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Abstract

In this paper, we tackle the two-dimensional (2-D) paramestémation problem for a sum @&f > 2
real/complex damped sinusoids in additive white Gauss@sen According to the rank property of
the 2-D noise-free data matrix, the damping factor and feegy information is contained in th&
dominant left and right singular vectors. Using the sindablinear prediction property of these vectors,
the frequencies and damping factors of the first dimensierfiest estimated. For each frequency of the
first dimension, the corresponding parameter in the secandrgsion is then obtained to achieve auto-
pairing. Computer simulations are included to compare tiopgsed approach with several conventional

2-D estimators in terms of mean square error performancecamgputational complexity.

Index Terms

dominant singular vector, linear prediction, weightedsteaquares, two-dimensional parameter

estimation, spectral analysis

. INTRODUCTION

The problem of parameter estimation f&f > 1 2-D noisy sinusoids has received a great deal of
attention. It is because in many applications such as sodoeadization [1]-[2], radar imaging [3],
vibrational analysis of circularly shaped objects [4], imac magnetic resonance (NMR) spectroscopy
[5], wireless communication channel estimation [6], theresponding signals can be well described by

the 2-D sinusoidal model.
The authors are with Department of Electronic Engineer®ity University of Hong Kong.
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2-D Fourier transform is the direct nonparametric apprdadciddress 2-D spectral estimation. In spite
of its computational attractiveness when using fast Fourensform, it suffers from poor resolution
in resolving closely-spaced frequencies and high-sideleffects [7]—-[8]. In order to achieve higher
resolution, the parametric approach, which assumes tlasitinal satisfies a generating model with
known functional form, is a standard choice. Well known 2-8gmetric solutions include maximum
likelihood (ML) method [9] and subspace-based estimatoch &is multiple signal classification (MUSIC)
[2], [3], [5], matrix enhancement and matrix pencil (MEMP)0] and estimation of signal parameters
via rotational invariance techniques (ESPRIT) [4], [6]1]1[12], [13]. In the presence of additive white
Gaussian noise, the ML scheme [9], which corresponds to &-tdimensional peak search, can produce
optimum estimation performance, that is, its mean squame évMSE) attains Cramér-Rao lower bound
(CRLB). Comparing with the ML estimator, the subspace metthagy whose underlying principle is
to separate the received data into signal and noise sulspaceigenvalue decomposition (EVD) or
singular value decomposition (SVD), is more computatilynefficient at the expense of suboptimality.
The MUSIC algorithm [3] requires to find th& peaks in a 2-D cost function constructed from the
noise eigenvectors. By constructing a Hankel-block-Hanka&trix whose size is larger than that of the
data matrix, the MEMP method [10] decomposes the 2-D estimairoblem into two one-dimensional
problems related to each dimension, where generalized BMI2aD frequency pairing are needed. The
ESPRIT algorithm [11] is similar to [10] in the sense that thankel-block-Hankel matrix is exploited
but it provides auto-pairing of the 2-D frequencies by mgkirse of joint diagonalization and can deal
with damped sinusoids. While [4], which addresses X-textmodes, that is, real-valued 2-D sinusoids
with damping only in one dimension, can be considered as aifitatibn to [11] by applying partial
forward-backward averaging.

In this paper, we contribute to accurate and fast 2-D pammedtimation of multiple complex/real
damped sinusoids based on the subspace methodology. Weotefapproach to as principal-singular-
vector utilization for modal analysis (PUMA), meaning thhe principal singular vectors of the data
matrix are effectively exploited in the estimation proceEkis work is a follow-up of [14] where the
PUMA algorithm for a single damped/undamped real/comptmetor K = 1 is devised and analyzed.
The key ideas in [14] are to make use of the rank-one propéiyeocorresponding 2-D noise-free data
matrix and find the damping factor as well as frequency patarador each dimension from the left and
right principal singular vectors in a separable mannerhla paper, we extend [14] to the general case
of K > 2 which is not a straightforward task. In particular, the damgpfactors and frequencies in each

dimension are not directly related to th€ principal singular vectors and 2-D parameter pairing needs
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to be addressed.

