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1. Introduction

ABSTRACT

It is well-known that the Shannon sampling series is locally uniformly convergent for all
signals in the Paley-Wiener space PW}. An interesting question is how this good local
approximation behavior is affected if the samples are disturbed by the non-linear threshold
operator. This operator, which sets to zero all samples with absolute value smaller than
some threshold, arises in the modeling of many applications, e.g., in wireless sensor
networks. Moreover, it constitutes an essential part of a large class of quantizers, and
consequently is important for all digital signal processing applications that involve
conversion between analog and digital domains. In this paper, the approximation behavior
of the Shannon sampling series that only uses the samples with absolute value larger than
or equal to some threshold is analyzed. It is shown that there exists a signal in PW]. such
that the local approximation error increases unboundedly as the threshold tends to zero.
Moreover, for a fixed threshold, the local approximation error can grow arbitrarily large on
the set of signals whose norm is bounded by one. With this, we generalize results of Butzer
et al. that were given in the paper “On quantization, truncation and jitter errors in the
sampling theorem and its generalizations,” Signal Processing (2) 1980 [1]. We conclude the
paper with a discussion about the differences in the reconstruction behavior between the
sampling series which is truncated in the domain of the sampled signal, i.e., time-domain
truncation, and the sampling series which is truncated in the range of the sampled signal.

© 2012 Published by Elsevier B.V.

This theorem plays a fundamental role in applications
because it establishes the uniform convergence on com-

A well known fact [2-4] about the convergence beha-
vior of the Shannon sampling series for signals in PWY. is
expressed by the following theorem.

Theorem 1 (Brown's Theorem). For all f e PWL and T >0
fixed we have

. N sin(r(t—k))
N‘L";(;P%P(f>—k_2,vf<’<>7nak) =0
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pact subsets of R for a large class of signals, namely PW},
which is the largest space within the scale of Paley-
Wiener spaces. Unfortunately, it is not possible to extend
the theorem in such a way that the uniform convergence
holds on all of R for the space PW..

The reconstruction of bandlimited signals from their
samples is important for many practical and theoretical
applications. In digital signal processing, the Shannon
sampling theorem is the theoretical foundation which
creates the link between the continuous-time domain and
the discrete-time domain. The Shannon sampling series
has proven to be useful in other areas as well. In his
“Lectures on Computation” [5], Richard Feynman dis-
cusses the theoretical foundations and concepts of
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classical and quantum computation and the Shannon
sampling theorem is one important step in his
argumentation.

The principle of digital signal processing relies on the
fact that certain bandlimited signals can be perfectly
reconstructed from their samples. However, this is only
true if the sample values are known exactly. For various
reasons this is not always the case in applications. For
example, in digital signal processing applications the
samples are not known exactly because the inevitable
quantization process in analog to digital conversion has
limited resolution only [6,7]. Due to its high practical
importance, the analysis of the quantization error has
gained a lot of attention in research [6]. A deterministic
analysis of the quantization process is difficult because of
the non-linear nature of the quantization operator. This
fact was recognized for example in [8], where the authors
write “Deceptively simple in its description and construc-
tion, the uniform quantizer has proved to be surprisingly
difficult to analyze, precisely because of its inherent non-
linearity.” This fact is also the reason why the quantization
error is often treated probabilistically, and modeled as
additive white noise [9,10]. However, it turned out that
this noise model is not always satisfactory, because it can
lead to false predictions [11,12]. In contrast, the determi-
nistic analysis is difficult, but reveals some properties of
the quantization process which cannot be analyzed with
the additive noise description of the quantization error.
Only a few papers conduct a deterministic analysis of the
quantization process [3,1,13].

In this paper, we provide for the space PW] the first
rigorous deterministic analysis of the pointwise behavior of
the Shannon sampling series, where the samples are dis-
turbed by the threshold operator, which sets to zero all
sample values with absolute value smaller than some
threshold ¢ > 0. This operator constitutes an essential part
of many quantization schemes, and thus the results
obtained here are equally relevant for a large class of
quantization operators. Of course there are also applica-
tions where the threshold operator is important on its own.

Wireless sensor networks are one possible application
where the threshold operator is directly involved. In
wireless sensor networks the sensors sample some ban-
dlimited signal in space or time and then transmit the
samples to the receiver [14,15]. Then, using these sam-
ples, the receiver tries to reconstruct the signal perfectly,
or at least approximately if a perfect reconstruction is not
possible. In order to save energy, it is common to let the
sensors transmit only if the absolute value of the signal
exceeds some threshold 6 > 0. In this case, the receiver
has to reconstruct the signal by using only the samples
with absolute value larger than or equal to the threshold
0.

