
Critical moment definition and estimation,
for finite size observation of log-exponential-power law

random variables

Florian Angeletti, Eric Bertin, Patrice Abry
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Abstract

This contribution aims at studying the behaviour of the classical sample moment estimator,
S(n, q) =

∑n
k=1X

q
k/n, as a function of the number of available samples n, in the case

where the random variables X are positive, have finite moments at all orders and are
naturally of the form X = expY with the tail of Y behaving like e−yρ . This class of
laws encompasses and generalizes the classical example of the log-normal law. This form
is motivated by a number of applications stemming from modern statistical physics or
multifractal analysis. Borrowing heuristic and analytical results from the analysis of
the Random Energy Model in statistical physics, a critical moment qc(n) is defined as
the largest statistical order q up to which the sample mean estimator S(n, q) correctly
accounts for the ensemble average EXq, for a given n. A practical estimator for the critical
moment qc(n) is then proposed. Its statistical performance are studied analytically and
illustrated numerically in the case of i.i.d. samples. A simple modification is proposed to
explicitly account for correlation amongst the observed samples. Estimation performance
are then carefully evaluated by means of Monte-Carlo simulations in the practical case of
correlated time series.

Key-Words: Critical moment, finite size effect, dominant contribution, estimation.

1. Introduction

Motivation. Estimating moments of a given order q > 0 from a finite size observation
of a given times series {Xk, k = 1, . . . , n} appears as both a natural and simple problem.
In the general and common case where little a priori is known nor assumed on the data,
the classical sample moment estimator for the order q,

S(n, q) = 1
n

n∑
k=1

Xq
k

is natural to use (positive random variables X, with finite moments of all orders only are
considered, for reasons made explicit below). Probability theory provides practitioners
with valuable results regarding the performance of the sample mean estimator, notably in
Preprint submitted to Elsevier November 3, 2018

ar
X

iv
:1

10
3.

50
33

v1
  [

m
at

h.
ST

] 
 2

5 
M

ar
 2

01
1



the asymptotic limit of an infinite observation duration, n→ +∞ (cf. e.g., [5]): The weak
law of large numbers shows that the estimator is consistent; The central limit theorem
further precisely quantifies the asymptotic limit. However, such results can also be read
as relevant solutions to a rather abstract situation where one is interested in a particular
statistical order q and may have at disposal an observation of potentially infinite length.
In practice, the natural situation can often be formulated in a converse way: Practitioners
often work hard to obtain an observation of length n and can naturally wonder how
large is the order of moments that can actually be estimated correctly given the observed
{Xk, k = 1, . . . , n}. This dialectic opposition between the theoretical results and the
practical questions is sketched in Fig. 1.

Even for the case of interest here where all moments are finite, EXq < +∞, it is
well-known that the correct estimation of moments of all orders is impossible, from any
finite size observation. Indeed, for a fixed n,

S(n, q) ∼
q→+∞

1
n

max
k=1,...,n

Xq
k 6= E [Xq] .

This behavior that can be referred to as a linearization effect, as for fixed n, the practical
plot, log q vs. logS(n, q) systematically appears as a straight line, in the limit q → +∞.
Therefore, a natural question stems: Given an observation of finite size n,up to which
order moments can actually be correctly estimated ? When X belongs to a class of, say,
simple random variables (defined by the fact that their characteristic function is analytic
in 0), and for i.i.d. observations, a bound is given in [16]:

qc(n) ∝ lnn
2 ln lnn. (1)

Though a valuable result, this remains of limited practical use as it is restricted to
i.i.d. observations belonging to a simple class, and, first and foremost, consists of an
asymptotical result with no explicit prefactor.

Surprisingly, this question seems to have received little research efforts. In common
real world data analysis, this is however a question of obvious interest. This is notably the
case in scale invariance analysis, increasingly used in many applications of very different
natures (cf. e.g., [1] and references therein for a review), where scaling is measured
via the dependence with respect to the analysis scale a of the moments of order q of
multiresolution quantities computed from the observation {Xk, k = 1, . . . , n}. Such an
issue also appears, though in a less obvious way, in the physics of disordered systems,
a representative example of which being the so-called Random Energy Model (REM)
[9, 19], where the partition function

Z(n, β) =
∑
k

exp(βYk), (2)

(a fundamental quantity in the statistical physics framework) needs to be evaluated, with
β = 1/kBT , T the temperature of the system and kB the Boltzmann constant. The
variables Yk are (the opposite of) random energies, drawn from a Gaussian distribution
in the original version of the model [9]. Such a choice leads to a log-normal statistics for
the variables Xk = exp(βYk). The REM has however been extended to other random
variables, such as log-exponential-power laws, obtained by choosing a distribution of Yk

2



0 2 4 6 8 10
lnn

0

2

4

6

8

10

q

q
c

empirical

Law of large numbers

0 2 4 6 8 10 12
q

0

15

30

45

60

75

ln
S

(n
,q

)

Figure 1: (n, q) plane and linearization effect. Left, theoretically, the performance of the sample
moment estimator S(n, q) are characterized, for a given q, in the limit n → +∞, i.e., moving along a
horizontal line in the (n, q) plane. Practically, however, the central limit issue consists of determining how
large is the order q of the moments that can actually be correctly estimated, from a given observation of
finite size n, i.e., moving along a vertical line in the (n, q) plane. Right, practically, in the limit q → +∞,
for a fixed n, lnS(n, q) necessarily behaves as a linear function of q, this is illustrated here for a log-normal
distribution with three different values of n ( n = 102 (red circle), n = 103 (green square), n = 106 (blue
triangle) ; the solid black lines show the theoretical lnEXq ). It shows that both the slope of the linear
behavior and the departure from lnEXq depend on n. This contribution aims at defining and estimating
practically a critical order qc(n) up to which the sample moment estimator correctly accounts for the
ensemble mean EXq .

with a tail p(y) ∼ exp(−cyδ), with δ > 1 and c > 0, when y → +∞ [7]. This similarity
between the REM and the moment estimator issue raised above stems from the close
resemblance between the partition function Z(n, β) and the sample moment estimator
S(n, q) for random variables Xk = expYk, with Yk belonging to the simple class.

Another interesting example stems from multifractal analysis. Indeed, popular mul-
tifractal processes are defined from the celebrated Mandelbrot multiplicative cascades
(cf. e.g., [18, 11]), where the multipliers entering the construction of the cascade are also
chosen as X = exp(−Y ).

Goals, Contributions and Outline. In this context, the present contribution first
aims at defining a critical order qc(n) up to which moments of order q can be estimated
from a given finite size observation of length n, belonging to the class of positive RV
X = expY , where the class of RV to which Y belongs is precisely defined in Section 2.
The definition of the critical order qc(n) is based on a detailed heuristic argumentation
borrowed from the analysis of the REM [9, 19] and is also strongly grounded on the
thorough theoretical asymptotic analysis conducted in [3]. This construction is detailed
in Section 3. Second, a procedure for the practical estimation of qc(n) from a finite
duration observation is devised and its performances are studied theoretically in the
case of i.i.d. observations (cf. Section 4). Third, the estimation procedure is slightly
modified to account for potentially dependent observations and its performances are
thoroughly studied by means of Monte-Carlo simulations (cf. Section 5). The Matlab
practical procedure implementing estimation will be made available publicly at the time
of publication.
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2. Class of random variables

Log-normal. As mentioned in Section 1 above, the typical example of interest here
is that of log-normal random variables X. In that case, Y = lnX simply consists of a
normal random variable, whose cumulative distribution FY satisfies ln(1−FY (y)) ≈ y2/2
for y →< +∞. In the present contribution, following extensions naturally encountered in
both the REM and Multifractal contexts and the theoretical framework envisaged in [3],
a much larger class of random variables is considered by extending the log-normal case
in two ways: The power law behavior y2 is extended to yρ. The power-law behaviour is
defined through asymptotic properties which capture the essential characteristics of exact
power-law.

log-exponential-power law. The class of log-exponential-power law random variables
X is defined as follows:

X = expY, (3)

where the cumulative distribution function of Y , FY is assumed to be a continuous
function that satisfies:

1− FY (y) = e−h(y). (4)

Furthermore, the function h is required to verify:

h(y) = L(y)yρ, with ρ > 1, (5)

where L is a slowly varying function (cf. e.g., [4]), i.e., a function satisfying

∀t, lim
y→+∞

L(ty)
L(y) = 1.

