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Abstract

In this paper, linear beamforming design for amplify-and-forward relaying cel-

lular networks is considered, in which base station, relay station and mobile

terminals are all equipped with multiple antennas. The design is based on min-

imum mean-square-error criterion, and both uplink and downlink scenarios are

considered. It is found that the downlink and uplink beamforming design prob-

lems are in the same form, and iterative algorithms with the same structure

can be used to solve the design problems. For the specific cases of fully loaded

or overloaded uplink systems, a novel algorithm is derived and its relationships

with several existing beamforming design algorithms for conventional MIMO or

multiuser systems are revealed. Simulation results are presented to demonstrate

the performance advantage of the proposed design algorithms.
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1. Introduction

Cooperative communication is a promising technology to improve quality

and reliability of wireless links [1, 2, 3, 4, 5, 6, 7, 8]. One of the most important

application scenarios of cooperative communications is cellular network. Due

to shadowing or deep fading of wireless channels, base station may not be able

to sufficiently cover all mobile terminals in a cell, especially those on the edge.

Deployment of relay stations is an effective and economic way to improve the

communication quality in cellular networks, as shown in Fig. 1.

In cooperative cellular networks, there are two major strategies in relaying.

Relay station can either decode the received signal before retransmission [9] or

simply amplify-and-forward (AF) the received signal to the corresponding des-

tination without decoding [10]. AF strategy has low complexity and minimal

processing delay, and is more secure. These reasons make AF preferable in

practical implementation. In fact, deployment of AF relay station with multi-

ple antenna to enlarge coverage of base station is one of the most important

components in the future communication protocols, e.g., LTE, IMT-Advanced

and Winner project [11], [12].

With multiple antennas at mobile terminals, relay station and base station, a

natural question is how to allocate limited power resource in the spatial domain.

In general, power allocation is equivalent to beamforming matrices design at

base station, relay and mobile terminals, and the objective can be maximizing

capacity [13] or minimizing the mean-square error (MSE) of the recovered data

[14]. The MSE criterion is a widely chosen one since it aims at the data be

recovered as accurate as possible, and is extensively used in power allocation

in classical point-to-point [15, 17, 16] or multi-user MIMO systems[18, 19, 20,

22, 21, 23, 24]. The MSE minimization is also related to capacity maximization

[17], [22] if a suitable weighting is applied to different data streams.

In a cellular network, the base station and relay station are usually allowed to

be equipped with multiple antennas. For each mobile terminal, if it is equipped

with single antenna, such relay cellular networks has been investigated from
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various point-of-views. For example, beamforming design for capacity maxi-

mization has been considered in [9], and quality-of-service based power control

has been investigated in [10]. However, in the next generation multi-media

wireless communications, it is likely that the size of a mobile terminal allows

multiple antennas to be deployed. Unfortunately, extension from the previous

works on single antenna mobile terminals to multi-antenna terminals is by no

mean straightforward.

In this paper, we take a step further to consider the case where each mobile

terminal is also equipped with multiple antennas. In particular, we consider the

joint precoders, forwarding matrix, and equalizers design for both uplink and

downlink AF relaying cellular network, under power constraints. The design

problems are formulated as optimization problem minimizing the sum MSE of

multiple detected data streams. While extension of the presented algorithm to

weighted MSE criterion is straightforward, we focus on sum MSE for notational

clarity. The contribution of the paper is as follows. Firstly, in the downlink,

the precoder at base station, forwarding matrix at relay station and equalizers

at mobile terminals are jointly designed by an iterative algorithm. Secondly,

in the uplink case, we demonstrate that the formulation of the beamforming

design problem has the same form as that in the downlink, and the same iterative

algorithm can be employed. Thirdly, since the general iterative solution provides

little insight, we derive another algorithm under the specific case when the

number of independent data streams from different mobile terminals is greater

than or equal to their number of antenna. It is found that the resultant solution

includes several existing algorithms for multi-user MIMO or AF relay network

with single antenna as special cases.

The paper is organized as follows. In Section 2, beamforming design problem

in downlink is investigated, and an iterative algorithm is presented. In Section 3,

the analogy of the uplink and downlink beamforming design problems is demon-

strated. Furthermore, another beamforming design algorithm is derived for the

specific case of fully loaded or overloaded system, and the relationships of this

algorithm with other existing algorithms are discussed. Simulation results are
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given in Section 4 to demonstrate the effectiveness of the proposed algorithms.

Finally, conclusions are drawn in Section 5.