The rest of the paper is organized as follows. The algoritlerretbpment for multiple damped cisoids
is provided in Section Il. According to the rarik- property of the 2-D noise-free data matrix, the
corresponding left and right dominant singular vectors @maracterized by the damping factors and
frequencies in the first and second dimension, respectiMaking use of the dominant singular vectors,
the parameters of interest at one dimension will first be @ately estimated according to an iterative
procedure which utilizes the sinusoidal linear predic{ibR) property and weighted least squares (WLS).
The damping factors and frequencies in another dimensiensalved via another similar iterative
algorithm such that pairing of the 2-D parameters is autarally achieved. Estimation for real tones is
addressed in Section Ill. In Section VI, simulation resate included to evaluate the performance of
the PUMA approach by comparing with the ML [9] and ESPRIT ailipons [4], [11] as well as CRLB.
Finally, conclusions are drawn in Section V. A list of mattaimal symbols that are used in the paper

is given in Table 1.

Symbol Meaning
f pseudoinverse
vec vectorization operator
® Kronecker product
© Hadamard product
o Khatri-Rao product
I, 1 X ¢ identity matrix
0;x; i X j zero matrix
a noise-free value o&
a estimate ofa
[a], ith element ofa
[A]; (,4) entry of A
diag(a) diagonal matrix with vectoan as main diagonal
blkdiag(A1, Ao, -+, A,) | block diagonal matrix with its diagonal elements are squaadrices ofAq, Ao, - A,
Toeplitz(a, b”) Toeplitz matrix with first columra and first rowb”
veqA) al af ... aﬂT whereA = |a; a, --- ax
TABLE |
LIST OF SymMBOLS
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I[I. ESTIMATION FOR COMPLEX SINUSOIDS

In this Section, we first devise the PUMA algorithm for estiing the parameters of multiple damped

cisoids in additive noise. The signal model is:

Tmmn = Smn + qmpn, m=12,--- M, n=12,--- N Q)
K

where Smn = Z ’Ykarkn/@l? exp {](Mkm + an)} (2)
k=1

is the noise-free signal. Thg, is the complex amplitudey;, € (—m,7) anday, > 0 are the frequency and
damping factor in the first dimension while, € (—x, ) and g > 0 are the corresponding parameters
in the second dimension, of thgh cisoid. The number of damped cisoids, hamély> 2, is assumed
known. Here we consider that the frequencies are distincafdeast one dimension. Without loss of
generality, we assume thd? > N > K and all frequencies in the first dimension are not identical,
that is, jui, # i, k # (. The additive noisesq,, ,,} are uncorrelated zero-mean complex white Gaussian
processes with unknown variance$. The task is to find{u}, {vi}, {ex}, {8} and{~}, from the
MN samples of{ry, , }.

We first express (1)—(2) in matrix form as:
R=S+Q (3)

where[R|,,n = "mn, [Slmn = Smn @A [Qlp 0 = ¢m.n. Considerings,, , as a sum ofl components

of (agexp{jur})™ v (Brexp{jve})", k=1,2,--- K, it is easy to see th& can be factorized as:
S = GrH” . (@

where G = |:g1 8o - gK}, ' = diag(%,'yg,--- a'YK); H = hi hy, --- hgl|, 8 =
T T
[ak a3 ---a,i”] , hy = [bk b7 bﬂ , ap, = agexp{ju,} andb, = B exp{jv;}. On the other

hand,R can be decomposed using SVD as

R = UAVY (5)
where A = diag(\1, \2,...,Ay) is the square diagonal matrix containing singular value®RoWith
Alz)\gz---Z)\NEOWhileU:[ulug---uN]eCMXNandV:[vva---VN]G(DNXNare

orthonormal matrices whose columns are the correspondih@hd right singular vectors, respectively.
From the decomposition in (4), it is obvious thahk(S) = K and thus the best rank- approximation

of R according to (5), denoted b, is

S=UAVH (6)
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Here, the matrix with subscript “s” contains the dominanthponents of the original one, corresponds to
the signal subspace components. Comparing (4) and (6)cie#& thatG, T' andH correspond tdUs,
A, and V7, respectively. To perform parameter estimation, we firstratrix with ~ be the noise-free

versions of the matrices in (6). A& and U, span the same column space, we have
U, = GQq (7)

whereQ¢ € CX*K js an unknown matrix. That is, each column©f, namely,a;, k= 1,2,--- , K,

is a sum of K damped cisoids such that the frequencies and damping $aictdia, } are identical but
they have different amplitudes, which corresponds to airmnblnnel spectral estimation problem [15].
More precisely, each element &f, has the form offiy],, = S5, Crogt exp{jurm} where {(;} are
parameters not of interest, and thius;|,,, can be expressed as a linear combination of its previdus

samples [7]. As a result, we have the following LP property:

