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Abstract

We consider K links operating concurrently in the same spectral band. Each
transmitter has multiple antennas, while each receiver uses a single antenna.
This setting corresponds to the multiple-input single-output interference chan-
nel. We assume perfect channel state information at the single-user decoding
receivers whereas the transmitters only have estimates of the true channels. The
channel estimation errors are assumed to be bounded in elliptical regions whose
geometry is known at the transmitters. Robust beamforming optimizes worst-
case received power gains, and a Pareto optimal point is a worst-case achievable
rate tuple from which it is impossible to increase a link’s performance without
degrading the performance of another. We characterize the robust beamform-
ing vectors necessary to operate at any Pareto optimal point. Moreover, these
beamforming vectors are parameterized by K(K − 1) real-valued parameters.
We analyze the system’s spectral efficiency at high and low signal-to-noise ratio
(SNR). Zero forcing transmission achieves full multiplexing gain at high SNR
only if the estimation errors scale linearly with inverse SNR. If the errors are
SNR independent, then single-user transmission is optimal at high SNR. At
low SNR, robust maximum ratio transmission optimizes the minimum energy
per bit for reliable communication. Numerical simulations illustrate the gained
theoretical results.
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1. Introduction

We consider multiple transmitter-receiver pairs simultaneously operating on
the same frequency band. The signal from a transmitter is useful information at
the intended receiver while it is regarded as interference at unintended receivers.
All transmitters are equipped with multiple antennas while the receivers use only
a single antenna. This setting corresponds to the multiple-input single-output
(MISO) interference channel (IFC) [1].

In the MISO IFC, the beamforming vectors used at the transmitters impact
the performance of the systems. A jointly efficient operating point corresponds
to a Pareto optimal point in which it is not possible to improve the performance
of one link without degrading the performance of at least another link. Designing
a Pareto optimal mechanism requires finding the joint beamforming vectors
used at the transmitters that lead to the Pareto optimal point. In the MISO
IFC, finding specific Pareto optimal points such as the maximum sum-rate or
proportional-fair is proven to be strongly NP-hard [2, 3]. The importance of
characterizing the set of beamforming vectors necessary for the links’ Pareto
optimal operation is twofold. First, the set of relevant beamforming vectors
is reduced to a considerably small subset of all feasible beamforming vectors.
Second, the characterized set of efficient beamforming vectors is parameterized
by a number of scalars which can even reduce the complexity of indicating the
required beamforming vectors.

Characterizing the beamforming vectors necessary to achieve all Pareto op-
timal points in the MISO IFC has been carried out in several works for the
case of perfect channel state information (CSI) at the transmitters. In [4], the
efficient beamforming vectors are parameterized by K(K − 1) complex-valued
parameters, where K is the number of links. For the special two-user case, the
efficient beamforming vectors are proven to be a linear combination of max-
imum ratio transmission and zero forcing transmission. The extension to a
real-valued parametrization for the general K-user case is conducted in [5, 6, 7]
where K(K − 1) real-valued parameters are required to achieve all Pareto opti-
mal points. Recently in [8], parametrization of the efficient beamforming vector
is provided in the multi-cell MISO setting with general linear transmit power
constraints at the transmitters. For the case of MISO IFC and total power
constraint at the transmitter, the number of required parameters is 2K − 1. In
[9, 10], the beamforming vectors necessary and sufficient to achieve all Pareto
optimal points are characterized and parameterized by a single real-valued pa-
rameter for the two-user MISO IFC case. If the transmitters only know the
covariance matrices of the channel vectors, characterization of the Pareto op-
timal transmission strategies is done for the two-user MISO IFC in [11]. In
a multi-cell MISO setting with uncertainty in CSI at the transmitters, robust
Pareto optimal beamforming is obtained by robust fairness-profile optimization
in [12]. All Pareto optimal points in the performance region are achieved re-
quiring K − 1 real-valued parameters. In addition, a monotonic optimization
algorithm is applied to achieve specific Pareto optimal points such as maximum
sum and proportional fair performance points.
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The presence of CSI at a transmitter is essential in order to increase the
performance of the multi-antenna system through sophisticated beamforming
techniques [13]. In practical communication systems, CSI at the transmitter is
usually not perfect [14]. The transmitter gains CSI either through reciprocity of
the uplink and downlink channels or through a feedback link from the receiver
[15]. Both techniques of acquiring CSI at the transmitter entail a delay which
leads to outdated channel information and hence to a mismatch to the true
channels. In the feedback model, the receiver quantizes the channel vector
according to a vector codebook and sends the transmitter the channel index
which is nearest to the true channel. This mechanism reduces the feedback bits
required to identify the channel at the transmitter [16]. The size of the codebook
used determines the feedback overhead and the accuracy of the selected channel
vector to the true channel [17].

With imperfect CSI at the transmitter in a multi-user MISO downlink sys-
tem, robust beamforming is studied in [18] to minimize the worst-case mean-
square-error (MSE), and in [19, 20] the problem of minimizing the transmission
power subject to worst-case quality-of-service (QoS) constraints at the receivers
is analyzed. Furthermore, robust transceiver design in a multi-user multiple-
input multiple-output (MIMO) system is considered in [21, 22]. In the multi-cell
multiuser MISO setting with imperfect CSI at the transmitters, the problems
of maximizing the worst-case weighted sum rate and minimizing the weighted
sum transmission power subject to worst-case QoS constraints are studied in
[23] and [24], respectively.