In addition, for technical reasons made clearer in Section 3, this class is slightly restricted
to twice-differentiable functions L satisfying:

lim
y→+∞

y
L′(y)
L(y) = 0, (6)

lim
y→+∞

(
y
L′(y)
L(y)

)′
= 0. (7)

These condition impose a certain form of regularity on the derivative of L. Notably
Eq.(6) excludes slowly varying function with increasingly fast oscillations. Similarly Eq.(7)
constraints the behaviour of L′′ with respect to L and L′.
Consequences. From the definition above, a number of properties for the random
variables Y and hence X can be derived. The probability density function pY of Y reads:

pY (y) = h′(y)e−h(y). (8)

All moments of X are finite and can be written as:

E [Xq] =
∫ +∞

−∞
h′(y)eqy−h(y)dy =

∫ +∞

−∞
h′(y)eqy−y

ρL(y)dy. (9)
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Nevertheless, the moment generating function of X,

E
[
etX
]

=
∫ +∞

0
h′(y)et exp(y)−L(y)yρdy, (10)

is finite on R− only and its characteristic function is hence not analytical in 0 (see [17]
for more detailed consequences).
Interpretation. Eq.(5) together with Conditions (6) and (7) essentially control the
behavior of the right tail of the distribution of Y and hence define a broad class of
random variables X, whose moments are all finite, but with characteristic function not
analytical at zero. The interest of that class of random variables hence stems from its
lying between the simple class of random variables, whose moments are all finite and
whose tail decreases exponentially fast (whose characteristic function is hence analytic at
zero, e.g., the absolute value of normal random variables) and the so-called heavy tailed
class, whose moments remain finite only up to a given order (such as e.g., the Pareto
distribution). The parameter ρ plays a key role in studying that evolution from simple to
heavy tail: while, strictly speaking, both classes are excluded from the class studied here,
they can be approached by letting ρ→ +∞ and ρ→ 1, respectively.

Local power law exponent. In Definition (5), the parameter ρ is naturally referred
to as the power-law exponent. However, in the course of the study reported below, a local
power-law exponent, defined as follows, will play a crucial role, where local refers to a
pre-asymptotic behavior, i.e., for finite y:

ρl(y) = ∂ ln h(y)
∂ ln y = yh′(y)

h(y) . (11)

It is straightforward to verify that Conditions (6) and (7) imply:

lim
y→+∞

ρl(y) = ρ, (12)

lim
y→+∞

ρ′l(y) = 0. (13)

Examples. In the numerical analyses conducted in Sections 4 and 5 below, two explicit
examples of ρ-parametrized families of such random variables X are used.

• The log-Weibull distribution defined as:

F (y) = 1− e−y
ρ

, with ρ > 1, y > 0. (14)

This notably implies that the local power exponent is constant

∀y, ρl(y) ≡ ρ.

• The strict log-exponential-power law distribution defined as:

FY (y) = 1
2Γ(1 + 1/ρ)

∫ y

−∞
e−|t|

ρ

dt, with ρ > 1 (15)
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where Γ denotes the gamma function [21]. This implies that its probability density
function reads:

pY (y) = ρ

2Γ(1 + 1
ρ )
e−|y|

ρ

. (16)

It can be shown that using the asymptotic properties of the incomplete γ functions
that

lim
y−→+∞

ρl(y) = ρ.

• The log-normal distribution corresponds to a special case of the strict log-exponential-
power law family, with ρ = 2. The following relations can be derived:

h(y) = ln 2− ln erfc( y√
2

),

ρl(y) = 2 y exp(−y2/2)√
2πerfc(y/

√
2)
.

The asymptotic form of the complementary error function erfc, in the limit y → +∞
: erfc(y) ∼ exp(−y2)√

2πy yields:

h(y) ∼ ln 2 + y2

2 + ln(
√

2πy),

lim
y→+∞

ρl(y) = 2.

3. Critical order: combining dominant contribution to finite size effects and
truncated moments.

This section aims at unveiling a change in the behaviour of the sample mean moment
estimator,

S(n, q) = 1
n

n∑
k=1

Xq
k , (17)

in the (q, n) plane, for a critical curve qc(n), that hence depends on the observation sample
size n. This is obtained by combining a a moment dominant contribution argument to a
truncated moment finite size effect analysis. This analysis is strongly inspired by those
commonly conducted in statistical physics, notably for the study of the Random Energy
Model [9] and closely resembles a glass transition.

3.1. Moment dominant contribution
The behavior of the moment of order q of X can first be related to the tail of its

distribution and hence to h(y). Eq.(9) can be rewritten as:

E [Xq] =
∫ +∞

0
eqy−h(y)+lnh′(y)dy. (18)
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Using a saddle-point technique [8], in the limit q → +∞, enables one to evaluate the
integral above as (technical proof detailed in Appendix A):

E [Xq] ∼
q→+∞

√
2π

h′′(y∗) + (ln h′)′′(y∗) exp (qy∗ − h(y∗) + ln h′(y∗)) , (19)

where y∗ is determined by

q − h′(y∗) + h′′

h′
(y∗) = 0. (20)

Qualitatively, y∗ denotes the value of y that essentially contributes to the moment
of order q, E [Xq]. Eq. (20) implicitly defines a relation y∗(q), that depends only on
the precise details of the distribution of Y . Because Condition (7) imposed in Section 2
precisely aims at constraining its amplitude, the term h′′/h′ can be read as a correction,
depending of the fine local behavior of pY . Indeed, under this condition, one can show
that:

lim
y→+∞

h′′(y)
h′(y) = 0,

which hence implies that:
h′(y∗) ≈ q. (21)

3.2. Finite size effect: truncated moments and sample moment estimator
Let us consider a finite size observation of n i.i.d. observations {Yk, k ∈ 1 . . . n}. Its

samples lie between empirical minimum and maximummk = min{Yk} andMk = max{Yk}.
A finite size observation thus explores only a bounded range of values in the existence
domain of y. When n → +∞, the bounds of this range naturally extend to cover the
entire domain of definition of FY . However, for finite n, this bounded range is likely to
affect the properties of the sample mean estimator for a given q, if the information needed
to evaluate this moment (qualitatively y∗) lies beyond the observed Mk. This section
aims at detailing and quantifying this statement as well as at drawing its consequence in
terms of sample moment estimator properties.

3.2.1. Finite size accessible range
Let us first define a frontier beyond which the probability to observe a sample Yk = y

within a finite size observation is low. Let τ denote an arbitrary positive constant, that
controls the probability that max{Yk, k = 1, . . . , n} exceeds a frontier y†τ :

Prob
(
∀k = 1, . . . , n, Yk < y†τ

)
= e−τ .

Using the independence of the {Yk, k ∈ 1 . . . n} and the relation above yields, 1−F (y†τ ) =
τ
n + o( 1

n ), or equivalently, h(y†τ ) = ln τ + lnn+ o(1). For the class of random variables
considered here (cf. Eq.(5)), for n→ +∞, one has: y†τ ∼

(
1 + ln τ

lnn
) 1
ρ y†1. This indicates

that it is natural to simply consider y†(n), defined as:

h(y†(n)) = lnn. (22)

which quantifies the upper bound of the tail of y actually likely to be observed from an
observation of finite size n. Let us note that y†(n) depends both on n and on the details
of the tail of the distribution of Y .