By As we denote the operator that maps the signal f
PW. to the approximation Asf of f, which is obtained by
the Shannon sampling series that uses only the samples
with an absolute value larger than or equal to the thresh-
old 4. A precise definition of As will be given in Section 3.

In this paper we analyze the behavior of Asf in two
ways. The first one is to analyze A;f for fixed threshold
and vary f € PW]. In order to get meaningful results, we

must additionally restrict the norm of the signals. We
choose signals f with norm Ifll,,,» < 1. The second way is
to analyze Asf for fixed f € PW! as the threshold § tends
to zero. Intuitively one would expect that the approxima-
tion error is reduced if the threshold is decreased. How-
ever, as we will see in Section 4, this is not true generally.
The threshold operator destroys the good local approx-
imation behavior of the Shannon sampling series for PW..
There are signals in PW} such that (Asf)(t) diverges for all
t € R\Z as 0—0. Hence, for fixed t € R\Z, the approxima-
tion error |f(t)—(Asf)(t)| can grow arbitrarily large. This
result improves a result which was recently obtained for
the global behavior of Asf [16].

2. Notation

In order to continue, we need some notation. Let f
denote the Fourier transform of a function f, where f is to
be understood in the distributional sense. I[P(R),
1 <p< oo, is the space of all to the pth power Lebesgue
integrable functions on R, with the usual norm Il - llp, and
L*(R) the space of all functions for which the essential
supremum norm |-l is finite. For 1<p<oo, PWP
denotes the Paley-Wiener space of signals f with a
representation f(z)=1/(2n) " g(w)e?” dw, zeC, for
some g € [P[-m,@]. If f € PWE then g(w) = f(w). The norm
for PWE, 1<p<oo, is given by Iiflp,» _(1/(271)[ n
f (@)[P dw)”p Moreover, we have Ilflo <Ifllp, ie.,
every signal in PW) is bounded on the real line.

3. Motivation and contribution of the paper

Before we state the main results, we introduce the
threshold operator, discuss some of its basic properties,
and substantiate the analyzed problem.

For complex numbers z € C, the threshold operator &,
0 >0, is defined by

z, |z| =4,
KZ=90, |z|<s.

Furthermore, for continuous functions f:R—-C, we
define the threshold operator @;, ¢ >0, pointwise, i.e.,
OO =rsf(b), t € R.

In this paper, the threshold operator ks is applied on
the samples {f(k)},.z of signals f € PW}, which gives the
disturbed samples {rsf(k)}x7z. This is, of course, equiva-
lent to applying the threshold operator @5 on the signal f
itself and then taking the samples, i.e., {(@sf)(k)},cz. Then,
the resulting samples {(@sf)(k)};.z are used to build an
approximation

. sin(r(t—k)) & ) sin(r(t—k))
(Aaf)(E) = k;x o= = kZ @)

= —00
fo| =0

M

of the original signal f. By A; we denote the operator that
maps f € PW]L to Asf according to (1). For f € PWL we
have lim‘[ Loof(®)=0 by the Riemann-Lebesgue lemma
[17, p. 105], and it follows that the series in (1) has only
finitely many summands, which implies that
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Asf € PW2 c PWL. In general, Asf is only an approxima-
tion of f, and we want the signal Asf to be close to fif 0 is
sufficiently small. The peak value of the approximation
error lf—Asfll, is one possible way to measure this
closeness, another is the pointwise approximation error
, teR. Since the series in (1) uses all
“important” samples of the signal, i.e., all samples that
are larger than or equal to J, one could expect Asf to have
an approximation behavior similar to the Shannon sam-
pling series. But, as we will see, Asf exhibits a significantly
different behavior.

Some properties of A; which complicate the analysis of
the threshold operator are as follows:

1. For each ¢ > 0 fixed, A; is a non-linear operator.

2. For each 6 > 0 fixed, the operator As : (PWL,II - | i)
(PWL,Il - ll) is discontinuous, i.e., there exist a fJnc—
tion f € PWL and a constant C; such that for every
€¢>0 there exists a function ge PW. satisfying
IIf— —8lpy <€ such that llAsf—Asglle > Cy. This implies
that A; : (PWL,II - Hml)a(Pwl I+ ;1) is discontinuous.

3. For some f € PW], the operator As is also discontin-
uous with respect to o, i.e., there exist a function f ¢
PW) and a t € R such that limy_,o(A; 1)(©) # AsH(D).

Remark 1. Note that a linear operator is continuous if
and only if it is bounded. Since A; is a non-linear operator,
continuity and boundedness are no longer equivalent.
However, in Theorem 2 we will see that, for 0 < <1/3,
As is also an unbounded operator.