The following notations are used throughout this paper. Boldface lowercase

letters denote vectors, while boldface uppercase letters denote matrices. The

notation ZH denotes the Hermitian of the matrix Z, and Tr(Z) is the trace of

the matrix Z. The symbol IM denotes an M ×M identity matrix, while 0M,N

denotes an M ×N all zero matrix. The notation Z1/2 is the Hermitian square

root of the positive semidefinite matrix Z, such that Z1/2Z1/2 = Z and Z1/2

is also a Hermitian matrix. The operation diag{[A B]} is defined as a block

diagonal matrix with A and B as block diagonal. The symbol E{•} represents

the statistical expectation. The operation vec(Z) stacks the columns of the

matrix Z into a single vector. The symbol ⊗ denotes the Kronecker product.

For two Hermitian matrices, C � D means that C−D is a positive semi-definite

matrix.

2. Downlink Beamforming Design

2.1. System model and problem formulation

On the boundary of a cell, due to shadowing or deep fading, the direct

link between base station (BS) and mobile terminals may not be good enough

to maintain normal communication. Then mobile terminals will rely on relay

station to communicate with BS. As shown in Fig. 2a, in downlink, signal is first

transmitted from the BS to the relay station and then the relay station forwards

the received signal to the corresponding mobile terminals. It is assumed that the

BS has NB antennas and the relay station has NR antennas. For the kth mobile

terminal, it has NM,k antennas. The BS needs to simultaneously communicate

with K mobile terminals via a single relay station. There are Lk data streams

to be transmitted from the BS to the kth mobile terminal, and the signal for

the kth mobile terminal is denoted by a Lk × 1 vector sk. It is assumed that

different data streams are independent, i.e., E{sksHj } = 0Lk,Lj
when k 6= j and

E{sksHk } = ILk
. With separate precoder Tk for different mobile terminals, the
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received signal at the relay station is

r = HBRTs + η, (1)

where HBR denotes the NB × NR channel matrix between the BS and relay

station, T = [T1, · · · , TK ], s = [sT1 , · · · , sTK ]T and the vector η denotes the

additive Gaussian noise with zero mean and covariance matrix Rη. The power

constraint at the BS is given by
∑

k Tr(TkT
H
k ) ≤ Ps, where Ps is the maximum

transmit power.

At the relay station, before retransmission the signal r is multiplied with a

forwarding matrix W under a power constraint Tr(WRrW)H ≤ Pr, where Pr

is the maximum transmit power at the relay station and Rr is the covariance

matrix of the received signal r:

Rr = HBRTTHHH
BR +Rη. (2)

Finally, at the kth mobile terminal, the received signal yk is

yk = HRM,kWHBRTs +HRM,kWη + vk, (3)

where matrix HRM,k is the NR×NM,k channel matrix between the relay station

and the kth mobile terminal, and vk is the additive Gaussian noise at the kth

mobile terminal with zero mean and covariance matrix Rvk
.

At each mobile terminal, an equalizer Gk is employed to detect the data.

The mean-square-error (MSE) of data detection at the kth terminal is

MSEk(Gk,W,Tk) (4)

= E{‖Gkyk − sk‖2}

= Tr(Gk(HRM,kWRrW
HHH

RM,k +Rvk
)GH

k )− Tr(GkHRM,kWHBRTk)

− Tr((GkHRM,kWHBRTk)
H) + Tr(ILk

). (5)

Now defining y = [yT
1 , · · · , yT

K ]T, HRM = [HT
RM,1, · · · , HT

RM,K ]T, v =

[vT
1 , · · · , vT

K ]T, and G = diag{[G1, · · · , GK ]}, the sum MSE can be written
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as

MSED(G,W,T) =

K∑

k=1

MSEk(Gk,W,Tk)

=Tr(G(HRMWRrW
HHH

RM +Rv)G
H)− Tr(GHRMWHBRT)

− Tr((GHRMWHBRT)H) + Tr(IL), (6)

where L =
∑K

k=1 Lk and Rv = diag{[Rv1
, · · · , RvK

]}.
Therefore, the downlink beamforming optimization problem can be formu-

lated as

min
G,W,T

MSED(G,W,T)

s.t. Tr(TTH) ≤ Ps

Tr(WRrW
H) ≤ Pr

G = diag{[G1, · · · , GK ]}. (7)

The optimization problem (7) is a nonconvex optimization problem for T,

W and G, and there is no closed-form solution. This challenge remains even

for the special case of multiuser MIMO systems [18], [19], [23] where only single

hop transmission is involved. However, notice that when two out of the three

variables are fixed, the optimization problem (7) for the remaining variable is

a convex problem, and thus can be solved. Therefore, an iterative algorithm

alternating the design of three variables can be employed.