7



3.2.2. Truncated moments
Essentially, the finite size analysis above states that, for a given observation of finite

size n, the domain of existence of Y , R, must be split into two distinct subranges:

- (−∞, y†), a reachable range which contain most observed samples,1

- [y†,+∞), an unreachable range, within which the probability of observed samples
is very low.

This leads us to define the so-called truncated moments:

MT (n, q) =
∫ y†(n)

0
eqy−h(y)+lnh′(y)dy. (23)

This truncated moment provides an heuristic estimate of the typical value of the moments,
where the contributions of atypical term is removed.

3.3. Sample moment estimator and truncated moment
The sample moment estimator S(n, q) = (1/n)

∑n
i=1X

q
i for an observation of n i.i.d.

random variables Xi = eYi , in the class of power law exponential, of interest here, can
be related to the truncated moments as follows. Let q(n) denote a function of n that
satisfies:

∃ε > 0, q(n)� (lnn)2−1/ρ−ε, (24)

then, as n→ +∞,
lnS(n, q(n))

lnn
a.s→ lim

n→+∞

lnMT (n, q(n))
lnn . (25)

Essentially, this means that, asymptotically (n→ +∞), on condition that q does not grow
too fast (cf. Condition (24)), the (ln of the) sample moment estimator converges to the
(ln of the) truncated moment. The complete proof of this results is detailed in Appendix
B. In essence, it relies on the specific properties of the class of random variables studied
here and closely exploits in spirit the analogy with the REM, extending reasonings such
as those in [20].

3.4. Phase transition and critical moment
3.4.1. Critical frontier

Combining the moment dominant contribution evaluation (cf. Section 3.1) to finite
size truncation effects (cf. Section 3.2) yields two distinct situations depending on the
relative positions of y∗(q) and y†(n), and hence separated by:

y†(n) = y∗(qc). (26)

This equality implicitly defines a frontier that splits the (q, n) plane, introduced in Sec-
tion 1, into two zones corresponding to different behaviours of the truncated moments (in

1For positive moments, the positives value of Y play a dominant role, so one can focus of the positive
frontier y†. However, a natural extension to negative moments would introduce the negative counterpart
y†− of y† which would play an exactly symmetric role.
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the REM framework, this is a phase transition). This frontier can either be formulated as
a critical order qc(n) or as a critical size nc(q).

For y∗(q) ≤ y†(n) (equivalently for q ≤ qc(n)), the saddle-point argument enables, as
detailed in Appendix A, the evaluation of MT as

lnMT (n, q) = qy∗(q)− h(y∗(q)) + ln h′(y∗(q)), (27)

which by comparison to Eq. (19), is hence shown to correspond to lnE [Xq]. By nature,
the saddle-point argument implies q → +∞, which combined to q ≤ qc(n) yields that the
result above is valid for q → +∞, n→ +∞, with q ≤ qc(n).

Conversely, when y∗(q) ≥ y†(n) (equivalently for q ≥ qc(n)), the dominant contribution
to MT (n, q) is no longer controlled by y∗(q) but instead by the border of the integration
domain y†(n). Therefore, the saddle-point argument now yields, in the limits q → +∞,
n→ +∞, with q ≥ qc(n) :

lnMT (n, q) = qy†(n)− h(y†(n)) + ln h′(y†(n)). (28)

This clearly shows that lnMT depends linearly on q, for large q.

3.4.2. Sample moment estimator
The almost sure convergence established in Eq. (25), and proven to be valid regardless

of the relative values of y∗(q) and y†(n), indicates that the phase transition is also
transferred to the behaviour of the sample moment estimator, which reads, in the limits
q → +∞, n→ +∞, with qM (n) = (lnn)2−1/ρ−ε satisfying Condition (24):

lnS(n, q) ≈
{

lnE [Xq] q ≤ qc(n)
(lnnρ) qqc qc(n) ≤ q ≤ qM (n).

(29)

As can be seen comparing Eqs. (24) and (34) below, for ε ∈ (0, 1) qc(n) � qM (n).
Therefore, for a large range of qs, the sample moment estimator S(n, q) correctly estimates
the ensemble average EXq for q ≤ qc(n), while lnS(n, q) behaves linearly in q when
q ≥ qc(n).

This phase transition is illustrated in Fig. 2 from numerical simulations. A large
number of independent realizations of n i.i.d. log-normal RV X enable to compute an
average value of lnS(n, q), for various n and q. This average can further be compared
to lnE [Xq]. This clearly validates that for q < qc(n), lnS(n, q) corresponds to lnE [Xq],
while lnS(n, q) becomes significantly lower than lnE [Xq] for q > qc(n) and behaves
linearly in q. Results obtained for various n can be superimposed by plotting lnS(n, q)
and lnE [Xq] as a function of q/qc(n) rather than as a function of q, where qc(n) is
obtained by solving numerically Eq. (26) for each n.

3.4.3. Critical moment
Combining Eq. (26) with Eqs. (20) and (22) yields:

qc
lnn = 1

y†
y†h′(y†)
h(y†) − h′′(y†)

h(y†)h′(y†) (30)

9
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Figure 2: Quantitative predictions for the linearization effect. Left, E lnS(n, q) as a function of
q, with predicted values of qc, for three different values of n: n = 102 (red circle), n = 103 (green square),
n = 106 (blue triangle) ; the solid black lines show the theoretical lnEXq. Right, E [lnS(n, q)]/E [Xq ]
as a function of q/qc, for the same 3 different values of n. E lnS(n, q) is obtained from Monte-Carlo
simulations, with a Log-Normal distribution. These plots clearly validate the relevance of the defined
critical moments qc(n).

Given Conditions (6) and (7), the second term on the right side of the equation above
can be shown to be negligible compared to the first one. Moreover, on the right-hand-side
of Eq. (30), the local tail exponent ρl can be recognized:

y†h′(y†)
h(y†) = ρl(y†(n)). (31)

Further defining,
θ(n) = lnn

y†(n) , (32)

qc(n) can be approximated as:

qc(n) ' ρl(y†(n))θ(n), (33)

which will prove of particular interest for the practical estimation of qc(n).
As an interesting corollary, the growth rate of qc as a function of n and ρ can be

evaluated. Eq. (5) implies that there exists a slowly varying function L, closely related
to L, cf. [6], such that:

h−1(lnn) = L(lnn)(lnn)1/ρ,

Substituting this into Eq. (33) leads to

qc(n) = ρL(lnn)(lnn)1− 1
ρ . (34)

When ρ → +∞, this is reminiscent of Eq. (1), recalled in Section 1 and valid for the
simple class of random variables. However, when ρ decreases and approaches 1, this
critical moment qc increases far more slowly with n. As an example, for the log-normal
case, ρ = 2 implies that qc(n) ∝

√
lnn.
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4. Estimation

This section aims at defining an estimation procedure for qc(n) that can actually and
practically be used from a finite sample size observation {X1, . . . Xn}. Also, its statistical
performance are studied both theoretically and numerically.

In Section 3 above, it has been shown (cf. Eq. (33)) that qc(n) can naturally be split
into two components θ(n) and ρl(y†(n)). An estimation procedure is hence devised and
studied independently for each components in Sections 4.1 and 4.2, respectively, yielding
an estimate of qc as a product of the estimates (cf. Section 4.3).