The fact that Asf has only finitely many samples can be
interpreted as a truncation of the Shannon sampling
series

K sin(m(t— k))'
2 S0
This truncation is controlled in the range of the signal,
because only the samples f(k), k € Z, with absolute value
larger than or equal to some threshold ¢ > 0 are taken into
account. As J tends to zero, more and more samples are
used for the approximation. Normally, the Shannon sam-
pling series is truncated in the domain of the signal by
considering only the samples f(k), k=—N,...,N. For this
kind of truncation we have, according to Brown’s theo-
rem, the uniform convergence of

sin(m(t—k))

n(t—k) @

N
S =Y fo
k=-N

on compact subsets of R for all f e PW! as N goes to
infinity. <oo for all

¢ [-T,T], which in turn implies, using the Banach-
Steinhaus Theorem [18, p. 98], that there exists a constant
C, such that

sup sup|(Snf)()] < Co
Hfum1 < 1NeN

for all t € [-T,T].
In contrast, the behavior of Asf is completely different.
The following results about the global approximation

behavior of Asf, which are stated in Theorems 2 and 3,
were recently obtained in [16].

Theorem 2. For all 0 <6 <1/3 we have
sup lAsflle = oo.

Ifll, 1 <1
Pwn

Theorem 2 shows that, for 0 <6 < 1/3,As : (PWL, Il - 1)
—(PWL,Il - ll,) is an unbounded operator. Thus, for any level
K >0 we can find a signal f € PW! with norm Ifll,, <1
such that IIAsfll,, exceeds K. Furthermore, Theorem 2 imﬂplies
that

sup lf—Asflle = 00, 3)
s <1

for every 0 < d < 1/3, ie, the peak approximation error can
grow arbitrarily large.

Remark 2. Since the supremum in Theorem 2 is taken
over signals with norm I\fHPW] <1,and Iiflle < HfHPW] itis
clear that the threshold & must be less than or equal to
one, because otherwise Asf =0. The specific requirement
in Theorem 2 that 0 < J < 1/3 is due to technical reasons
in the proof of the theorem.

Theorem 3. There exists a signal f; € PW. such that

lim supllAsfqlle = o0.
650

Theorem 3 shows that there exists a signal f; € PW.
such that IIAs;f;ll«, i.e., the peak value of the approxima-
tion Asf;, increases unboundedly as the threshold 6 tends
to zero.

Both, Theorems 2 and 3, are concerned with the
divergence of the supremum over R of the approximation
Asf. However, in certain applications a good local beha-
vior of Asf on bounded intervals is sufficient and the
global behavior is not relevant. This is the reason why we
analyze the local behavior of Asf in this paper.

Remark 3. There is a seeming difference between the
theorems in [16] and Theorems 2 and 3, because the
results in [16] were stated for the case where the samples
of the Shannon sampling series are disturbed by a
quantization operator, performing a midtread quantiza-
tion, and in this paper the threshold operator is used.
However, the results are directly transferable because the
key property of the quantization operator that was
important for the proof in [16] is that all samples with
absolute value less than the quantization threshold are set
to zero, and this property equally holds for the threshold
operator.

At the Strobl'11 conference, where we presented the
results of this paper, we became aware that a closely
related topic, which has recently been studied in the
mathematical literature, is greedy approximation
[19,20]. There, the approximation behavior of series like

Z f(k)e—iu)ky

Ift)] =6

w € [-m,7], “4)

where only the “important” Fourier coefficients are
included, is analyzed, and the convergence of the series
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(4) is measured in the norm of the considered signal
space. The results show that there exists a signal f; e
PW! such that

lim sup dw = cc. 5)

-0 -

Z f] (k)e—iwk

[fdo| = o

For practical applications the examination of the L;-norm
of (4), as is done in (5), is too restricting. For example, it
can be shown that for every 0 < ff < 1 there exists a signal
fie 731/\1};7r for which, on the one hand, we have the
divergence (5), but, on the other hand, we have the
practically relevant uniform convergence

lim n;%x}/(t)— > frlogt—k|=0,

[fk)| = 0

where ¢ is a suitable chosen reconstruction function. In
this paper we analyze the case without oversampling.

Remark 4. Since

— i ” s —iwk | aimt
SN0 = 5 > flke et do,
T \k=-N

where Sy is defined as in (2), it follows that

N
Z f(k)e—iwk
k=-N

do.