2.2. Proposed iterative algorithm

(1) Equalizer design at the destination

When T and W are fixed, the optimization problem (7) is an unconstrained

convex quadratic optimization problem for G. Furthermore, since the structure

of G is block diagonal, the design of individual Gk are decoupled. Therefore,

the necessary and sufficient condition for the optimal solution is

∂
∑

k MSEk(Gk,W,Tk)

∂G∗
k

= 0Lk,NM,k
, (8)
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and the optimal equalizer for the kth mobile terminal can be easily shown to be

Gk = (HRM,kWHBRTk)
H(HRM,kWRrW

HHH
RM,k +Rvk

)−1. (9)

(2) Forwarding matrix design at the relay station

When T and G are fixed, the optimization problem (7) is a constrained

convex optimization problem for the variable W, and the Karush-Kuhn-Tucker

(KKT) conditions are the necessary and sufficient conditions for the optimal so-

lution [25]. The KKT conditions of the optimization problem (7) with respective

to W are [26]

HH
RMGHGHRMWRr + λWRr = (HBRTGHRM )H (10)

λ(Tr(WRrW
H)− Pr) = 0, λ ≥ 0, (11)

Tr(WRrW
H) ≤ Pr, (12)

where λ is the Lagrange multiplier.

Based on the first KKT condition (10), the optimal forwarding matrix W

can be written as

W = (HH
RMGHGHRM + λI)−1(HBRTGHRM )HR−1

r , (13)

where the value of λ is computed using (11) and (12). Since λ also appears in

W, (11) and (12) depends on λ in a nonlinear way and there is no closed-form

solution. Below, we propose a low complexity method to solve (11) and (12).

First, notice that in order to have (11) satisfied, either λ = 0 or Tr(WRrW
H) =

Pr must hold. If λ = 0 also makes (12) satisfied, λ = 0 is a solution to (11) and

(12). On other hand, if λ = 0 does not make (12) satisfied, we have to solve

Tr(WRrW
H) = Pr. It can be proved that [27] when T and G are fixed, the

function f(λ) = Tr(WRrW
H) is a decreasing function of λ and the range of λ

must be within

0 ≤ λ ≤

√

Tr(ER−1
r EH)

Pr
(14)

where E =
∑

k{(HBRTkGkHRM,k)
H}. Therefore, λ can be efficiently com-

puted by one-dimension search, such as bisection search or golden search. Since
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Tr(WRrW
H) = Pr is a stronger condition than Tr(WRrW

H) ≤ Pr, (12) is

satisfied automatically in this case. In summary, λ is computed as

λ =







0 if f(0) ≤ Pr

Solve f(λ) = Pr using bisection algorithm Otherwise

. (15)

(3) Precoder design at the BS

When W and G are fixed, the optimization problem (7) can be straightfor-

wardly formulated as the following convex quadratic optimization problem for

the precoder T

min
T

Tr(NH
0 T

HA0TN0) + 2R{Tr(BH
0 T)} + c0

s.t. Tr(NH
1 T

HA1TN1) + 2R{Tr(BH
1 T)} + c1 ≤ 0,

Tr(NH
2 T

HA2TN2) + 2R{Tr(BH
2 T)} + c2 ≤ 0, (16)

where the corresponding parameters are defined as

A0 = HH
BRW

HHH
RMGHGHRMWHBR, A1 = I, A2 = HH

BRW
HWHBR,

BH
0 = −GHRMWHBR, B1 = B2 = 0,

N0 = N1 = N2 = IL,

c0 = Tr(RηW
HHH

RMGHGHRMW) + Tr(IL) + Tr(GRvG
H))

c1 = −Ps, c2 = Tr(WRηW
H)− Pr. (17)

Notice that the objective function and the constraints are of the same form.

Using the property Tr(AB) = vecH(AH)vec(B) and the property of Kronecker

product, we can write (l = 0, 1, 2)

Tr(NH
l T

HAlTNl) =Tr(NH
l T

HA
H

2

l A
1

2

l TNl)

=vecH(A
1

2

l TNl)vec(A
1

2

l TNl)

=vecH(T)(N∗
l ⊗A

H

2

l )(NT
l ⊗A

1

2

l )vec(T), (18)

where the first equality is based on the fact that Al’s are positive semidefinite

matrices. Furthermore, we can also write Tr(BH
l T) = vecH(BH

l )vec(T). Putting
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these two results into (16) and after introducing an auxiliary variable t [28], (16)

is equivalent to the following optimization problem

min
T,t

t

s.t. vecH(T)(N∗
0 ⊗A

H

2

0 )(NT
0 ⊗A

1

2

0 )vec(T) ≤ t− 2R{vecH(BH
0 )vec(T)}

vecH(T)(N∗
1 ⊗A

H

2

1 )(NT
1 ⊗A

1

2

1 )vec(T) ≤ −c1 − 2R{vecH(BH
1 )vec(T)}

vecH(T)(N∗
2 ⊗A

H

2

2 )(NT
2 ⊗A

1

2

2 )vec(T) ≤ −c2 − 2R{vecH(BH
2 )vec(T)}.

(19)

Since c0 does not affect the optimization problem, it has been neglected in (19).