4.1. Estimation of θ
4.1.1. Definition

A straightforward calculation not reported here shows that y†(n) = h−1(lnn) =
F−1
Y (1 − 1

n ), which indicates that the definition of θ (cf. Eq. 32) can be rewritten in
terms of the (1− 1/n)-th quantile of the distribution of Y :

θ = lnn
F−1
Y (1− 1

n )
. (35)

The estimation of θ can, therefore, essentially be recast into that of (the inverse of) the
(1− 1

n )-th quantile of Y .
Classically, the p-th quantile is estimated, from an observation of sample size n, using

the order statistics of rank [p.n] [5]. In the present context, this amounts to using the
largest value of the observation,

MY,n = Max {Y1, . . . , Yn}, (36)

as an estimate of the (1− 1
n )-th quantile. For the class of random variables Y considered

here, MY,n belongs to the domain of attraction of Gumbel law [10, 13, 12]. This implies
that there exists a sequence an ≥ 0 such that [MY,n − F−1

Y (1 − 1
n )]/an converge in

distribution towards a Gumbel distribution with a cumulative function F (x) = exp(−e−x).
Consequently,

lim
n→+∞

E

[
MY,n − F−1

Y

(
1− 1

n

)
an

]
= γ, (37)

where γ is the Euler-Mascheroni constant [21]. This straightforwardly indicates that MY,n

constitutes a biased estimator for F−1
Y (1− 1

n ) for finite sample size and that it is not, in
general, asymptotically consistent.

To overcome this drawback, the estimation procedure can be refined by involving
not only MY,n, but the k-largest values in the observation {Y1, . . . , Yn}. Therefore, let
{Yi,n, i = 1, . . . , n} denote the ordered list (in descending order) of the observation
{Yk, k = 1, . . . , n} and let kθ(n) be a function of n satisfying (for reasons made clear
later):

lim
n→+∞

kθ(n)
n

= 0. (38)

A parametrized collection of estimators of θ is defined as (with k ≡ kθ(n)):

θ̂(k) = lnn
Ωk

, (39)
11



where Ωk consist of linear combinations of the order statistics:

Ωk =
k∑
i=1

αiYi,n, with
k∑
i=1

αi ≡ 1. (40)

Obviously, the case k = 1 amounts to using MY,n only.

4.1.2. Performance: theoretical analysis
To study the performance of θ̂(k), it is needed to analyze the statistical properties of

Ωk, which can be rewritten as

Ωk = F−1
(

1− 1
n

)
+ an

∑
αiUi,

where
Ui =

Yi,n − F−1(1− 1
n )

an
.

In the limit n→ +∞, the {Ui, i = 1, . . . , k = kθ(n)} converge in distribution (D→) toward
a random vector:

(U1, . . . , Uk) D→ Λ(k) ≡ (G1, . . . Gk) ,

whose joint distribution reads [10, 12]:

pΛk(g1, . . . gk) = 1g1>···>gk exp
(
−e−gk −

∑
i

gi

)
. (41)

The change of variable Λ(k) ≡ {G1, . . . Gk} → Λ′(k) ≡ {{∆i = i(Gi−Gi+1), i = 1, . . . , k−
1}, Gk} yields:

pΛ′
k
(δ1, . . . δk−1, gk) = exp

(
−e−gk − kgk −

∑
i<k

δi

)
, (42)

which shows that asymptotically (n→ +∞), the {∆i, i = 1, . . . , k − 1} are independent.

From these definitions, a number of properties of Ωk, for k ≥ 2, have been derived
and are presented below.

Proposition 1. On condition that it is applied to a random vector that exactly follows
pΛk , the estimator Ωk that has minimal variance under the constraint that it is unbiased
for finite n (i.e., EΩk = F−1(1− 1

n ) or, equivalently, E
∑k
i=1 αiGi ≡ 0 ) is obtained by

setting {αi, i = 1 . . . , k} to: ∀i, i 6= k αi = γ−
∑k

l=1
1
l

k−1
αk = 1− (k − 1)α1

(43)
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This stems directly from the following results (whose proofs are postponed to Appendix
C.1)

E [Gk] = γ −
k−1∑
j=1

1
j
, (44)

Var [Gk] = π2

6 −
k−1∑
j=1

1
j2 , (45)

E [∆j ] = 1, (46)
Var [∆j ] = 1. (47)

Proposition 2. When n→ +∞, k → +∞ with k
n → 0, Ωk is consistent.

This is a direct consequence of the combination of Proposition 1 above with the fact
that for all random variables in the class studied in this contribution, the random vector
{Ui, i = 1, . . . , k} converges in distribution towards Λ(k). Proof is further detailed in
Appendix C.2.

Proposition 3. When n→ +∞, k → +∞ with k
n → 0, Ωk is asymptotically normal.

When applied to a random vector that exactly follows pΛk , Ωk can be split into

Ωk = Gk + αk
∑
i

∆i.

Using the fact that the vector {∆i, i = 1, . . . , k−1} consists of unit variance i.i.d. random
variables yields

Ωk + E [Gk]−Gk
(ζ(1; k − 1)− γ)2

D→ N (0, 1) where ζ(s;n) =
n∑
k=1

1
ks
.

and
E [Gk]−Gk

p→ 0.
This implies:

Ωk
(ζ(1; k − 1)− γ)2

D→ N (0, 1).

This shows that Ωk is normal for finite n when applied to a random vector that exactly
follows pΛk . Asymptotic normality in general follows from the convergence in distribu-
tion of {Ui, i = 1, . . . , k = kθ(n)} towards Λ(k). Proof is further detailed in Appendix C.2.

The consistency of θ(k) immediately follows from that of Ωk. However, it should be
noted that θ(k) is not asymptotically normal.

These analytical results are obtained with choices kθ(n) satisfying the constraint in
Eq. (38). Choosing precisely kθ(n) is however an intricate question that can be formulated
into a classical bias-variance trade-off one: Large k should yield low variances while small
k are needed to ensure convergence toward a law of extremes (Λ(k)) and hence a low bias.
This trade-off is now studied by means of Monte-Carlo simulations.

13
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Figure 3: θ̂(kθ) as a function of kθ: relative biases and MSEs. Left: Log-Weibull distribution;
Right: strict log-exponential-power law. From top to bottom: ρ = 1.2, 2, 4, n = 1000. Dashed lines:
relative biases; Solid line: relative MSEs. These plot essentially shows the benefits of increasing kθ from
1 to 2. They also indicate that kθ can be further increased with benefits as long as kθ � n. This is true
for all ρ.
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Figure 4: θ̂(kθ) as a function of ρ: relative biases and MSEs. Left: Log-Weibull distribution;
Right: strict log-exponential-power law. Top: relative MSEs; bottom: relative biases. n = 1000. Red ’◦’:
kθ = 1 ; green ’�’: kθ = 2 ; blue ’4’: kθ = 25 ; cyan ’♦’: kθ = 50. These plots show again the benefit of
increasing kθ from 1 to 2, and there exists an optimal kθ that depends essentially on n and weakly on ρ.

4.1.3. Performance: numerical analysis
Numerical simulations are conducted using both categories of examples, log-Weibull

and strict log-exponential-power law distributions, described in Section 2, for different
values of ρ, and different observation size n. For all simulations, 500 independent
realizations of n i.i.d. random variables are drawn.

From these, the (relative) biases, variances and mean square errors (MSE) of θ(k) are
evaluated and reported in Fig. 3. For both types of laws, it shows that, as expected from
the theoretical analysis above, increasing kθ from 1 to 2 yields a significant decrease in
bias, and hence in MSE. For kθ = 2, α1 ≈ α2 ≈ 1

2 , hence showing that a simple arithmetic
mean of the first and second largest observed values performs much better than the use
of the sole maximum MY,n. The bias only slightly further decreases when kθ is increased
beyond 2, before it finally increases again when kθ becomes non negligible compared to n.
Combining biases and variances, the MSEs show, for all ρ, the benefits of using kθ ≥ 2,
yet small, kθ � n, compared to kθ = 1 or to kθ too large (too close to n). Also, it can be
noted that the closer ρ to 1, the larger kθ needs to be to achieve the lowest MSEs.

Furthermore, Fig. 4 reports the relative MSEs (left) and biases (right) as a function
of ρ, for various choices kθ. Besides confirming that the benefit from using kθ = 2, or
slightly larger, against kθ = 1 is valid for all ρ, it also shows that biases and MSEs are
roughly constant for ρ ≥ 2, while, in most cases, significantly increasing when ρ→ 1+.