‘l s
SN0l < 5 [

That is, the divergence of the Shannon sampling series
(Snf)(t) for some t € R implies the divergence of the L;-
norm of

N
> fle ik, (6)

k=-N

However, the converse is not true. There exist signals f e
PW. such that the L;-norm of (6) diverges but—as
Brown'’s theorem (Theorem 1) shows—the Shannon sam-
pling series (Snf)(t) converges for all t € R. This shows
that the bad behavior of (6) has no immediate conse-
quence for the convergence behavior of the Shannon
sampling series. In view of this, we cannot conclude the
bad behavior of (Asf)(t) from the diverges of the L;-norm
of (4). However, we will see that there is a difference to
the Shannon sampling series, because (As;f)(t) indeed
diverges for some fePW. and all t e R\Z as & tends
to zero.

4. Unboundedness of the threshold operator

We have seen that the threshold operator leads to a
bad global reconstruction behavior of the Shannon sam-
pling series. In this section we analyze whether this bad
behavior is limited to the global behavior of the recon-
struction or whether it is also locally present.

The next theorem is the analog theorem to Theorem 2,
and shows that the unboundedness of Asf on the set {f
PW) HfH/PW; <1} is not only with respect to the supre-
mum norm but also pointwise for every t € R\Z.

Theorem 4. For all 0 <6 <1/3 and all t € R\Z we have
sup  [(Asf)(B)] = oo.

Wiy <1

Although we have stated Theorem 4 for the threshold
operator, the proof reveals that Theorem 4 is also true for
all quantization operators that set all signal values below
a certain threshold to zero, i.e., all quantization operators
that behave like the threshold operator for small signal
values. The uniform midtread quantization, for example,
is a quantization operator that has this behavior.

The next theorem concerns the local behavior of A;f as
the threshold ¢ tends to zero. It shows that (As;f)(b),
t € R\Z, diverges as 5—0 for some signal in PW}.

Theorem 5. There exists a signal f; € PW. such that for all
t € R\Z we have

liro{l sglp\(A(sfﬂ(t)\ = o0. (7

Theorems 4 and 5 improve Theorems 2 and 3,
respectively.

Remark 5. The divergence of (Asf)(t) between the inte-
gers is remarkable because the approximation behavior
on the integer grid is best possible. For all t € Z, f € PW],
and ¢ > 0 we have |f(t)—(Asf)(t)| <.

It is not immediately clear how to prove Theorem 5 for
the quantization operator that was discussed above,
instead of the threshold operator. Nevertheless, we con-
jecture that the theorem is also true for the quantization
operator.

We first prove Theorem 5 because the proof of
Theorem 4 is simple, once we have the results from the
first proof.

Proof of Theorem 5. The fact that the operator Aj is
discontinuous complicates the proof of Theorem 5. In the
proof we iteratively construct a sequence of PW!-signals,
which converges in the PW.-norm to a signal f; € PW}!
that has the property (7).

For 0<n <1 and N € N, consider the function

fEnN) = kji;;ﬂf(k,n,mw, ®
where

(1 (Maﬁﬂ%k), —2N<k<—N,
flnN) = Ej;:ﬂfn). N Z fi ;ro'

-1k (2—%k>, N<k<2N.

Additionally, for0<n<1,Ne N,and M e NU {0}, M <N,
the function

(=D sin(r(t—k))

_1
gt.n.NM) =ft.n.N)— > (1-n) (k)

k=-M

=:u(t)
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M K o
(=D sin(m(t—k))
,2 ’—

T(t—k) ©)

= Uy (t)

is needed. Note that, for M=0, the first sum in (9) is
empty and thus u; =0. We have

I8CHNM) Lyt < IFCIN) Ly + U1 Ly + U2y (10)

The norm llu, [P is bounded above by

I3y < 5 +log(M-+1), an
because Iyl =0 for M=0, and
HulHPW}[ — (1 ’7) Z efuuk( 1)!(
il
_ (] _'/I) _eioM
T 2z 1—ei®
sin M
l/n i dw
TJo in(®
sin(3)

x sin(Mw)’
<[22 Ao
0 (0]
:/M‘sin(gw)‘ doo
0

w
daH—/

1SlI'l
S/

< g +log(M)

for M > 0. A similar calculation shows that

Iuzllpps < 5 +log(M+1) 12)

In addition, we have

If (0Nl <3, (13)

and

HmIf (1 N)~f (0Nl gy =0.

no T

Eq. (13) follows from the Appendix of [16], by observing
that it is also possible to write a strict inequality in the

last line of the last equation in [16]. Therefore, for every
N € N, there exists an #y =#y(N) > 0 such that

NIy <3 for all i < g, (14)

By 7(N) we denote the largest 1, such that (14) is true.
Combining (10)-(12) and (14), it follows that

Hg(-,n,N,M)HPM <3+7m+2logM+1) (15)

forall Ne N, M e NU {0}, M <N, and # <% (N).