With the Schur complement lemma [32], the optimization problem (19) can

be further reformulated as the following semi-definite programming (SDP) prob-

lem [28]

min
T,t

t

s.t.




I (NT

0 ⊗A
1

2

0 )vec(T)

((NT
0 ⊗A

1

2

0 )vec(T))H −2R{vecH(B0)vec(T)} + t



 � 0




I (NT

l ⊗A
1

2

l )vec(T)

((NT
l ⊗A

1

2

l )vec(T))H −2R{vecH(Bl)vec(T)} − cl



 � 0, l = 1, 2.

(20)

The precoder at the BS is designed by solving this SDP problem using standard

numerical algorithms such as interior-point polynomial algorithms [26], [28].

2.3. Summary and Initialization

In summary, the downlink beamforming matrices are computed iteratively.

Since in each iteration, the MSE monotonically decreases, the iterative algo-

rithm is guaranteed to converge to at least a local optimum. For initialization,

identity matrices can be chosen as initial values due to its simplicity and bet-

ter performance compared to randomly generated initial matrices [18], [19], [24].

On the other hand, we can also use a suboptimal design by viewing the downlink

dual-hop AF MIMO relay cellular networks as a combination of conventional

9



point-to-point MIMO system in the first hop, and multiuser MIMO downlink

system in the second hop. More specifically, for the first hop, the linear mini-

mum mean-square-error (LMMSE) precoder T at BS and equalizer W1 at relay

station can be jointly designed using the point-to-point water-filling solution

given in [17]. For the second hop, the precoder W2 at relay station and equal-

izer G at mobile terminals can be designed using the beamforming algorithm for

multiuser MIMO systems proposed in [8]. Based on the results of W1 and W2,

the forwarding matrix at relay station equals to W = W1W2. We refer this

suboptimal algorithm as ‘separate LMMSE transceiver design’. It will be shown

in Simulation section that the convergence speed using the second initialization

is better than that of the first one. Finally, the iterative design procedure is

formally given by

Algorithm 1

With initial G0, W0 and T0, the algorithm proceeds iteratively and in each

iteration:

(1) G is updated using (9);

(2) W is updated using (13) and (15);

(3) T is updated by solving (20).

The algorithm stops when ‖MSEI
D −MSEI+1

D ‖ ≤ TD, where MSEI
D is the total

MSE in the Ith iteration and TD is a threshold value.

3. Uplink Beamforming Design

3.1. System model and analogy with downlink design

In this section we will focus on beamforming matrices design for uplink,

as shown in Fig. 2b. In uplink, there are Lk data streams to be transmitted

from the kth mobile terminal to the BS, and the signal from the kth mobile

terminal is denoted as sk. Without loss of generality, it is assumed that the

transmitted data streams are independent: E{sksHj } = 0Lk,Lj
when k 6= j and

E{sksHk } = ILk
. At the kth mobile terminal, the transmit signal sk is multiplied

by a precoder matrix Pk under a power constraint Tr(PkP
H
k ) ≤ Ps,k, where Ps,k
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is the maximum transmit power at the kth mobile terminal. The received signal

x at the relay station is the superposition of signals from different terminals

through different channels and is given by

x = HMRPs+ n, (21)

whereHMR , [HMR,1 · · · HMR,K ], P , diag{[P1, · · · ,PK ]}, s , [sT1 · · · sTK ]T,

with HMR,k being the NR×NM,k channel matrix between the kth mobile termi-

nal and relay station, and n is the additive Gaussian noise at the relay station

with zero mean and covariance matrix Rn. Since the data transmitted from

different mobile terminals are independent, the correlation matrix of x equals

to

Rx = HMRPPHHMR +Rn. (22)

At the relay station, the received signal x is multiplied with a linear for-

warding matrix F, with a power constraint Tr(FRxF
H) ≤ Pr, where Pr is the

maximum transmit power at the relay station. Finally, the received signal at

the BS is

y = HRBFHMRPs+HRBFn+ ξ, (23)

where HRB is the NB ×NR channel matrix between the relay station and BS,

and ξ is the additive zero mean Gaussian noise with covariance Rξ.