To finish with, Fig. 5 compares kθ,opt (i.e., kθ that yields the lowest MSE) to tentative
candidate functions for practical kθ(n): kθ(n) = 10 lnn − 40, kθ(n) = exp(

√
1.6 lnn).
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Figure 5: θ̂(kθ): kθ,opt and MSEs as a function of lnn. Left: Log-Weibull distribution; Right:
strict log-exponential-power law. Top: kθ,opt, bottom: MSE. Red ’◦’: kθ = exp(

√
1.6 lnn) ; green ’�’:

kθ,opt opt = min of MSE. ρ = 2. These plots show the relevance of the proposed empirical formulae for
kθ,opt(n).
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Though empirical, those formula hold, for both types of distributions, for a large range of
values of ρ (ρ ∈ [1.5, 3]) and of n, and can hence be used as rules of thumb for a practical
use of the estimator.

4.2. Estimation of ρl(y†(n))
4.2.1. Definition

For simplicity, ρl(y†(n)) is hereafter relabeled as ρE . From its definition (cf. Eq. (31)),
ρE can be interpreted as the local exponent governing the behavior of the function h
(cf. Eq. (4)) around the largest available observation y†(n). This suggests the direct use
of the empirical cumulative distribution function to estimate ρE . Indeed, for a sufficiently
small interval around y†, one has ∂ln yh(y†) = ρE , which enables us to write:

ln(− lnFY (y†)) ≈ ρE ln y† + β. (48)

Considering the ordered list Yi,n, the (1− i
n )-th quantile can be approximated by Yi,n,

hence:
ln
(
− ln i

n

)
≈ ρE lnYi,n + β.

This suggests that ρE can be estimated by a non weighted least square fit that involves
Yi,n for i ≤ kρ, where kρ is sufficiently small compared to n:

ρ̂E = C(ln y, ln(lnn− ln i))
C(ln y, ln y) , (49)

with x = 1
k

∑kρ
i=1 xi and C(x, y) = xy − x y.

4.2.2. Performance: theoretical analysis
Again, the choice of kρ constitutes the critical issue that can be expressed in terms of

the usual bias-variance trade-off: Because ρE is a local exponent, that may converge only
slowly to ρ, it needs to be estimated on narrow intervals around y†, hence the use of a
small kρ; Conversely, large kρ decrease the variance of the estimate at the price of a bias
increase. Actually, a too large kρ necessarily leads to the underestimation of ρE , as can
be seen by evaluating the variations of ρl(y) for each Y1,n and Yk,n. This motivates the
choice of kρ according to:

lim
n→+∞

kρ(n)
n

= 0. (50)

4.2.3. Performance: numerical analysis
The performance of ρ̂E as well as the trade-off framing the choice of kρ(n) are studied

numerically by means of Monte-Carlo simulations conducted as described in Section 4.1.3.
Relative biases and MSEs are reported in Fig. 6, as a function of kρ. It shows that

for the log-Weibull distributions, bias is negligible and the larger kρ, the lower the MSEs.
This stems from the fact that ρE(n) ≡ ρ, ∀n, which implies that ρ̂E is unbiased whatever
kρ, and hence that increasing kρ decreases the variance at no cost. However, this is a
particular case that departs from the general situation better accounted for by the second
example consisting of strict log-exponential-power law distributions. On this second
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Figure 6: ρ̂
(kρ)
E as a function of kρ: relative biases and MSEs. Left: Log-Weibull distribution;

Right: strict log-exponential-power. From top to bottom : ρ = 1.2, 2, 4, n = 1000. Dashed blue lines:
relative biases ; Solid red lines: relative MSEs. For the Log-Weibull distribution, because ρE(n) ≡ ρ,
increasing kρ is beneficial as it only yields a reduction in variance. However, in general, there is an
optimal kρ,opt that depends on n and ρ.
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E as a function of ρ: relative biases and MSEs. Left: Log-Weibull distribution;
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(kρ)
E : kρ,opt and MSEs as a function of lnn. Left: Log-Weibull distribution; Right:
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19



example, Fig. 6 indicates that the optimal choice of kρ(n) depends on the actual value of
ρ and must be chosen larger for ρ→ 1.

Relative biases and MSEs are reported in Fig.7, as a function of ρ. It shows that there
is a uniform in ρ benefit to increase kρ for the log-Weibull distributions. For the strict
log-exponential-power law distributions, however, kρ,opt is larger when ρ→ 1.

To finish with, Fig. 8 compares kρ,opt (i.e., k that yields the lowest MSE) to tentative
candidate functions for practical kρ(n): kρ(n) = 50 lnn, kρ(n) = 8n1/3. Though empirical,
those formula can be used as rules of thumb for a practical use of the estimator.

4.3. Estimation of qc
4.3.1. Definition

From θ̂(kθ) and ρ̂
(kρ)
E defined above, an estimator for qc can be proposed as:

q̂(kθ,kρ)
c = θ̂(kθ)ρ̂

(kρ)
E . (51)

4.3.2. Performance: theoretical study
To study the performance of q̂c, its bias B[q̂c] = Eq̂c − qc and variance Var [q̂c] can be

computed as

B[q̂c] = Cov[θ̂, ρ̂E ] + B[θ̂](ρE + B[ρ̂E ]) + B[ρ̂E ](θ + B[θ̂]), (52)

and

Var [q̂c] = Var
[
θ̂
]

Var [ρ̂E ]

+ Cov[θ̂2, ρ̂2
E ]− Cov[θ̂, ρ̂E ]2

+ Var
[
θ̂
]

(ρE + B[ρE ])2 + Var [ρ̂E ] (θ + B[θ])2 − 2Cov[θ̂, ρ̂E ](ρE + B[ρE ])(θ + B[θ])

Furthermore, assuming that the relative biases are negligible yields:

B[q̂c]
qc
≈ B[θ̂]

θ
+ B[ρ̂E ]

ρE
+ Cov[θ̂, ρ̂E ]

ρEθ
. (53)

Var [q̂c]
q2
c

≈
Var

[
θ̂
]

Var [ρ̂E ]

(ρEθ)2

+ Cov[θ̂2, ρ̂2
E ]− Cov[θ̂, ρ̂E ]2

(ρEθ)2

+
Var

[
θ̂
]

θ2 + Var [ρ̂E ]
ρ2
E

− 2Cov[θ̂, ρ̂E ]
ρEθ

.

These calculations show that the performance of q̂c significantly depend on the covariance
between the estimates θ̂ and ρ̂. This covariance is investigated by means of numerical
simulations.

20



1.5 2.0 2.5 3.0 3.5 4.0
ρ

0.0

0.2

0.4

0.6

0.8

1.0

C
o
rr

(θ̂
,ρ̂
E

)

1.5 2.0 2.5 3.0 3.5 4.0
ρ

0.0

0.2

0.4

0.6

0.8

1.0

C
o
rr

(θ̂
,ρ̂
E

)

103 104 105 106 107

n

0.0

0.2

0.4

0.6

0.8

1.0

C
o
rr

(θ̂
,ρ̂
E

)

103 104 105 106 107

n

0.0

0.2

0.4

0.6

0.8

1.0

C
o
rr

(θ̂
,ρ̂
E

)

Figure 9: Correlation between θ̂(kθ,opt) and ρ̂
(kρ,opt)
E . Left: Log-Weibull distribution ; right: Strict

log-exponential-power distribution. Top: as a function of ρ, n = 1000. Bottom: as a function of n, ρ = 2.

4.3.3. Performance: numerical analysis
Monte-Carlo simulations, in the spirit of those presented in previous sections, with

the empirically found best choices for kθ(n) and kρ(n), are conducted. Fig. 9 shows that
Cov[θ̂, ρ̂E ] remains quite high and positive, whatever ρ and n, and hence significantly
contributes to the bias and variance of q̂c. Furthermore, results reported in Fig. 10
essentially show that the MSEs for q̂c vary from 5% to 25% depending on the actual
distribution of Y and the value of ρ, with larger MSEs for ρ→ 1. Though these MSEs
may seem high, q̂c still provides practitioners with a practical procedure yielding a very
satisfactory order of magnitude of the true qc: In applications, one is rarely interested
in the precise value of qc, while the knowledge of a estimated order of magnitude often
proves very important as soon as data interpretation is concerned.