In this paper, we assume that the transmitters have imperfect CSI. We
adopt a deterministic uncertainty model in which the channel estimation error
is bounded in an uncertainty region. The channel uncertainty region is assumed
to be an ellipsoid [25] whose geometry is known at the transmitter. Robust
beamforming [26] takes into account the worst-case channel estimate in the un-
certainty region. We derive the worst-case power gains at the receivers and
formulate accordingly the worst-case achievable rates for the links. The robust
rate region is the set of all worst-case jointly achievable rate tuples. In order to
characterize the Pareto optimal points of the robust rate region, we show that
the objective of each transmitter is a tradeoff between maximizing the intended
worst-case power gain and minimizing the worst-case interference gains. This
multi-objective problem is cast as a second order cone program (SOCP) which
can be solved efficiently. Consequently, we characterize the beamforming vec-
tors that are necessary to achieve all Pareto optimal points in the robust rate
region. Moreover, these beamforming vectors are parameterized by K(K − 1)
real-valued parameters taking values between zero and one. Afterwards, we ana-
lyze the spectral efficiency of the system for asymptotic values of signal-to-noise
ratio (SNR). At high SNR, achieving full multiplexing gain with zero forcing
transmission requires the channel estimation error to reduce linearly with SNR.
If the error is independent of SNR, then single-user transmission is optimal.
At low SNR, it is shown that joint maximum ratio transmission is optimal to
minimize the minimum energy per bit for reliable communication.

The paper is organized as follows. In Section 2, we describe the system
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model as well as the channel uncertainty model. The worst-case power gains
at the receivers are derived and the worst-case achievable rates for the links
are formulated. In Section 3, we characterize the beamforming vectors that
are necessary to achieve Pareto optimal points in the robust rate region. As
a special case, the two-user MISO IFC with spherical channel uncertainty is
analyzed. In Section 4, spectral efficiency in the high and low SNR regime are
studied. In Section 5, we draw the conclusions.

Notations

Column vectors and matrices are given in lowercase and uppercase bold-
face letters, respectively. ‖a‖ is the Euclidean norm of a ∈ CN . |b| is the
absolute value of b ∈ C. (·)T and (·)H denote transpose and Hermitian trans-
pose, respectively. The orthogonal projector onto the column space of Z is
ΠZ := Z(ZHZ)−1ZH . The orthogonal projector onto the orthogonal comple-
ment of the column space of Z is Π⊥

Z := I −ΠZ , where I is an identity matrix.
CN (0,A) denotes a circularly-symmetric Gaussian complex random vector with
covariance matrix A. (a)+ denotes max(a, 0). Re(a), Im(a) and ∠(a) denote
the real part, imaginary part, and the phase of a complex number a.

2. System Model

Consider a K-user MISO IFC. Each transmitter has an intended receiver,
and the signal from a transmitter to an unintended receiver is treated as inter-
ference. Each transmitter k is equipped with Nk antennas while all receivers use
single antennas. The quasi-static block flat-fading channel vector from trans-
mitter k to receiver ℓ is denoted by hkℓ ∈ CNk . We assume that transmission
consists of scalar coding followed by beamforming. The beamforming vector
used by transmitter k is wk ∈ CNk . Each transmitter k has a total power
constraint of Pk such that ‖wk‖2 ≤ Pk. The matched-filtered, symbol-sampled
complex baseband data received at receiver ℓ is

yℓ =
∑K

k=1
hH
kℓwksk + nℓ, (1)

where sk ∼ CN (0, 1) is the symbol transmitted by transmitter k. The random
variables nk ∼ CN (0, σ2) are additive Gaussian noise.

We assume that perfect CSI is present at the receivers while at the trans-
mitters the channels are not perfectly known. A transmitter has estimates of
the true channels between itself and all receivers, and we assume that the error
in the channel estimation vectors is bounded in an uncertainty region. The
ellipsoidal channel uncertainty region is described next.

2.1. Channel Uncertainty Model

Let h̃kℓ be the estimate of the true channel vector hkℓ at transmitter k. The
uncertainty in the channel estimate can be modeled using a channel estimation

error vector [27]
δkℓ = hkℓ − h̃kℓ, δkℓ ∈ Ekℓ, (2)
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where δkℓ is assumed to be bounded in an ellipsoidal uncertainty region Ekℓ
defined as [25]2

Ekℓ = {Akℓδ : ‖δ‖ ≤ ǫkℓ}. (3)

In (3), Akℓ ∈ CNk×Nk determines the shape of the ellipsoid. We assume that
Ekℓ is full rank for all k, ℓ = 1, . . . ,K, and has a maximum radius of ǫkℓ, i.e. the
largest singular value of Akℓ is constrained to one. Generally, the shape and size
of the ellipsoid in (3) should be specified according to the error probability in
channel estimation for the system under consideration. For example, if channel
vector estimation is done at a transmitter using training-sequences from the
corresponding receiver, the size of the uncertainty region can be chosen as a
scaled version of the channel estimation mean square error (MSE) [22, 12].

The elliptical uncertainty model described in (3) is more general and encom-
passes the spherical uncertainty model adopted in [28]. The spherical uncer-
tainty region is defined as

Dkℓ = {δ : ‖δ‖ ≤ ǫkℓ}. (4)

Specifically, Ekℓ in (3) is a sphere when Akℓ = I.
A transmitter k knows the channel estimates h̃kℓ and the associated un-

certainty region Ekℓ. Robust transmission requires the choice of beamforming
vectors to be robust to channel estimation errors. Thus, a transmitter has to
consider worst-case achievable rate at its intended receiver for secure communi-
cation.

2.2. Worst-Case Achievable Rates

The worst-case achievable rate for link ℓ with single-user decoding is

Rℓ(w1, . . . ,wK) = log2

(

1 +
x2
ℓℓ(wℓ)

σ2 +
∑

k 6=ℓ x
2
kℓ(wk)

)

, (5)

where x2
kℓ(wk) is the worst-case signal power from transmitter k to receiver ℓ.