When a linear equalizerB is adopted at the BS, the total MSE of the detected

data is

MSEU (B,F,P) =E{‖By − s‖2}

=Tr(B(HRBFRxF
HHH

RB +Rξ)B
H)− Tr(BHRBFHMRP)

− Tr((BHRBFHMRP)H) + Tr(IL), (24)

where L =
∑K

k=1 Lk is the total number of data streams. Finally, the optimiza-

tion problem for beamforming matrices design in the uplink case is formulated
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as

min
B,F,P

MSEU (B,F,P)

s.t. Tr(PkP
H
k ) ≤ Ps,k, k = 1, · · · ,K

Tr(FRxF
H) ≤ Pr

P = diag{[P1, · · · , PK ]}. (25)

Comparing (25) with the downlink problem (7), it can be seen that the two

problems are in the same form, except that i) there are individual constraints

on Pk in (25) instead of a sum constraint on the corresponding Tk in (7), and ii)

the diagonal structure constraint is on precoder instead of equalizer. However

we can still employ the iterative algorithm developed in the previous section

for this uplink beamforming design problem. More specifically, for equalizer B

design, the problem is an unconstrained convex optimization problem and the

optimal solution can be directly computed from the derivative of the objective

function. For forwarding matrix F design, the problem is a convex quadratic

optimization problem with only one constraint. In this case, the optimal solution

can be solved based on KKT conditions. Finally, for precoder P design, the

problem is a convex quadratic optimization with multiple constraints, which

can be transformed into a standard SDP problem. Notice that a SDP problem

can handle any number of linear matrix inequality constraints and the diagonal

structure of P does not affect the SDP problem.

Although the optimization problem (25) can be solved using an iterative

algorithm alternating the three variables B, F and P, this solution provide

little insight into the nature of the problem. Below we consider the fully loaded

or overloaded MIMO systems in which the number of independent data streams

from mobile terminals is greater than or equal to the number of its antennas,

i.e., NM,k ≤ Lk [29], [30]. The solution is found to be insightful and includes

several existing algorithms for conventional AF MIMO relay or multiuser MIMO

as special cases.
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3.2. Uplink beamforming design for fully loaded or overloaded systems

First, we reduce the number of variables of the optimization problem. Notic-

ing that there is no constraint onB, the optimalB satisfies ∂MSEU (B,F,P)/∂B∗ =

0L,NB
, and the optimal equalizer at the BS can be written as a function of for-

warding matrix and precoder matrix. ThereforeB = (HRBFHMRP)H(HRBFRxF
HHH

RB+

Rξ)
−1. Substituting this result into (24), the uplink MSE is simplified as

MSEU (F,P)

= Tr(IL)− Tr((HRBFHMRP)H(HRBFRxF
HHH

RB +Rξ)
−1(HRBFHMRP)).

(26)

Based on the definition of Rx = HMRPPHHH
MR +Rn, it can be expressed

as

Rx = R1/2
n (R−1/2

n HMRPPHHH
MRR

−1/2
n + I

︸ ︷︷ ︸

,Ξ

)R1/2
n . (27)

Now introducing F̃ = FR
1/2
n Ξ1/2, the MSE (26) becomes

MSEU (F̃,P) =Tr(IL)− Tr((HRBF̃Ξ
−1/2R−1/2

n HMRP)H

× (HRBF̃F̃
HHH

RB +Rξ)
−1(HRBF̃Ξ

−1/2R−1/2
n HMRP)). (28)

Thus the uplink beamforming design optimization problem (25) is rewritten as

min
F̃,P

MSEU (F̃,P)

s.t. Tr(PkP
H
k ) ≤ Ps,k, k = 1, · · · ,K

Tr(F̃F̃H) ≤ Pr

P = diag{[P1, · · · , PK ]}. (29)

Unfortunately, the optimization problem (29) is still nonconvex for F̃ and P,

and thus there is no closed-form solution. However, notice that if either F̃ or

P is fixed, the optimization problem is convex with respect to the remaining

variable. Therefore, an iterative algorithm which designs F̃ and P alternatively,

is proposed as follows.

13



(1) Design F̃ when P is fixed

From (28), it is noticed that F̃ appears both inside and outside of the inverse

operation. In order simplify the objective function, we use the following variant

of matrix inversion lemma

CH(CCH +D)−1C = I− (CHD−1C+ I)−1. (30)

Taking C = HRBF̃ and D = Rξ, the MSE (28) can be reformulated as [27]

MSEU (F̃,P) =Tr((Ξ−1/2R−1/2
n HMRP)(Ξ−1/2R−1/2

nr
HMRP)H

× (F̃HHH
RBR

−1
ξ HRBF̃+ I)−1) + Tr((PHHH

MRR
−1
n HMRP+ I)−1).

(31)

Now, F̃ only appears inside the matrix inverse. If P is fixed, the last term of

(31) is independent of F̃, and the optimization problem (29) becomes

min
F̃

Tr((Ξ−1/2R−1/2
n HMRP)(Ξ−1/2R−1/2

n HMRP)H
︸ ︷︷ ︸

,Θ

(F̃H HH
RBR

−1
ξ HRB

︸ ︷︷ ︸

,M

F̃+ I)−1)

s.t. Tr(F̃F̃H) ≤ Pr. (32)