K
Y almi=0, co=1, k=12 K, m=K+1,--- M (8)
=0

where{¢;} are called the LP coefficients. The frequencigsand damping factors,, are related to the

following polynomial:

K .
Z izt =0 9)
=0
whose roots are = ai, k = 1,2,..., K [16]. When noise is absent, expressing (8), for a spedaific
as matrix form yields
1
[Dk _fki| :O(M—K)Xl) k:1,2,"' ,K (10)
(¢
where
[Or]x  [Ok]x—1 [Gx]1
a a o
D, — [ k].KJrl [ k.:]K | [Tk ]2 1)
[k]a—1 [Ok]n—2 [l v—k |
T
cC=|ca c - CK} (12)
T
fo = — |[o]rr1 [O]x2 - [ﬁk]M} , k=12, K. (13)
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Grouping the left hand side of (10) far=1,2,--- , K, yields

T
e=lel el .. e}}} =Dc—f =0-r)xx1 (14)

where
er = Dre —f = Aug = Oy—r)x1s (15)

T
D= [DlT Dl ... Dﬂ} (16)
T
f=[F & - £ . k=12 K (17)
_ T

A = Toephtz <[CK 01><(M7K*1)1| 3 [CK CK—-1 e Cc1 1 OlX(MKl)i|> . (18)

In the presence of nois&y, is replaced by, and (14) is invalid. To estimate, we formulate a WLS

cost function
¢ = argmin e We = (D¥WD) ™' D/ Wr (19)

where ¢ denotes the estimate ef Furthermore,W is a symmetric weighting matrix and the optimal

choice according to Gauss-Markov theorem is [17]:
W = o2 [E{ee}] ™" (20)
To calculateW, we first note that;, in (15) implies
A [ﬁl iy - ﬁK] =AU, = Onv—K)xk- (21)
Moreover, when noise is present, we can express (14) as
e = Vec(AU,) = vec(Afjs n AAUS) (22)
where AU, = U, — U, is the perturbation caused by noise. Using (22), we can ssg9) as
W = o2 [E {veq AU, )ved AU,)"}] ™" (23)
To compute (23), we first apply [18] to obtain
AU, =U,0 + QVA ' — U,UZQVA ™" (24)

where® = Z© (fijVA + AVHQHﬁS> with [Z],, , being equal td /(\, — ) and zero otherwise.
Using (21) and (24), we have
AU, = AAU, = AQVA ' (25)
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Vectorizing both sides of (25) yields
Vec(AU,) = (]x‘lvT ® A) veqQ). (26)
As E{QQ"} = 021, (26) implies that'
E {vec(AUs) vec(AUs)H} — o2A " @ AA". 27)
Substituting (27) into (23) and approximating by ), we have?
W ~ diag(A\}, A3, - 2\ %) @ (AAT) 7L, (28)

SinceW is block diagonal, (19) can be written as

¢ = (Z)\ DI (AAT)~ 1Dk> <Z)\ DI(AAT) 1fk>. (29)
As (28) depends on the unknown we follow [19] to estimatec in an iterative manner and the

estimation procedure is:
() Set AAH =1,,_x which corresponds to the LS estimator for (26)
(i) Calculatec¢ using (29)
(i) Compute an updated version & with ¢ = ¢ using (28)
(iv) Repeat Steps (ii)-(iii) until a stopping criterion isached
Substitutingé = c in (9) and solving for the roots, denoted by, £k =1,2,--- , K, the frequency and

damping factor estimates in the first dimension are:
fik = £(ax) (30)
b = |a|. (31)

Basically, we can follow (28)—(31) to solve fdwy} and {Bk} but a matching step is required to
determine the correct pairs ¢y, b ). In order to achieve 2-D parameter pairing in an automationmeg
we employ another estimation procedure for the paramatetisei second dimension as follows.