The worst-case intended power gain x2
ℓℓ(wℓ) is the least power gain achievable

within the uncertainty set Eℓℓ. That is,

xℓℓ(wℓ) = min
δℓℓ∈Eℓℓ

|hH
ℓℓwℓ| with hℓℓ = h̃ℓℓ + δℓℓ (6a)

= min
δℓℓ∈Eℓℓ

|h̃H

ℓℓwℓ + δHℓℓwℓ| (6b)

= min
‖δ‖≤ǫℓℓ

|h̃H

ℓℓwℓ + δHAH
ℓℓwℓ|. (6c)

2In [25], the ellipsoidal uncertainty region is defined as Ekℓ = {Akℓδ + ckℓ : ‖δ‖ ≤ ǫkℓ},
where ckℓ defines the center of the ellipsoid Ekℓ. Here, we assume ckℓ = 0 without loss of
generality.
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The error vector which minimizes the intended power gain in (6) can be calcu-
lated following similar steps as in [28]. Using the triangle inequality [29, 3.2.5],
we have

|h̃H

ℓℓwℓ + δHAH
ℓℓwℓ| ≥

{

0 if |h̃H

ℓℓwℓ| < |δHAH
ℓℓwℓ|

|h̃H

ℓℓwℓ| − |δHAH
ℓℓwℓ| otherwise

, (7)

for all δ such that ‖δ‖ ≤ ǫℓℓ. In (7), the lower bound of zero for |h̃H

ℓℓwℓ| <
|δHAH

ℓℓwℓ| is achievable by a negative linear scaling of δ. Otherwise, if |h̃H

ℓℓwℓ| ≥
|δHAH

ℓℓwℓ|, then the error vector which achieves the lower bound in (7) is

δ = −ǫℓℓ
AH

ℓℓwℓ

‖AH
ℓℓwℓ‖

ej∠(h̃
H

ℓℓ
wℓ). (8)

Substituting (8) in the RHS of (7), the square root of the worst-case intended
power gain in (6) reduces to

xℓℓ(wℓ) =
(

|h̃H

ℓℓwℓ| − ‖AH
ℓℓwℓ‖ǫℓℓ

)

+
. (9)

The square root of the worst-case interference power gain from transmitter k to
receiver ℓ, k 6= ℓ, is

xkℓ(wk) = max
δkℓ∈Ekℓ

|hH
kℓwk| with hkℓ = h̃kℓ + δkℓ (10a)

= max
δkℓ∈Ekℓ

|h̃H

kℓwk + δHkℓwk| (10b)

= max
‖δ‖≤ǫkℓ

|h̃H

kℓwk + δHAH
kℓwk|. (10c)

Using the triangle inequality, we have

|h̃H

kℓwk + δHAH
kℓwk| ≤ |h̃H

kℓwk|+ |δHAH
kℓwk|, (11)

and the upper bound in (11) is achieved by

δ = ǫkℓ
AH

kℓwk

‖AH
kℓwk‖

ej∠(h̃
H

kℓ
wk). (12)

Hence, the worst-case interference gain is

xkℓ(wk) = |h̃H

kℓwk|+ ‖AHwk‖ǫkℓ. (13)

Note that the worst-case measures in (9) and (13) are the main terms in
the worst-case rate expression in (5). Also, the channel estimation errors of
all channel vectors are independent such that the worst-case interference and
intended power gains may occur simultaneously.
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3. Pareto Optimal Beamforming

The K-dimensional robust rate region consists of all jointly achievable worst-
case rate tuples defined as

R := {(R1(w1, . . . ,wK), . . . , RK(w1, . . . ,wK)) : ‖wk‖2 ≤ Pk, k = 1, . . . ,K},
(14)

where Rk(w1, . . . ,wK) is defined in (5). The region R in (14) is not necessarily
a convex set3 [30]. This is mainly due to the interference coupling present
between the links. The outer boundary of the rate region comprises efficient
operating points. These points are called Pareto optimal.

Definition 1. A rate tuple (R1, ..., RK) ∈ R is Pareto optimal if there is no

other tuple (R′
1, ..., R

′
K) ∈ R such that (R′

1, ..., R
′
K) ≥ (R1, ..., RK), where the

inequality is component-wise and strict for at least one component. The set of

all Pareto optimal operating points constitutes the Pareto boundary of R.

In order to achieve a Pareto optimal point, each beamforming vector must
include a tradeoff between the maximization of the intended power gain and the
minimization of the interference power gains. Next, we will consider the special
two-user MISO IFC case and compare Pareto efficient beamforming with perfect
and imperfect CSI at the transmitters. Also as a special case, the channel
uncertainty regions are considered to be spherical. Later, the general K-user
MISO IFC with elliptical channel uncertainty region will be restored.

3.1. Two-User Case with Spherical Channel Uncertainty

In the two-user case, the rate region in (14) is two-dimensional rewritten as

R := {(R1(w1,w2), R2(w1,w2)) : ‖wk‖2 ≤ Pk, k = 1, 2}, (15)

where the achievable rate for link ℓ is

Rℓ(w1,w2) = log2

(

1 +
|hH

ℓℓwℓ|2
σ2 + |hH

kℓwk|2

)

, k 6= ℓ. (16)

If the transmitter knows the channel vectors perfectly, the beamforming vectors
that are necessary to achieve all Pareto optimal points of the two-user rate
region in (15) are [4]

wk(αk) =
√

Pk

(

√
αk

Πhkℓ
hkk

‖Πhkℓ
hkk‖

+
√
1− αk

Π⊥
hkℓ

hkk

‖Π⊥
hkℓ

hkk‖

)

, k 6= ℓ, (17)

where αk ∈ [0, αMRT

k ], with αMRT

k = ‖Πhkℓ
hkk‖2/‖hkk‖2. In (17), the beam-

forming vectors that achieve Pareto optimal points are a combination of two

3Note that any point on the convex hull of R can be reached by time-sharing. In this work,
we do not consider time-sharing techniques to convexify the rate region R.