Moreover, for Ne N,M e NU {0}, M<N,0<#n <1, and
all ¢ satisfying max(1-7,1-1/N) <o <1, we have

1 N (=D sin(m(— 1 -k
Aseaany(-1) = 3 C sk
2

k=M+1
1 & 1

>_ —_—
nk:M+11+k

1 XN: k+1 1
> — / ——dr
T, Srq Jk 1+
N+1
:l/ LI
T mr 147

1 N+2
= log<M+2> (16)

The function

h(t,n,N,M) = g(t,n,N,M)

3+7m+2logM+1)
will be a central building block of the desired function f;.
Due to (15), we have

IAC17,N M)l 1 < 1 a7)

for all 1 <7 (N).
Let K>0 and M € N U {0} be arbitrary and choose N
according to

N :N(M.I<) — (M+2)enK(3+TE+2 lOg(M+l))_2'

which implies that

1 N+2Y\
—log<m> =K3+mn+2log(M+1)).

Thus, for all N> N, 0<# <1, and ¢ satisfying

1
1-9 =N

3rns2logMi1) 3+ 2 logM+Ty | <0 <!

max

it follows by (16) that
AshnN) (5 ) >

1 Liog(N*2) L g
3tn+2logM+r e\Myz) ="

Now, we construct the function f; iteratively. Let ¢; =1,
M; =0, and choose N;=[NM;,2'*!/e;)], where T[t]
denotes the smallest integer that is larger than or equal
to t. Then, for #; =7%(N7) and whenever ¢ is chosen such

that
1
1———
- Ny 1
max Eplle e <01<3+n

we have, using the abbreviation ¢, (t) = h(t,n;,N1,My), that
Iy s < 1, (18)

which follows from (17), and

1+1
Ando)(-3) > 2 =2

€1

Since only finitely many samples of ¢, are different
from zero, it follows that ¢; € PW2. In [21, Theorem 5] it
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was shown that lim;_olA;f—fle =0 for all fePW2.
Therefore, there exists a 0, > 0 such that

|Asp)(—3)—d1 (=] <1 19

for all 6 <J,. Next, let 0 <€, <min(e;/2,6,), My =2Nj,
Ny = [N(M3,22% " /e2)1, 5, =7(N3), and define the function
¢, (t) = () +€2h(t,n,,N2,M>). Then we have, for all d;

with
(1-n,)¢ (PN*)
—I2)€2 2
maX| 5 S TogMy 1 1)’ 3174 2 TosM + 1) | =2
€2
= 3+7m+2log(My+1)’
that
1 2N, -1 K
(Aﬁz(bz)<— 5) -y (@amz)(k)w
k—72N1+1 2
k
S (@bz%)(l)w
k=M, +1 2

= (A‘SZ‘pl)(* *> T3 leég(M2+])
Mo (=1)fsin(r(— 1 —k))
k=M +1 m(—3—k)
Since 8, < &5, it follows by (19) that
‘(Aéz ¢1)(—% )—(1)1(—%)‘ <1

and consequently

1 €
(A(52</)2)<— *> > 3+7m+2logMy+1)
Ny 1 —1_k
3= M \@(——)\—1

k=M;+1 T[ l
> €
~ 3+n+2logMa+1)
:22+l_2'

8
B+m+2 log(M2+l))a—2

where we used (17), which implies that li¢;l. <
lpy lppps < 1.

Agam there exists a d3 > 0 such that
[(Asp)(=5)—da(=H)| <1 (20)
for all § <d3. Next, let 0<e3 <min(ey/2,03), M3 =2N,,

=[N(M3,2°*!/e3)1, 13 =7(N3), and define ¢5(t)=
¢, (t)+esh(t,n;,N3,M3). Then we have, for all 3 with

(1)
(1-n3)és N3) -5

X 3 T 2 Tog(Ms +1)’ 3+ 71+ 2 log(Ms +1)

< =
34+7m+2logMs+1)°

that

1 2N, -1 /
(A5, 3) (f 5) = Y. (0, @(mw
2

k=-2N;+1 k)
sin(m(— 3 —k))

@] k
+ Z (@5, P3)(k) P 2_k)

k=Ms;+1

(A(’3¢2)< ) 34742 lécig(Mngl)
& (=D)fsin(r(—3 k)
k=Ms;+1 n(—%—k) .
Since 85 < J3 it follows by (20) that
(A5, o) (—3)—ha(—p)| <1

and consequently

€3
(A‘S3¢3)< 7) = 3¥n+2logMs+1)
N. k
L (=D)sin(n(—1-k)) 1
(D
Furthermore, using (18), we have that

Iallpyys <y llpyyt +€allh(112, N2 M)l < 143

k=Ms+1

and

”(7)3”7;%/1 < H(f)ZH’PW}! +63Hh(-,7’]3.N3,M3)”/PW}! <14+ % =+ ‘ll

<
kZ 2"
which leads to

(As, p3)(—p >2°"1-3.

