Following the development in

Section II, the LP property iñuk, k = 1, 2, · · · ,K, is now:

2K
∑

i=0

ci[ũk]m−i = 0, c0 = 1, m = 2K + 1, · · · ,M. (47)

The roots of the following polynomial:

2K
∑

i=0

ciz
2K−i = 0 (48)

are z = αk exp{±jµk}, k = 1, 2, · · · ,K, from which the frequencies and damping factors in the first

dimension can be straightforwardly obtained. Similar to (19)–(28), the conceptual WLS estimate ofc is

obtained as:

ĉ =

(

K
∑

k=1

λ2
kD

H
k (AAH)−1Dk

)−1( K
∑

k=1

λ2
kD

H
k (AAH)−1fk

)

(49)
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whereD, f , c and W are defined in (16), (17), (12) and (28), respectively whileDk, fk and A are

modified as

Dk =

















[uk]2K [uk]2K−1 · · · [uk]1

[uk]2K+1 [uk]2K · · · [uk]2
...

...
. . . · · ·

[uk]M−1 [uk]M−2 · · · [uk]M−2K

















(50)

fk = −
[

[uk]2K+1 [uk]2K+2 · · · [uk]M

]T

, k = 1, 2, · · · ,K (51)

A = Toeplitz

(

[

c2K 01×(M−2K−1)

]T

,
[

c2K c2K−1 · · · c1 1 01×(M−2K−1)

]

)

. (52)

Initializing W with the identity matrix, we iterate between (49) and (52) toget ĉ, from which 2K

roots with conjugate relationship are determined using (48). We then employ those phases are within

(0, π) to find µk and αk according to (30) and (31). The next step is to find{φk}. With the use of

cos(u+ v) = cos(u) cos(v) − sin(u) sin(v), we write

G = GµαGφ (53)

where Gµα =
[

ccc1 −sss1 ccc2 −sss2 · · · cccK −sssK

]

(54)

ccck =
[

αk cos (µk) α2
k cos (2µk) · · · αM

k cos (Mµk)
]T

(55)

sssk =
[

αk sin (µk) α2
k sin (2µk) · · · αM

k sin (Mµk)
]T

(56)

Gφ = blkdiag (ξ1, ξ2, · · · , ξK) (57)

and ξk =
[

cos(φk) sin(φk)
]T

. (58)

After substitutingα̂k and µ̂k into Gµα, we obain

ĤHH
T
, Ĝ†

µαR ≈ ĜφΓ̂Ĥ
T =

[

ĥ1 ĥ2 · · · ĥ2K

]T

. (59)

RelatingĤHH andĤ in (59) yields

ĥ2k−1 ≈ ĥγ̂k cos(φ̂k), ĥ2k ≈ ĥγ̂k sin(φ̂k), k = 1, 2, · · · ,K (60)

which implies

φ̂k = tan−1
(

ĥ
†
2k−1ĥ2k

)

, k = 1, 2, · · · ,K. (61)

ConstructingĜφ from (61) and using the equationhk,i+2 = 2βk cos(νk)hk,i+1 − β2
khk,i, we can follow

(35)–(41) to estimatêβk and ν̂k from ĤHH. After that, the estimation of{θk} is achieved by considering

H which is similar to (53)–(61). Finally,{γk} are estimated using LS which is similar to (42).
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IV. SIMULATION RESULTS

Computer simulations have been conducted to evaluate the parameter estimation performance of

the PUMA algorithm for multiple damped 2-D sinusoids in the presence of white Gaussian noise.

The stopping criterion of the PUMA algorithm is a fixed numberof iterations. We use 3 iterations

as no significant improvement is observed for more iterations. The average MSE is employed for

the performance measure. Apart from CRLB, comparison is made with ESPRIT [4], [11] and ML

[9] algorithms. In particular, [11] is employed for cisoidswhile [4] which applies partial forward-

backward averaging is used for the real-valued signals. On the other hand, the ML estimator is

realized by the Newton’s method where parameter initialization is obtained using [11] and [4] in the

complex and real cases, respectively. In the study, synthetic signals are employed although real data

can help understanding the actual performance in real-lifeapplications. The signal power is defined as

σ2
s = (

∑M
m=1

∑N
n=1 |sm,n|

2)/(MN ) andqm,n is scaled to produce different signal-to-noise ratio (SNR)

conditions withSNR = σ2
s/σ

2
q . The number of 2-D sinusoids is assigned asK = 2 while M = N = 20

correspond to the data size. All results provided are averages of 1000 independent runs based on a

computer with Intel Dual Core i7 2.66 GHz processors and 3GB RAM.