7



orthogonal unit norm vectors. Zero forcing (ZF) to the unintended receiver
corresponds to αk = 0, and maximum ratio transmission (MRT) to αk = αMRT

k .
If the transmitters have imperfect CSI and the channel vector uncertainty

region is spherical as defined in (4), then the worst-case achievable rate of link
ℓ is

Rℓ(w1,w2) = log2




1 +

(

|h̃H

ℓℓwℓ| − ‖wℓ‖ǫℓℓ
)2

+

σ2 +
(

|h̃H

kℓwk|+ ‖wk‖ǫkℓ
)2




, k 6= ℓ, (18)

where the intended and interference power gains are from (9) and (13), respec-
tively, with Akℓ = I. According to the rate expression in (18), worst-case signal
power and interference powers include additive terms influenced only by the
norm of the beamforming vectors. It is thus expected that robust Pareto opti-
mal beamforming includes additionally varying transmission power. The Pareto
boundary of the rate region R in (15) is achieved by the beamforming vectors
[31]

wk(ξk, βk) =
√

ξkPk

(
√

βk

Π
h̃kℓ

h̃kk

‖Π
h̃kℓ

h̃kk‖
+
√

1− βk

Π⊥
h̃kℓ

h̃kk

‖Π⊥
h̃kℓ

h̃kk‖

)

, k 6= ℓ, (19)

where ξk ∈ [0, 1], and βk ∈ [0, βR-MRT

k ], with βR-MRT

k = ‖Π
h̃kℓ

h̃kk‖
2
/‖h̃kk‖

2
. The

parametrization in (19) requires two parameters per transmitter. One parameter
is to alter the direction of the beamforming vector and one parameter scales the
transmission power. Interestingly, the structure of the efficient beamforming
vectors with spherical channel uncertainty in (19) is similar to the case of perfect
CSI at the transmitters in (17). In (19), the channel estimates replace the true
channel vectors in (17). The beamforming vectors corresponding to MRT and
ZF represent extreme strategies which have the objective of either maximizing
the power at the intended receiver or minimizing the interference power gain.
Robust MRT is calculated as

wR-MRT

k = argmax
‖wk‖≤

√
Pk

|h̃H

kkwk| − ‖wk‖ǫkk =
√

Pk

h̃kk

‖h̃kk‖
. (20)

Thus, to maximize the power gain at the intended receiver in the worst-case
of spherical uncertainty, the transmitter chooses full power transmission in the
direction of the estimated channel. In [32], it is shown that robust MRT cor-
responds to the channel vector estimate whenever the uncertainty region is
symmetric. Robust ZF, however is achieved by allocating zero power. This is
observed in the denominator of (18) where the interference gain can only be
zero for ‖wk‖ = 0.

Next, we address the generalK-user case with general ellipsoidal uncertainty
regions defined in (3).
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3.2. K-User Case with Ellipsoidal Channel Uncertainty

As in the two-user case, Pareto optimal beamforming in the K-user case
requires a tradeoff between maximizing intended power gain and minimizing in-
terference gains. This is concluded by observing that the worst-case achievable
rate in (5) is monotonically increasing with the direct power gain x2

ℓℓ(wℓ) for
fixed interference power x2

kℓ(wk), k 6= ℓ. In addition, the worst-case achievable
rate is monotonically decreasing with the interference power gain for fixed in-
tended power gain. In other words, increasing the power gain at the intended
receiver increases its achievable rate and reducing the interference at unintended
receivers increases the rates of the other links. For a transmitter k, the tradeoff
between the two objectives of increasing x2

kk(wk) and reducing x2
kℓ(wk), k 6= ℓ,

can be cast as a multi-objective optimization problem [33, 34]

wk = argmax gk(wk) s.t. ‖wk‖2 ≤ Pk, (21)

where the multi-objective function gk : CNk → RK is defined as

gkℓ(wk) =

{
−x2

kℓ(wk), k 6= ℓ;
+x2

kk(wk), k = ℓ.
(22)

There are several methods to solve the problem in (21). One technique is the
weighted sum method [35]

wk(γk) = argmax γkkx
2
kk(wk)−

∑

ℓ 6=k

γkℓx
2
kℓ(wk) s.t. ‖wk‖2 ≤ Pk, (23)

where γkℓ are nonnegative weights such that
∑K

ℓ=1 γkℓ = 1. In the K-user MISO
IFC with perfect CSI at the transmitters, the beamforming vectors necessary to
achieve all Pareto optimal points are found in [7] by the optimization problem
in (23). For the perfect CSI case, the objective in (23) is a sum of Hermitian
forms and hence the optimization is an eigenvalue problem.