Now, using the same procedure again and again, we can
iteratively construct the sequence of functions ¢,4,¢s, ...,
and, by induction, we find that

k
qbk(t) = Z Clh(t,ﬂl,NI,M[), k e N.
=1

Since our choice of ¢, I €N, ensures that {¢;}ren IS a
Cauchy sequence in PW} it follows that there is a function
f1 € PW! with

l}irglo\ucl ~Pillpyr =0

and I, o1 < 2. Note that (A;.f1)(t)=(As,¢,)() by the
special construction of ¢,. Using induction again leads to
Asf(=H>2""1-3, reN,

which implies that

lim sup(Asfq)(—% . (21)

6-0

In the last step of the proof we show that (21) implies
the assertion of the theorem. Let t1,t; € R\Z be arbitrary.
Then we have

m(f\sfﬂ(fl) Sinee t)(A(,fl)(tz)
k;w(@afl)(k)n((tl) Z (©sf 1)k )n(t k)
k;m(@afl>(k)%
< _iw IR %
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|to—t1] & 1
f1lp,
<Wfillpp 7 > [t1—k||t2—K]|

t—t
:nfln,,,W;‘ = ‘C3(r1,t2),

where Cs3(tq,t2) < oo is a constant that depends only on t;
and t,. Choosing t; = —1/2 and t =t, € R\Z arbitrary and
using (21), we obtain

lin; soup\(A(sfﬂ(f)\ =00

which completes the proof. O

Proof of Theorem 4. Let 0<d <1/3 be arbitrary but
fixed. Moreover, for Ne N, N>2, we know from the
proof of Theorem 5 that there exits an #y > 0 such that
Hf(-,r/,\,,N)HPM <3, where f is the function that was
defined in (8). Next, choose some ¢y that satisfies ¢y > 9,
env <1/3, and max{en(1-ny),en(1-1/N)} < 6. Then the
norm of

un(t) = enf(t,1y.N)

satisfies

lunllpyys = eI G113 Ny < 1.

Furthermore, we have
1 N sin(z(—1 —k))
Asu )<——>:e B b\ kN Bl
Asun) | —5 Nk;)( ) -
N1

log(N+ 2).

Q":\

Since N € N, N > 2, was arbitrary, it follows that

sup (i) —3) = o0
HfupWl <1

for all 0 < 0 < 1/3. The assertion for arbitrary t € R\Z can
be obtained by using the same arguments that were used
at the end of the proof of Theorem 5. O

5. Discussion

Truncation is a very important operator, not because it
is an integral part in the quantization process. In Section 3
we have briefly given the interpretation of
> sin(m(t—k
who= 3 fio L
K=—00
[fto| =0

(22)

as a truncation of the Shannon sampling series

sin(m(t—k))
> fiip SN ) w—o

k=—co

which is controlled in the range of the signal, because
only the samples f(k), k € Z, with absolute value larger
than or equal to the threshold ¢ >0 are taken into
account. This is in contrast to the usual truncation of
the Shannon sampling series which is done in the domain
of the signal, by considering only the samples f(k),
k=—N,...,N. This kind of truncation leads to the finite

sampling series

sin(m(t—k))

N
SuHO= > flo— 5=

k=-N

which is relevant for practical applications, where only a
finite number of samples can be considered in the
reconstruction.

In the following discussion we will compare the
reconstruction behavior of the Shannon sampling series
for both types of truncation and point out the differences.
First, we contrast the global behavior of Syf and Asf. For
the truncation in the domain of the signal, we have the
well-known result [22] that

ISnflloc < Ca 10gN)IIf 1, (23)

i.e., for fixed N, the peak value of Syf is bounded above,
and it follows that
sup lISyflle < C4log(N).