Based on eigen-decomposition, Θ = UΘΛΘUH
Θ and M = UMΛMUH

M, and

defining

ΛF̃ , UH
MF̃UΘ, (33)

the optimization problem (32) can be simplified as

min
Λ

F̃

Tr(ΛΘ(ΛH

F̃
ΛMΛF̃ + I)−1)

s.t. Tr(ΛF̃Λ
H

F̃
) ≤ Pr. (34)

Without loss of generality, the diagonal elements of ΛΘ and ΛM are assumed to

be arranged in decreasing order. The closed-form solution of (34) can be shown

to be [27]

ΛF̃ =






[(
1

√
µf

Λ̃
−1/2

M Λ̃
1/2

Θ − Λ̃
−1

M

)+
]1/2

0L,NR−L

0NR−L,L 0NR−L,NR−L




 , (35)
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where Λ̃Θ and Λ̃M are the L×L principal submatrices of ΛΘ and ΛM, respec-

tively. The scalar µf is the Lagrange multiplier which makes Tr(ΛF̃Λ
H

F̃
) = Pr

hold. Based on (33) and (35), the optimal F̃ can be recovered as

F̃ = UM,L

[(
1

√
µf

Λ̃
−1/2

M Λ̃
1/2

Θ − Λ̃
−1

M

)+
]1/2

UH
Θ,L, (36)

where UM,L and UΘ,L are the first L columns of UM and UΘ, respectively.

Finally, the optimal F is given by F = F̃Ξ−1/2R
−1/2
n .

(2) Design P when F̃ is fixed

Since Ξ in (28) depends on P, the MSE expression in (28) is a complicated

function of P, direct optimization of P seems intractable. However, based on

the property of trace operator Tr(DC) = Tr(CD), the total MSE (28) can be

reformulated as [31]

MSEU (F̃,P)

=Tr(IL)− Tr((HRBF̃)
H(HRBF̃F̃

HHH
RB +Rξ)

−1

×HRBF̃)(Ξ
−1/2 R−1/2

n HMRPPHHH
MRR

−1/2
n

︸ ︷︷ ︸

=Ξ−I

Ξ−1/2))

=Tr(IL)− Tr((HRBF̃)
H(HRBF̃F̃

HHH
RB +Rξ)

−1HRBF̃)(INR
−Ξ−1)). (37)

Substituting the definition of Ξ into (37), the MSE can be further rewritten as

MSEU (F̃,P)

=Tr((HRBF̃)
H(HRBF̃F̃

HHH
RB +Rξ)

−1(HRBF̃)
︸ ︷︷ ︸

,Π

× (R−1/2
n HMRPPHHH

MRR
−1/2
n + INR

)−1)

+ Tr(IL)− Tr((HRBF̃)
H(HRBF̃F̃

HHH
RB +Rξ)

−1(HRBF̃)), (38)

where P only appears inside of the inverse operation. As the last two terms of

(38) are independent of P, the optimization problem for P is

min
P

Tr(Π(R−1/2
n HMRPPHHH

MRR
−1/2
n + INR

)−1)

s.t. Tr(PkP
H
k ) ≤ Ps,k k = 1, · · · , K

P = diag{[P1, · · · , PK ]}. (39)
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With the definitions of HMR and P,

HMRPPHHH
MR =

K∑

k=1

{HMR,k PkP
H
k

︸ ︷︷ ︸

,Qk

HH
MR,k}. (40)

Putting (40) into (39), the optimization problem becomes

min
Qk

Tr(Π(R−1/2
n

K∑

k=1

{HMR,kQkH
H
MR,k}R−1/2

n + INR
)−1)

s.t. Tr(Qk) ≤ Ps,k, k = 1, · · · ,K,

Qk � 0. (41)

Using the Schur-complement lemma [32], the optimization problem (41) can be

further formulated as a standard SDP optimization problem [31]

min
X,Qk

Tr(X)

s.t.




X Π1/2

Π1/2 R
−1/2
n

∑

k{HMR,kQkH
H
MR,k}R

−1/2
n + INR



 � 0

Tr(Qk) ≤ Ps,k, k = 1, · · · ,K

Qk � 0. (42)

The SDP problems can be efficiently solved using interior-point polynomial al-

gorithms [26].

In summary, when NM,k ≤ Lk, the uplink beamforming design alternates

between the design of F̃ in (36) and Qk in (42). The algorithm stops when

‖MSEI
U − MSEI+1

U ‖ ≤ TU , where MSEI
U is the total MSE in the Ith iteration

and TU is a threshold value. After convergence, Pk = Q
1/2
k , F = F̃Ξ−1/2R

−1/2
n

and B = (HRBFHMRP)H(HRBFRxF
HHH

RB +Rξ)
−1. We refer the algorithm

in this section as Algorithm 2.