Another method for solving (21) is by maximizing a single objective in
gk(wk) while setting goals for the other objectives [35]. This method is called
the boundary intersection approach [34] and casts the problem in (21) as

wk(λk) = argmax x2
kk(wk) (24a)

s.t. x2
kℓ ≤ λkℓΓkℓ, for all ℓ 6= k, (24b)

‖wk‖2 ≤ Pk, (24c)

with λkℓ ∈ [0, 1] and Γkℓ is a fixed value corresponding to an upper limit on the
interference level generated by transmitter k. The formulation in (24) is common
for optimization problems in cognitive radio networks where a secondary user
maximizes his intended power gain or achievable rate subject to interference
temperature constraints at the primary receivers [36, 37, 38]. Also, in [6] the
necessary beamforming vectors to achieve all Pareto optimal points in the MISO
IFC with perfect CSI are found by maximizing the achievable rate while setting
interference constraints at the unintended receivers.
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In order to solve the multi-objective optimization problem in (21) with chan-
nel uncertainty at the transmitters, we use the method in (24) and show that it
leads to a convex optimization problem [39]. By taking the square root of the
objective function and the constraints and substituting the power gains from
(9) and (13) in (24) we get

wk(λk) = argmax |h̃H

kkwk| − ‖AH
kkwk‖ǫkk (25a)

s.t. |h̃H

kℓwk|+ ‖AH
kℓwk‖ǫkℓ ≤

√

λkℓΓkℓ, (25b)

ℓ = 1, . . . ,K, ℓ 6= k,

‖wk‖ ≤
√

Pk. (25c)

Since the objective function does not depend on the phase of the beamforming
vector wk [28], the problem in (25) can be equivalently written as

wk(λk) = argmax Re{h̃H

kkwk} − ‖AH
kkwk‖ǫkk (26a)

s.t. |h̃H

kℓwk|+ ‖AH
kℓwk‖ǫkℓ ≤

√

λkℓΓkℓ, (26b)

ℓ = 1, . . . ,K, ℓ 6= k,

Im{h̃H

kkwk} = 0, (26c)

‖wk‖ ≤
√

Pk, (26d)

where λkℓ ∈ [0, 1]. The problem in (26) is a second order cone program (SOCP)
[40] which can be efficiently solved by interior point methods [39] (An optimiza-
tion package that solves SOCPs is SeDuMi [41].)

In the optimization problem (26), the parameter λkℓ determines the inter-
ference level that transmitter k is allowed to generate at an unintended receiver
ℓ. For λkℓ = 1, the highest interference level is allowed. For the constraints Γkℓ

with λkℓ = 1 to be tight, Γkℓ should be the interference level at receiver ℓ when
transmitter k performs MRT, i.e.,

Γkℓ = x2
kℓ(w

R-MRT

k ) =
(

|h̃H

kℓw
R-MRT

k |+ ‖AH
kℓw

R-MRT

k ‖ǫkℓ
)2

, (27)

with MRT beamforming obtained from

wR-MRT

k = argmax Re{h̃H

kkwk} − ‖AH
kkwk‖ǫkk (28a)

s.t. Im{h̃H

kkwk} = 0, (28b)

‖wk‖ ≤
√

Pk. (28c)

Another method for calculating robust MRT is provided in [32] which uses a
one dimensional line search.

Theorem 1. All Pareto optimal points of the robust rate region R in (14) can
be achieved by the beamforming vectors wk(λk) from (26) with λk ∈ [0, 1]K−1

for k = 1, ...,K.
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Proof. The proof is by contradiction. Assume a beamforming vector wk

which is not a solution of the problem in (26) achieves a Pareto optimal point
(R1, . . . , RK). Then, it is possible to find a beamforming vector w′

k from (26) in
which the intended power gain increases at receiver k, i.e. x2

kk(w
′
k) > x2

kk(wk),
without affecting the interference gain to all other receivers, i.e. x2

kℓ(w
′
k) =

x2
kℓ(wk) for all ℓ 6= k. In this case the achievable rate of link k is increased

without affecting the rates of the other receivers. According to Definition 1,
(R1, . . . , RK) would not be Pareto optimal which is a contradiction to the orig-
inal assumption. Hence, any beamforming vector not in the solution set of (26)
does not achieve a Pareto optimal point in the robust rate region R. �

The Pareto boundary of the robust rate region can be also obtained by
the framework provided in [12]. The approach in [12] uses a robust fairness-
profile optimization to calculate a Pareto optimal point which entails solving
a set of convex feasibility problems. Accordingly, only points on the Pareto
boundary are delivered requiringK−1 real-valued parameters. In comparison to
the parametrization in [12], our result in Theorem 1 specifies the beamforming
vectors for each transmitter that are necessary to achieve all Pareto optimal
points in the robust rate region. The efficient beamforming vectors for each
transmitter are parameterized by K − 1 real-valued parameters each between
zero and one. The parametrization of the efficient beamforming vectors can
be utilized for designing efficient low complexity distributed resource allocation
schemes which require low signaling overhead between the transmitters as is
done in [42, 43].

[Figure 1 about here]

In Figure 1, a three-user robust rate region is plotted. The total power con-
straints at the transmitters are set to one and the SNR is 1/σ2 = 0 dB. The
number of antennas at each transmitter is three. The channel vector estimates
h̃kℓ are independent and identically distributed as h̃kℓ ∼ CN (0, I). Each el-
lipsoidal uncertainty region is generated as follows: Nk vectors are generated
according to complex normal distribution with zero mean and covariance matrix
I. Akℓ is constructed by concatenating the generated vectors and normalizing
the constructed matrix such that the largest singular value of Akℓ is one. The
errors are equally chosen as ǫkℓ = 0.5 for k, ℓ = 1, 2, 3. For each transmitter k,
we generate the efficient beamforming vectors from (26) with the parameters
λkℓ uniformly sampled in a 0.05 step-length between zero and one. A set of rate
tuples is calculated from the generated beamforming vectors of the transmitters.
Within this set, a subset corresponds to Pareto optimal points of the robust rate
region. In Figure 1, only the Pareto optimal points are plotted by utilizing the
MATLAB code in [44].

4. Spectral Efficiency at High and Low SNR

In this section, optimal beamforming is studied for asymptotic values of
SNR. Moreover, we analyze the effects of imperfect CSI at the transmitters on

11



the performance of the system in comparison to the case of perfect CSI.