5. Correlated time series

So far, observation {X1, . . . , Xn} consisting of independent samples only have been
dealt with, when we are mostly interested in stationary time series analysis, where data
are likely to be dependent. The goals of the present section is therefore to analyze the
impact of dependence amongst observations on the definition and estimation of qc as
well as to propose a simple and elementary modification of q̂c as described above to
accommodate dependencies.

5.1. Theoretical analysis
In Section 3 above, the critical moment arose from a balance between two competing

factors: dominant moment contribution versus finite size effect. While the definition and
21
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Figure 10: q̂c: relative biases (blue dashed line) and MSES(red solid line). Left: Log-Weibull
distribution ; right: Strict log-exponential power distribution. Top: as a function of ρ, n = 1000. Bottom:
as a function of n, ρ = 2. n = 1000

evaluation of the former depend only on the marginal distribution of the data and are
not affected by dependencies, the latter is far more impacted by correlations. Indeed, a
finite size accessible range has been defined by

Prob
(
∀k = 1, . . . , n, Yk < y†

)
= 1
e
,

For independent data, the previous equation simplifies to h(y†) = lnn. For correlated
time series, it is natural to expect that y†T can be defined via an effective number of
sample n∗T , as:

h(y†T ) = lnn∗T .

From this modification, the analysis conducted in Section 3 leads to define a critical
moment under dependencies qTc as:

qTc (n) = qc(n∗T ). (54)

As for the independent case, qTc can be split into two terms,

qTc (n) = ρTE(n)θT (n). (55)

Reinjecting y†T , into the definition of ρTE and θT leads to

ρTE(n) = ρE(n∗T ), θT (n) = θ(n∗T ). (56)
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Figure 11: q̂(kθ,kρ)
c : Impact of dependencies. Applied to correlated observations, q̂c is impaired by

a significant structural bias that cannot be accounted for by a rescaling (of the form suggested by Eq.
(58)). (kθ, kρ) = (1, 100). Black line: true qc, q̂

(kθ,kρ)
c , for τ = 10 (red circles), τ = 50 (green squares)

τ = 100 (blue triangles).

Let τ denote the correlation length of the analyzed time series, defined as τ =∫ +∞
0 tC(t)dt/

∫ +∞
0 C(t)dt. When τ is well defined, it is natural to assume that n∗ es-

sentially behaves as n∗ ∝ n
τ , with the obvious requirement that limτ→0 n

∗(n, τ) = n,
suggesting the phenomenological form:

n∗ = n

1 + κτ
, (57)

with κ a positive constant to be determined. This leads to:

qTc (n) = qc(τ, n) = qc(n/(1 + κτ)). (58)

5.2. Impact of dependencies on q̂c

To study the impact of dependence on q̂c, the estimator is applied to a large number of
independent realizations of stationary time series, of length n, and with a priori and jointly
prescribed (log-Weibul or strict log-exponential power law) marginal distributions and
covariance function C(t). These are synthesized numerically using the Hermite expansion
and Circulant Matrice Embedding based techniques described in [15, 14]. To understand
the impact of dependencies, let us analyze the case where C(t) takes the simple form:

C(t) = e−
|t|
τ , (59)

with τ a tunable constant, obviously corresponding to the correlation length.
Results, reported in Fig. 11, show first a strong discrepancy between q̂c and qc(τ, n)

and second and mostly that no rescaling operation of the form suggested by Eq. (58)
can account for it. Indeed, a rescaling as in Eq. (57) amounts only to a translation of q̂c
along the horizontal axis. Moreover, assuming n∗ < n restricts to left translations only,
which makes it impossible to superimpose all q̂c(τ, n) curves by rescaling: q̂c does not
converge towards qc(τ, n).

To further analyse the cause for this discrepancy, let us analyse separately θ̂(kθ) and
ρ̂

(kρ)
E .
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Fig. 12 obtained from the same Monte-Carlo simulations, with kθ = 1, indicates that
a κ(≈ 0.08) can be found such that E

[
θ̂

lnn

]
≈ θ(n∗)

lnn∗ (quite logically θ̂ = lnn∗/Ω is to be
used instead of θ̂ = lnn/Ω, as lnn in the definition of θ does not scale with τ .) This means
that Ω1 exhibits the expected behaviour, E [Ω1(n, τ)] = E [Ω1(n∗)]. However, increasing
kθ from 1 to 2 and above does not, as in the independent case, brings a reduction in
bias, but instead significantly increases it. This can easily be understood as very likely
the second largest value is located extremely close to the first largest one and highly
correlated to it, hence not bringing any bias reduction. Instead, this correlation prevents
the convergence of the order statistics to its asymptotic limit and hence impairs the
consistency of Ω.

This significant correlation of the order statistics also explains the poor performance
of ρ̂E . As illustrated in Fig. 13, ρ̂E does not converge towards ρE(τ, n) and no rescaling
can account for this discrepancy. This can be interpreted as follows: ρ̂E strongly relies on
the convergence of the kth order statistics towards the (1− k/n)-quantile. Correlations of
the sample generates correlations amongst this order statistics because correlated samples
tends to regroups together in clusters in terms of ranks. So the correlation of the samples
is transferred to the order statistics, which dramatically hinders the convergence of the
order statistics towards the quantile.
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Figure 12: θ̂: Impact of dependencies. Rescaling of θ
lnn as a function of n∗ = n/(1 + κτ), for

τ ∈ {10, 50, 100} (red circles τ = 10, green squares τ = 50 , blue triangles τ = 100). The black line
correspond to the theoretical value θ(n)/ lnn.

Therefore, applied to correlated stationary times series, q̂c, as defined in Section 4,
cannot converge towards qTc . However, a simple modification described below is shown to
significantly account for correlations: It consists of imposing that the largest value has
been found, the second largest value used must be picked far enough from the first largest
one, the third largest must be picked far far enough from the two first ones, and so on.
The modified q̂Tc hence essentially consists of the original q̂c, applied to these far enough
order statistics.

5.3. Modified estimators
An efficient way of implementing the idea described above is to construct the set of

effective independent samples step-by-step. Consider the original sample P1 = X1, . . . , Xn.
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Figure 13: ρ̂E : Impact of dependencies. Black line: theoretical value, red circles τ = 10, green
squares τ = 50 , blue triangles τ = 100.

First, the maximum, Xk1 = max{P1} is selected. Then, all samples located close to Xk1

in time are eliminated: using the distance

dβ(Xi, Xj) = max(|j − i|, βCard{k,min(Xi, Xj) < Xk < max(Xj , Xi)}).

the set P1 is sieved by eliminating samples belonging to the sphere centered at Xk1 and
of radius s. A new set P2 = P1 \ Bdβ (Xk1 , s) is defined and the procedure is repeated
until a set Pe = {Xk1 , ..., Xkl} of effective independent points is obtained. The modified
θ̂T and ρ̂TE are defined by applying the original θ̂ or ρ̂E to Pe.

Monte-Carlo simulations conducted as above suggest that the threshold should take
the following form:

s = ατ, (60)

with the choice α ≈ 0.01, as illustrated in Fig. 14.
These same Monte-Carlo simulations also show that the estimation of θ once corrected

(by assuming the value n∗ is known) leads to the expected θ(n∗) (cf. Fig. 15) and that qc
can thus be very satisfactorily estimated (cf. Fig. 16).