Wiyt <1

For the truncation controlled in the range we do not have
such a behavior. As was shown in [16], forall 0 < < 1/3,
we have

sup Asfllo = oo. (24)

Wiyt <1

Hence, for fixed threshold 6, 0 < 6 < 1/3, the peak value of
Asf can grow arbitrarily large, i.e., for every Cs > 0 there
exists a signal f; e PW! with IIfll,,: <1, such that
IAsf 11l > Cs. i

Next, we discuss the local reconstruction behavior. For
the truncation in the domain of the signal, we have
Brown’s Theorem (Theorem 1) which states the local
uniform convergence of Syf for all signals f € PW], as
more and more samples of the signal are used in the
reconstruction, i.e., as N goes to infinity. In contrast,
Theorem 5 shows that the reconstruction process Asf,
which is controlled by a truncation in the range of the
sampled signal, does not possess this good reconstruction
behavior. For fixed teR\Z, we have limsup;_g|
(Asf1)(t)] = oo for some signal f; € PWL. Thus, |(Asf1)(®)|
grows arbitrarily large as more and more samples of the
signal are used in the reconstruction, i.e., as the threshold
J is reduced to zero.

Remark 6. For the truncation in the domain of the
sampled signal, the peak value of the difference of the
truncated sampling series for two signals can be con-
trolled, in the sense that for all ¢ >0 and all f;,f, € PWL,
we have ISnf{ —Snf3llee < C4 log(N)e if If ;1 —f3ll 5,1 < €. This
follows directly from (23). For the truncation that is
controlled in the range of the sampled signal, the same
result cannot hold, as the following counterexample
shows. Choose ¢ =1, f; =0, and 0 < § < 1/3. Then, accord-
ing to (24), for every Cs > 0, we can find a signal f, € PW}
With IIf; 1,0 <1 such that I1Asf; —Asf 5l = I1Asf5 ]l > C,
although Hf1 —fz”pw If3 1m0 1 <1

Next, we will discuss the asymptotic speed of diver-

gence. From (23) it follows, using some additional argu-
ments, involving the Banach-Steinhaus Theorem and
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density arguments, that

ISnflloo
N log(N) —
for all f € PW!, which shows that the peak value of Syf
does asymptotically grow slower than log(N). It is natural
to ask whether a similar result is also true for the
truncation that is controlled in the range of the sampled
signal.

Question 1. Does there exist a monotonically decreasing
function ¢ with lims_ g¢;(6) = oo such that

. 1Al
lim sup—/>== =
550 P $1(5)

for all f e PWL?

0

The answer to this question is open.

From a practical point of view, the mere signal recon-
struction is often not enough and the interest is rather in
the output of a stable linear time-invariant (LTI) system.
In [21] the approximation of stable LTI systems by
sampling series with samples that are disturbed by the
threshold operator was analyzed. It was shown that if T :
PWL—PWL! is a stable LTI system, 0 <5< 1/3,and t € R,
then we have

sup |(TAsf)(t)| < oo

Wiy <1
if and only if

oo

> |hr(t=ky| < oo, (25)
k=—oc0
where hr = T sinc is the impulse response of the stable LTI
system T. For a precise definition of a stable LTI system,
see for example [21]. From this result, the following
question arises.

Question 2. If (25) is not fulfilled, does there exist a signal
f1 € PWL such that lim supy_,o|(TAsf1)(t)| = 00?

Theorem 5, which gives a positive answer to this
question for the special case where the system T is the
ideal low-pass filter, may be an indication that this
question can be answered in the affirmative for general
stable LTI systems.

The analysis of thresholding and quantization is diffi-
cult because of the non-linear nature of both operations.
This is why stochastic approaches are often used to
linearize the problem. The proofs in this paper show that
the findings could not have been derived with a stochastic
model. In the proof of Theorem 5, we furthermore gave an
explicit procedure for the construction of a divergence
creating signal f;. This leads to the following question.

Question 3. Is it true that, in a topological sense, almost all
signals in PW]. have the same problematic behavior?

In this paper we treated the problems for signals in
PW), i.e., deterministic signals. For certain applications it
is desirable to have results for stochastic processes also. In
[23], the mean-square convergence behavior of the Shan-
non sampling series was analyzed for bandlimited con-
tinuous-time wide-sense stationary stochastic processes.

It would be interesting to study the approximation
of such stochastic processes if the samples are addition-
ally disturbed by the threshold operator. In this
analysis the threshold operator would still be treated
deterministically.

Finally, we come to the question if we can further
strengthen the divergence statements. For the global
behavior of the Shannon sampling series without thresh-
olding we have the following result. There exists a signal
f1 € PWL such that lim supy_, ., ISnf1 /o = o0 [22]. In this
statement we have a “lim sup”, just like in Theorems 3
and 5.

Question 4. Do the results still hold if the “lim sup” is
replaced by “lim”?

For stochastic processes, a divergence result was given
in [23], where a “lim” is used.

Acknowledgments

We would like to thank the anonymous reviewers for
their interesting and helpful comments, which led to
many of the open questions above.