4.1. Efficiency at High SNR

The quantitative performance is analyzed using the high-SNR offset concept
in [45, Section II]. We define the SNR as ρ = 1/σ2 and the maximum sum rate
as a function of SNR as Rsum(ρ). The high-SNR slope is

S∞ = lim
ρ→∞

Rsum(ρ)

log2(ρ)
, (29)

which corresponds to the multiplexing gain, i.e. the slope of the maximum sum
rate curve at high SNR. The maximum sum rate is

Rsum(ρ) = max
w1,...,wK

K∑

ℓ=1

log2

(

1 +
ρx2

ℓℓ(wℓ)

1 + ρ
∑

k 6=ℓ x
2
kℓ(wk)

)

(30a)

= max
w1,...,wK

K∑

ℓ=1

log2






1 +

ρ
(

|h̃H

ℓℓwℓ| − ‖AH
ℓℓwℓ‖ǫℓℓ

)2

+

1 + ρ
∑

k 6=ℓ

(

|h̃H

kℓwk|+ ‖AH
kℓwk‖ǫkℓ

)2






,

(30b)

where xℓℓ(wℓ) and xkℓ(wk) are from (9) and (13) respectively. From (29), the
high-SNR slope is

S∞ = lim
ρ→∞

max
w1,...,wK

K∑

ℓ=1

log2



1 +
ρ
(

|h̃H

ℓℓ
wℓ|−‖AH

ℓℓ
wℓ‖ǫℓℓ

)2

+

1+ρ
∑

k 6=ℓ

(

|h̃H

kℓ
wk|+‖AH

kℓ
wk‖ǫkℓ

)2





log2(ρ)
, (31)

which is maximized when the interference is nulled at all receivers. Since Akℓ

is full rank, the worst-case interference gains cannot be nulled unless the trans-
mitters switch their transmission off. In case the error ǫkℓ does not depend on
the SNR, the interference gains as well as the intended power gain in the achiev-
able rate of a link ℓ scale linearly with ρ. Hence, the high-SNR slope in (31) is
zero if more than one link operate simultaneously. Therefore, in the high-SNR
regime single-user transmission is optimal achieving the largest high-SNR slope
of S∞ = 1. The maximum sum rate is then

Rsum(ρ) = log2

(

1 + ρ max
ℓ=1,...,K

(

|h̃H

ℓℓw
MRT

ℓ | − ‖AH
ℓℓw

MRT

ℓ ‖ǫℓℓ
)2

+

)

, (32)

where only one user operates using MRT and full power transmission. Note that
the condition that determines the dominant user does not only depend on the
channel gains but also on the amount of uncertainty present at the transmitter.

In [17] it is shown that the channel estimation error has to scale linearly
with the inverse SNR in order to achieve maximum multiplexing gain with ZF
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in a MISO broadcast channel. That is, ǫ2kℓ(ρ) ∝ 1
ρ
should hold for all k and ℓ.

We assume that the estimation error has the following dependence on SNR:

ǫkℓ(ρ) =
akℓ√
ρ
, (33)

where akℓ is a constant. ZF beamforming according to the channel estimates is

wZF

k =
Π⊥

Zk
h̃kk

‖Π⊥
Zk

h̃kk‖
, (34)

where
Zk =

[

h̃k1, . . . , h̃kk−1, h̃kk+1, . . . , h̃kK

]

. (35)

Note that if the number of antennas at a transmitter k is strictly less than the
number of receivers K, then wZF

k = 0. Assuming Nk ≥ K for all k = 1, . . . ,K,
the maximum sum rate with ZF is

Rsum(ρ) =

K∑

ℓ=1

log2












1 +
ρ
(

|h̃H

ℓℓw
ZF

ℓ | − ‖AH
ℓℓw

ZF

ℓ ‖ǫℓℓ(ρ)
)2

+

1 + ρ
∑

k 6=ℓ



|h̃H

kℓw
ZF

k |
︸ ︷︷ ︸

=0

+‖AH
kℓw

ZF

k ‖ǫkℓ(ρ)





2












(36a)

=
K∑

ℓ=1

log2




1 +

(√
ρ|h̃H

ℓℓw
ZF

ℓ | − √
ρ‖AH

ℓℓw
ZF

ℓ ‖aℓℓ√
ρ

)2

+

1 +
∑

k 6=ℓ

(√
ρ‖AH

kℓw
ZF

k ‖akℓ√
ρ

)2




 (36b)

=

K∑

ℓ=1

log2




1 +

(√
ρ|h̃H

ℓℓw
ZF

ℓ | − ‖AH
ℓℓw

ZF

ℓ ‖aℓℓ
)2

+

1 +
∑

k 6=ℓ

(

‖AH
kℓw

ZF

k ‖akℓ
)2




. (36c)

The high-SNR slope from (29) with Nk ≥ K for all k = 1, . . . ,K is

S∞ = lim
ρ→∞

∑K
ℓ=1 log2

(

1 +

(√
ρ|h̃H

ℓℓ
w

ZF
ℓ

|−‖AH

ℓℓ
w

ZF
ℓ

‖aℓℓ

)

2

+

1+
∑

k 6=ℓ (‖AH

kℓ
wZF

k
‖akℓ)

2

)

log2(ρ)
= K. (37)

Hence, the maximum multiplexing gain of K is achieved as with perfect CSI.
Note, that we assumed that Nk ≥ K for all k. If there exists a transmitter k
such that Nk < K, then transmitter k cannot perform ZF to K receivers simul-
taneously. In this case, the highest multiplexing gain would be the maximum
number of transmitters m∗ that have more antennas than m∗. The optimization
problem to calculate the multiplexing gain is

m∗ = max m (38a)

s.t. m =

K∑

k=1

ηk, ηk =

{
1, Nk ≥ m;
0, Nk < m.