This very good performance however involved the a priori knowledge of τ , and
Monte-Carlo simulations provided accurate estimates of the parameters α and κ. These
parameters would obviously not be known on actual data and would need to be estimated.
Such estimations are beyond the scope of the present contribution. They could be based
on spectrum estimation or other classical techniques. This is under current investigation
and will be the subject of another contribution. However, to conclude this study, Fig. 17
reports the expectations and standard deviations of q̂Tc , applied to log-normal exponentially
correlated data with τ = 100, when the value of τ actually used on q̂Tc is, in purpose,
incorrectly specified. Satisfactorily, Fig. 17 shows a weak sensitivity of q̂Tc with the value
of τ actually used, notably when it is larger than the actual correlation length. This means
that, in practice, a rough estimation of the true correlation length might be sufficient to
obtain satisfactory performance of q̂Tc .
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Figure 14: Modified estimator ρ̂TE . kρ = 100. Black line: theoretical value, red circles τ = 10, green
squares τ = 50 , blue triangles τ = 100.
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Figure 15: Estimation of θ(n∗) with the corrected estimator θ̂T . kθ = 10. Black line : theoretical
value, red circles τ = 10, green squares τ = 50, blue triangles τ = 100.
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Figure 16: Estimation of qc(n∗) with corrected estimator. Black line: theoretical value, red circles
τ = 10, green squares τ = 50, blue triangles τ = 100.
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Figure 17: q̂Tc : Influence of the choice of τ . Solid black lines show the average value and standard
deviations of q̂Tc using various values of τ . The vertical dashed line corresponds to the actual correlation
length of the data, τ = 100. The horizontal dashed line indicates the theoretical value qc(n, τ).

6. Conclusions

In the present contribution, the question of defining and estimating a critical order qc
up to which the moments can be correctly estimated from a sample observation of given
size has been addressed. More specifically, the case where the observations stem from
distributions that have finite moments of all orders yet significantly heavier tails than
Gaussian random variables (such as e.g., the log-normal distribution) has been considered
as it arises in many modern applications, such as e.g., the Random Energy Model in
statistical physics or Multiplicative Cascades in Hydrodynamic Turbulence.

It has been shown that this critical order can be given a formal quantitative definition,
combining dominant contributions and finite size effects. This definition clearly highlights
the impact of the parameter ρ quantifying the heavytailness of the distribution on the
growth of the critical order qc as a function of the size of the sample (the more standard
case of variables having tail of the order of that of Gaussian random variables or a
power-law tail being retrieved by taking the limit ρ → +∞ and ρ → 1). Monte-Carlo
simulations validates the practical relevance of this quantitative prediction. An estimator
that can actually be applied to a single realization of data has been defined, and analyzed
both theoretically and by means of Monte Carlo simulations, in the context of i.i.d.
observations. This procedure provides practitioners with a tool that can practically be
applied to a single observation of a given actual data. Matlab procedures implementing
this estimation procedure are available upon request.

The question of dependence amongst observations has then been addressed and shown
to significantly decrease estimation performance. However, a simple modification of the
estimation procedure has been devised to account for dependence. Its effectiveness is
validated by Monte-Carlo simulations. The use of this procedure on actual data only
requires a rough estimation of a typical correlation length amongst observations, which
can be achieved using classical signal processing tools (such as spectrum estimation).

The definition and assessment of an original procedure systematically integrating the
estimation of the typical correlation length within that of qc is under current investigation
and will be the subject of a future contribution.

An analysis, elaborated along the same line, has recently been proposed to define
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the critical moment for another class of variables: that corresponding to the increments
of multifractal processes, that differ (significantly) from the class considered here in
having finite moments only over a finite range of orders as well as long range correlations.
The reader is referred to [2] for comparisons enabling insightful understanding of the
mechanisms at work in defining a critical order.
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Appendix A. Saddle-point evaluation of EXq

The saddle-point method consists in a classical technique enabling the evaluation of
the asymptotic behaviour of integrals of the form

∫ +∞
−∞ g(x)etf(x)dx for large t [21, 8].

More precisely, when x∗ is the only maximum of f , the saddle-point evaluation reads :∫ +∞

−∞
g(x)etf(x)dx ∼

t→+∞
g(x∗)etf(x∗), with f ′(x∗) = 0. (A.1)

This technique is used here to evaluate the asymptotic behaviour of E [Xq] when
q → +∞. Eq. (18) leads to define the logarithmic density ψ(y) = h(y) + ln h′(y). The
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maximum of the integrand in Eq. (18) is hence located at y∗, such that ψ′(y∗) = q. The
change of variable y = νy∗ enables to rewrite Eq. (18) as:

E [Xq] = y∗
∫ +∞

0
eqy
∗ν−ψ(νy∗)dν. (A.2)

Moreover, Conditions 6 and 7 imply that ψ(y) ∼
y→+∞

h(y) and ψ′(y) ∼y→+∞ h′(y).
Combined together, these results yield:

qy∗t− ψ(ty∗) = ψ(y∗)(ρν − νρ + ε(y∗, ν)),

with ∀ν, limy∗→+∞ ε(y∗, ν) = 0; and hence

E [Xq] = y∗
∫ +∞

0
eψ(y∗)(ρν−νρ+ε(y∗,ν))dν. (A.3)

The above equation can also be rewritten as

E [Xq] = y∗eqy∗−ψ(y∗)
∫ +∞

0
eψ(y∗)(1−ρ+ρν−νρ+ε2(y∗,ν))dν.

with ε2(y∗, ν) = ε(y∗, ν) − ε(y∗, 1). For ν 6= 1, 1 − ρ + ρν − νρ + ε2(y∗, ν)) < 0 thus
only the neighbourhood of ν = 1 contributes significantly to the integral when y → +∞.
Moreover, for ν close to 1

1− y∗ψ′(y∗)
ψ(y∗) + ρν − νρ + ε2(y∗, ν)) ≈ −y∗2ψ

′′(y∗)
ψ(y∗)

ν2

2 + o(ν2)

Injecting this approximation into the integral above leads to a Gaussian integral∫ +∞

0
e−y

∗2ψ′′(y∗)ν2/2dν =

√
2π

y∗2ψ′′(y∗) ,

and hence to Eq.(19) :

E [Xq] ∼ eqy
∗−ψ(y∗)

√
2π

ψ′′(y∗) . (A.4)

Appendix B. Truncated moments and sample moment estimator

In this section, the almost sure convergence of f(n, q) = lnS(n, q)/ lnn towards
limn lnMT (n, q)/ lnn is proven.

The most fundamental point is to make precise the role play by y†τ as a frontier. By
definition,

Prob
(
Y1, . . . , Yn > y†

)
= 1− e−τ ∼

τ→0
τ

The Borel-Cantelli lemma [5] states that if a sequence of random events An satisfies∑
P (An) < +∞, then the events Ak only occurs a finite number of times.
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Here, a natural choice of events would be An = (∃i < n, Yi > y†τn). If
∑
n τ(n) < +∞

then for sufficiently large n, all the Yi are almost surely smaller than y†k. However, to
preserve the property y†τ → y†1, it is also required that ln τ � lnn. Unfortunately, these
two conditions are incompatible.

To answer this dilemma, let us consider a subsequence n(r) of samples (for instance
n(r) = 2r ) and events Ar = (∃i < n(r), Yi > y†τn(r)). Then, the condition in the
Borel-Cantelli lemma becomes : ∑

r

τ(n(r)) < +∞ (B.1)

One should note that this condition, with n(r) = 2r, is compatible with ln τ � lnn if
one choose τ = 1/ lnn. Moreover, if the value of lnS/ lnn at points n(r) is known, the
behaviour of f can be inferred for all points. Considering two points k < l, one has:

f(k, q(k)) < f(l, q(l)) ln l
ln k + 1− ln l

ln k

With a = n(r) < k < b = n(r + 1), the inequality below holds:

f(a, q(a)) ln a
ln b + 1− ln a

ln b < f(k, q(k)) < f(b, q(b)) ln b
ln a + 1− ln b

ln a. (B.2)

With ln(n(r + 1))/ ln(r) → 1, the above inequality describes precisely f , in the limit
n→ +∞. This equivalently amounts to defining n(r) as

n(r) = exp(eν(r)), with lim
r→+∞

ν(r + 1)− ν(r) = 0

A simple solution would be to choose ν(r) =
√
r and τ(r) = 1

r2 , then n(r) = exp(e
√
r)

and

τ(n) =
(

1
ln lnn

)4
.