From (3)—(4), we have

R~ GHT (32)

(A®B)(C®D)=AC®BD
2(A®B)71 :A—1®B—1
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whereG is the estimate of> which is constructed according tg. = a; and
T T T
H' =TH' = |h; hy --- hK] (33)
hi, = vihy. (34)
From (32), the least squares (LS) estimateéHofs
H=R"(GHT. (35)

Noting that the elements df;, possess the same LP property ahjnwe extracth;, from % to construct

the equations
ilk,ubk ~ ilk,l (36)

wherehy,, andhy,,; are h; but without the last and first element, respectively. Coersit sufficiently
small error conditions such théat, — a, we haveG — G. In such conditionsR will be independent
of G and thus the disturbances among each vectdi,oéan be assumed independent and identically

distributed (1ID). Following [19], the WLS estimate &f is computed as:

~H ~
. e N S . hi P rhy,
bk = arg mln(hkmbk — th) ‘I’k(hk,ubk — hk,l) = “H . k‘ = 1, 2, e ,K (37)
b hi.. ¥ rhi .
where the optimum weighting matri#;, has the form:
. . . . -1 1
Wy = []E {(hk,ubk — hye1) (i ubr — hk,l)HH = (BxBY) (38)
T
where Bj, = Toeplitz <[_bk 01><(N—2)] , [_bk 1 01><(N—2)]> . (39)

Similar to the iterative estimation af in the first dimension, we start wit;, = I_1 in the iterations
between (37) and (38) to obtalp, k =1,2,--- , K. Finally, the frequencies, and damping factors;,

are estimated as
D = Z(bk) (40)
and Br=lbxl, k=1,2,--- K. (41)
In doing so,a;, and b, are automatically paired up. It is worthy to point out that ean first estimate
{br.} according to (7)—(31) and then base on (37) to find}.
The breakdown of the required number of multiplicationshef PUMA algorithm is provided in Table

Il where ¢; and /5 represent the iteration numbers in (26) and (35), respagtiConsideringhl > N

which is much larger thar, ¢, and /s, the complexity of the proposed estimator@M?3). On the
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other hand, the main computational requirement of the EBR®R¢thod [11] is to perform SVD of a
matrix with dimensionPQ@ x (M — P+ 1)(N — Q@ + 1), where P and @ are typically chosen a8/ /2
and N/2, respectively, corresponding t6(M?3N?3) multiplications. While the ML algorithm [9] needs
to compute a LS solution involving a matrix with dimensioh/ — K)N + (M — K —1)(N — 1) by
K(K — 1), which results inO(M3N?) multiplications. As a result, the PUMA estimator is supetio

the ESPRIT and ML methods in terms of computationally ativeness.

‘ Operation ‘ Multiplication ‘ Step ‘
| SVD of R | AMZN + 8MN? + 9N® | @ |
AA"T (M - K)*M )
_ Hy— (M—K)2M?*46M—2—K?—3K—KM)

Z = (AAT)"1 Dy fy) = ®

Zi = M\Z (M - K)(M +1) @

Vi vi] = D Zy K(M+1)(M - K) ®

(®+®+@+©) < K (M—K)(8KM?—K?>M+12KM— K3 4+3K?+4K) ®

6
p— 2 —

(25:1 Vk) (Zf:l Vk) w @

(©+®) « ¢ iterations 0 % 8K1\/I3—9K21\/12+12K]L12—9K26]M+4K]M+K4+K3+8K2—1OK ®

T, = GG K?M Q@

T, =GR KMN @0

Tfsz K+9K2+2K3gr9KN+3K2N @

2 2 3 2

©+ ®+ @ 6KMN+4+3K N+9KN~£6K MA2K°4+9K“4+ K @

U = BBY N(N —1)? a3

U, [;;k’u i,k,’l} M a2

br 2N — 1 a5

(@3 + @4 + @5) x K x ¢» iterations 0y x I x ANC-SNZSN_6 e

TABLE II
COMPLEXITY BREAKDOWN OF PROPOSEDMETHOD
. . . . T
With the use of the frequency and damping factor estimatesestimate ofy = |y, ~, ... WK} :
is computed using a LS fit:
NN

5y = (H o G) vec(R) (42)

whereH is the estimate oH which is constructed usinby, = b, ando denotes the Khatri-Rao product.