(38b)
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Finding m∗ has to be performed iteratively. In Algorithm 1, we provide a
method to calculate m∗. First, the vector containing the number of anten-
nas [N1, . . . , NK ] is sorted in a weakly decreasing order to [Ñ1, . . . , ÑK ] with
Ñi ≥ Ñi+1. The multiplexing gain m∗ is found as the largest k such that
Ñk ≥ k. ZF transmission with Ñm∗+1 antennas reduces the multiplexing gain
to Ñm∗+1 < Ñm∗ = m∗. Consequently, in order to achieve the maximum multi-
plexing gain, only the links corresponding to the first m∗ entries in [Ñ1, . . . , ÑK ]
should operate and perform ZF according to the channel estimates.

[Algorithm 1 about here]

[Figure 2 about here]

In Figure 2, the maximum sum rate is plotted for two links. Each trans-
mitter has three antennas and the total power constraints at the transmitters
are Pk = 1, k = 1, 2. The channel vector estimates and the uncertainty regions
are generated as stated in Section 3.2 in the description of Figure 1. The error
ǫkj for all k, j = 1, 2, is chosen as indicated in the label of Figure 2 where for
perfect CSI ǫkj = 0. For each transmitter k, we generate the efficient beam-
forming vectors from (26) with the parameters λkℓ uniformly sampled in a 0.001
step-length between zero and one. The set of rate tuples is calculated from the
generated beamforming vectors and the maximum sum rate is found by grid
search. For perfect CSI, full multiplexing gain of two is achieved with joint ZF
transmission. Also, for the error scaling linearly with the inverse SNR as in (33),
a multiplexing gain of two is achieved as is obtained in (37). If the error scales
slower than linearly with inverse SNR, as in ǫkj = 1/ 3

√
ρ, the loss in multiplexing

gain can be observed. For constant error of ǫkj = 0.3 the multiplexing gain is
one where only a single link operates as is derived in (32). The transition from
the operation of the two links to the operation of a single link can be noticed
at around 30 dB SNR in the maximum sum rate curve for constant error.

4.2. Efficiency at Low SNR

In order to study the spectral efficiency in the low SNR regime, two perfor-
mance measures were introduced in [46]. The first measure is Eb/N0min which
is the minimum energy per bit required for reliable communication. The smaller
Eb/N0min is for a system the more reliable is its operation. The second per-
formance measure is S0 which is the slope of the spectral efficiency curve at
Eb/N0min. Since S0 describes the growth of the spectral efficiency curve from
Eb/N0min, the larger S0 is for a system the greater is the gain for increasing en-
ergy per bit from Eb/N0min. Here, we use these measures to determine optimal
beamforming in our setting at low SNR.

The spectral efficiency Cℓ(Eb/N0ℓ) of link ℓ is defined as the ratio of trans-
mission rate Rℓ to bandwidth B [46, Section III]:

Cℓ

(
Eb

N0 ℓ

)

=
Rℓ

B
, (39)
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where Eb/N0ℓ is the energy per bit for link ℓ normalized over the background
noise. Specifically, Eb/N0ℓ = Pℓ/(N0Rℓ), where Pℓ is the transmitted power.
The spectral efficiency function is directly related to the common capacity ex-
pression4 Cℓ(ρ) through Cℓ(Eb/N0ℓ) = Cℓ(ρ) for the SNR which solves [46]

Eb

N0
Cℓ(ρ) = ρ. (40)

At low SNR, the spectral efficiency function Cℓ(Eb/N0ℓ) can be expressed as
[46]

Cℓ

(
Eb

N0 ℓ

)

≈ S0,ℓ

3dB

(
Eb

N0 ℓ

∣
∣
∣
dB

− Eb

N0min,ℓ

∣
∣
∣
dB

)

, (41)

with

Eb

N0min,ℓ

=
loge 2

Ċℓ(0)
and S0,ℓ =

2
[

Ċℓ(0)
]2

−C̈ℓ(0)
, (42)

where Ċℓ and C̈ℓ are the first and second derivatives, respectively, with respect
to SNR. In (42), Eb/N0min,ℓ is the minimum energy per bit required for reliable
communication for link ℓ. It is shown in [47, Proposition 4] that the minimum
energy per bit in (42) is also valid in the MISO IFC. Furthermore, it is shown
that single-user decoding at the receivers in the low SNR regime is optimal to
minimize Eb/N0min,ℓ. The rate of link ℓ from (5) is

Cℓ(ρ) = log2

(

1 +
ρx2

ℓℓ(wℓ)

1 + ρ
∑

k 6=ℓ x
2
kℓ(wk)

)

, (43)

where xℓℓ(wℓ) and xkℓ(wk) are calculated in (9) and (13), respectively. For the
purpose of calculating the minimum energy per bit and the wideband slope in
(42) for a link ℓ, we have

Ċℓ(0) = x2
ℓℓ(wℓ), (44)

and
C̈ℓ(0) = −x2

ℓℓ(wℓ)
(

x2
ℓℓ(wℓ) + 2

∑

k 6=ℓ
x2
kℓ(wk)

)

. (45)

From (44) and (45), we can calculate the minimum energy per bit and the
wideband slope in (42) as

Eb

N0 min,ℓ

=
loge 2

x2
ℓℓ(wℓ)

and S0,ℓ =
2x2

ℓℓ(wℓ)

x2
ℓℓ(wℓ) + 2

∑

k 6=ℓ x
2
kℓ(wk)