Remark 1: In case NM,k > Lk, there is an additional constraint Rank{Qk} ≤
Nk in (41). In this case, as rank constraints are nonconvex, transition from

(41) to (42) involves a relaxation on the rank constraint. Then the objective

function of (42) is a lower bound of that of (41). However, this problem seems
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to be common to all multiuser MIMO uplink beamforming [21], [23]. Notice

that when NM,k ≤ Lk, there is no relaxation involved.

3.3. Special cases

Notice that (36) has a more general form than the water-filling solution in

traditional point-to-point MIMO systems. On the other hand, (42) is a SDP

problem frequently encountered in multiuser MIMO systems. In particular, they

include the following existing algorithms as special cases.

• If HRB = IL and Rξ = 0L,L, we have Π = IL in (41), and the SDP optimiza-

tion problem (42) reduces to that of the uplink multiuser MIMO systems [21],

[23]. Therefore, they have the same solution.

• Substituting K = 1 and P = IL1
into (36), it reduces to the solution proposed

for LMMSE joint design of relay forwarding matrix and destination equalizer in

AF MIMO relay systems without source precoder [3].

• Notice that when there is only one mobile terminal (K = 1), the optimiza-

tion problem (39) is in the same form as (32). Defining HH
MRR

−1
n HMR =

UMRΛMRU
H
MR, and Π = UΠΛΠUH

Π, a closed-form solution can be derived

using the same procedure as for F̃, and we have

P = UMR,L

[(
1

√
µp

Λ̃
−1/2

MR Λ̃
1/2

Π − Λ̃
−1

MR

)+
]1/2

(43)

where the Λ̃MR and Λ̃Π are the L× L principal submatrices of ΛMR and ΛΠ,

respectively, and the matrix UMR,L is the first L columns of UMR. The scalar

µp is the Lagrange multiplier which makes Tr(PPH) = Ps,1 hold. In this case,

the solution given by (43) corresponds to the source precoder design for AF

MIMO relay systems with single user [5].

• Furthermore, substituting HRB = IL and Rξ = 0L,L into (43), it becomes

the closed-form solution for LMMSE transceiver design in point-to-point MIMO

systems [17].
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4. Simulation Results and Discussions

In this section, we investigate the performance of the proposed algorithms for

downlink and uplink. In the simulations, there is one BS, one relay station and

two mobile terminals. For each mobile terminal, two independent data streams

will be transmitted in the uplink (or received in the downlink) simultaneously.

For each data stream, 10000 independent QPSK symbols are transmitted. The

elements of MIMO channels between BS and relay station and between relay

station and mobile terminals are generated as independent complex Gaussian

random variables with zero mean and unit variance. Each point in the following

figures is an average of 500 independent channel realizations. In order to solve

SDP problems, the widely used optimization matlab toolbox CVX is adopted

[33]. The thresholds for terminating the iterative algorithms are set at TD =

TU = 0.0001.

First, let us focus on the downlink. In downlink, the noise covariance ma-

trices at relay station and mobile terminals are Rη = σ2
ηINR

and Rv1
= Rv2

=

σ2
vINM

, respectively. We define the first hop SNR at the relay station as Ps/ση
2,

and the second hop SNR at mobile terminals as Pr/σ
2
v . Fig. 3 shows the conver-

gence behavior of the proposed Algorithm 1 for downlink with different second

hop SNR at mobile terminals when NB = 4, NR = 4, NM,k = 2. Both initial-

izations with identity matrices and the separate LMMSE design are shown. It

can be seen that the proposed algorithm converges quickly, within 20 iterations.

Furthermore, the convergence speed with separate LMMSE design as initializa-

tion is faster than that with identity matrices. It can also be seen that the two

initializations result in the same MSE after convergence.

Fig. 4 compares the total data MSEs of the proposed Algorithm 1 and several

suboptimal algorithms versus the first hop SNR Ps/σ
2
η. The second hop SNR at

mobile terminals is fixed to be 20dB. The number of antennas is set as NB = 4,

NR = 4 and NM,k = 2. The suboptimal algorithms under consideration are

• Direct amplify-and-forward, in which the precoder T at BS and forwarding

matrix W at relay are proportional to identity matrices. At mobile terminals,
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LMMSE equalizer for the combined first hop and second hop channel is adopted

to recover the signal [3].

• The first hop channel is equalized at relay and then the second hop channel

is equalized at mobile terminals, both with LMMSE equalizers.

• Separate LMMSE design proposed for initialization of Algorithm 1.

From Fig. 4, it can be seen that as there is no precoder design at BS for the first

two suboptimal algorithms, the data streams at different terminals cannot be

efficiently separated by linear equalizers, resulting in poor performances. The

separate LMMSE transceiver design has a much better performance. On the

other hand, the proposed Algorithm 1 has the best performance among the four

algorithms. The gap between the MSEs of the separate LMMSE design and

that of Algorithm 1 is the performance gain obtained by additional iterations.