February 1, 2012 DRAFT



10

[1l. ESTIMATION FOR REAL SINUSOIDS

In this Section, we extend our study to real sinusoids andsidpeal model is now given as:

Tmmn = Smn T Qmn (43)
K

where Smn = Z Yeap B cos(pem + ¢r) cos(vgn + 6). (44)
k=1

Now {v;} are real and positive, the admissible ranges{far} and{v;} are reduced tq0, 7), and{ ¢y}
and {6} are the additional initial phase parameters. Whilg,, is a real zero-mean white Gaussian
process with unknown variancz%. The parameters of interest atg, v, ak, Bk, ¢k, O and~yg, k =
1,2,---, K. Expressing (44) in matrix form, it is shown th8tcan be factorized as in (4) bgf. and

h;, are modified to

T
gk = [Oék; cos (g + dr) o cos 2up + dr) -+ ap! cos (Mpuy + Qbk)} (45)
T
and hy = [5k cos (v + 0) Bicos(2up +0) -+ B cos (Nyy + 91@)] (46)

which are characterized by the frequencies, damping fa@nd phases. Following the development in

Section Il, the LP property im, £k =1,2,--- , K, iS now:
2K
> cltlmi =0, co=1, m=2K+1,--- M (47)
=0

The roots of the following polynomial:

2K ‘
Z K= (48)
i=0
arez = apexp{tjur}, k = 1,2,--- | K, from which the frequencies and damping factors in the first

dimension can be straightforwardly obtained. Similar t8){128), the conceptual WLS estimate ©fs

obtained as:

K
<Z)\ DI (AAT)~ 1Dk> <ZAkDH (AAT) 1fk> (49)
k=1
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11

whereD, f, ¢ and W are defined in (16), (17), (12) and (28), respectively wiilg, f, and A are

modified as
[uplox  [uglox—1 [ui)q
u u u
D, — [uplox+1  [wrler [ug]2 (50)
(w1 [uglm—2 [ug]pr—2k |
T
£, =— [[uk]2K+1 [uk]2K+2 [uk]M] , k=12 K (51)
. T

A = Toeplitz <[02K OlX(M*QK*l)] ) [CQK C2K—1 a 1 01x(M2K1)D : (52)

Initializing W with the identity matrix, we iterate between (49) and (52)get ¢, from which 2K

roots with conjugate relationship are determined using.(¥& then employ those phases are within

(0,7) to find uy and ay according to (30) and (31). The next step is to fifigk.}. With the use of

cos(u + v) = cos(u) cos(v) — sin(u) sin(v), we write

G =G, Gy (53)
where G = :01 —81 €y —89 CK —SK] (54)
(S :ak. cos (k) a2 cos (2u) aM cos (M,uk)} ! (55)
s = |ausin () sin (2p20) aM sin (M,Lk)r (56)
Gy = blkdiag (§;,&5,- - , &) (57)
and & = :cos(¢k) sin(¢k)}T- (58)
After substitutinga;, and ji;, into G, we obain
#' LG R~ G =i by o b (59)
Relating# andH in (59) yields
bok—1 ~ hip cos(dr), box ~ hgsin(ey), k=1,2,-- K (60)
which implies
dp = tan~! (ng_lﬁ%) k=12 K. (61)

Constructingf}¢ from (61) and using the equatidr, ;1o = 20 cos(vg) g it1 — 5;3%@ we can follow
(35)—(41) to estimates, and i, from 7. After that, the estimation offy } is achieved by considering
H which is similar to (53)—(61). Finally{~;} are estimated using LS which is similar to (42).
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IV. SIMULATION RESULTS

Computer simulations have been conducted to evaluate thempter estimation performance of
the PUMA algorithm for multiple damped 2-D sinusoids in theegence of white Gaussian noise.
The stopping criterion of the PUMA algorithm is a fixed numlzdriterations. We use 3 iterations
as no significant improvement is observed for more iteratiohhe average MSE is employed for
the performance measure. Apart from CRLB, comparison isemaidh ESPRIT [4], [11] and ML
[9] algorithms. In particular, [11] is employed for cisoidghile [4] which applies partial forward-
backward averaging is used for the real-valued signals. i@n dther hand, the ML estimator is
realized by the Newton’s method where parameter initiibmais obtained using [11] and [4] in the
complex and real cases, respectively. In the study, syintls@nals are employed although real data
can help understanding the actual performance in reabjifglications. The signal power is defined as
o2 = (Z%zl fozl |$m.n|?)/(MN) and gy, ,, is scaled to produce different signal-to-noise ratio (SNR)
conditions withSNR = o7 /o2. The number of 2-D sinusoids is assignedrés- 2 while M = N = 20
correspond to the data size. All results provided are aesrarf 1000 independent runs based on a
computer with Intel Dual Core i7 2.66 GHz processors and 3GB/R