. (46)

The minimum energy per bit from (46) is minimized by maximizing the intended
power gain x2

ℓℓ(wℓ), i.e. with MRT beamforming. Thus, joint robust MRT

4Notice the difference in the notation for the spectral efficiency of link ℓ, Cℓ, and the
capacity of link ℓ, Cℓ.
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beamforming is optimal in the low SNR regime to achieve the minimum energy
per bit for reliable communication. For perfect CSI at the transmitter

Eb

N0

pCSI

min,ℓ

=
loge 2

|hH
ℓℓw

MRT

ℓ |2
=

loge 2

‖hkk‖2
. (47)

For imperfect CSI at the transmitters, we have

Eb

N0

iCSI

min,ℓ

=
loge 2

(

|h̃H

ℓℓw
R-MRT

ℓ | − ‖AH
ℓℓw

R-MRT

ℓ ‖ǫℓℓ
)2

+

, (48)

where wR-MRT

ℓ is obtained from (28). Comparing (48) to (47), the loss due to
imperfect CSI can be observed.

[Figure 3 about here]

In Figure 3, the Eb/N0 regions for two links with perfect and imperfect CSI
are plotted. The Eb/N0 region with imperfect CSI is smaller and contained in
the region with perfect CSI. For perfect and imperfect CSI, joint MRT achieves
the joint minimum Eb/N0.

The wideband slope from (46) of link ℓ for perfect and imperfect CSI are

SpCSI
0,ℓ =

2|hH
ℓℓwℓ|2

|hH
ℓℓwℓ|2 + 2

∑

k 6=ℓ |hH
kℓwk|2

, (49)

and

SiCSI
0,ℓ =

2
(

|h̃H

ℓℓwℓ| − ‖AH
ℓℓwℓ‖ǫℓℓ

)2

+
(

|h̃H

ℓℓwℓ| − ‖AH
ℓℓwℓ‖ǫℓℓ

)2

+
+ 2

∑

k 6=ℓ

(

|h̃H

kℓwk|+ ‖AH
kℓwk‖ǫkℓ

)2 , (50)

respectively. All jointly achievable wideband slopes for the links constitute a
slope region [48, 49].

[Figure 4 about here]

In Figure 4, the wideband slope regions for two links with perfect and imper-
fect CSI are plotted. The regions are generated by utilizing the parametrization
of efficient beamforming vectors in (26). The wideband slope region with perfect
CSI corresponds to the box in which the maximum wideband slope of two for
both links can be achieved simultaneously (with ZF transmission). The wide-
band slope region with imperfect CSI is contained in that of perfect CSI, and
the maximum wideband slope of two is achievable for one link only if the other
link performs ZF, i.e. switches its transmission off. The wideband slopes with
joint MRT are marked for perfect and imperfect CSI. These correspond to the
slope of the spectral efficiency curve at Eb

N0 min,ℓ
as is given in (41).
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[Figure 5 about here]

In Figure 5, the spectral efficiency of link 1 in the two user MISO IFC setting
used in Figure 3 and Figure 4 is plotted for perfect and imperfect CSI. The curves
are found by using the relation Cℓ(Eb/N0ℓ) = Cℓ(ρ) for the SNR which solves
(40). For the plot of C1(Eb/N0) curves, joint MRT beamforming is assumed
for all values of Eb/N01. Joint MRT is however not Pareto efficient in mid or
high SNR. From a game theoretic perspective [50], joint MRT is the dominant
strategy equilibrium (unique Nash equilibrium) of a strategic game between the
links [51]. In other words, if the transmitters are noncooperative, they will
jointly perform MRT beamforming. Accordingly, the performance plotted in

Figure 5 is for two noncooperative links. The slopes of the tangents at Eb

N0

pCSI

min,1

and Eb

N0

iCSI

min,1
correspond to the wideband slopes in Figure 4 with joint MRT for

perfect and imperfect CSI, respectively. The loss in minimum Eb/N0 as well as
wideband slope is apparent due to uncertainty in the channel information.

5. Conclusions

We consider a K-user MISO IFC. The CSI is assumed to be perfect at the
receivers but imperfect at the transmitters. Channel vector estimates at a trans-
mitter include channel estimation errors which are assumed to be bounded in
an elliptical region. The geometry of the uncertainty region associated with
a channel vector estimate is known at the transmitter. In this setting, robust
beamforming optimizes worst-case power gains at the receivers. We derive the
worst-case intended and interference power gains at the receivers and formulate
accordingly the worst-case achievable rates for the links. Afterwards, we char-
acterize the robust beamforming vectors necessary to operate at any Pareto
optimal point in the robust achievable rate region. The efficient beamform-
ing vectors of each transmitter are found as a solution of a SOCP which can be
solved efficiently. The spectral efficiency of the multi-link system with imperfect
channel state information is analyzed in the high and low SNR regime. At high
SNR, achieving full multiplexing gain with zero forcing transmission using the
channel vector estimates requires the channel estimation error to reduce linearly
with the SNR. If the error does not depend on SNR, single-user transmission is
optimal. In the low SNR regime, it is shown that joint robust maximum ratio
transmission optimizes the minimum energy per bit for reliable communication.
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Figure 1: Pareto boundary of a three-user robust rate region at 0 dB SNR.
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Algorithm 1: Algorithm to calculate the maximum multiplexing gain.

Input: [N1, . . . , NK ]
1 Sort [N1, . . . , NK ] in weakly decreasing order to [Ñ1, . . . , ÑK ] such that

Ñi ≥ Ñi+1;
2 for k = 1, . . . ,K do

3 if Ñk < k then

4 m∗ = k − 1;
5 break;

Output: m∗
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