As the proposed Algorithm 1 involves a computational expensive SDP for the

precoder T design, it is of great interest to investigate how much degradation

would result from skipping the precoder design. Fig. 5 compares the total

data MSEs of the proposed Algorithm 1 and the same algorithm but fixing the

precoder T ∝ I. The second hop SNR at mobile terminals Pr/σ
2
v is fixed to be

20dB. From Fig. 5, it can be seen that a properly designed precoder significantly

improves the system performance when the first hop SNR is high. Without the

precoder, the data MSEs exhibit error floors at much lower Ps/σ
2
η. On the

other hand, we can also see that increasing the number of antennas at the relay

station greatly improves the system performance, as it simultaneously increases

the diversity gain of the two hops.

Now, let us turn to the results in the uplink. In uplink case, the noise

covariance matrices at relay station and BS are Rn = σ2
nINR

and Rξ = σ2
ξINB

,

respectively. We define the fist hop SNR at the relay station as Ps/σn
2, where

Ps =
∑K

k=1 Ps,k. The second hop SNR at the BS is defined as Pr/σ
2
ξ .

Fig. 6 shows the convergence behavior of the proposed Algorithm 2 for uplink

when NB = 4, NR = 4 and NM,k = 2. Notice that in this case, at each

mobile terminal the number of antennas equals to that of the data streams,

and Algorithm 2 involves no relaxation. The initialization is identity matrices.
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It can be seen that Algorithm 2 converges very fast, indicating its superior

performance.

Fig. 7 shows the total data MSEs of the proposed Algorithm 2 and subopti-

mal algorithms, when NB = 4, NR = 4, NM,k = 2 and the SNR at relay station

Ps/σ
2
n is fixed to be 20dB. The suboptimal algorithms are similar to those for

the downlink. In particular, we consider

• Equalization of the equivalent two-hop channel is applied only at the BS.

• Equalization is applied at relay station for the mobile-to-relay channel, and

also at BS for the relay-to-BS channel.

• Separate LMMSE design. The first hop is considered as a traditional multiuser

MIMO uplink system, and the beamforming matrices are designed using the

algorithms in [19] and [21]. The second hop is considered as a point-to-point

MIMO system, and the beamforming matrices are designed using the result in

[17].

From Fig. 7, it can be seen that the performance of the proposed Algorithm 2 is

better than other suboptimal algorithms. However, as the signals from different

terminals are cooperatively detected at BS, the gaps between the performance of

the suboptimal algorithms from that of Algorithm 2 is much smaller compared

to their counterparts in downlink.

When Lk < NM,k in the uplink, strictly speaking, Algorithm 2 involves a

relaxation, and its performance is not guaranteed. However, a simple variation

of Algorithm 1 can be used for beamforming design in this case. Fig. 8 shows the

total data MSEs of Algorithm 1 for uplink and Algorithm 2 with rank relaxation,

when Lk = 2 and NM,k = 4. The SNR at BS is fixed at Pr/σ
2
ξ=20dB. The joint

relay forwarding matrix and destination equalizer design in [3] is also shown for

comparison. It can be viewed as a design without source precoders at mobile

terminals. From Fig. 8, it can be seen that Algorithm 1 and Algorithm 2,

which involve the joint design of precoder, forwarding matrix and equalizer

perform better than the algorithm in [3]. This indicates the importance of

source precoder design in AF relay cellular networks. Furthermore, although

Algorithm 2 involves a relaxation, its performance is still satisfactory, and is
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close to that of Algorithm 1. Finally, it can also be concluded that increasing

the number of antennas at relay station can greatly improve the performance of

uplink beamforming design for all algorithms.

5. Conclusions

In this paper, LMMSE beamforming design for amplify-and-forward MIMO

relay cellular networks has been investigated. Both uplink and downlink cases

were considered. In the downlink, precoder at base station, forwarding matrix

at relay station and equalizer at mobile terminals were jointly designed by an

iterative algorithm. On the other hand, in the uplink case, we demonstrated

that in general the beamforming design problem can be solved by an iterative

algorithm with the same structure as in the downlink case. Furthermore, for the

fully loaded or overloaded uplink systems, a novel beamforming design algorithm

was derived and it includes several existing algorithms for conventional point-

to-point or multiuser systems as special cases. Finally, simulation results were

presented to show the performance advantage of the proposed algorithms over

several suboptimal schemes.
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Figure 1: Amplify-and-forward MIMO relaying cellular network.
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Figure 2: Amplify-and-forward MIMO relaying downlink and uplink cellular systems.
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Figure 3: The convergence behavior of the proposed Algorithm 1 when NB = 4, NR = 4 and

NM,k = 2 with 2 users.
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Figure 4: Total MSEs of detected data of the proposed Algorithm 1 and suboptimal algo-

rithms, when NB = 4, NR = 4, NM,k = 2 and Pr/σ2
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