References

[1] P.L. Butzer, W. Splettstéfer, On quantization, truncation and jitter
errors in the sampling theorem and its generalizations, Signal
Processing 2 (2) (1980) 101-112.

[2] J.L. Brown Jr, On the error in reconstructing a non-bandlimited
function by means of the bandpass sampling theorem, Journal of
Mathematical Analysis and Applications 18 (1967) 75-84. (Erra-
tum, Journal of Mathematical Analysis and Applications 21 (1968)
699).

[3] P.L. Butzer, W. SplettstoRer, R.L. Stens, The sampling theorem and
linear prediction in signal analysis, Jahresbericht der Deutschen
Mathematiker-Vereinigung 90 (1) (1988) 1-70.

[4] P.L. Butzer, R.L. Stens, Sampling theory for not necessarily band-
limited functions: a historical overview, SIAM Review 34 (1) (1992)
40-53.

[5] R.P. Feynman, Feynman Lectures on Computation, Penguin Books,
1999.

[6] R.M. Gray, D.L. Neuhoff, Quantization, IEEE Transactions on Infor-
mation Theory 44 (6) (1998) 2325-2383.

[7] 1. Daubechies, R.A. DeVore, C.S. Giintiirk, V.A. Vaishampayan, A/D
conversion with imperfect quantizers, IEEE Transactions on Infor-
mation Theory 52 (3) (2006) 874-885.

[8] R.M. Gray, T.G. Stockham, Dithered quantizers, IEEE Transactions on
Information Theory 39 (3) (1993) 805-812.

[9] W.R. Bennett, Spectra of quantized signals, Bell System Technical
Journal 27 (1948) 446-472.

[10] A. Papoulis, Error analysis in sampling theory, Proceedings of the
IEEE 54 (7) (1966) 947-955.

[11] Z. Cvetkovi¢, M. Vetterli, Error-rate characteristics of oversampled
analog-to-digital conversion, IEEE Transactions on Information
Theory 44 (5) (1998) 1961-1964.

[12] N. Thao, M. Vetterli, Deterministic analysis of oversampled A/D
conversion and decoding improvement based on consistent esti-
mates, IEEE Transactions on Signal Processing 42 (3) (1994)
519-531.

[13] P.L. Butzer, A survey of the Whittaker-Shannon sampling theorem,
Journal of Mathematical Research and Exposition 3 (1983) 185-212.

[14] P. Ishwar, A. Kumar, K. Ramchandran, Distributed sampling for
dense sensor networks: a “bit-conservation principle”, in: Informa-
tion Processing in Sensor Networks: Second International Work-
shop, IPSN 2003, Lecture Notes in Computer Science, Springer
Verlag, 2003, pp. 17-31.

[15] A. Kumar, P. Ishwar, K. Ramchandran, On distributed sampling of
smooth non-bandlimited fields, in: IPSN '04: Proceedings of the



H. Boche, UJ. Ménich / Signal Processing 92 (2012) 2821-2829 2829

Third International Symposium on Information Processing in Sen-
sor Networks, ACM Press, 2004, pp. 89-98.

[16] H. Boche, UJ. Ménich, Behavior of the quantization operator for
bandlimited, nonoversampled signals, IEEE Transactions on Infor-
mation Theory 56 (5) (2010) 2433-2440.

[17] L. Grafakos, Classical Fourier Analysis, 2nd edition, Springer, 2008.

[18] W. Rudin, Real and Complex Analysis, 3rd edition, McGraw-Hill,
1987.

[19] V.N. Temlyakov, Greedy expansions in Banach spaces, Advances in
Computational Mathematics 26 (4) (2007) 431-449.

[20] P. Wojtaszczyk, Greedy algorithm for general biorthogonal systems,
Journal of Approximation Theory 107 (2) (2000) 293-314.

[21]

[22]

[23]

H. Boche, U.J. Monich, Complete characterization of stable ban-
dlimited systems under quantization and thresholding, IEEE Trans-
actions on Signal Processing 57 (12) (2009) 4699-4710.

H. Boche, U.J. Monich, There exists no globally uniformly conver-
gent reconstruction for the Paley-Wiener space PW! of bandlim-
ited functions sampled at Nyquist rate, IEEE Transactions on Signal
Processing 56 (7) (2008) 3170-3179.

H. Boche, UJ. Monich, Approximation of wide-sense stationary
stochastic processes by Shannon sampling series, IEEE Transactions
on Information Theory 56 (12) (2010) 6459-6469.



	Unboundedness of thresholding and quantization for bandlimited signals
	Introduction
	Notation
	Motivation and contribution of the paper
	Unboundedness of the threshold operator
	Discussion
	Acknowledgments
	References