Therefore, if points n(r) only are observed, for r sufficiently large, almost surely, all the
Yi are smaller than y†τ .

Denoting χI the characteristic function of the set I,

χI (x) =
{

1 if x ∈ I
0 otherwise

, (B.3)

one can write
S(n, q) a.s= 1

n

∑
Yiχ(−∞,y†] (Yi)

This sum can be further evaluated by spliting the remaining interval (−∞, y†τ ] in 2R(n)+1
sub-intervals with

ak = k
y†

R(n)
Ik = (ak, ak+1], k ∈ −R, . . . , R− 1.
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I−R(n)−1 = I−∞ = (−∞, a−R]
For reasons made explicit later, we choose

R(n) = lnn
ln lnn. (B.4)

Because y† = L(lnn)(lnn)1/ρ, the length of the sub-intervals is converging towards 0.
S(n, q) can hence be rewritten as

S(n, q) a.s=
n∑
i=1

R(n)−1∑
k=−R(n)−1

eqYiχIk (Yi) .

It is possible count the number of point in each interval:

Nk =
n∑
i=1

χIk (Yi) .

Under certain conditions Nk should not differ too much from

ENk = nEχIk (B.5)

More precisely, Markov inequality [5] provides us with an almost sure upper bound:

Prob (∀k,Nk > αENk) < 2R(n) + 1
α(n)

To use Borell-Cantelli lemma, it is required that
∑
r

2R(n(r))+1
α(n(r)) < +∞. The slower α

grows, the more information can be obtained from Borel-Cantelli lemma. A valid choice
here implies lnα� lnn. Due to the sparsity of n(r),

α(n) = R(n) lnn, (B.6)

is a compatible choice. This yields:

S(n, q)
a.s
<

R(n)−1∑
k=−Rn−1

α(n)E [χIk ] eqak+1 (B.7)

Furthermore, let ψ denote the logarithmic density (as defined in Appendix A),

E [χIk ] < 2(y†/R) exp(−ψ(ak)).

The major contribution to the sum comes from the interval Im containing y∗ (defined as
ψ′(y∗) = q). This leads to a rough upper bound,

S(n, q)
a.s
< α(n)

(
y†τe

qam+1−ψ(am) + E
[
χI−∞

]
e−qy

†
)
. (B.8)

Most of the terms in this equation are logarithmically negligible compared to lnn.
Therefore,

lim
n

lnS(n, q)
lnn

a.s
< lim

n

qam+1(n)− ψ(am(n))
lnn . (B.9)
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The lower bound is more difficult to obtain and the method proposed here uses the
Bienaymé-Tchebitchev inequality and is thus only applicable to i.i.d. variables.

Prob
(
Nm >

E [N ]m
2

)
<

4
nE [χ]Im

(B.10)

nE [χ]Im > nE [χ]IR−1

> n

∫ y†(1− 1
2R )

y†(1− 1
R )

e−ψ(y)dy.

> n
y†

2Re
−ψ(y†(1− 1

2R ))

= y†

2R (lnn)2ρ(1+ε(y))

= (lnn)(2ρ−1−1/ρ)(1+ε(y))

This latest equation imposes the most restrictive condition on R. Indeed, this implies
that ∑

r

Prob
(
Nm >

E [N ]m
2

)
< +∞.

The Borel-Cantelli Lemma can be used to obtain
1
2e

qam−ψ(am+1) a.s
< S(n, q). (B.11)

lim
n

qam − ψ(am+1)
lnn

a.s
< lim

n
f(n, q). (B.12)

The last needed step is to verify that the two bounds converge when n→ +∞. It is
needed to verify first that

qy†

R lnn = qy† ln lnn
(lnn)2 .

The convergence comes at the price of a condition on q

∃ε > 0, q � (lnn)2−1/ρ−ε.

The second term is verified easily

ψ′(y†)y†

R lnn ∼ ln lnn
lnn .

Thus, the image of Im by y 7→ qy − ψ(y) converges towards a simple point.
Combining these results with (B.12) and (B.9) leads to

lim
n

lnS(n, q)
lnn

a.s= lim
n

qy∗(n)− ψ(y∗)
lnn , (B.13)

which hence, combined to a saddle point evaluation of the truncated moments proves
Eq. (25).
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Appendix C. Estimation of θ: theoretical results

Appendix C.1. Construction
In order to prove the consistence and the asymptotic normality of Ωk, it is easier to

consider variables (G1, . . . , Gn) of law Λ(k). If we then define

∆i = i(Gi −Gi+1), (C.1)

one can see that

pΛ(k)(δ1, . . . , δk−1, gk) = exp
(
−e−gk − kgk −

∑
i<k

i ·∆i

)
. (C.2)

In other words, ∆i and Gk are independent. Moreover, if we call

ζ(s;n) =
n∑
j=1

1
js

(C.3)

Some computations then leads to :

E [∆i] = 1, (C.4)

Var [∆i] = 1. (C.5)

Similarly with γ the Euler-Mascheroni constant:

E [Gk] = γ − ζ(1; k − 1), (C.6)

Var [Gk] = π2

6 − ζ(2; k − 1). (C.7)

If we now try to apply Ωk to the Gi variable, we can translate

Ωk =
∑

αiGi (C.8)

into

Ωk = Gk +
k−1∑
i=1

βi∆i. (C.9)

with βi = 1
i

∑
j≤i αj . We can thus calculate the quadratic standard error with

E
[
Ω2
k

]
= E [Ω]2 + Var [Ω] . (C.10)

which brings forth

E
[
Ω2
k

]
= π2

6 − ζ(2, k − 1) +
k−1∑
i=1

β2
i +

(
γ − ζ(1; k − 1) +

k−1∑
1
βi

)2

. (C.11)
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We can then minimize E
[
Ω2
k

]
directly according to the βi with a Lagrange multiplier

λ in order to insure than E [Ωk] = 0

∂βi(E
[
Ω2
k

]
− λE [Ωk]) = 2(γ − ζ(1; k − 1))− λ+ 2

k−1∑
j=1

βj + 2βi. (C.12)

An obvious solution is then βi = β = ζ(1;k−1)−γ
k−1 and so :∀i, i 6= k αi = γ−

∑k

l=1
1
l

k−1
αk = 1− (k − 1)α1

(C.13)

Appendix C.2. Consistence
We can now verify that limk E

[
Ω2
k

]
= 0 for the variables Gk

E
[
Ω2
k

]
= π2

6 − ζ(2, k − 1) + (ζ(1; k − 1)− γ)2

k − 1 . (C.14)

The result comes immediately from the fact that ζ(2) = π2

6 . Using the convergence in
distributions of the Uk, we then obtain

E
[
Ω2(U)

]
→
k

0. (C.15)

Appendix C.3. Asymptotic Normality
One can write Ωk as

Ωk = gk + β

k−1∑
i=1

∆i. (C.16)

From Eq. C.2, it is easy to verify that the ∆i variables are i.i.d.. Thus,

Ωk − gk − ζ(1; k − 1) + γ

ζ(1; k − 1)− γ
D→ N (0, 1). (C.17)

Moreover,
E [gk − ζ(1; k − 1) + γ] = 0, (C.18)

Var [gk − ζ(1; k − 1) + γ] = π2

6 − ζ(2; k − 1), (C.19)

implies that
gk − ζ(1; k − 1) + γ

p→ 0. (C.20)

It is thus possible to eliminate this term from the previous equation:

Ωk
ζ(1; k − 1)− γ

D→ N (0, 1). (C.21)

Combining this result with the convergence in distribution of the Uk show that there is a
k(n) such that Ωk is asymptotically normal.
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