In the first test, we study the complex-valued case and theakigarameters arg; = 2, v =
3exp(0.155), a1 = 0.95, as = 0.96, B = 0.99, B2 = 0.95, u; = 0.1, s = 0.367, v1 = 0.247 and
vy = 0.367. The average MSEs for frequencies, damping factors anditaiohgs$, versus SNR are plotted
in Figures 1 to 3, respectively. It is seen that the MSEs ofglmposed and ML methods attain the
corresponding CRLBs at SNR —2 dB and at SNR> —6 dB in all three figures, respectively. On the
other hand, the ESPRIT method is not optimum in the whole ShiRge. Furthermore, we observe that
starting with estimation ofa} and {b;} in the PUMA scheme give similar final results although the
former has relatively smaller threshold SNRs. The averalgel Computation times of the ESPRIT, ML
and PUMA algorithms for a single trial are measure®a8 x 10~2s, 3.148 x 10~'s and2.00 x 10~3s,
respectively, which agree with the complexity analysis gct®n 2. The more challenging scenarios
of closely-spaced and identical frequencies are now exaanifigure 4 shows the average MSEs for
frequencies withu; = 0.3, ue = 0.367, v = 0.327 andvy, = 0.367 while the other parameter settings
remain unchanged. The results are similar to those of Fifjuegcept that estimatingas} in the first
stage is better than starting wiflb; } because the frequency separation in the latter is closguréi5
plots the frequency estimation performance when theredamtical frequencies in the second dimension.

The parameter settings are equal to those of Figure 4 exgept0.367. The observations are similar
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to those of Figure 1. Note that in this case, we are not abldax with estimating{b;} due to the
restriction in utilizing (17). Moreover, as the results tamping factors and amplitudes are similar, they
are not included here. From the simulations, it can be olesktivat though the proposed algorithm is
computationally more attractive, it fails to start with ttienension having identical frequency component.
To avoid this situation, estimation of the frequency sefiama of both dimensions has to be performed
first. We then begin the algorithm at the dimension with maximfrequency separation.

The real-valued scenario is investigated in the secondaedtwe consider that the 2-D tones are
undamped in one dimension corresponding to the X-textur@as§4], which arise naturally in vibrational
analysis of circularly shaped objects. The PUMA algorittmSection 3 is modified accordingly [14]
to achieve better estimation performance, and without tdsgenerality, we first estimat@ay }, {ur}
and {¢r}. The parameter settings are identical to those in the fisttarcept that3; = g, = 1 and
the additional phase values are assignedas= 0, ¢» = 0.15, 61 = 0.5 andf, = 1. The average
MSEs for frequencies, damping factors, amplitudes andgsagersus SNR are plotted in Figures 6 to
7, respectively. Again, we see that the PUMA algorithm isesigr to the ESPRIT method in terms of
estimation accuracy. While the MSEs of the proposed and Mthots attain the corresponding CRLBs
at SNR> 6 dB and at SNR> 8 dB in all four figures, indicating that the former has a sligtietter
threshold performance. In addition, the average commurtaimes of the ESPRIT, ML and proposed
estimators for a single trial are measuredla® x 10~2s, 9.257 x 10~!s and2.2 x 10~3s, respectively.
These further demonstrate the superiority of the propokgithm over the two conventional algorithms

in terms of computational complexity and/or accuracy.

V. CONCLUSION

A novel subspace-based parameter estimation approadk fer2 2-D multiple damped real/complex
sinusoids in additive white Gaussian noise is devised. With use of singular value decomposition
and weighted least squares techniques, the damping faatatSrequencies are obtained by iterative
estimation between the two dimensions. The parameter &stinin both dimensions are automatically
paired. Computer simulations show that the PUMA approacatoimputationally attractive and able to

attain optimal mean square error performance when the Isigmeise ratio is sufficiently high.
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