In the first test, we study the complex-valued case and the signal parameters areγ1 = 2, γ2 =

3exp(0.15j), α1 = 0.95, α2 = 0.96, β1 = 0.99, β2 = 0.95, µ1 = 0.1π, µ2 = 0.36π, ν1 = 0.24π and

ν2 = 0.36π. The average MSEs for frequencies, damping factors and amplitudes, versus SNR are plotted

in Figures 1 to 3, respectively. It is seen that the MSEs of theproposed and ML methods attain the

corresponding CRLBs at SNR≥ −2 dB and at SNR≥ −6 dB in all three figures, respectively. On the

other hand, the ESPRIT method is not optimum in the whole SNR range. Furthermore, we observe that

starting with estimation of{ak} and {bk} in the PUMA scheme give similar final results although the

former has relatively smaller threshold SNRs. The average CPU computation times of the ESPRIT, ML

and PUMA algorithms for a single trial are measured as2.98× 10−2s, 3.148× 10−1s and2.00× 10−3s,

respectively, which agree with the complexity analysis in Section 2. The more challenging scenarios

of closely-spaced and identical frequencies are now examined. Figure 4 shows the average MSEs for

frequencies withµ1 = 0.3π, µ2 = 0.36π, ν1 = 0.32π andν2 = 0.36π while the other parameter settings

remain unchanged. The results are similar to those of Figure1 except that estimating{ak} in the first

stage is better than starting with{bk} because the frequency separation in the latter is closer. Figure 5

plots the frequency estimation performance when there are identical frequencies in the second dimension.

The parameter settings are equal to those of Figure 4 exceptν1 = 0.36π. The observations are similar
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to those of Figure 1. Note that in this case, we are not able to start with estimating{bk} due to the

restriction in utilizing (17). Moreover, as the results fordamping factors and amplitudes are similar, they

are not included here. From the simulations, it can be observed that though the proposed algorithm is

computationally more attractive, it fails to start with thedimension having identical frequency component.

To avoid this situation, estimation of the frequency separations of both dimensions has to be performed

first. We then begin the algorithm at the dimension with maximum frequency separation.

The real-valued scenario is investigated in the second testand we consider that the 2-D tones are

undamped in one dimension corresponding to the X-texture modes [4], which arise naturally in vibrational

analysis of circularly shaped objects. The PUMA algorithm in Section 3 is modified accordingly [14]

to achieve better estimation performance, and without lossof generality, we first estimate{αk}, {µk}

and {φk}. The parameter settings are identical to those in the first test except thatβ1 = β2 = 1 and

the additional phase values are assigned asφ1 = 0, φ2 = 0.15, θ1 = 0.5 and θ2 = 1. The average

MSEs for frequencies, damping factors, amplitudes and phases, versus SNR are plotted in Figures 6 to

7, respectively. Again, we see that the PUMA algorithm is superior to the ESPRIT method in terms of

estimation accuracy. While the MSEs of the proposed and ML methods attain the corresponding CRLBs

at SNR≥ 6 dB and at SNR≥ 8 dB in all four figures, indicating that the former has a slightly better

threshold performance. In addition, the average computation times of the ESPRIT, ML and proposed

estimators for a single trial are measured as1.89× 10−2s, 9.257× 10−1s and2.2× 10−3s, respectively.

These further demonstrate the superiority of the proposed algorithm over the two conventional algorithms

in terms of computational complexity and/or accuracy.

V. CONCLUSION

A novel subspace-based parameter estimation approach forK ≥ 2 2-D multiple damped real/complex

sinusoids in additive white Gaussian noise is devised. Withthe use of singular value decomposition

and weighted least squares techniques, the damping factorsand frequencies are obtained by iterative

estimation between the two dimensions. The parameter estimates in both dimensions are automatically

paired. Computer simulations show that the PUMA approach iscomputationally attractive and able to

attain optimal mean square error performance when the signal-to-noise ratio is sufficiently high.
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Fig. 1. Average mean square frequency error versus SNR for complex tones
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Fig. 2. Average mean square damping factor error versus SNR for complex tones
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Fig. 3. Average mean amplitude error versus SNR for complex tones
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Fig. 4. Average mean frequency error versus SNR for closely-spaced frequencies

February 1, 2012 DRAFT



19

−10 −5 0 5 10 15 20 25 30
−60

−50

−40

−30

−20

−10

0

10

SNR (dB)

M
ea

n 
S

qu
ar

e 
E

rr
or

 (
dB

)

 

 
ESPRIT [11]
ML [9]
PUMA
CRLB

Fig. 5. Average mean frequency error versus SNR for identical frequencies
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Fig. 6. Average mean square frequency error versus SNR for real tones

February 1, 2012 DRAFT



21

−10 −5 0 5 10 15 20 25 30

−60

−40

−20

0

20

40

60

SNR (dB)

M
ea

n 
S

qu
ar

e 
E

rr
or

 (
dB

)

 

 
ESPRIT [4]
ML [9]
PUMA
CRLB

Fig. 7. Average mean square damping factor error versus SNR for real tones
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